BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats

Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo an...

Full description

Saved in:
Bibliographic Details
Published inStem cell research & therapy Vol. 13; no. 1; pp. 1 - 295
Main Authors Li, Zhenyu, Li, Qingxian, Tong, Kai, Zhu, Jiayong, Wang, Hui, Chen, Biao, Chen, Liaobin
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 15.07.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR. Keywords: Bone marrow stromal cell, Exosome, Macrophage polarization, Tendon-bone healing, miRNA
AbstractList Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.
Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.
Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR. Keywords: Bone marrow stromal cell, Exosome, Macrophage polarization, Tendon-bone healing, miRNA
BACKGROUNDRecent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. METHODSHighly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. RESULTSBioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. CONCLUSIONSBMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.
Abstract Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote tendon-bone healing after anterior cruciate ligament reconstruction (ACLR) is still unclear. In this study, we observed in vivo and in vitro the effect of rat BMSC-Exos on tendon-bone healing after ACLR and its possible mechanism. Methods Highly expressed miRNAs in rat BMSC-Exos were selected by bioinformatics and verified in vitro. The effect of overexpressed miRNA in BMSC-Exos on M2 macrophage polarization was observed. A rat model of ACLR was established. The experimental components were divided into three groups: the control group, the BMSC-Exos group, and the BMSC-Exos with miR-23a-3p overexpression (BMSC-Exos mimic) group. Biomechanical tests, micro-CT, and histological staining were performed for analysis. Results Bioinformatics analysis showed that miR-23a-3p was highly expressed in rat BMSC-Exos and could target interferon regulatory factor 1 (IRF1, a crucial regulator in M1 macrophage polarization). In vitro, compared with the control group or the BMSC-Exos group, the BMSC-Exos mimic more significantly promoted the polarization of macrophages from M1 to M2. In vivo, at 2 weeks, the number of M2 macrophages in the early local stage of ACLR was significantly increased in the BMSC-Exos mimic group; at 4 and 8 weeks, compared with the control group or the BMSC-Exos group, the bone tunnels of the tibia and femur sides of the rats in the BMSC-Exos mimic group were significantly smaller, the interface between the graft and the bone was narrowed, the bone volume/total volume ratio (BV/TV) increased, the collagen type II alpha 1 level increased, and the mechanical strength increased. Conclusions BMSC-Exos promoted M1 macrophage to M2 macrophage polarization via miR-23a-3p, reduced the early inflammatory reaction at the tendon-bone interface, and promoted early healing after ACLR.
ArticleNumber 295
Audience Academic
Author Chen, Liaobin
Li, Zhenyu
Wang, Hui
Chen, Biao
Tong, Kai
Zhu, Jiayong
Li, Qingxian
Author_xml – sequence: 1
  fullname: Li, Zhenyu
– sequence: 2
  fullname: Li, Qingxian
– sequence: 3
  fullname: Tong, Kai
– sequence: 4
  fullname: Zhu, Jiayong
– sequence: 5
  fullname: Wang, Hui
– sequence: 6
  fullname: Chen, Biao
– sequence: 7
  fullname: Chen, Liaobin
BookMark eNptkm1v1SAUxxsz4-bcF_BVExOjL7oBLbS8MZk3Ptxki4nT14TCaS83LVyBLpvfw-8rvXfR1QjhIYff-RMO_-fZkXUWsuwlRucYN-wi4JI0dYEISYPXtEBPshNc07pgFJOjR_vj7CyELUqtLBFi1bPsuKRNhRFqTrJf769vVoUGb25B53Dnghsh5DvvRhchj2C1s0Wb7s43IAdj-1x2EXwubZqN87nykzIysYPp5Qg25h6UsyGmeDTO5u19ivTTIOOcfY0vrkk-SuXdbiN7yHdukN78lHvW2NzLGF5kTzs5BDh7WE-z7x8_fFt9Lq6-fFqvLq8KxRCNRddwxFvcNbqjmFYMlRgwMIQ4o5TpliotFQGqW44YJbXqqqamUJdcYgI1LU-z9UFXO7kVO29G6e-Fk0bsA873Qvpo1AACa9Rg0qq6qnBF55KDYoxw2lYcaSWT1ruD1m5qR9AqVcLLYSG6PLFmI3p3KzhpqobUSeDNg4B3PyYIUYwmKBgGacFNQRDGMaKENGVCX_2Dbt3kbSrVnqLJIJz_pXqZHmBs59K9ahYVlzVGjJS8nKnz_1CpaxhN-kjoTIovEt4uEhIT4S72cgpBrG--LtnXj9jZQXET3DDNnx2WIDmAyRcheOj-FA4jMRteHAwvkuHF3vAClb8BOnLx6g
CitedBy_id crossref_primary_10_1016_j_mtbio_2023_100749
crossref_primary_10_4252_wjsc_v16_i5_499
crossref_primary_10_1016_j_csm_2023_07_003
crossref_primary_10_1016_j_matdes_2024_112844
crossref_primary_10_3892_ijmm_2023_5273
crossref_primary_10_37939_jrmc_v27i4_2287
crossref_primary_10_3389_fbioe_2023_1249860
crossref_primary_10_1021_acs_jproteome_3c00697
crossref_primary_10_1111_odi_15031
crossref_primary_10_1186_s12951_023_01778_6
crossref_primary_10_1016_j_molimm_2023_09_010
crossref_primary_10_1016_j_jare_2024_01_020
crossref_primary_10_1016_j_medj_2024_01_006
crossref_primary_10_3390_ijms241813873
crossref_primary_10_3389_fimmu_2023_1339669
crossref_primary_10_1016_j_clbc_2023_04_007
crossref_primary_10_1021_acsami_3c16494
crossref_primary_10_1016_j_cej_2024_149681
crossref_primary_10_1016_j_cej_2023_147144
crossref_primary_10_1016_j_intimp_2023_110895
crossref_primary_10_1016_j_jconrel_2023_11_057
crossref_primary_10_1038_s41420_024_01973_w
crossref_primary_10_1038_s42003_024_05882_7
crossref_primary_10_3389_fbioe_2023_1104214
crossref_primary_10_12677_ACM_2023_1381912
crossref_primary_10_3390_ijms232214467
crossref_primary_10_3389_fbioe_2023_1150290
crossref_primary_10_1016_j_intimp_2023_109905
crossref_primary_10_3892_ijmm_2023_5324
crossref_primary_10_1016_j_jare_2023_11_011
crossref_primary_10_1093_stmcls_sxae040
crossref_primary_10_1021_acsomega_3c08133
crossref_primary_10_3390_jfb14060299
crossref_primary_10_1002_smll_202303506
crossref_primary_10_2147_IJN_S407029
crossref_primary_10_3390_ijms24032660
crossref_primary_10_1007_s10529_023_03376_w
crossref_primary_10_1016_j_tice_2023_102112
crossref_primary_10_2147_SCCAA_S438023
crossref_primary_10_3389_fbioe_2023_1118468
crossref_primary_10_3390_ijms232315089
crossref_primary_10_1016_j_jconrel_2023_10_031
crossref_primary_10_1002_adhm_202303549
crossref_primary_10_1016_j_gene_2023_148002
crossref_primary_10_1002_bmc_5846
Cites_doi 10.3390/ijms21249759
10.1016/j.orthres.2005.01.014.1100230627
10.1111/j.1476-5381.1996.tb15660.x
10.1007/s00402-013-1802-x
10.1126/science.7510419
10.1111/j.1469-7580.2006.00540.x
10.1038/ncb1596
10.1016/j.intimp.2021.107823
10.5694/mja17.00974
10.1002/bdrc.21056
10.1016/j.joca.2016.06.022
10.15283/ijsc19108
10.1186/s13287-021-02400-y
10.1177/0363546517745624
10.1177/0363546516629944
10.1172/JCI44490
10.1039/c8tb01310a
10.1177/0363546507307396
10.1146/annurev-physiol-022516-034339
10.1016/j.csm.2016.08.007
10.1080/20013078.2020.1778883
10.1126/science.aau6977
10.1186/1758-2555-1-21
10.2106/JBJS.17.00133
10.1016/j.molimm.2017.11.015
10.1038/s41419-018-1225-2
10.2106/JBJS.M.00009
10.12659/MSM.923328
10.1016/j.cmet.2016.10.013
10.1038/nm.4430
10.1177/0363546511422999
10.1016/s0092-8674(88)91307-4
10.1155/2016/5029619
10.1186/s13287-017-0510-9
10.1002/stem.3016
10.7150/thno.35391
10.1159/000460005
10.1002/jcp.29987
10.1007/s00167-019-05420-7
10.1038/s41598-018-19581-x
10.1016/j.csm.2012.08.010
10.1186/1749-799X-5-59
10.1111/bph.15225
10.1172/jci.insight.131273
10.1007/s00167-016-4172-4
10.1097/CCM.0000000000004315
10.1177/0363546519859324
10.1093/cvr/cvz040
10.3727/096368915X689622
10.1159/000451078
10.1007/s00167-009-0910-1
10.1073/pnas.1521230113
10.1128/JVI.01231-20
10.2106/JBJS.F.00531
10.1016/j.tcb.2016.11.003
10.1007/s00018-021-04020-4
10.1177/0363546521992469
10.1016/s1074-7613(02)00471-5
10.2353/ajpath.2009.090248
10.1016/j.imbio.2017.10.005
10.1186/s13287-021-02410-w
10.2106/JBJS.17.00412
10.1146/annurev-physiol-021014-071641
10.1177/0363546520967668
10.3109/03008207.2014.906408
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
ISR
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13287-022-02975-0
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1757-6512
EndPage 295
ExternalDocumentID oai_doaj_org_article_1d0812bc7441450297ec66295b490dca
A710623939
10_1186_s13287_022_02975_0
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 81871779
– fundername: ;
  grantid: znpy2019043
GroupedDBID ---
-56
-5G
-BR
0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAYXX
ABDBF
ABUWG
ACGFS
ACIHN
ACJQM
ACPRK
ACRMQ
ADBBV
ADINQ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ISR
ITC
KQ8
LK8
M1P
M7P
M~E
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SBL
SOJ
SV3
TUS
UKHRP
AFGXO
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c605t-f8909b1f8df51546031e1e60096556db5cdac2e5db906527cf4875e739a12e753
IEDL.DBID RPM
ISSN 1757-6512
IngestDate Tue Oct 22 15:13:15 EDT 2024
Tue Sep 17 21:24:26 EDT 2024
Fri Oct 25 04:34:55 EDT 2024
Thu Oct 10 20:19:46 EDT 2024
Tue Nov 19 21:05:42 EST 2024
Tue Nov 12 23:25:20 EST 2024
Thu Aug 01 20:31:48 EDT 2024
Tue Aug 20 22:11:16 EDT 2024
Thu Nov 21 20:47:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-f8909b1f8df51546031e1e60096556db5cdac2e5db906527cf4875e739a12e753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4426-0210
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284827/
PMID 35841008
PQID 2691518699
PQPubID 2040189
ParticipantIDs doaj_primary_oai_doaj_org_article_1d0812bc7441450297ec66295b490dca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9284827
proquest_miscellaneous_2691052283
proquest_journals_2691518699
gale_infotracmisc_A710623939
gale_infotracacademiconefile_A710623939
gale_incontextgauss_ISR_A710623939
gale_healthsolutions_A710623939
crossref_primary_10_1186_s13287_022_02975_0
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Stem cell research & therapy
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Wang (2975_CR32) 2020
R Mirza (2975_CR9) 2009; 175
PJ Murray (2975_CR6) 2017; 79
A Arthur (2975_CR48) 2020
H Baharlooi (2975_CR46) 2020; 13
M Miyamoto (2975_CR30) 1988; 54
CS Chamberlain (2975_CR54) 2014; 55
R Ma (2975_CR23) 2018; 46
CL Camp (2975_CR43) 2017; 99
T Squillaro (2975_CR47) 2016; 25
H Liu (2975_CR15) 2019
Y Sun (2975_CR25) 2019; 47
X Zhang (2975_CR18) 2021; 49
SW Ferguson (2975_CR37) 2018; 8
M Arabpour (2975_CR45) 2021; 97
S Zhang (2975_CR64) 2016; 24
H Valadi (2975_CR13) 2007; 9
Y Zhu (2975_CR63) 2017; 8
A Andrzejewska (2975_CR10) 2019; 37
G Di Rocco (2975_CR49) 2016; 2016
H Hu (2975_CR57) 2020; 9
AM Mowat (2975_CR51) 2017; 23
R Kamijo (2975_CR35) 1994; 263
S Kawamura (2975_CR7) 2005; 23
MJ Kraeutler (2975_CR41) 2017; 99
J Zhao (2975_CR16) 2019; 115
J Kowal (2975_CR65) 2016; 113
K Klinkert (2975_CR53) 2017; 58
R Zhang (2975_CR11) 2019; 11
TL Sanders (2975_CR2) 2016; 44
S Kourembanas (2975_CR12) 2015; 77
H Xiao (2975_CR19) 2020; 177
2975_CR62
K Eslamloo (2975_CR28) 2018; 93
M Hecker (2975_CR34) 1996; 118
M Varela-Eirin (2975_CR20) 2018; 9
EPC van der Vorst (2975_CR31) 2017; 25
B Jiang (2975_CR21) 2019; 9
D Zbrojkiewicz (2975_CR1) 2018; 208
Q Guo (2975_CR33) 2021; 236
DA Chistiakov (2975_CR52) 2018; 223
E Zelzer (2975_CR61) 2014; 102
CH Chen (2975_CR55) 2009; 1
F Song (2975_CR44) 2017; 41
H Liu (2975_CR17) 2021; 12
PL Hays (2975_CR50) 2008; 90
B Elser (2975_CR36) 2002; 17
J Jin (2975_CR22) 2021; 12
GM Kuang (2975_CR59) 2010; 18
CL Ardern (2975_CR4) 2012; 40
HD Wang (2975_CR24) 2020; 48
K Atesok (2975_CR27) 2014; 96
A Sindrilaru (2975_CR8) 2011; 121
J Cai (2975_CR26) 2018; 6
M Alghamdi (2975_CR66) 2021; 79
F Zhao (2975_CR39) 2019; 27
LS Lohmander (2975_CR3) 2007; 35
B Muller (2975_CR5) 2013; 32
JD Wylie (2975_CR42) 2017; 36
R Kalluri (2975_CR29) 2020
P Lui (2975_CR38) 2010; 5
J Wang (2975_CR56) 2020; 48
TL Sanders (2975_CR40) 2017; 25
M Benjamin (2975_CR60) 2006; 208
W Zhai (2975_CR58) 2013; 133
SLN Maas (2975_CR14) 2017; 27
References_xml – year: 2020
  ident: 2975_CR48
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21249759
  contributor:
    fullname: A Arthur
– volume: 23
  start-page: 1425
  issue: 6
  year: 2005
  ident: 2975_CR7
  publication-title: J Orthop Res
  doi: 10.1016/j.orthres.2005.01.014.1100230627
  contributor:
    fullname: S Kawamura
– volume: 118
  start-page: 2178
  issue: 8
  year: 1996
  ident: 2975_CR34
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.1996.tb15660.x
  contributor:
    fullname: M Hecker
– volume: 133
  start-page: 1533
  issue: 11
  year: 2013
  ident: 2975_CR58
  publication-title: Arch Orthop Trauma Surg
  doi: 10.1007/s00402-013-1802-x
  contributor:
    fullname: W Zhai
– volume: 263
  start-page: 1612
  issue: 5153
  year: 1994
  ident: 2975_CR35
  publication-title: Science
  doi: 10.1126/science.7510419
  contributor:
    fullname: R Kamijo
– volume: 208
  start-page: 471
  issue: 4
  year: 2006
  ident: 2975_CR60
  publication-title: J Anat
  doi: 10.1111/j.1469-7580.2006.00540.x
  contributor:
    fullname: M Benjamin
– volume: 9
  start-page: 654
  issue: 6
  year: 2007
  ident: 2975_CR13
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1596
  contributor:
    fullname: H Valadi
– volume: 97
  start-page: 107823
  year: 2021
  ident: 2975_CR45
  publication-title: Int Immunopharmacol
  doi: 10.1016/j.intimp.2021.107823
  contributor:
    fullname: M Arabpour
– volume: 208
  start-page: 354
  issue: 8
  year: 2018
  ident: 2975_CR1
  publication-title: Med J Aust
  doi: 10.5694/mja17.00974
  contributor:
    fullname: D Zbrojkiewicz
– volume: 102
  start-page: 101
  issue: 1
  year: 2014
  ident: 2975_CR61
  publication-title: Birth Defects Res C Embryo Today
  doi: 10.1002/bdrc.21056
  contributor:
    fullname: E Zelzer
– volume: 24
  start-page: 2135
  issue: 12
  year: 2016
  ident: 2975_CR64
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2016.06.022
  contributor:
    fullname: S Zhang
– volume: 13
  start-page: 13
  issue: 1
  year: 2020
  ident: 2975_CR46
  publication-title: Int J Stem Cells
  doi: 10.15283/ijsc19108
  contributor:
    fullname: H Baharlooi
– volume: 12
  start-page: 327
  issue: 1
  year: 2021
  ident: 2975_CR22
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02400-y
  contributor:
    fullname: J Jin
– volume: 46
  start-page: 915
  issue: 4
  year: 2018
  ident: 2975_CR23
  publication-title: Am J Sports Med
  doi: 10.1177/0363546517745624
  contributor:
    fullname: R Ma
– volume: 44
  start-page: 1502
  issue: 6
  year: 2016
  ident: 2975_CR2
  publication-title: Am J Sports Med
  doi: 10.1177/0363546516629944
  contributor:
    fullname: TL Sanders
– volume: 121
  start-page: 985
  issue: 3
  year: 2011
  ident: 2975_CR8
  publication-title: J Clin Invest
  doi: 10.1172/JCI44490
  contributor:
    fullname: A Sindrilaru
– volume: 6
  start-page: 5738
  issue: 36
  year: 2018
  ident: 2975_CR26
  publication-title: J Mater Chem B
  doi: 10.1039/c8tb01310a
  contributor:
    fullname: J Cai
– volume: 35
  start-page: 1756
  issue: 10
  year: 2007
  ident: 2975_CR3
  publication-title: Am J Sports Med
  doi: 10.1177/0363546507307396
  contributor:
    fullname: LS Lohmander
– volume: 79
  start-page: 541
  year: 2017
  ident: 2975_CR6
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-022516-034339
  contributor:
    fullname: PJ Murray
– volume: 36
  start-page: 155
  issue: 1
  year: 2017
  ident: 2975_CR42
  publication-title: Clin Sports Med
  doi: 10.1016/j.csm.2016.08.007
  contributor:
    fullname: JD Wylie
– volume: 9
  start-page: 1778883
  issue: 1
  year: 2020
  ident: 2975_CR57
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2020.1778883
  contributor:
    fullname: H Hu
– year: 2020
  ident: 2975_CR29
  publication-title: Science
  doi: 10.1126/science.aau6977
  contributor:
    fullname: R Kalluri
– volume: 1
  start-page: 21
  issue: 1
  year: 2009
  ident: 2975_CR55
  publication-title: Sports Med Arthrosc Rehabil Ther Technol
  doi: 10.1186/1758-2555-1-21
  contributor:
    fullname: CH Chen
– volume: 99
  start-page: 1382
  issue: 16
  year: 2017
  ident: 2975_CR43
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.17.00133
  contributor:
    fullname: CL Camp
– volume: 93
  start-page: 152
  year: 2018
  ident: 2975_CR28
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2017.11.015
  contributor:
    fullname: K Eslamloo
– volume: 11
  start-page: 6275
  issue: 10
  year: 2019
  ident: 2975_CR11
  publication-title: Am J Transl Res
  contributor:
    fullname: R Zhang
– volume: 9
  start-page: 1166
  issue: 12
  year: 2018
  ident: 2975_CR20
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-1225-2
  contributor:
    fullname: M Varela-Eirin
– volume: 96
  start-page: 513
  issue: 6
  year: 2014
  ident: 2975_CR27
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.M.00009
  contributor:
    fullname: K Atesok
– ident: 2975_CR62
  doi: 10.12659/MSM.923328
– volume: 25
  start-page: 197
  issue: 1
  year: 2017
  ident: 2975_CR31
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.10.013
  contributor:
    fullname: EPC van der Vorst
– volume: 23
  start-page: 1258
  issue: 11
  year: 2017
  ident: 2975_CR51
  publication-title: Nat Med
  doi: 10.1038/nm.4430
  contributor:
    fullname: AM Mowat
– volume: 40
  start-page: 41
  issue: 1
  year: 2012
  ident: 2975_CR4
  publication-title: Am J Sports Med
  doi: 10.1177/0363546511422999
  contributor:
    fullname: CL Ardern
– volume: 54
  start-page: 903
  issue: 6
  year: 1988
  ident: 2975_CR30
  publication-title: Cell
  doi: 10.1016/s0092-8674(88)91307-4
  contributor:
    fullname: M Miyamoto
– volume: 2016
  start-page: 5029619
  year: 2016
  ident: 2975_CR49
  publication-title: Stem Cells Int
  doi: 10.1155/2016/5029619
  contributor:
    fullname: G Di Rocco
– volume: 8
  start-page: 64
  issue: 1
  year: 2017
  ident: 2975_CR63
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0510-9
  contributor:
    fullname: Y Zhu
– volume: 37
  start-page: 855
  issue: 7
  year: 2019
  ident: 2975_CR10
  publication-title: Stem Cells
  doi: 10.1002/stem.3016
  contributor:
    fullname: A Andrzejewska
– volume: 9
  start-page: 6587
  issue: 22
  year: 2019
  ident: 2975_CR21
  publication-title: Theranostics
  doi: 10.7150/thno.35391
  contributor:
    fullname: B Jiang
– volume: 41
  start-page: 875
  issue: 3
  year: 2017
  ident: 2975_CR44
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000460005
  contributor:
    fullname: F Song
– volume: 236
  start-page: 2008
  issue: 3
  year: 2021
  ident: 2975_CR33
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29987
  contributor:
    fullname: Q Guo
– volume: 27
  start-page: 3543
  issue: 11
  year: 2019
  ident: 2975_CR39
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-019-05420-7
  contributor:
    fullname: F Zhao
– volume: 8
  start-page: 1419
  issue: 1
  year: 2018
  ident: 2975_CR37
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19581-x
  contributor:
    fullname: SW Ferguson
– volume: 32
  start-page: 93
  issue: 1
  year: 2013
  ident: 2975_CR5
  publication-title: Clin Sports Med
  doi: 10.1016/j.csm.2012.08.010
  contributor:
    fullname: B Muller
– volume: 5
  start-page: 59
  year: 2010
  ident: 2975_CR38
  publication-title: J Orthop Surg Res
  doi: 10.1186/1749-799X-5-59
  contributor:
    fullname: P Lui
– volume: 177
  start-page: 4683
  issue: 20
  year: 2020
  ident: 2975_CR19
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15225
  contributor:
    fullname: H Xiao
– year: 2019
  ident: 2975_CR15
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.131273
  contributor:
    fullname: H Liu
– volume: 25
  start-page: 493
  issue: 2
  year: 2017
  ident: 2975_CR40
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-016-4172-4
  contributor:
    fullname: TL Sanders
– volume: 48
  start-page: e599
  issue: 7
  year: 2020
  ident: 2975_CR56
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000004315
  contributor:
    fullname: J Wang
– volume: 47
  start-page: 2327
  issue: 10
  year: 2019
  ident: 2975_CR25
  publication-title: Am J Sports Med
  doi: 10.1177/0363546519859324
  contributor:
    fullname: Y Sun
– volume: 115
  start-page: 1205
  issue: 7
  year: 2019
  ident: 2975_CR16
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvz040
  contributor:
    fullname: J Zhao
– volume: 25
  start-page: 829
  issue: 5
  year: 2016
  ident: 2975_CR47
  publication-title: Cell Transplant
  doi: 10.3727/096368915X689622
  contributor:
    fullname: T Squillaro
– volume: 58
  start-page: 109
  issue: 3–4
  year: 2017
  ident: 2975_CR53
  publication-title: Eur Surg Res
  doi: 10.1159/000451078
  contributor:
    fullname: K Klinkert
– volume: 18
  start-page: 1038
  issue: 8
  year: 2010
  ident: 2975_CR59
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-009-0910-1
  contributor:
    fullname: GM Kuang
– volume: 113
  start-page: E968
  issue: 8
  year: 2016
  ident: 2975_CR65
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1521230113
  contributor:
    fullname: J Kowal
– year: 2020
  ident: 2975_CR32
  publication-title: J Virol
  doi: 10.1128/JVI.01231-20
  contributor:
    fullname: J Wang
– volume: 90
  start-page: 565
  issue: 3
  year: 2008
  ident: 2975_CR50
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.F.00531
  contributor:
    fullname: PL Hays
– volume: 27
  start-page: 172
  issue: 3
  year: 2017
  ident: 2975_CR14
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2016.11.003
  contributor:
    fullname: SLN Maas
– volume: 79
  start-page: 25
  issue: 1
  year: 2021
  ident: 2975_CR66
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-021-04020-4
  contributor:
    fullname: M Alghamdi
– volume: 49
  start-page: 899
  issue: 4
  year: 2021
  ident: 2975_CR18
  publication-title: Am J Sports Med
  doi: 10.1177/0363546521992469
  contributor:
    fullname: X Zhang
– volume: 17
  start-page: 703
  issue: 6
  year: 2002
  ident: 2975_CR36
  publication-title: Immunity
  doi: 10.1016/s1074-7613(02)00471-5
  contributor:
    fullname: B Elser
– volume: 175
  start-page: 2454
  issue: 6
  year: 2009
  ident: 2975_CR9
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2009.090248
  contributor:
    fullname: R Mirza
– volume: 223
  start-page: 101
  issue: 1
  year: 2018
  ident: 2975_CR52
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2017.10.005
  contributor:
    fullname: DA Chistiakov
– volume: 12
  start-page: 338
  issue: 1
  year: 2021
  ident: 2975_CR17
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02410-w
  contributor:
    fullname: H Liu
– volume: 99
  start-page: 1689
  issue: 19
  year: 2017
  ident: 2975_CR41
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.17.00412
  contributor:
    fullname: MJ Kraeutler
– volume: 77
  start-page: 13
  year: 2015
  ident: 2975_CR12
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev-physiol-021014-071641
  contributor:
    fullname: S Kourembanas
– volume: 48
  start-page: 3515
  issue: 14
  year: 2020
  ident: 2975_CR24
  publication-title: Am J Sports Med
  doi: 10.1177/0363546520967668
  contributor:
    fullname: HD Wang
– volume: 55
  start-page: 177
  issue: 3
  year: 2014
  ident: 2975_CR54
  publication-title: Connect Tissue Res
  doi: 10.3109/03008207.2014.906408
  contributor:
    fullname: CS Chamberlain
SSID ssj0000330064
Score 2.527991
Snippet Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos...
Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos can promote...
BACKGROUNDRecent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the BMSC-Exos...
Abstract Background Recent studies have shown that bone marrow stromal cell-derived exosomes (BMSC-Exos) can be used for tissue repair. However, whether the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 1
SubjectTerms Anterior cruciate ligament
Arthritis
Bioinformatics
Biological response modifiers
Bone healing
Bone marrow
Bone marrow stromal cell
Cartilage
Collagen
Collagen (type II)
Computed tomography
Exosome
Exosomes
Experiments
Femur
Inflammation
Interferon
Interferon regulatory factor
Interferon regulatory factor 1
Joint and ligament injuries
Knee
Laboratory animals
Macrophage polarization
Macrophages
Mechanical properties
Medical research
MicroRNA
miRNA
Orthopedic surgery
Osteoarthritis
Polarization
Rotator cuff
Stem cells
Tendon-bone healing
Tibia
Tunnels
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKdYKGAQEgdkbeLGjn1sK6qCtBwolXqz_Ji0K7XJirSI_hD-LzNOdrWBAxeu8WS18by-zxrPMPauUr7wqYoiKAiiwtgojElGeF9qY1PEgEjnkIsv-vi0-nymzrZGfVFN2NAeeNi4eZkwackQa8zblaJRSxC1llaFyhYpDtCoqLbIVI7BSNMx2a5vyRg975F2oT9R8Tr9iBLFJBPlhv1_h-U_SyW3cs_RA3Z_BI18f_izD9kdaB-xu8MYydvH7NfB4uRQJLSlH5A4_Oz67gp6vsqVdsDplLtrReha4IQLMVnxPBqc511ddt95RA2jjoBfLs89nRfyTJQ3zWV5uMUneWo9vb0o5wvJrzyN_7rAgMRXRJDHG5182XI0q_4JOz36-O3wWIzjFkRETnMtGmMLG8rGpAZBTkXjp6EETSRHKZ2CislHCSoFi7hF1rEhsgP1nvWlBKQ9T9lOi5_yjHGPIAxkCTI2e5XHsFEAeiNYJaNppE0z9mG99W41dNVwmY0Y7QZFOVSUy4pyxYwdkHY2ktQROz9AO3Gjnbh_2cmMvSbduuF66cav3T5CLE194OyMvc0S1BWjpbKbc3_T9-7TydeJ0PtRqOnQIKIfbzHgd1MjrYnk7kQS3TZOl9dG5saw0TupLSIwoy0uv9ks05tUCtdCdzPIFIq6Fs1YPTHOyQZNV9rlRW4dbhGNGFk__x87-oLdk9mdalGqXbaDJgkvEaFdh1fZGX8DVGI4Lw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBQxC4oCsTdzYsU-oragK0nKgVNqb5djOdqU2WZq2an8I_5cZxxsISFzjsaJ4Xt9MxjOEvCuFza0vHatFqFkJtpEp5RWztpBKewcGEfOQ86_y8Lj8shCLlHDrU1nlxiZGQ-07hznyGZcanJOSWn9c_2A4NQr_rqYRGrfJnYKDswV5rhbVmGPJIVgHl7u5K6PkrIfgC7QKS9hxapNg-cQfxbb9_xrnvwsm__BABw_I_QQd6e7A64fkVmgfkbvDMMmbx-Tn3vxon3mQqKvgabju-u4s9HQd6-0CxVx317K6awNFdAgui8YB4TSe7ao7pw74DJwK9HS1tJg1pDFcHlvM0voGnsTZ9bh7XszmnJ5ZHAJ2AmaJrjFMTvc66aqlIFz9E3J88On7_iFLQxeYg8jmgjVK57ouGuUbgDolDqEORZAY6gghfS2ct44H4WsN6IVXrsGQJ1Q72hY8QPDzlGy18CnPCLUAxQIvAnfNTmnBeOQBdDJowZ1quPYZ-bA5erMeemuYGJMoaQZGGWCUiYwyeUb2kDsjJfbFjg-686VJamYKDxCH164ClFcK3BmclFyLutS5dzYjr5G3ZrhkOmq32QWgJbEbnM7I20iBvTFaLL5Z2su-N5-Pvk2I3ieipgOBcDbdZYDvxnZaE8rtCSUor5sub4TMJOPRm9-inpE34zLuxIK4NnSXA00usHdRRqqJcE4OaLrSrk5iA3ENmETx6vn_X_6C3ONRUSpWiG2yBcIWXgICu6hfRTX7Bd8WMN0
  priority: 102
  providerName: ProQuest
Title BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats
URI https://www.proquest.com/docview/2691518699
https://search.proquest.com/docview/2691052283
https://pubmed.ncbi.nlm.nih.gov/PMC9284827
https://doaj.org/article/1d0812bc7441450297ec66295b490dca
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZJSqGX0id1mm7VUuihKGtrLds6ZrcJScuGkDSwN6GXNwtZe4mT0vyQ_t_OyN4lbm892hqBrXno-8RohpBPqdCxdqllRnjDUoiNrChcwbROskI6CwERzyGnp9nxZfptJmZbRKzvwoSkfWsW-9X1cr9aXIXcytXSDtd5YsOz6URCTC2As2-TbcCGDyh6CL_A0GGfXV-QKbJhA4wLXAnz1rFVk2DY_m0EOy8WtuntR6Fs_7_B-e-EyQc70NEz8rSDjvSg_cTnZMtXL8jjtpnk_Uvyezy9mDAHFvXTO-p_1U299A1dhXw7T_Gsu66YqStPER3ClkVDg3Aa1nZR31ALegZNeXq9mGs8NaSBLm9KzFJzD29C73qcPU2GU06XGpuAXUFYoiukyd29TrqoKBhX84pcHh3-mByzrukCs8BsbllZyFiapCxcCVAnxSbUPvEZUh0hMmeEddpyL5yRgF54bkukPD4fSZ1wD-TnNdmp4FfeEKoBinmeeG7LUaoheMQefNJLwW1Rcuki8mW99GrV1tZQgZMUmWp1pkBnKuhMxREZo3Y2klgXO7yob-aqsw6VOIA43NgcUF4qcKa3WcalMKmMndUReY-6Ve0l0413qwMAWhlWg5MR-RgksDZGhck3c33XNOrk4rwn9LkTKmswCKu7uwzw31hOqye515ME57X94bWRqS54NIpnEnBYkUkY_rAZxpmYEFf5-q6ViQXWLopI3jPO3gL1R8CfQgHxzn92_3vmW_KEB3fKWSL2yA7YoX8H4OzWDMAlZ_mAPBofnp6dw9PXk--DcNAxCG76B7FlPj8
link.rule.ids 230,315,729,782,786,866,887,2104,12063,21395,27931,27932,31726,31727,33751,33752,43317,43812,53798,53800
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKwQXxFMNFGoQEgdkbeLGSXxC3arVFror1IfUm-XYznYlmixNi-gP4f8y43gDAYlrPFYUz3sy_oaQd6nQsbapYaVwJUvBNrKisAXTOskKaQ0YRKxDzubZ9Cz9dC7OQ8GtDW2Va5voDbVtDNbIxzyT4JyKTMqPq28Mp0bh39UwQuMu2UCoKj4iG5P9-ZfjvsoSQ7oOTnd9W6bIxi2kX6BX2MSOc5sEiwceyQP3_2ue_26Z_MMHHTwiD0PwSHc7bj8md1z9hNzrxknePiU_J7OTPWZBpr47S92Ppm0uXUtXvuPOUax2NzUrm9pRjA_BaVE_Ipz60102V9QAp4FXjn5dLjTWDalPmHuQWVrewhM_vR53z5LxjNNLjWPALsAw0RUmyuFmJ13WFMSrfUbODvZP96YsjF1gBnKba1YVMpZlUhW2gmAnxTHULnEZJjtCZLYUxmrDnbClhPiF56bCpMflO1In3EH685yMaviUTUI1BGOOJ46baifVYD5iB1rppOCmqLi0EfmwPnq16tA1lM9Kikx1jFLAKOUZpeKITJA7PSUiY_sHzdVCBUVTiYUgh5cmhzgvFbjTmSzjUpSpjK3REdlG3qrummmv32oXQq0M8eBkRN56CkTHqLH9ZqFv2lYdnhwPiN4HoqoBgTA63GaA70ZArQHl1oAS1NcMl9dCpoL5aNVvYY_Im34Zd2JLXO2am44mFoheFJF8IJyDAxqu1MsLDyEuISopeP7i_y_fJvenp7MjdXQ4__ySPOBeaXKWiC0yAsFzryAeuy5fB6X7BX7hNTM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMQF8VQXCjUIiQNKk3hjr31sF1YtsFVFqdSb5Ve2K3WTVdMi-kP4v8w42dUGblztsZR4Hv4-azxDyPuCm8z4wiWWB5sUEBsTKb1MjMmFVN5BQMR7yOmxODwrvpzz841WXzFp39n5XnW52KvmFzG3crlw6SpPLD2ZjhXEVAmcfenL9C65Bz6bZRtEPQZh4Olw2q6eyUiRNsC7wKEwex0bNvEEm8AN4fzF8ja9UykW7_83RP-dNrlxDk0ek0cdgKT77Yc-IXdC9ZTcb1tK3j4jvw-mp-PEg139DJ6GX3VTL0JDlzHrLlC88a6rxNZVoIgR4eCisU04jTs8r6-oA22DvgK9nM8M3h3SSJrXhWapvYWR2MEeV0_zdMrowmArsAsITnSJZLl73UnnFQUTa56Ts8nnH-PDpGu9kDjgN9dJKVWmbF5KXwLgKbAVdciDQMLDufCWO28cC9xbBRiGjVyJxCeMhsrkLAAFekG2KviVbUINALLA8sBcOSwMhJAsgGcGxZmTJVN-QD6utl4v2wobOjITKXSrMw0601FnOhuQA9TOWhKrY8eB-mqmOxvRuQegw6wbAdYrOK4MTgimuC1U5p0ZkF3UrW6fmq59XO8D3BJYE04NyLsogRUyKkzBmZmbptFHp997Qh86obIGg3Cme9EA_41FtXqSOz1JcGHXn14Zme5CSKOZUIDGpFAw_XY9jSsxLa4K9U0rk3GsYDQgo55x9jaoPwNeFcuId1708r9X7pIHJ58m-tvR8ddX5CGLnjVKcr5DtsAkw2tAa9f2TfTLP30qPis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BMSC-derived+exosomes+promote+tendon-bone+healing+after+anterior+cruciate+ligament+reconstruction+by+regulating+M1%2FM2+macrophage+polarization+in+rats&rft.jtitle=Stem+cell+research+%26+therapy&rft.au=Li%2C+Zhenyu&rft.au=Li%2C+Qingxian&rft.au=Tong%2C+Kai&rft.au=Zhu%2C+Jiayong&rft.date=2022-07-15&rft.pub=BioMed+Central&rft.eissn=1757-6512&rft.volume=13&rft_id=info:doi/10.1186%2Fs13287-022-02975-0&rft_id=info%3Apmid%2F35841008&rft.externalDBID=PMC9284827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6512&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6512&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6512&client=summon