Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees
This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning...
Saved in:
Published in | Gait & posture Vol. 28; no. 2; pp. 278 - 284 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.08.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0966-6362 1879-2219 |
DOI | 10.1016/j.gaitpost.2007.12.073 |
Cover
Abstract | This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6° of internal rotation (IR) or by 6° of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0–K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10–35%,
p
<
0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. |
---|---|
AbstractList | This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6 degree of internal rotation (IR) or by 6 degree of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10-35%, p < 0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. Abstract This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6° of internal rotation (IR) or by 6° of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0–K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10–35%, p < 0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6° of internal rotation (IR) or by 6° of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0–K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10–35%, p < 0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6 degrees of internal rotation (IR) or by 6 degrees of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10-35%, p<0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6degree of internal rotation (IR) or by 6degree of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10- 35%, p less than 0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6 degrees of internal rotation (IR) or by 6 degrees of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10-35%, p<0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism.This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory function of the knee joint of the intact limb during gait. Three-dimensional gait analysis including knee kinematics and kinetics at the beginning of stance phase was conducted in 15 healthy subjects and 17 unilateral trans-tibial amputees (TTA) walking at self-selected speed in three conditions of prosthetic alignment: initial alignment (IA); initial alignment altered either by 6 degrees of internal rotation (IR) or by 6 degrees of external rotation (ER) applied on the pylon. Patients reported best comfort of gait in IA condition and discomfort mainly in IR condition. Maximum knee flexion and knee total work at power phases K0-K2 were significantly higher in intact limbs compared to prosthetic and control limbs. In intact limbs, these variables had significantly higher values (+10-35%, p<0.05) in IR condition than IA condition whereas these were not altered across conditions in prosthetic limbs. In trans-tibial amputees, inducing uncomfortable gait by internally rotating the prosthetic foot did not alter the knee kinetics of the prosthetic limb, which suggests a protective mechanism. Knee kinetics of the intact limb did alter, which suggests a compensatory mechanism. |
Author | Paysant, J. Martinet, N. André, J.-M. Grumillier, C. Beyaert, C. |
Author_xml | – sequence: 1 givenname: C. surname: Beyaert fullname: Beyaert, C. email: christian.beyaert@medecine.uhp-nancy.fr organization: Laboratoire d’analyse du mouvement, Institut Régional de Réadaptation de Nancy, Centre de Réadaptation Louis Pierquin, 54000 Nancy, France – sequence: 2 givenname: C. surname: Grumillier fullname: Grumillier, C. email: constance.grumillier@wanadoo.fr organization: Laboratoire d’analyse du mouvement, Institut Régional de Réadaptation de Nancy, Centre de Réadaptation Louis Pierquin, 54000 Nancy, France – sequence: 3 givenname: N. surname: Martinet fullname: Martinet, N. email: noel.martinet@irr.u-nancy.fr organization: Laboratoire d’analyse du mouvement, Institut Régional de Réadaptation de Nancy, Centre de Réadaptation Louis Pierquin, 54000 Nancy, France – sequence: 4 givenname: J. surname: Paysant fullname: Paysant, J. email: jean.paysant@irr.u-nancy.fr organization: Laboratoire d’analyse du mouvement, Institut Régional de Réadaptation de Nancy, Centre de Réadaptation Louis Pierquin, 54000 Nancy, France – sequence: 5 givenname: J.-M. surname: André fullname: André, J.-M. email: jmandre@irr.u-nancy.fr organization: Laboratoire d’analyse du mouvement, Institut Régional de Réadaptation de Nancy, Centre de Réadaptation Louis Pierquin, 54000 Nancy, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18295487$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAUhS1URB_wF6qsYJXBdiZ-SAiBRrykSiyAteU4N62njh1sZ9D8e5xOy6KLDitfXX3n-Oqee45OfPCA0CXBK4IJe7tdXWubp5DyimLMV4SuMG-eoTMiuKwpJfIEnWHJWM0aRk_ReUpbjPG6EfQFOiWCynYt-BmaNmGcwCedQ9xXI5gb7W0aK-t3we2sv67yDVS3HqDaButzFYa7Tim1yZWzY1f1c1zAZaDSr2Zvnc4Qtas6cOFPfafW4zRngPQSPR-0S_Dq_r1Avz5_-rn5Wl99__Jt8_GqNgy3uR5EIzrZCq4HspZME0MNpb3ErG14LxnXosMCWswkGVgHkuhWrnlHDGsJ8K65QG8OvlMMv2dIWY02GXBOewhzUpwTwRhnTSFfP0kySSUjRB4FKZYCN4wU8PIenLsRejVFO-q4Vw9rL8C7A2BiSCnCoIzNOtvgc9TWKYLVkrLaqoeU1ZKyIlSVlIucPZL_--GY8MNBCGXzOwtRJWPBG-htBJNVH-xxi_ePLIyz3hrtbmEPaRvm6EuuiqhUBOrHcoPLCWJRzo9y8rTB_0zwF4yD8Mg |
CitedBy_id | crossref_primary_10_1016_j_medengphy_2019_03_014 crossref_primary_10_1016_j_gaitpost_2022_06_014 crossref_primary_10_1016_j_gaitpost_2017_08_007 crossref_primary_10_1016_j_revpod_2020_12_006 crossref_primary_10_1016_j_gaitpost_2019_04_026 crossref_primary_10_1682_JRRD_2013_01_0010 crossref_primary_10_1016_j_gaitpost_2018_06_119 crossref_primary_10_1016_j_heliyon_2023_e21762 crossref_primary_10_1109_TBME_2018_2869985 crossref_primary_10_1111_sms_12759 crossref_primary_10_3389_fresc_2024_1339856 crossref_primary_10_1177_0954411917735082 crossref_primary_10_1016_j_rehab_2020_04_007 crossref_primary_10_1177_0309364615612634 crossref_primary_10_1186_1743_0003_9_29 crossref_primary_10_1177_0954411918789450 crossref_primary_10_3233_THC_181338 crossref_primary_10_1007_s10439_015_1524_z crossref_primary_10_1080_10400435_2018_1467513 crossref_primary_10_1177_0309364611435996 crossref_primary_10_3390_jcm10143119 crossref_primary_10_1016_j_apmr_2011_01_017 crossref_primary_10_1177_0309364610393060 crossref_primary_10_1016_j_mehy_2013_11_012 crossref_primary_10_1016_j_clinbiomech_2011_11_011 crossref_primary_10_4236_ojtr_2022_104013 crossref_primary_10_1097_JPO_0b013e3181baaa68 crossref_primary_10_1038_s41598_023_27438_1 crossref_primary_10_1016_j_gaitpost_2012_08_019 crossref_primary_10_1016_j_gaitpost_2013_07_210 crossref_primary_10_1016_j_gaitpost_2018_11_004 crossref_primary_10_1097_PXR_0000000000000061 crossref_primary_10_1177_0309364615574161 crossref_primary_10_1063_1_4869580 crossref_primary_10_1016_j_jbiomech_2012_01_007 crossref_primary_10_1038_s41598_024_62655_2 crossref_primary_10_1016_j_jbiomech_2023_111484 crossref_primary_10_1016_j_jbiomech_2008_07_018 crossref_primary_10_1016_j_jbiomech_2018_05_021 crossref_primary_10_1016_j_proeng_2014_06_367 crossref_primary_10_1371_journal_pone_0167466 crossref_primary_10_1177_0309364611407677 crossref_primary_10_1016_j_clinbiomech_2011_10_017 crossref_primary_10_1016_j_gaitpost_2012_02_003 crossref_primary_10_1016_j_gaitpost_2021_04_033 crossref_primary_10_1016_j_jelekin_2009_02_004 crossref_primary_10_1016_j_gaitpost_2011_05_014 crossref_primary_10_3389_fbioe_2022_950110 crossref_primary_10_1177_0309364614545419 crossref_primary_10_1097_JPO_0b013e31827afc29 crossref_primary_10_1682_JRRD_2014_05_0135 crossref_primary_10_1590_fm_2023_36201 crossref_primary_10_23736_S0393_3660_18_03882_2 crossref_primary_10_1016_j_rh_2019_12_002 crossref_primary_10_1097_PXR_0000000000000363 crossref_primary_10_1109_TNSRE_2020_3033711 crossref_primary_10_1682_JRRD_2015_03_0046 crossref_primary_10_1016_j_clinbiomech_2010_10_003 crossref_primary_10_1016_j_measurement_2014_06_021 |
Cites_doi | 10.1016/j.apmr.2006.06.013 10.1016/S0966-6362(02)00066-8 10.1097/00002060-199106000-00006 10.1016/0021-9290(91)90016-G 10.3109/03093649509078230 10.1682/JRRD.2004.01.0003 10.1097/00002060-200101000-00007 10.1016/S0003-9993(00)90035-2 10.1016/S0966-6362(98)00016-2 10.1016/S0268-0033(03)00114-1 10.1002/jor.1100080310 10.3109/03093640309167973 10.1080/03093640600568617 10.1080/03093640008726550 10.1016/0021-9290(88)90142-X 10.1097/00003086-198305000-00021 10.1080/03093640008726534 10.1016/S0966-6362(03)00062-6 10.1016/S0966-6362(97)01112-0 |
ContentType | Journal Article |
Copyright | 2008 Elsevier B.V. Elsevier B.V. |
Copyright_xml | – notice: 2008 Elsevier B.V. – notice: Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TS 7X8 |
DOI | 10.1016/j.gaitpost.2007.12.073 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Physical Education Index MEDLINE - Academic |
DatabaseTitleList | Physical Education Index MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1879-2219 |
EndPage | 284 |
ExternalDocumentID | 18295487 10_1016_j_gaitpost_2007_12_073 S0966636208000271 1_s2_0_S0966636208000271 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7TS 7X8 |
ID | FETCH-LOGICAL-c605t-f838b9587af1496a1c2c22d906537d967a8b08e50691f6be91a5947b1c651e7b3 |
IEDL.DBID | .~1 |
ISSN | 0966-6362 |
IngestDate | Fri Sep 05 03:44:29 EDT 2025 Thu Sep 04 21:35:35 EDT 2025 Fri Sep 05 02:50:33 EDT 2025 Mon Jul 21 06:00:59 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Tue Jul 01 04:22:12 EDT 2025 Fri Feb 23 02:26:18 EST 2024 Sun Feb 23 10:19:02 EST 2025 Tue Aug 26 18:56:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Knee Kinetics Gait Prosthesis Motor control Trans-tibial amputee |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-f838b9587af1496a1c2c22d906537d967a8b08e50691f6be91a5947b1c651e7b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 18295487 |
PQID | 20980361 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_771866763 proquest_miscellaneous_69296119 proquest_miscellaneous_20980361 pubmed_primary_18295487 crossref_citationtrail_10_1016_j_gaitpost_2007_12_073 crossref_primary_10_1016_j_gaitpost_2007_12_073 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2007_12_073 elsevier_clinicalkeyesjournals_1_s2_0_S0966636208000271 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2007_12_073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Gait & posture |
PublicationTitleAlternate | Gait Posture |
PublicationYear | 2008 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Isakov, Keren, Benjuya (bib2) 2000; 24 Engsberg, Lee, Tedford, Harder (bib8) 1993; 13 Pinzur, Cox, Kaiser, Morris, Patwardhan, Vrbos (bib5) 1995; 32 Fridman, Ona, Isakov (bib25) 2003; 27 (bib12) 1992 Silver-Thorn, Steege, Childress (bib11) 1996; 33 Sanderson, Martin (bib1) 1997; 6 (bib17) 2005 Chow, Holmes, Lee, Sin (bib20) 2006; 30 Zmitrewicz, Neptune, Walden, Rogers, Bosker (bib7) 2006; 87 Nolan, Wit, Dudzinski, Lees, Lake, Wychowanski (bib10) 2003; 17 Nolan, Lees (bib15) 2000; 24 Neptune, Zajac, Kautz (bib26) 2004; 19 Yang, Solomonidis, Spence, Paul (bib21) 1991; 24 Gitter, Czerniecki, DeGroot (bib19) 1991; 70 Kadaba, Ramakrishnan, Wootten (bib18) 1990; 8 (bib13) 1991 Mattes, Martin, Royer (bib3) 2000; 81 Sadeghi, Allard, Duhaime (bib23) 2001; 80 Winter (bib22) 1983; 175 Snyder, Powers, Fontaine, Perry (bib4) 1995; 32 Powers, Rao, Perry (bib9) 1998; 8 Winter, Sienko (bib14) 1988; 21 Beyaert, Haumont, Paysant, Lascombes, Andre (bib16) 2003; 18 Arya, Lees, Nirula, Klenerman (bib6) 1995; 19 Lee, Zhang, Boone, Contoyannis (bib27) 2004; 41 Zahedi, Spence, Solomonidis, Paul (bib24) 1986; 23 (10.1016/j.gaitpost.2007.12.073_bib13) 1991 Lee (10.1016/j.gaitpost.2007.12.073_bib27) 2004; 41 Engsberg (10.1016/j.gaitpost.2007.12.073_bib8) 1993; 13 Beyaert (10.1016/j.gaitpost.2007.12.073_bib16) 2003; 18 Isakov (10.1016/j.gaitpost.2007.12.073_bib2) 2000; 24 Nolan (10.1016/j.gaitpost.2007.12.073_bib10) 2003; 17 Gitter (10.1016/j.gaitpost.2007.12.073_bib19) 1991; 70 (10.1016/j.gaitpost.2007.12.073_bib17) 2005 Fridman (10.1016/j.gaitpost.2007.12.073_bib25) 2003; 27 Yang (10.1016/j.gaitpost.2007.12.073_bib21) 1991; 24 Silver-Thorn (10.1016/j.gaitpost.2007.12.073_bib11) 1996; 33 Mattes (10.1016/j.gaitpost.2007.12.073_bib3) 2000; 81 Zmitrewicz (10.1016/j.gaitpost.2007.12.073_bib7) 2006; 87 Zahedi (10.1016/j.gaitpost.2007.12.073_bib24) 1986; 23 Sanderson (10.1016/j.gaitpost.2007.12.073_bib1) 1997; 6 Winter (10.1016/j.gaitpost.2007.12.073_bib22) 1983; 175 (10.1016/j.gaitpost.2007.12.073_bib12) 1992 Powers (10.1016/j.gaitpost.2007.12.073_bib9) 1998; 8 Nolan (10.1016/j.gaitpost.2007.12.073_bib15) 2000; 24 Sadeghi (10.1016/j.gaitpost.2007.12.073_bib23) 2001; 80 Chow (10.1016/j.gaitpost.2007.12.073_bib20) 2006; 30 Kadaba (10.1016/j.gaitpost.2007.12.073_bib18) 1990; 8 Snyder (10.1016/j.gaitpost.2007.12.073_bib4) 1995; 32 Pinzur (10.1016/j.gaitpost.2007.12.073_bib5) 1995; 32 Winter (10.1016/j.gaitpost.2007.12.073_bib14) 1988; 21 Arya (10.1016/j.gaitpost.2007.12.073_bib6) 1995; 19 Neptune (10.1016/j.gaitpost.2007.12.073_bib26) 2004; 19 |
References_xml | – volume: 41 start-page: 775 year: 2004 end-page: 786 ident: bib27 article-title: Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket publication-title: J Rehabil Res Dev – volume: 8 start-page: 1 year: 1998 end-page: 7 ident: bib9 article-title: Knee kinetics in trans-tibial amputee gait publication-title: Gait Posture – volume: 70 start-page: 142 year: 1991 end-page: 148 ident: bib19 article-title: Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking publication-title: Am J Phys Med Rehabil – volume: 23 start-page: 2 year: 1986 end-page: 19 ident: bib24 article-title: Alignment of lower-limb prostheses publication-title: J Rehabil Res Dev – volume: 27 start-page: 17 year: 2003 end-page: 22 ident: bib25 article-title: The influence of prosthetic foot alignment on trans-tibial amputee gait publication-title: Prosthet Orthot Int – volume: 13 start-page: 169 year: 1993 end-page: 173 ident: bib8 article-title: Normative ground reaction force data for able-bodied and below-knee-amputee children during walking publication-title: J Pediatr Orthop – volume: 18 start-page: 670 year: 2003 end-page: 676 ident: bib16 article-title: The effect of inturning of the foot on knee kinematics and kinetics in children with treated idiopathic clubfoot publication-title: Clin Biomech (Bristol, Avon) – volume: 175 start-page: 147 year: 1983 end-page: 154 ident: bib22 article-title: Energy generation and absorption at the ankle and knee during fast, natural and slow cadences publication-title: Clin Orthop Relat Res – volume: 24 start-page: 981 year: 1991 end-page: 997 ident: bib21 article-title: The influence of limb alignment on the gait of above-knee amputees publication-title: J Biomech – volume: 87 start-page: 1334 year: 2006 end-page: 1339 ident: bib7 article-title: The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait publication-title: Arch Phys Med Rehabil – volume: 17 start-page: 142 year: 2003 end-page: 151 ident: bib10 article-title: Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees publication-title: Gait Posture – volume: 21 start-page: 361 year: 1988 end-page: 367 ident: bib14 article-title: Biomechanics of below-knee amputee gait publication-title: J Biomech – start-page: 325 year: 2005 ident: bib17 publication-title: Biomechanics and motor control of human movement – start-page: 524 year: 1992 ident: bib12 publication-title: Gait analysis, normal and pathological function – volume: 19 start-page: 37 year: 1995 end-page: 45 ident: bib6 article-title: A biomechanical comparison of the Sach, Seattle and Jaipur feet using ground reaction forces publication-title: Prosthet Orthot Int – volume: 33 start-page: 253 year: 1996 end-page: 266 ident: bib11 article-title: A review of prosthetic interface stress investigations publication-title: J Rehabil Res Dev – volume: 19 start-page: 194 year: 2004 end-page: 205 ident: bib26 article-title: Muscle force redistributes segmental power for body progression during walking publication-title: Gait Posture – volume: 30 start-page: 114 year: 2006 end-page: 128 ident: bib20 article-title: The effect of prosthesis alignment on the symmetry of gait in subjects with unilateral transtibial amputation publication-title: Prosthet Orthot Int – volume: 6 start-page: 126 year: 1997 end-page: 136 ident: bib1 article-title: Lower extremity kinematics and kinetic adaptations in unilateral below-knee amputees during walking publication-title: Gait Posture – volume: 80 start-page: 25 year: 2001 end-page: 32 ident: bib23 article-title: Muscle power compensatory mechanisms in below-knee amputee gait publication-title: Am J Phys Med Rehabil – volume: 24 start-page: 117 year: 2000 end-page: 125 ident: bib15 article-title: The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees publication-title: Prosthet Orthot Int – volume: 32 start-page: 309 year: 1995 end-page: 315 ident: bib4 article-title: The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees publication-title: J Rehabil Res Dev – year: 1991 ident: bib13 publication-title: Biomechanics and motor control of human gait: normal, elderly and pathological – volume: 24 start-page: 216 year: 2000 end-page: 220 ident: bib2 article-title: Trans-tibial amputee gait: time–distance parameters and emg activity publication-title: Prosthet Orthot Int – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: bib18 article-title: Measurement of lower extremity kinematics during level walking publication-title: J Orthop Res – volume: 81 start-page: 561 year: 2000 end-page: 568 ident: bib3 article-title: Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties publication-title: Arch Phys Med Rehabil – volume: 32 start-page: 373 year: 1995 end-page: 377 ident: bib5 article-title: The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report publication-title: J Rehabil Res Dev – start-page: 524 year: 1992 ident: 10.1016/j.gaitpost.2007.12.073_bib12 – start-page: 325 year: 2005 ident: 10.1016/j.gaitpost.2007.12.073_bib17 – volume: 87 start-page: 1334 year: 2006 ident: 10.1016/j.gaitpost.2007.12.073_bib7 article-title: The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2006.06.013 – volume: 17 start-page: 142 issue: 2 year: 2003 ident: 10.1016/j.gaitpost.2007.12.073_bib10 article-title: Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00066-8 – volume: 70 start-page: 142 issue: 3 year: 1991 ident: 10.1016/j.gaitpost.2007.12.073_bib19 article-title: Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking publication-title: Am J Phys Med Rehabil doi: 10.1097/00002060-199106000-00006 – volume: 24 start-page: 981 issue: 11 year: 1991 ident: 10.1016/j.gaitpost.2007.12.073_bib21 article-title: The influence of limb alignment on the gait of above-knee amputees publication-title: J Biomech doi: 10.1016/0021-9290(91)90016-G – volume: 19 start-page: 37 issue: 1 year: 1995 ident: 10.1016/j.gaitpost.2007.12.073_bib6 article-title: A biomechanical comparison of the Sach, Seattle and Jaipur feet using ground reaction forces publication-title: Prosthet Orthot Int doi: 10.3109/03093649509078230 – volume: 32 start-page: 309 issue: 4 year: 1995 ident: 10.1016/j.gaitpost.2007.12.073_bib4 article-title: The effect of five prosthetic feet on the gait and loading of the sound limb in dysvascular below-knee amputees publication-title: J Rehabil Res Dev – volume: 41 start-page: 775 issue: 6 year: 2004 ident: 10.1016/j.gaitpost.2007.12.073_bib27 article-title: Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2004.01.0003 – volume: 80 start-page: 25 issue: 1 year: 2001 ident: 10.1016/j.gaitpost.2007.12.073_bib23 article-title: Muscle power compensatory mechanisms in below-knee amputee gait publication-title: Am J Phys Med Rehabil doi: 10.1097/00002060-200101000-00007 – volume: 81 start-page: 561 issue: 5 year: 2000 ident: 10.1016/j.gaitpost.2007.12.073_bib3 article-title: Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties publication-title: Arch Phys Med Rehabil doi: 10.1016/S0003-9993(00)90035-2 – volume: 8 start-page: 1 issue: 1 year: 1998 ident: 10.1016/j.gaitpost.2007.12.073_bib9 article-title: Knee kinetics in trans-tibial amputee gait publication-title: Gait Posture doi: 10.1016/S0966-6362(98)00016-2 – volume: 32 start-page: 373 issue: 4 year: 1995 ident: 10.1016/j.gaitpost.2007.12.073_bib5 article-title: The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report publication-title: J Rehabil Res Dev – volume: 13 start-page: 169 issue: 2 year: 1993 ident: 10.1016/j.gaitpost.2007.12.073_bib8 article-title: Normative ground reaction force data for able-bodied and below-knee-amputee children during walking publication-title: J Pediatr Orthop – year: 1991 ident: 10.1016/j.gaitpost.2007.12.073_bib13 – volume: 18 start-page: 670 issue: 7 year: 2003 ident: 10.1016/j.gaitpost.2007.12.073_bib16 article-title: The effect of inturning of the foot on knee kinematics and kinetics in children with treated idiopathic clubfoot publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/S0268-0033(03)00114-1 – volume: 33 start-page: 253 issue: 3 year: 1996 ident: 10.1016/j.gaitpost.2007.12.073_bib11 article-title: A review of prosthetic interface stress investigations publication-title: J Rehabil Res Dev – volume: 8 start-page: 383 issue: 3 year: 1990 ident: 10.1016/j.gaitpost.2007.12.073_bib18 article-title: Measurement of lower extremity kinematics during level walking publication-title: J Orthop Res doi: 10.1002/jor.1100080310 – volume: 27 start-page: 17 issue: 1 year: 2003 ident: 10.1016/j.gaitpost.2007.12.073_bib25 article-title: The influence of prosthetic foot alignment on trans-tibial amputee gait publication-title: Prosthet Orthot Int doi: 10.3109/03093640309167973 – volume: 23 start-page: 2 issue: 2 year: 1986 ident: 10.1016/j.gaitpost.2007.12.073_bib24 article-title: Alignment of lower-limb prostheses publication-title: J Rehabil Res Dev – volume: 30 start-page: 114 issue: 2 year: 2006 ident: 10.1016/j.gaitpost.2007.12.073_bib20 article-title: The effect of prosthesis alignment on the symmetry of gait in subjects with unilateral transtibial amputation publication-title: Prosthet Orthot Int doi: 10.1080/03093640600568617 – volume: 24 start-page: 216 issue: 3 year: 2000 ident: 10.1016/j.gaitpost.2007.12.073_bib2 article-title: Trans-tibial amputee gait: time–distance parameters and emg activity publication-title: Prosthet Orthot Int doi: 10.1080/03093640008726550 – volume: 21 start-page: 361 issue: 5 year: 1988 ident: 10.1016/j.gaitpost.2007.12.073_bib14 article-title: Biomechanics of below-knee amputee gait publication-title: J Biomech doi: 10.1016/0021-9290(88)90142-X – volume: 175 start-page: 147 year: 1983 ident: 10.1016/j.gaitpost.2007.12.073_bib22 article-title: Energy generation and absorption at the ankle and knee during fast, natural and slow cadences publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-198305000-00021 – volume: 24 start-page: 117 issue: 2 year: 2000 ident: 10.1016/j.gaitpost.2007.12.073_bib15 article-title: The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees publication-title: Prosthet Orthot Int doi: 10.1080/03093640008726534 – volume: 19 start-page: 194 issue: 2 year: 2004 ident: 10.1016/j.gaitpost.2007.12.073_bib26 article-title: Muscle force redistributes segmental power for body progression during walking publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00062-6 – volume: 6 start-page: 126 issue: 2 year: 1997 ident: 10.1016/j.gaitpost.2007.12.073_bib1 article-title: Lower extremity kinematics and kinetic adaptations in unilateral below-knee amputees during walking publication-title: Gait Posture doi: 10.1016/S0966-6362(97)01112-0 |
SSID | ssj0004382 |
Score | 2.1560626 |
Snippet | This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the compensatory... Abstract This study evaluated the asymmetry of knee kinetics during uncomfortable gait induced by prosthesis misalignment to further demonstrate the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 278 |
SubjectTerms | Amputees Artificial Limbs Biomechanical Phenomena Gait Gait - physiology Humans Kinetics Knee Knee Joint - physiology Leg Motor control Orthopedics Prosthesis Trans-tibial amputee |
Title | Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636208000271 https://www.clinicalkey.es/playcontent/1-s2.0-S0966636208000271 https://dx.doi.org/10.1016/j.gaitpost.2007.12.073 https://www.ncbi.nlm.nih.gov/pubmed/18295487 https://www.proquest.com/docview/20980361 https://www.proquest.com/docview/69296119 https://www.proquest.com/docview/771866763 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KqKhLggaHmEQvEBcUt3nYcfx9WKanm0QkCl3iw7a6Ms2WRFsqq48O3MOEkLQisQnBJZM4pjj-c9Y0JeTJnN_TL1scqMjzPJTSwLb2PGfZ5mBXY8Rz_k2TlfXGRvLvPLPTIfa2EwrXLg_T1PD9x6GJkMqznZlOXkIyjfIC55gjoPGFehgj0TSOsn32_SPDDQFfrtcR4j9E9VwquTz6bsNk3b9a0M0S0o0l0CapcCGgTR6T1yd9Ag6ayf5H2y5-oDcjirwXpef6MvacjpDM7yA3L7bAidH5INnnywWUNUna4dVvyW7ZqWNTAo9CpQUAXpl9o5umrKuqONDyPwaoqOVuXa0r6mkeL_wDjd1mVlsIK5otZVzVUcsE24JsK1D8jF6atP80U8XLcQF2DTdLGXqbQql8J4MJu4YUVSJMlSYfdasVRcGGmn0uVTrpjn1ilmcpUJywqeMyds-pDs103tHhPqbLZMlFMetiazuTNiyZznymPYMEt8RPJxjXUx9CLHKzEqPSadrfS4N3hRptAs0bA3EZlc4236bhx_xBDjFuqx1hS4owaB8W-Yrh0OeauZbgFS_0aIEVHXmL_Q8l999flIZxoOOkZvTO2abQtASoK6wXZDcFB1OWMqInQHhBDY3xBESkQe9TR8s4wSI75SPPmPyR-RO306DeZHPiX73detewY6W2ePw6E8Jrdm8w_v3uPz9dvF-Q9W_0TR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0KqKBFwQtDxSHvUBcUt3ncR2fKwqqgW6vdBKvVl2YqNsd5MVyQr1wrcz4yQtCK1AcIusGSWxPe8XIW-nzHJfpj5WmfFxlgsT54W3MROep1mBHc_RDzk_F7PL7OMVv9ohJ2MtDKZVDry_5-mBWw8rk2E3J-uqmnwG5RvEpUhQ5wHjCkygexlPJeb1HX2_y_PASFdouCdEjOA_lQkvjr6Yqls3bdf3MkS_oEy3SahtGmiQRKePyaNBhaTH_Vc-ITuu3iP7xzWYz6sb-o6GpM7gLd8j9-dD7HyfrJH0wWgNYXW6cljyW7UrWtXAodCtQEEXpNe1c3TRVHVHGx9W4NEUHV1WK0v7okaK_wPrdFNXS4MlzEtq3bL5FgdsE-ZEuPYpuTx9f3Eyi4d5C3EBRk0X-zzNreK5NB7sJmFYkRRJUipsXytLJaTJ7TR3fCoU88I6xQxXmbSsEJw5adNnZLduaveCUGezMlFOeTibzHJnZMmcF8pj3DBLfET4uMe6GJqR40yMpR6zzhZ6PBuclCk1SzScTUQmt3jrvh3HHzHkeIR6LDYF9qhBYvwbpmsHKm810y1A6t9uYkTULeYvl_mv3no43jMNlI7hG1O7ZtMCkMpB32DbIQTouoIxFRG6BUJKbHAIMiUiz_s7fLeNOYZ8c3nwHx9_SB7MLuZn-uzD-aeX5GGfW4PJkq_Ibvd1416DAtfZN4FAfwBG9ETP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compensatory+mechanism+involving+the+knee+joint+of+the+intact+limb+during+gait+in+unilateral+below-knee+amputees&rft.jtitle=Gait+%26+posture&rft.au=Beyaert%2C+C&rft.au=Grumillier%2C+C&rft.au=Martinet%2C+N&rft.au=Paysant%2C+J&rft.date=2008-08-01&rft.issn=0966-6362&rft.volume=28&rft.issue=2&rft_id=info:doi/10.1016%2Fj.gaitpost.2007.12.073&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09666362%2FS0966636208X00062%2Fcov150h.gif |