When Less Is More: Non-monotonic Spike Sequence Processing in Neurons
Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons comm...
Saved in:
Published in | PLoS computational biology Vol. 11; no. 2; p. e1004002 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1004002 |
Cover
Abstract | Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions. |
---|---|
AbstractList | Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions. Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions. Brain function relies on robust communication between a huge number of nerve cells (neurons) that exchange short-lasting electrical pulses (called action potentials or spikes) at certain times. How nerve cells process their spiking inputs to generate spiking outputs thus is key not only to individual neurons’ computational capabilities but also to the collective dynamics of neuronal networks. Here we analyze the response properties of neurons to regular spike sequence inputs. We find that neurons typically respond in a non-monotonic way. Output frequency mostly increases with input frequency as expected but sometimes output frequency necessarily decreases upon increasing the input frequency. Our theoretical analysis predicts that spiking neurons commonly exhibit such non-monotonic response properties. Simulations of simple mathematical and complex computational models as well as neurophysiological experiments confirm our theoretical predictions. Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions. Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions.Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on neuronal input-output relations have focused on continuous-time inputs such as constant or noisy sinusoidal currents. Yet, most neurons communicate via exchanging action potentials (spikes) at discrete times. Here, we systematically analyze the stationary spiking response to regular spiking inputs and reveal that it is generically non-monotonic. Our theoretical analysis shows that the underlying mechanism relies solely on a combination of the discrete nature of the communication by spikes, the capability of locking output to input spikes and limited resources required for spike processing. Numerical simulations of mathematically idealized and biophysically detailed models, as well as neurophysiological experiments confirm and illustrate our theoretical predictions. |
Audience | Academic |
Author | Arnoldt, Hinrich Taschenberger, Holger Chang, Shuwen Urmersbach, Birk Jahnke, Sven Timme, Marc |
AuthorAffiliation | 3 Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany 4 Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Göttingen, Germany 1 Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany 2 Institute for Nonlinear Dynamics, Faculty of Physics, Georg August University Göttingen, Göttingen, Germany Université Paris Descartes, Centre National de la Recherche Scientifique, FRANCE |
AuthorAffiliation_xml | – name: 3 Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany – name: Université Paris Descartes, Centre National de la Recherche Scientifique, FRANCE – name: 2 Institute for Nonlinear Dynamics, Faculty of Physics, Georg August University Göttingen, Göttingen, Germany – name: 4 Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Göttingen, Germany – name: 1 Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany |
Author_xml | – sequence: 1 givenname: Hinrich surname: Arnoldt fullname: Arnoldt, Hinrich – sequence: 2 givenname: Shuwen surname: Chang fullname: Chang, Shuwen – sequence: 3 givenname: Sven surname: Jahnke fullname: Jahnke, Sven – sequence: 4 givenname: Birk surname: Urmersbach fullname: Urmersbach, Birk – sequence: 5 givenname: Holger surname: Taschenberger fullname: Taschenberger, Holger – sequence: 6 givenname: Marc surname: Timme fullname: Timme, Marc |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25646860$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkl1v0zAUhi00xD7gHyDIJVyk2PFXsgukaRpQqRREQVxajnOSuaR2sZNp_Htcmk0rF0jIkn1kP-9r-5xzio6cd4DQc4JnhEryZu3H4HQ_25razgjGDOPiETohnNNcUl4ePYiP0WmMa4xTWIkn6LjggolS4BN09f0aXLaAGLN5zD76AOfZ0rt8450fvLMmW23tD8hW8HMEZyD7HLxJtHVdZl22hDF4F5-ix63uIzyb1jP07d3V18sP-eLT-_nlxSI3AvMhB2glq3VLAdcgiOSUt5xiQYwoWgBTcI5LrgumpWx5wyUQILzExBitBWvoGXq59932PqopA1ERUXJSplkmYr4nGq_XahvsRodfymur_mz40CkdBmt6UKygFa5oyRpIyauhbjStJZYYi0pTTJLX2-m2sd5AY8ANQfcHpocnzl6rzt8oRglnVZEMXk0Gwaf0xUFtbDTQ99qBH3fv5gVjOFUiobM92un0NOtanxxNGg1srEmVb23av2AkVY2KkiXB6wNBYga4HTo9xqjmqy__wS4P2RcPP33_27uWSQDbAyb4GAO09wjBateZd3VRu85UU2cm2flfMmMHPVi_S53t_y3-DZGh6ZM |
CitedBy_id | crossref_primary_10_1098_rsif_2018_0408 crossref_primary_10_3389_fncel_2019_00456 |
Cites_doi | 10.1523/JNEUROSCI.20-24-09162.2000 10.1017/CBO9780511755743 10.1111/j.1460-9568.2008.06228.x 10.1523/JNEUROSCI.23-37-11628.2003 10.1523/JNEUROSCI.0631-05.2005 10.1007/s10827-005-0329-8 10.1152/jn.00293.2003 10.1103/PhysRevLett.97.188101 10.1016/S0306-4522(98)00091-8 10.1103/PhysRevLett.82.1594 10.1023/A:1008916026143 10.1371/journal.pone.0001377 10.1007/BF00204392 10.1016/j.physd.2006.09.037 10.1103/PhysRevLett.105.158104 10.1016/S0959-4388(99)80026-9 10.1126/science.274.5293.1724 10.1038/990101 10.1016/j.neuron.2006.11.008 10.1126/science.145.3627.61 10.1007/BF00198810 10.1016/0959-4388(95)80032-8 10.1103/PhysRevE.59.3427 10.1152/jn.01116.2003 10.4249/scholarpedia.1430 10.1113/jphysiol.1952.sp004764 10.1038/nature00974 10.1103/PhysRevLett.89.258701 10.1023/A:1008925309027 10.1152/jn.01282.2007 10.1016/0959-4388(94)90059-0 10.1113/jphysiol.2005.098780 10.1007/BF01869347 10.1103/PhysRevLett.98.048104 10.1162/089976603322385063 10.1162/neco.1996.8.5.979 10.1073/pnas.94.2.719 10.1038/nphys1508 10.1103/PhysRevLett.86.2186 10.1371/journal.pbio.0020369 10.1016/j.tins.2004.10.010 10.1007/978-3-642-01507-6_9 10.1103/PhysRevLett.94.238103 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Arnoldt et al 2015 Arnoldt et al 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Arnoldt H, Chang S, Jahnke S, Urmersbach B, Taschenberger H, Timme M (2015) When Less Is More: Non-monotonic Spike Sequence Processing in Neurons. PLoS Comput Biol 11(2): e1004002. doi:10.1371/journal.pcbi.1004002 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Arnoldt et al 2015 Arnoldt et al – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Arnoldt H, Chang S, Jahnke S, Urmersbach B, Taschenberger H, Timme M (2015) When Less Is More: Non-monotonic Spike Sequence Processing in Neurons. PLoS Comput Biol 11(2): e1004002. doi:10.1371/journal.pcbi.1004002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1004002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Non-monotonic Spike Sequence Processing in Neurons |
EISSN | 1553-7358 |
ExternalDocumentID | 1685181687 oai_doaj_org_article_423909384de040bebda3b7070069a301 PMC4315492 A418603684 25646860 10_1371_journal_pcbi_1004002 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. C1A CGR CUY CVF ECM EIF H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ PMFND 7X8 PJZUB PPXIY PQGLB PUEGO 5PM - AAPBV ABPTK ADACO BBAFP PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c605t-eef74baf3e0be617535f53061c62feec255085a24a77f5d57e1e15801ccaa64d3 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:13:16 EST 2021 Wed Aug 27 01:26:30 EDT 2025 Thu Aug 21 14:01:51 EDT 2025 Sun Aug 24 03:31:11 EDT 2025 Tue Jun 10 20:41:21 EDT 2025 Fri Jun 27 04:52:04 EDT 2025 Fri Jun 27 03:56:26 EDT 2025 Wed Feb 19 02:34:13 EST 2025 Tue Jul 01 01:15:29 EDT 2025 Thu Apr 24 22:53:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-eef74baf3e0be617535f53061c62feec255085a24a77f5d57e1e15801ccaa64d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. Conceived and designed the experiments: HA SC SJ BU HT MT. Performed the experiments: HA SC SJ BU. Analyzed the data: HA SC SJ BU HT MT. Contributed reagents/materials/analysis tools: HA SC SJ BU HT MT. Wrote the paper: HA HT MT. Developed the theory: HA MT. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1004002 |
PMID | 25646860 |
PQID | 1652440686 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685181687 doaj_primary_oai_doaj_org_article_423909384de040bebda3b7070069a301 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4315492 proquest_miscellaneous_1652440686 gale_infotracacademiconefile_A418603684 gale_incontextgauss_ISR_A418603684 gale_incontextgauss_ISN_A418603684 pubmed_primary_25646860 crossref_primary_10_1371_journal_pcbi_1004002 crossref_citationtrail_10_1371_journal_pcbi_1004002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | S Tolnai (ref26) 2008; 27 T Masquelier (ref49) 2008; 3 DH Perkel (ref29) 1964; 145 N Fourcaud-Trocme (ref36) 2003; 23 W Singer (ref47) 1999; 9 J de la Rocha (ref38) 2005; 25 S Jahnke (ref25) 2014 A Roxin (ref8) 2005; 94 MN Shadlen (ref12) 1994; 4 M Diesmann (ref16) 1999; 402 F Rieke (ref1) 1999 S Grillner (ref21) 2006; 52 MI Rabinovich (ref14) 1998; 87 B Naundorf (ref4) 2005; 18 S Jahnke (ref24) 2014 C Rocsoreanu (ref33) 2000 M Timme (ref17) 2002; 89 S Luccioli (ref28) 2010; 105 CW Eurich (ref15) 1999; 82 R Guttman (ref44) 1980; 56 WR Softky (ref13) 1995; 5 R Hahnloser (ref18) 2002; 419 S Schreiber (ref42) 2004; 92 MV Tsodyks (ref32) 1997; 94 RN Leao (ref35) 2006; 571 Y-H Liu (ref39) 2001; 10 A Pikovsky (ref31) 2001 N Brunel (ref7) 2000; 8 N Brunel (ref3) 2001; 86 A Longtin (ref45) 1994; 70 TA Engel (ref43) 2008; 100 C van Vreeswijk (ref6) 1996; 274 RM Memmesheimer (ref19) 2006; 97 O Sporns (ref50) 2004; 2 A Hodgkin (ref34) 1952; 117 RM Memmesheimer (ref20) 2006; 224 W Gerstner (ref9) 1992; 67 H Taschenberger (ref51) 2000; 20 P Gong (ref22) 2007; 98 B Ermentrout (ref10) 1996; 8 M Giugliano (ref37) 2002; 2415 S Steingrube (ref27) 2010; 6 A Rauch (ref41) 2003; 90 R VanRullen (ref48) 2005; 28 G Mato (ref11) 2008; 20 Z An (ref30) 2009; 5551 M.O. Gewaltig (ref52) 2007; 2 S Jahnke (ref23) 2012; 2 P Dayan (ref5) 2001 T Shimokawa (ref2) 1999; 59 JR Engelbrecht (ref46) 2009; 79 J Benda (ref40) 2003; 15 26436417 - PLoS Comput Biol. 2015 Oct;11(10):e1004380 |
References_xml | – volume: 20 start-page: 9162 year: 2000 ident: ref51 article-title: Fine-tuning an auditory synapse for speed and fidelity: Developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-24-09162.2000 – year: 2014 ident: ref24 article-title: Oscillation-induced signal transmission and gating in neural circuits publication-title: PLoS Comput. Biol. – year: 2001 ident: ref5 article-title: Theoretical Neuroscience – year: 2001 ident: ref31 article-title: Synchronization: A universal concept in nonlinear sciences doi: 10.1017/CBO9780511755743 – volume: 27 start-page: 2587 year: 2008 ident: ref26 article-title: The mediacal nucleus of the trapezoid body in rat: Spectral and temporal properties vary with anatomical location of the units publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06228.x – volume: 23 start-page: 11628 year: 2003 ident: ref36 article-title: How spike generation mechanisms determine the neuronal response to fluctuating inputs publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-37-11628.2003 – volume: 25 start-page: 8416 year: 2005 ident: ref38 article-title: Short-term synaptic depression causes a non-monotonic response to correlated stimuli publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0631-05.2005 – volume: 18 start-page: 297 year: 2005 ident: ref4 article-title: Action potential onset dynamics and the response speed of neuronal populations publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-005-0329-8 – volume: 2415 start-page: 141 year: 2002 ident: ref37 article-title: Non-monotonic current-to-rate response function in a novel Integrate-and-Fire model neuron publication-title: LNCS – volume: 90 start-page: 1598 year: 2003 ident: ref41 article-title: Neocortical pyramidal cells respond as Integrate-and-Fire neurons to in vivo-like input currents publication-title: J. Neurophysiol. doi: 10.1152/jn.00293.2003 – volume: 97 start-page: 188101 year: 2006 ident: ref19 article-title: Designing the dynamics of spiking neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.188101 – year: 1999 ident: ref1 article-title: Spikes, exploring the neural code – volume: 2 start-page: 041016 year: 2012 ident: ref23 article-title: Giuding Synchrony Through Random Networks publication-title: Phys. Rev. X – volume: 87 start-page: 5 year: 1998 ident: ref14 article-title: The role of chaos in neural systems publication-title: Neuroscience doi: 10.1016/S0306-4522(98)00091-8 – volume: 82 start-page: 1594 year: 1999 ident: ref15 article-title: Dynamics of self-organized delay adaptation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.1594 – volume: 10 start-page: 25 year: 2001 ident: ref39 article-title: Spike-frequency adaptation of a generalized Leaky Integrate-and-Fire model neuron publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008916026143 – year: 2014 ident: ref25 article-title: A Unified Dynamic Model for Learning, Replay and Sharp-Wave/Ripples publication-title: J. Neurosci. – volume: 3 start-page: e1377 year: 2008 ident: ref49 article-title: Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains publication-title: PLoS One doi: 10.1371/journal.pone.0001377 – year: 2000 ident: ref33 article-title: The Fitzhugh-Nagumo model: Bifurcation and dynamics – volume: 67 start-page: 195 year: 1992 ident: ref9 article-title: Universality in neural networks: The importance of the ‘mean firing rate’ publication-title: Biol. Cybern. doi: 10.1007/BF00204392 – volume: 224 start-page: 182 year: 2006 ident: ref20 article-title: Designing complex networks publication-title: Physica D doi: 10.1016/j.physd.2006.09.037 – volume: 79 start-page: 021904 year: 2009 ident: ref46 article-title: Dynamical phase transitions in periodically driven model neurons – volume: 105 start-page: 158104 year: 2010 ident: ref28 article-title: Irregular collective behavior of heterogeneous neural networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.158104 – volume: 9 start-page: 189 year: 1999 ident: ref47 article-title: Time as a coding space? Curr publication-title: Opin. Neurobiol. doi: 10.1016/S0959-4388(99)80026-9 – volume: 274 start-page: 1724 year: 1996 ident: ref6 article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity publication-title: Science doi: 10.1126/science.274.5293.1724 – volume: 402 start-page: 529 year: 1999 ident: ref16 article-title: Stable propagation of synchronous spiking in cortical neural networks publication-title: Nature doi: 10.1038/990101 – volume: 52 start-page: 751 year: 2006 ident: ref21 article-title: Biological pattern generation: The cellular and computational logic of networks in motion publication-title: Neuron doi: 10.1016/j.neuron.2006.11.008 – volume: 145 start-page: 61 year: 1964 ident: ref29 article-title: Pacemaker neurons: Effects of regularly spaced synaptic input publication-title: Science doi: 10.1126/science.145.3627.61 – volume: 70 start-page: 569 year: 1994 ident: ref45 article-title: Bistability and the dynamics of periodically forced sensory neurons publication-title: Biol. Cybern. doi: 10.1007/BF00198810 – volume: 5 start-page: 239 year: 1995 ident: ref13 article-title: Simple codes versus efficient codes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/0959-4388(95)80032-8 – volume: 59 start-page: 3427 year: 1999 ident: ref2 article-title: Time-scale matching in the response of a leaky integrate-and-fire neuron model to periodic stimulus with additive noise publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.59.3427 – volume: 92 start-page: 408 year: 2004 ident: ref42 article-title: Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01116.2003 – volume: 2 start-page: 1430 year: 2007 ident: ref52 article-title: NEST (NEural Simulation Tool) publication-title: Scholarpedia doi: 10.4249/scholarpedia.1430 – volume: 117 start-page: 500 year: 1952 ident: ref34 article-title: A quatitative description of membrane current and its application to conduction and excitation in nerve publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004764 – volume: 419 start-page: 224 year: 2002 ident: ref18 article-title: An ultra-sparse code underlies the generation of neural sequences in a songbird publication-title: Nature doi: 10.1038/nature00974 – volume: 89 start-page: 258701 year: 2002 ident: ref17 article-title: Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.258701 – volume: 8 start-page: 183 year: 2000 ident: ref7 article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008925309027 – volume: 100 start-page: 1576 year: 2008 ident: ref43 article-title: Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01282.2007 – volume: 4 start-page: 569 year: 1994 ident: ref12 article-title: Noise, neural codes and cortical organization publication-title: Curr. Opin. Neurobiol. doi: 10.1016/0959-4388(94)90059-0 – volume: 571 start-page: 563 year: 2006 ident: ref35 article-title: Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.098780 – volume: 56 start-page: 9 year: 1980 ident: ref44 article-title: Frequency entrainment of squid axon membrane publication-title: J. Membrane Biol. doi: 10.1007/BF01869347 – volume: 98 start-page: 048104 year: 2007 ident: ref22 article-title: Dynamically maintained spike timing sequences in networks of pulse-coupled oscillators with delays publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.048104 – volume: 15 start-page: 2523 year: 2003 ident: ref40 article-title: A universal model for spike-frequency adaptation publication-title: Neural Comput. doi: 10.1162/089976603322385063 – volume: 8 start-page: 979 year: 1996 ident: ref10 article-title: Type I membranes, phase resetting curves, and synchrony publication-title: Neural Comput. doi: 10.1162/neco.1996.8.5.979 – volume: 20 start-page: 2418 year: 2008 ident: ref11 article-title: Type I and type II neuron models are selectively driven by differential stimulus features Neural Comput publication-title: Type I and type II neuron models are selectively driven by differential stimulus features Neural Comput – volume: 94 start-page: 719 year: 1997 ident: ref32 article-title: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.2.719 – volume: 6 start-page: 224 year: 2010 ident: ref27 article-title: Self-organized adaptation of simple neural curcuits enables complex robot behavior publication-title: Nat. Phys. doi: 10.1038/nphys1508 – volume: 86 start-page: 2186 year: 2001 ident: ref3 article-title: Effects of synaptic noise and filtering on the frequency response of spiking neurons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2186 – volume: 2 start-page: e369 year: 2004 ident: ref50 article-title: Motifs in brain networks publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020369 – volume: 28 start-page: 1 year: 2005 ident: ref48 article-title: Spike times make sense publication-title: Trends Neurosci. doi: 10.1016/j.tins.2004.10.010 – volume: 5551 start-page: 68 year: 2009 ident: ref30 article-title: Features of hodgkin-huxley neuron response to periodic spike-train inputs publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-642-01507-6_9 – volume: 94 start-page: 238103 year: 2005 ident: ref8 article-title: Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.238103 – reference: 26436417 - PLoS Comput Biol. 2015 Oct;11(10):e1004380 |
SSID | ssj0035896 |
Score | 2.1301441 |
Snippet | Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies on... Fundamental response properties of neurons centrally underly the computational capabilities of both individual nerve cells and neural networks. Most studies... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004002 |
SubjectTerms | Action Potentials - physiology Animals Cells, Cultured Computer Simulation Experiments Models, Neurological Neural circuitry Neural networks Neurons Neurons - physiology Numerical analysis Patch-Clamp Techniques Physiological aspects Rats Rats, Wistar Software Studies Trapezoid Body - cytology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqlSr1gqA8Gh6VQZU4mSZrO85ya1GrgtQegEp7s2zHhohVNiK7B_49M7GzahCoFy45JBMpHk9mvklmviHkZG7ANQLyZtZ7wUTtBLNz5xlyK9XcVsoNnwaub8qrW_FpKZd3Rn1hTVikB46KO0WCOsi6K1F7sDfrbW24VWCoebkwPHZu5Yt8TKaiD-ayGiZz4VAcprhYpqY5rorTtEfvOmcbrBEQ4yeVMSgN3P07Dz3rVuv-b_DzzyrKO2Hp8iF5kPAkPYvreET2fHtI9uOEyV-PyQU425auwJ3RpqdYVPueQsLPwPjWG2TFpX3X_PB0rKimXWwcgIBGm5YObJdt_4TcXl58_XDF0uQE5iA92TDvgxLWBO5BYyWSccogITkoXDkP3jvIIwBqmbkwSgVZS-ULX0gIVrCfphQ1f0pm8DD-iFABmKBeWAn3cWGLUFm1yAMvg1V1AceM8FF12iVacZxusdLDvzIF6UXUhEaF66TwjLDdXV2k1bhH_hx3ZSeLpNjDCTAVnUxF32cqGXmDe6qR9qLFuppvZtv3-uOXG30miqqEYF6Jfwp9ngi9TUJhDYt1JvUygMqQTmsieYQGNC6q10UJGBeHnaiMvB6NSsM7jT9qTOvXW5SRgLqweScjz6KR7VYOEFXAhTwjamJ-E9VMr7TN94E3HLAi8vE9_x-6fEEOADrKWL_-ksw2P7f-FcCzjT0e3sTfwNA1oQ priority: 102 providerName: Directory of Open Access Journals |
Title | When Less Is More: Non-monotonic Spike Sequence Processing in Neurons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25646860 https://www.proquest.com/docview/1652440686 https://pubmed.ncbi.nlm.nih.gov/PMC4315492 https://doaj.org/article/423909384de040bebda3b7070069a301 http://dx.doi.org/10.1371/journal.pcbi.1004002 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddymAvY9_1PoI2BntysWPZcgZjJFuydixhNAvkTUi23IUFOYsTWP_73cmymUfL2IuN41NAp9Pd7yzpd4S8HkhwjYC8faU181meMV8NMu0jt1IeqZRn9tPAbJ6cLdnnVbw6Ik3NVqfA6trUDutJLXeb018_r97DhH9nqzbwsGl0us3UGlf9mWWXPIbYlGA6NmPtukIUp7ZiFxbL8Tk8ucN0N_1LJ1hZTv_Wc_e2m7K6Dpb-vbvyj3A1vUfuOpxJR7Vh3CdH2jwgt-vKk1cPyQScsKFfwM3R84rOyp1-S-el8cEoyz2y5dLFdv1D04XbaU3dgQIIdHRtqKX0MNUjspxOvn04811FBT-DtGXva11wpmQR6UDpBEk64yKGpCHMkkGhdQb5BUAwOWCS8yLOY65DHcYQxGCcZcLy6DHpmdLoE0IZYIV8qGJoFzEVFqniw6CIkkLxPISrR6JGdSJzdONY9WIj7Boah7Sj1oRAhQuncI_4battTbfxD_kxjkori2TZ9odydync3BPIcRgMo5TlGhoprXIZKQ6-LkiGEhycR17hmAqkwzC43-ZSHqpKnC_mYsTCNIEgn7IbhS46Qm-cUFFCZzPpzjiAypBmqyN5ggbUdKoSYQLYF4ugcI-8bIxKwFzHBRxpdHlAmRjQGB7q8ciT2sjangN0ZfAi8AjvmF9HNd03Zv3d8okDhkSevqf_qftn5A6gx7jewv6c9Pa7g34BCG2v-uQWX3G4ptNPfXI8Gn8cT-E-nsy_XvTtV4--nZa_AUulPtE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=When+Less+Is+More%3A+Non-monotonic+Spike+Sequence+Processing+in+Neurons&rft.jtitle=PLoS+computational+biology&rft.au=Arnoldt%2C+Hinrich&rft.au=Chang%2C+Shuwen&rft.au=Jahnke%2C+Sven&rft.au=Urmersbach%2C+Birk&rft.date=2015-02-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=11&rft.issue=2&rft.spage=e1004002&rft_id=info:doi/10.1371%2Fjournal.pcbi.1004002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1004002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |