Dynamic Unstructured Bargaining with Private Information: Theory, Experiment, and Outcome Prediction via Machine Learning

We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the “pie size”). Using mechanism design theory, we show that given the players’ incentives, the equilibrium incidence of bargaining failures (“strikes”) should increase with...

Full description

Saved in:
Bibliographic Details
Published inManagement science Vol. 65; no. 4; pp. 1867 - 1890
Main Authors Camerer, Colin F., Nave, Gideon, Smith, Alec
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.04.2019
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the “pie size”). Using mechanism design theory, we show that given the players’ incentives, the equilibrium incidence of bargaining failures (“strikes”) should increase with the pie size, and we derive a condition under which strikes are efficient. In our setting, no equilibrium satisfies both equality and efficiency in all pie sizes. We derive two equilibria that resolve the trade-off between equality and efficiency by favoring either equality or efficiency. Using a novel experimental paradigm, we confirm that strike incidence is decreasing in the pie size. Subjects reach equal splits in small pie games (in which strikes are efficient), while most payoffs are close to either the efficient or the equal equilibrium prediction, when the pie is large. We employ a machine learning approach to show that bargaining process features recorded early in the game improve out-of-sample prediction of disagreements at the deadline. The process feature predictions are as accurate as predictions from pie sizes only, and adding process and pie data together improves predictions even more. Data are available at https://doi.org/10.1287/mnsc.2017.2965 . This paper was accepted by Uri Gneezy, behavioral economics.
AbstractList We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the "pie size"). Using mechanism design theory, we show that given the players' incentives, the equilibrium incidence of bargaining failures ("strikes") should increase with the pie size, and we derive a condition under which strikes are efficient. In our setting, no equilibrium satisfies both equality and efficiency in all pie sizes. We derive two equilibria that resolve the trade-off between equality and efficiency by favoring either equality or efficiency. Using a novel experimental paradigm, we confirm that strike incidence is decreasing in the pie size. Subjects reach equal splits in small pie games (in which strikes are efficient), while most payoffs are close to either the efficient or the equal equilibrium prediction, when the pie is large. We employ a machine learning approach to show that bargaining process features recorded early in the game improve out-of-sample prediction of disagreements at the deadline. The process feature predictions are as accurate as predictions from pie sizes only, and adding process and pie data together improves predictions even more.
We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the "pie size"). Using mechanism design theory, we show that given the players' incentives, the equilibrium incidence of bargaining failures ("strikes") should increase with the pie size, and we derive a condition under which strikes are efficient. In our setting, no equilibrium satisfies both equality and efficiency in all pie sizes. We derive two equilibria that resolve the trade-off between equality and efficiency by favoring either equality or efficiency. Using a novel experimental paradigm, we confirm that strike incidence is decreasing in the pie size. Subjects reach equal splits in small pie games (in which strikes are efficient), while most payoffs are close to either the efficient or the equal equilibrium prediction, when the pie is large. We employ a machine learning approach to show that bargaining process features recorded early in the game improve out-of-sample prediction of disagreements at the deadline. The process feature predictions are as accurate as predictions from pie sizes only, and adding process and pie data together improves predictions even more. History: Accepted by Uri Gneezy, behavioral economics. Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work as "Management Science. Copyright [C] 2018 The Author(s). Funding: Generous support was provided by the National Science Foundation [SES-0850840] and the Behavioral and Neuroeconomics Discovery Fund at Caltech. Open access was sponsored by C. Camerer. Supplemental Material: Data are available at Keywords: bargaining * dynamic games * private information * mechanism design * machine learning
We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the “pie size”). Using mechanism design theory, we show that given the players’ incentives, the equilibrium incidence of bargaining failures (“strikes”) should increase with the pie size, and we derive a condition under which strikes are efficient. In our setting, no equilibrium satisfies both equality and efficiency in all pie sizes. We derive two equilibria that resolve the trade-off between equality and efficiency by favoring either equality or efficiency. Using a novel experimental paradigm, we confirm that strike incidence is decreasing in the pie size. Subjects reach equal splits in small pie games (in which strikes are efficient), while most payoffs are close to either the efficient or the equal equilibrium prediction, when the pie is large. We employ a machine learning approach to show that bargaining process features recorded early in the game improve out-of-sample prediction of disagreements at the deadline. The process feature predictions are as accurate as predictions from pie sizes only, and adding process and pie data together improves predictions even more. Data are available at https://doi.org/10.1287/mnsc.2017.2965 . This paper was accepted by Uri Gneezy, behavioral economics.
We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the “pie size”). Using mechanism design theory, we show that given the players’ incentives, the equilibrium incidence of bargaining failures (“strikes”) should increase with the pie size, and we derive a condition under which strikes are efficient. In our setting, no equilibrium satisfies both equality and efficiency in all pie sizes. We derive two equilibria that resolve the trade-off between equality and efficiency by favoring either equality or efficiency. Using a novel experimental paradigm, we confirm that strike incidence is decreasing in the pie size. Subjects reach equal splits in small pie games (in which strikes are efficient), while most payoffs are close to either the efficient or the equal equilibrium prediction, when the pie is large. We employ a machine learning approach to show that bargaining process features recorded early in the game improve out-of-sample prediction of disagreements at the deadline. The process feature predictions are as accurate as predictions from pie sizes only, and adding process and pie data together improves predictions even more. Data are available at https://doi.org/10.1287/mnsc.2017.2965 . This paper was accepted by Uri Gneezy, behavioral economics.
Audience Trade
Academic
Author Smith, Alec
Camerer, Colin F.
Nave, Gideon
Author_xml – sequence: 1
  givenname: Colin F.
  surname: Camerer
  fullname: Camerer, Colin F.
– sequence: 2
  givenname: Gideon
  surname: Nave
  fullname: Nave, Gideon
– sequence: 3
  givenname: Alec
  surname: Smith
  fullname: Smith, Alec
BookMark eNqFkt1rFDEUxYNUcFt99U0ICD7trDeZzJdvba1aWKkP7XPIZO7MZtnJrEmmdv97M13pulCRQALhd25uzj2n5MQOFgl5y2DBeFl87K3XCw6sWPAqz16QGct4nmQZsBMyA-BZwiqoXpFT79cAUJRFPiO7zzureqPpnfXBjTqMDht6oVynjDW2o79MWNEfztyrgPTatoPrVTCD_URvVzi43ZxePWzRmR5tmFNlG3ozBj30GEXYGD2x9N4o-l3plbFIl6jcVPk1edmqjcc3f84zcvfl6vbyW7K8-Xp9eb5MdA5ZSJq20JWo07xuVa25TnOeCiygghralIPgLOcCM8EqweqiBFZWTVpoVragI5eekff7uls3_BzRB7keRmfjk5JzngvBSygPVKc2KE38Z3BK98ZreZ5Fp6KNgkcqeYbq0KJTmziN1sTrI37xDB9Xg9HzZwUfjgSRCfgQOjV6L4_B-V9gPfporY-bN90q-D1_hIs9rt3gvcNWahMe5xgbMhvJQE4ZklOG5JQhOWXo0P-TbBsnrdzu34J3e8Hah8E90SI2AnmRHQw0j0ny_6v3G51d4bY
CitedBy_id crossref_primary_10_1155_2020_8406749
crossref_primary_10_1371_journal_pone_0225826
crossref_primary_10_1257_mic_20170087
crossref_primary_10_2139_ssrn_4577020
crossref_primary_10_2139_ssrn_3076682
crossref_primary_10_2139_ssrn_4175591
crossref_primary_10_1016_j_geb_2022_03_016
crossref_primary_10_1287_mnsc_2022_01800
crossref_primary_10_1007_s10683_023_09813_x
crossref_primary_10_2139_ssrn_3414288
crossref_primary_10_1093_restud_rdad031
crossref_primary_10_1093_ej_uead055
crossref_primary_10_1016_j_jebo_2021_04_009
crossref_primary_10_1016_j_jeem_2023_102842
crossref_primary_10_2139_ssrn_4707843
crossref_primary_10_1287_mnsc_2022_03566
crossref_primary_10_2139_ssrn_3018785
crossref_primary_10_2139_ssrn_4817350
crossref_primary_10_1016_j_joep_2023_102634
crossref_primary_10_1287_isre_2021_0997
crossref_primary_10_1287_msom_2022_0553
crossref_primary_10_1007_s10683_019_09626_x
crossref_primary_10_1086_718371
crossref_primary_10_1142_S021812742150156X
crossref_primary_10_1016_j_jebo_2024_01_031
crossref_primary_10_2139_ssrn_4612221
crossref_primary_10_1007_s00199_023_01544_7
crossref_primary_10_2139_ssrn_4753517
crossref_primary_10_1111_iere_12719
crossref_primary_10_1007_s10683_022_09778_3
crossref_primary_10_2139_ssrn_2940110
crossref_primary_10_1007_s10726_022_09793_y
crossref_primary_10_2139_ssrn_3938426
crossref_primary_10_1287_msom_2020_0896
crossref_primary_10_1016_j_jebo_2020_01_018
crossref_primary_10_1111_jels_12397
crossref_primary_10_1111_poms_13785
crossref_primary_10_1016_j_geb_2023_03_005
crossref_primary_10_1016_j_jebo_2022_03_002
crossref_primary_10_2139_ssrn_4622023
crossref_primary_10_1007_s40881_024_00174_6
crossref_primary_10_2139_ssrn_3716550
crossref_primary_10_2139_ssrn_3945112
crossref_primary_10_1287_msom_2022_1138
crossref_primary_10_2139_ssrn_4443330
crossref_primary_10_2139_ssrn_3626299
crossref_primary_10_3389_fenrg_2024_1413576
Cites_doi 10.1257/aer.96.5.1918
10.1016/S1573-4463(86)02009-6
10.1007/s00355-006-0141-z
10.1126/science.1177302
10.1006/obhd.1994.1023
10.1257/aer.102.1.337
10.1023/A:1009903210510
10.2307/1884542
10.1002/smj.966
10.1016/j.joep.2006.04.006
10.1007/s10683-006-9159-4
10.1073/pnas.1418680112
10.1016/S0031-3203(96)00142-2
10.1006/jmps.1998.1212
10.3982/ECTA9626
10.1007/BF01243649
10.1016/j.geb.2017.02.016
10.1006/jmps.1995.1019
10.1148/radiology.143.1.7063747
10.1016/j.geb.2005.03.005
10.1287/mnsc.1040.0311
10.2307/1912531
10.2307/2297780
10.1006/game.1996.0026
10.2307/1911866
10.1006/jeth.1993.1009
10.1257/aer.100.3.984
10.1162/003465304323031175
10.1177/0956797618761659
10.1023/A:1013290819565
10.1287/mnsc.2014.2012
10.1126/science.1243089
10.1257/0002828042002741
10.1006/jeth.2001.2850
10.1257/mic.6.2.1
10.1037/0022-3514.81.4.657
10.2307/1914280
10.2307/1911499
10.3368/jhr.50.2.317
10.1111/j.2517-6161.1974.tb00994.x
10.3150/11-BEJ410
10.1257/aer.96.5.1906
10.1287/mksc.1110.0660
10.1006/obhd.1997.2713
10.1016/j.jebo.2013.03.025
10.1214/12-IMSCOLL922
10.1257/aer.91.3.559
10.1006/game.2001.0855
10.3982/ECTA11132
10.1037/0033-295X.86.6.574
10.1037/h0036013
10.2307/j.ctvcm4j72
10.1257/aer.p20151021
10.1162/003355302760193904
10.1257/mic.5.4.219
10.1017/CBO9780511528309.013
10.1006/obhd.1994.1017
10.1016/0022-0531(86)90023-2
10.2307/1907266
10.1023/B:JOBU.0000040270.10433.54
10.1017/CBO9780511528309.006
10.1016/0022-0531(90)90077-W
10.1007/BF01766877
10.1146/annurev.psych.093008.100458
10.2307/1912346
10.1037/h0036895
10.2307/1912117
10.1016/j.jeconom.2006.10.009
10.1007/s10683-013-9352-1
10.1002/sim.4780040416
10.1177/1745691617693393
10.2307/2298066
10.2307/1911016
10.1016/j.jebo.2013.03.024
10.1016/j.jesp.2013.02.012
10.1016/j.geb.2010.09.008
10.1287/mnsc.41.3.377
10.1016/0167-2681(81)90003-2
10.1257/000282803321455197
10.1109/TIT.2012.2227680
10.1111/j.1467-9868.2011.00771.x
10.1257/jep.28.2.3
10.1016/j.geb.2005.04.001
10.3982/ECTA12628
10.1006/obhd.2000.2936
10.1111/jeea.12082
10.1287/mnsc.1080.0887
10.1016/j.econlet.2005.02.009
10.1257/aer.104.10.3256
10.1257/jep.31.2.87
10.1037/h0024997
10.1016/j.jebo.2015.06.008
10.1016/S0167-4870(01)00068-X
10.1016/0022-0531(89)90124-5
10.1016/S0167-2681(02)00092-6
10.1257/aer.96.5.1912
10.1111/j.2517-6161.1996.tb02080.x
10.1037/pspi0000016
10.1016/S0167-2681(96)00026-1
10.2307/1911702
10.1006/jmps.1998.1220
10.1016/j.joep.2015.01.007
10.1007/s10058-014-0162-5
10.3982/ECTA7384
10.1162/003355399556151
10.1016/j.euroecorev.2012.12.005
10.1023/A:1010349014718
10.1016/S0165-1765(01)00503-1
ContentType Journal Article
Copyright 2018 The Author(s)
COPYRIGHT 2019 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Apr 2019
Copyright_xml – notice: 2018 The Author(s)
– notice: COPYRIGHT 2019 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Apr 2019
DBID AAYXX
CITATION
N95
8BJ
FQK
JBE
DOI 10.1287/mnsc.2017.2965
DatabaseName CrossRef
Gale Business: Insights
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)




CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-5501
EndPage 1890
ExternalDocumentID A587655042
10_1287_mnsc_2017_2965
48760675
mnsc.2017.2965
Genre Research Article
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
41
5GY
6XO
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABTRL
ABUFD
ABUWG
ABZEH
ACDCL
ACHQT
ACNCT
ACTDY
ACVYA
ACYGS
ADBBV
ADDCT
ADGDI
ADNFJ
AEILP
AENEX
AETEA
AEUPB
AFDAS
AFFDN
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
ISM
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
LI
M0C
M0T
M2M
MV1
N95
NEJ
NIEAY
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
REX
RNS
RPU
SA0
SJN
TH9
TN5
U5U
UKR
VOH
VQA
WH7
X
XFK
XHC
XI7
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
-~X
18M
AAMNW
AAWTO
ABDNZ
ABKVW
ABLWH
ABYYQ
ACGFO
ACXJH
ADEPB
ADMHG
ADNWM
AEGXH
AEMOZ
AFAIT
AFTQD
AHAJD
AHQJS
AIAGR
ALIPV
BAAKF
IPC
IPSME
IPY
ISL
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
OFU
XSW
.-4
41~
AAAZS
AAXLS
AAYOK
AAYXX
ABAWQ
ABDPE
ABXSQ
ACHJO
ADULT
AGKTX
APTMU
ASMEE
CCPQU
CITATION
LPU
PHGZM
PHGZT
PQBIZ
PQBZA
PSYQQ
UKHRP
YYP
8BJ
FQK
JBE
ID FETCH-LOGICAL-c605t-df7c94b36bfabc2c36234e7090b0f320421624e541941b780189d37c18f0ce703
ISSN 0025-1909
IngestDate Sat Aug 16 15:31:25 EDT 2025
Tue Jun 17 22:09:54 EDT 2025
Fri Jun 13 00:00:40 EDT 2025
Tue Jun 10 21:03:47 EDT 2025
Fri Jun 27 05:28:02 EDT 2025
Fri May 23 02:45:52 EDT 2025
Tue Jul 01 02:55:07 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Thu May 29 08:47:37 EDT 2025
Wed Jan 06 02:48:04 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605t-df7c94b36bfabc2c36234e7090b0f320421624e541941b780189d37c18f0ce703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4049-1871
0000-0002-1938-4660
0000-0001-6251-5630
OpenAccessLink https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.2017.2965
PQID 2226442808
PQPubID 40737
PageCount 24
ParticipantIDs proquest_journals_2226442808
crossref_citationtrail_10_1287_mnsc_2017_2965
crossref_primary_10_1287_mnsc_2017_2965
gale_incontextgauss__A587655042
gale_infotracmisc_A587655042
informs_primary_10_1287_mnsc_2017_2965
gale_infotracacademiconefile_A587655042
gale_businessinsightsgauss_A587655042
gale_infotracgeneralonefile_A587655042
jstor_primary_48760675
ProviderPackageCode Y99
RPU
NIEAY
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Management science
PublicationYear 2019
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B118
B119
B116
B117
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B78
B79
B129
B127
B128
B125
B126
B123
B124
B121
B122
B120
B80
B81
B82
B83
B84
B85
B86
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
Bardsley N (B10) 2010; 120
Schelling TC (B107) 1960
Kennan J (B75) 1990; 80
Stone M (B113) 1974; 36
Pruitt DG (B95) 2013
Forsythe R (B43) 1991; 81
Kennan J (B76) 1993; 31
Güth W (B56) 1996; 106
Ochs J (B93) 1989; 79
Greene WH (B52) 2003
Camerer CF (B21) 1993
Ausubel LM (B7) 2002; 3
Tibshirani R (B115) 1996
Oyeyemi GM (B94) 2015; 5
Roth AE (B104) 1988; 78
References_xml – ident: B12
– ident: B35
– ident: B87
– ident: B112
– ident: B41
– ident: B7
– ident: B29
– ident: B64
– ident: B73
– ident: B50
– ident: B96
– ident: B21
– ident: B121
– ident: B106
– ident: B129
– ident: B58
– ident: B61
– ident: B109
– ident: B115
– ident: B2
– ident: B69
– ident: B82
– ident: B44
– ident: B49
– ident: B24
– ident: B101
– ident: B126
– ident: B17
– ident: B93
– ident: B30
– ident: B76
– ident: B38
– ident: B55
– ident: B85
– ident: B9
– ident: B10
– ident: B110
– ident: B43
– ident: B66
– ident: B118
– ident: B1
– ident: B23
– ident: B104
– ident: B127
– ident: B18
– ident: B79
– ident: B94
– ident: B52
– ident: B37
– ident: B71
– ident: B113
– ident: B88
– ident: B26
– ident: B4
– ident: B46
– ident: B63
– ident: B80
– ident: B99
– ident: B124
– ident: B107
– ident: B91
– ident: B32
– ident: B15
– ident: B57
– ident: B74
– ident: B60
– ident: B116
– ident: B3
– ident: B68
– ident: B45
– ident: B83
– ident: B125
– ident: B102
– ident: B25
– ident: B92
– ident: B16
– ident: B77
– ident: B31
– ident: B39
– ident: B54
– ident: B59
– ident: B13
– ident: B86
– ident: B111
– ident: B119
– ident: B40
– ident: B28
– ident: B65
– ident: B6
– ident: B48
– ident: B97
– ident: B105
– ident: B122
– ident: B34
– ident: B51
– ident: B72
– ident: B14
– ident: B108
– ident: B114
– ident: B120
– ident: B20
– ident: B89
– ident: B27
– ident: B62
– ident: B81
– ident: B5
– ident: B47
– ident: B98
– ident: B100
– ident: B123
– ident: B33
– ident: B75
– ident: B56
– ident: B90
– ident: B8
– ident: B36
– ident: B11
– ident: B84
– ident: B117
– ident: B42
– ident: B67
– ident: B22
– ident: B95
– ident: B128
– ident: B103
– ident: B78
– ident: B70
– ident: B19
– ident: B53
– ident: B38
  doi: 10.1257/aer.96.5.1918
– ident: B74
  doi: 10.1016/S1573-4463(86)02009-6
– ident: B48
  doi: 10.1007/s00355-006-0141-z
– ident: B78
  doi: 10.1126/science.1177302
– ident: B123
  doi: 10.1006/obhd.1994.1023
– ident: B44
  doi: 10.1257/aer.102.1.337
– ident: B98
  doi: 10.1023/A:1009903210510
– ident: B85
  doi: 10.2307/1884542
– ident: B9
  doi: 10.1002/smj.966
– volume: 79
  start-page: 355
  issue: 3
  year: 1989
  ident: B93
  publication-title: Amer. Econom. Rev.
– ident: B68
  doi: 10.1016/j.joep.2006.04.006
– ident: B42
  doi: 10.1007/s10683-006-9159-4
– ident: B127
  doi: 10.1073/pnas.1418680112
– volume: 120
  start-page: 40
  issue: 543
  year: 2010
  ident: B10
  publication-title: Econom. J.
– ident: B18
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 5
  start-page: 72
  issue: 2
  year: 2015
  ident: B94
  publication-title: Internat. J. Statist. Appl.
– ident: B55
  doi: 10.1006/jmps.1998.1212
– volume: 3
  start-page: 1897
  volume-title: Handbook of Game Theory with Economic Applications
  year: 2002
  ident: B7
– volume-title: Econometric Analysis
  year: 2003
  ident: B52
– ident: B13
  doi: 10.3982/ECTA9626
– ident: B86
  doi: 10.1007/BF01243649
– ident: B83
  doi: 10.1016/j.geb.2017.02.016
– ident: B97
  doi: 10.1006/jmps.1995.1019
– ident: B58
  doi: 10.1148/radiology.143.1.7063747
– ident: B14
  doi: 10.1016/j.geb.2005.03.005
– volume: 78
  start-page: 806
  issue: 4
  year: 1988
  ident: B104
  publication-title: Amer. Econom. Rev.
– ident: B47
  doi: 10.1287/mnsc.1040.0311
– ident: B105
  doi: 10.2307/1912531
– ident: B26
  doi: 10.2307/2297780
– ident: B71
  doi: 10.1006/game.1996.0026
– ident: B102
  doi: 10.2307/1911866
– ident: B125
  doi: 10.1006/jeth.1993.1009
– ident: B121
  doi: 10.1257/aer.100.3.984
– ident: B11
  doi: 10.1162/003465304323031175
– ident: B91
  doi: 10.1177/0956797618761659
– ident: B70
  doi: 10.1023/A:1013290819565
– ident: B73
  doi: 10.1287/mnsc.2014.2012
– volume: 80
  start-page: 405
  issue: 2
  year: 1990
  ident: B75
  publication-title: Amer. Econom. Rev.
– volume-title: The Strategy of Conflict
  year: 1960
  ident: B107
– ident: B34
  doi: 10.1126/science.1243089
– ident: B37
  doi: 10.1257/0002828042002741
– ident: B69
  doi: 10.1006/jeth.2001.2850
– ident: B109
  doi: 10.1257/mic.6.2.1
– ident: B50
  doi: 10.1037/0022-3514.81.4.657
– ident: B72
  doi: 10.2307/1914280
– ident: B89
  doi: 10.2307/1911499
– ident: B22
  doi: 10.3368/jhr.50.2.317
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: B113
  publication-title: J. Roy. Statist. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: B12
  doi: 10.3150/11-BEJ410
– ident: B17
  doi: 10.1257/aer.96.5.1906
– volume: 31
  start-page: 45
  issue: 1
  year: 1993
  ident: B76
  publication-title: J. Econom. Literature
– ident: B33
  doi: 10.1287/mksc.1110.0660
– ident: B80
  doi: 10.1006/obhd.1997.2713
– ident: B51
  doi: 10.1016/j.jebo.2013.03.025
– ident: B118
  doi: 10.1214/12-IMSCOLL922
– ident: B126
  doi: 10.1257/aer.91.3.559
– ident: B117
  doi: 10.1006/game.2001.0855
– ident: B60
  doi: 10.3982/ECTA11132
– ident: B101
  doi: 10.1037/0033-295X.86.6.574
– ident: B129
  doi: 10.1037/h0036013
– ident: B5
  doi: 10.2307/j.ctvcm4j72
– ident: B8
  doi: 10.1257/aer.p20151021
– ident: B23
  doi: 10.1162/003355302760193904
– ident: B45
  doi: 10.1257/mic.5.4.219
– volume: 106
  start-page: 593
  issue: 436
  year: 1996
  ident: B56
  publication-title: Econom. J.
– ident: B100
  doi: 10.1017/CBO9780511528309.013
– ident: B122
  doi: 10.1006/obhd.1994.1017
– ident: B53
  doi: 10.1016/0022-0531(86)90023-2
– ident: B90
  doi: 10.2307/1907266
– ident: B19
  doi: 10.1023/B:JOBU.0000040270.10433.54
– ident: B46
  doi: 10.1017/CBO9780511528309.006
– ident: B57
  doi: 10.1016/0022-0531(90)90077-W
– ident: B92
  doi: 10.1007/BF01766877
– ident: B114
  doi: 10.1146/annurev.psych.093008.100458
– ident: B88
  doi: 10.2307/1912346
– ident: B128
  doi: 10.1037/h0036895
– ident: B63
  doi: 10.2307/1912117
– ident: B59
  doi: 10.1016/j.jeconom.2006.10.009
– ident: B2
  doi: 10.1007/s10683-013-9352-1
– start-page: 27
  volume-title: Frontiers of Game Theory
  year: 1993
  ident: B21
– ident: B29
  doi: 10.1002/sim.4780040416
– ident: B124
  doi: 10.1177/1745691617693393
– ident: B6
  doi: 10.2307/2298066
– ident: B106
  doi: 10.2307/1911016
– volume: 81
  start-page: 253
  issue: 1
  year: 1991
  ident: B43
  publication-title: Amer. Econom. Rev.
– ident: B79
  doi: 10.1016/j.jebo.2013.03.024
– ident: B84
  doi: 10.1016/j.jesp.2013.02.012
– ident: B15
  doi: 10.1016/j.geb.2010.09.008
– ident: B99
  doi: 10.1287/mnsc.41.3.377
– ident: B103
  doi: 10.1016/0167-2681(81)90003-2
– ident: B27
  doi: 10.1257/000282803321455197
– volume-title: Negotiation Behavior
  year: 2013
  ident: B95
– ident: B61
  doi: 10.1109/TIT.2012.2227680
– ident: B116
  doi: 10.1111/j.1467-9868.2011.00771.x
– ident: B120
  doi: 10.1257/jep.28.2.3
– ident: B20
  doi: 10.1016/j.geb.2005.04.001
– ident: B39
  doi: 10.3982/ECTA12628
– ident: B111
  doi: 10.1006/obhd.2000.2936
– ident: B32
  doi: 10.1111/jeea.12082
– ident: B31
  doi: 10.1287/mnsc.1080.0887
– ident: B25
  doi: 10.1016/j.econlet.2005.02.009
– ident: B65
  doi: 10.1257/aer.104.10.3256
– ident: B87
  doi: 10.1257/jep.31.2.87
– ident: B24
  doi: 10.1037/h0024997
– ident: B82
  doi: 10.1016/j.jebo.2015.06.008
– ident: B119
  doi: 10.1016/S0167-4870(01)00068-X
– ident: B96
  doi: 10.1016/0022-0531(89)90124-5
– ident: B28
  doi: 10.1016/S0167-2681(02)00092-6
– ident: B41
  doi: 10.1257/aer.96.5.1912
– start-page: 267
  year: 1996
  ident: B115
  publication-title: J. Roy. Statist. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: B1
  doi: 10.1037/pspi0000016
– ident: B16
  doi: 10.1016/S0167-2681(96)00026-1
– ident: B54
  doi: 10.2307/1911702
– ident: B30
  doi: 10.1006/jmps.1998.1220
– ident: B35
  doi: 10.1016/j.joep.2015.01.007
– ident: B66
  doi: 10.1007/s10058-014-0162-5
– ident: B4
  doi: 10.3982/ECTA7384
– ident: B40
  doi: 10.1162/003355399556151
– ident: B64
  doi: 10.1016/j.euroecorev.2012.12.005
– ident: B67
  doi: 10.1023/A:1010349014718
– ident: B81
  doi: 10.1016/S0165-1765(01)00503-1
SSID ssj0007876
Score 2.4915662
Snippet We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the “pie size”). Using mechanism...
We study dynamic unstructured bargaining with deadlines and one-sided private information about the amount available to share (the "pie size"). Using mechanism...
SourceID proquest
gale
crossref
jstor
informs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1867
SubjectTerms Artificial intelligence
Bargaining
Cognitive style
dynamic games
Efficiency
Equality
Equilibrium
Games
Incentives
Information theory
Machine learning
mechanism design
private information
Theory
Title Dynamic Unstructured Bargaining with Private Information: Theory, Experiment, and Outcome Prediction via Machine Learning
URI https://www.jstor.org/stable/48760675
https://www.proquest.com/docview/2226442808
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FViAuiFdFoMAegB6oW3vt2FluaZsQXmkErdTbyl6vQ6SSVHVSCX4Ov5SZ7PglwvNiJc5ovc58np0dfzPD2DOTRjrpuImTZpF04EkMHRnB1yzxpdEpIKCL2cgfRuHwNHh71jlrtb7XWEvLRbKnv63NK_kfrcI50Ctmyf6DZstB4QR8Bv3CETQMx7_S8ZFtJw-Ooy0Du0Qy-QG2rp1WQdbxJTYwQ4pkmahIVIu5fYXeL4v8F1TO4-UCpmuQn5FObS_xq2mMTYo-o1NKNVkndce2otG8pEW19nbDUM_sQ-wQVHGJR_HVKpz6epqaig1Qxnp650bXgxKerHFZVhvVkuiAXMnjC3NJvL6CTljSQ2uzI2NWj1Fir13wWKxNNWShRejAtsqrm3DbboKgGtTsMZbrW7tQCAy1DL7Mcixj6UV7QtIYjYrcw94nNT4aqPdvRu-usU0BWxGwpZsH_dH4Y7neg8kLi8bAOFkqDQpX2G-O33B9yAG4buvj5gUd9ieXYOXnnNxmt2iDwnsWbXdYy8zushtFfsQ99pVAx-ug4xXoOIKOE-h4DXSvuIXcLq8At8tBQ5zgxiu4cYAbJ7jxAm732emgf3I4dKh_h6Nhk7zAx1_LIPHDJIsTLTT4Sn5gIle6iZv5ApYLLxSB6QSeDLwkAl-pK1M_0l43czXI-VtsYzafmQeM-1qIOA2M1OhyCiET40edTEdZCt6WztrMKf5apam4PfZYOVe4yQVVKFSFQlUoVEWb7ZTyF7asyy8ln6OmFPWEhUOOUbN8Ei_zXPU6oHxAYyDa7OlKDmuqzJC0ZQUaEjskkc1hbjqmBBi4Q6zB1pB80ZCc2Ar06wS3G4KwNOjmOASvP97k1gp9pVgAQ2AsAS5QwFGR4cuVwOT7QHTd7sPf__yI3ayMwzbbAFSax-DDL5In9BD9AIl09bE
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Unstructured+Bargaining+with+Private+Information%3A+Theory%2C+Experiment%2C+and+Outcome+Prediction+via+Machine+Learning&rft.jtitle=Management+science&rft.au=Camerer%2C+Colin+F&rft.au=Nave%2C+Gideon&rft.au=Smith%2C+Alec&rft.date=2019-04-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=65&rft.issue=4&rft.spage=1867&rft_id=info:doi/10.1287%2Fmnsc.2017.2965&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon