Prediction of ground reaction forces and moments during various activities of daily living

Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynami...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 47; no. 10; pp. 2321 - 2329
Main Authors Fluit, R., Andersen, M.S., Kolk, S., Verdonschot, N., Koopman, H.F.J.M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 18.07.2014
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
AbstractList Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model's dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the modelx super(3)s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
Abstract Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences ( P >0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced ( P >0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.
Author Fluit, R.
Kolk, S.
Andersen, M.S.
Verdonschot, N.
Koopman, H.F.J.M.
Author_xml – sequence: 1
  givenname: R.
  surname: Fluit
  fullname: Fluit, R.
  email: r.fluit@ctw.utwente.nl
  organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
– sequence: 2
  givenname: M.S.
  surname: Andersen
  fullname: Andersen, M.S.
  organization: Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark
– sequence: 3
  givenname: S.
  surname: Kolk
  fullname: Kolk, S.
  organization: Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Rehabilitation, Nijmegen, The Netherlands
– sequence: 4
  givenname: N.
  surname: Verdonschot
  fullname: Verdonschot, N.
  organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
– sequence: 5
  givenname: H.F.J.M.
  surname: Koopman
  fullname: Koopman, H.F.J.M.
  organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24835471$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEUx4NU7Lb6FcqAL77MenKdCYhYijcoKKgvvoRMklkzziY1mVnYb2-G7SLsgy0cSDj5nUv-51ygsxCDQ-gKwxoDFq-H9dD5uHXm15oAZmsoRuEJWuG2oTWhLZyhFQDBtSQSztFFzgMANKyRz9A5YS3lrMEr9PNrctabycdQxb7apDgHWyWnD64-JuNypYtvW6qFKVd2Tj5sqp1OPs7lqYA7P_lClXir_bivxuIJm-foaa_H7F7cn5fox4f3328-1bdfPn6-ub6tjQA-1VbaFoxlVkrCpGBd3_XWss70rsXSdn3LDbENFow7TTrQtHM9Na3sqGyFEfQSvTrkvUvxz-zypLY-GzeOOrjSocKcYxBYwmNQygWRXEJBX56gQ5xTKB8pFAMOlBJSqKt7au62zqq75Lc67dVR4AK8OQAmxZyT65Xxk160nVLRSmFQyzzVoI7zVMs8FRSjSxfiJPxY4cHAd4dAV5TfeZdUNt4FU4adnJmUjf7hFG9PUpjRB2_0-NvtXf4nh8pEgfq2bNuybJiVG8fi_wke08FfCP3oPg
CitedBy_id crossref_primary_10_1115_1_4064034
crossref_primary_10_1007_s10439_019_02409_8
crossref_primary_10_1155_2018_8487308
crossref_primary_10_1109_TNSRE_2018_2854605
crossref_primary_10_1242_bio_058595
crossref_primary_10_7717_peerj_19035
crossref_primary_10_1016_j_gaitpost_2022_04_005
crossref_primary_10_1016_j_jbiomech_2018_12_008
crossref_primary_10_14814_phy2_15076
crossref_primary_10_1016_j_medengphy_2017_11_008
crossref_primary_10_1115_1_4054866
crossref_primary_10_3390_s18061966
crossref_primary_10_1016_j_jbiomech_2015_08_027
crossref_primary_10_3390_app13148184
crossref_primary_10_5100_jje_50_256
crossref_primary_10_1109_TIM_2024_3481577
crossref_primary_10_1007_s11044_021_09808_7
crossref_primary_10_1080_24725838_2021_1941433
crossref_primary_10_3390_s17092085
crossref_primary_10_1016_j_measurement_2022_111344
crossref_primary_10_1016_j_ejogrb_2021_07_042
crossref_primary_10_1080_10255842_2017_1393804
crossref_primary_10_1016_j_gaitpost_2019_11_011
crossref_primary_10_1038_s41598_020_73856_w
crossref_primary_10_1016_j_jbiomech_2024_112383
crossref_primary_10_3233_THC_240202
crossref_primary_10_3389_fneur_2022_830762
crossref_primary_10_3389_fbioe_2024_1286644
crossref_primary_10_1016_j_jbiomech_2024_111974
crossref_primary_10_1177_20556683221131557
crossref_primary_10_1016_j_jmbbm_2016_08_026
crossref_primary_10_1109_ACCESS_2021_3091649
crossref_primary_10_4028_p_mrM7AX
crossref_primary_10_1177_0954411920947208
crossref_primary_10_3389_fnbot_2021_620928
crossref_primary_10_1016_j_compbiomed_2025_109739
crossref_primary_10_1115_1_4048572
crossref_primary_10_3390_s24092792
crossref_primary_10_1016_j_eswa_2023_122868
crossref_primary_10_1177_00187208221141652
crossref_primary_10_3390_s23094484
crossref_primary_10_1016_j_gaitpost_2020_12_025
crossref_primary_10_1109_TBME_2018_2854632
crossref_primary_10_1080_10255842_2020_1786072
crossref_primary_10_1109_TNSRE_2023_3347729
crossref_primary_10_1016_j_jbiomech_2018_06_006
crossref_primary_10_1017_wtc_2023_7
crossref_primary_10_1016_j_medengphy_2018_12_021
crossref_primary_10_1115_1_4051847
crossref_primary_10_1080_14763141_2020_1761993
crossref_primary_10_1016_j_jbiomech_2015_10_028
crossref_primary_10_1109_TNSRE_2017_2676465
crossref_primary_10_1123_jab_2023_0202
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1115_1_4054835
crossref_primary_10_1016_j_jbiomech_2019_04_037
crossref_primary_10_1016_j_jbiomech_2019_109327
crossref_primary_10_1016_j_jbiomech_2023_111770
crossref_primary_10_1016_j_jbiomech_2023_111896
crossref_primary_10_3390_s21217353
crossref_primary_10_1016_j_jbiomech_2025_112548
crossref_primary_10_1371_journal_pone_0244405
crossref_primary_10_3390_s22207825
crossref_primary_10_1007_s11044_017_9573_8
crossref_primary_10_1177_0954411920938902
crossref_primary_10_1016_j_gaitpost_2016_01_005
crossref_primary_10_3390_s17102181
crossref_primary_10_1109_ACCESS_2024_3434721
crossref_primary_10_1016_j_apergo_2020_103345
crossref_primary_10_1016_j_jbiomech_2019_03_004
crossref_primary_10_2139_ssrn_4091270
crossref_primary_10_1115_1_4067981
crossref_primary_10_1016_j_medengphy_2017_10_004
crossref_primary_10_1115_1_4067103
crossref_primary_10_1017_dsi_2019_410
crossref_primary_10_3390_s17010075
crossref_primary_10_1007_s00521_023_09081_z
crossref_primary_10_1007_s11044_020_09739_9
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1016_j_cagd_2020_101855
crossref_primary_10_1080_10255842_2020_1715005
crossref_primary_10_3389_fbioe_2022_894568
crossref_primary_10_1016_j_jbiomech_2021_110334
crossref_primary_10_1123_jab_2017_0281
crossref_primary_10_3390_s24072163
crossref_primary_10_1016_j_jbiomech_2019_109552
crossref_primary_10_1016_j_jbiomech_2024_112118
crossref_primary_10_2139_ssrn_4052199
crossref_primary_10_3390_s24061941
crossref_primary_10_3390_s19173690
crossref_primary_10_3390_s17020299
crossref_primary_10_1016_j_medengphy_2016_12_001
crossref_primary_10_1007_s11517_024_03171_3
crossref_primary_10_1016_j_jbiomech_2019_07_002
crossref_primary_10_1115_1_4049199
crossref_primary_10_1186_s12984_024_01458_y
crossref_primary_10_3389_fnhum_2020_00188
crossref_primary_10_1016_j_apergo_2019_102935
crossref_primary_10_1016_j_jbiomech_2017_02_025
crossref_primary_10_1016_j_heliyon_2024_e32078
crossref_primary_10_1007_s12283_022_00388_z
crossref_primary_10_1186_s12938_019_0708_4
crossref_primary_10_1007_s11044_016_9537_4
crossref_primary_10_1016_j_jbiomech_2023_111439
crossref_primary_10_1016_j_jbiomech_2023_111712
crossref_primary_10_1017_S0263574718000711
crossref_primary_10_1155_2022_1151753
crossref_primary_10_3390_s22176454
crossref_primary_10_3390_s20195709
crossref_primary_10_1016_j_jbiomech_2024_112051
crossref_primary_10_1007_s10439_017_1852_2
crossref_primary_10_1016_j_jbiomech_2019_109412
crossref_primary_10_3389_fnbot_2019_00048
crossref_primary_10_21105_joss_00927
crossref_primary_10_3389_fneur_2017_00677
crossref_primary_10_3390_s21165588
crossref_primary_10_31436_iiumej_v26i1_3379
crossref_primary_10_1016_j_gaitpost_2025_01_014
crossref_primary_10_1371_journal_pone_0204575
crossref_primary_10_1371_journal_pone_0270423
crossref_primary_10_1016_j_jbiomech_2014_12_034
crossref_primary_10_3390_ijerph19159040
crossref_primary_10_1017_dsi_2019_406
crossref_primary_10_3389_fbioe_2020_00009
crossref_primary_10_1109_ACCESS_2021_3134056
crossref_primary_10_1007_s11517_023_02906_y
crossref_primary_10_3389_fnhum_2023_1127613
crossref_primary_10_1007_s00521_019_04658_z
crossref_primary_10_1186_s12984_022_00998_5
crossref_primary_10_1007_s11044_017_9605_4
crossref_primary_10_1016_j_mechmachtheory_2022_105046
crossref_primary_10_1007_s41449_022_00336_4
crossref_primary_10_3390_s19071681
crossref_primary_10_3390_s25041249
crossref_primary_10_3389_fbioe_2018_00162
crossref_primary_10_52628_90_4_12600
crossref_primary_10_2139_ssrn_4052247
crossref_primary_10_1109_TBME_2019_2913308
crossref_primary_10_3390_s21051804
Cites_doi 10.1007/s12541-013-0064-4
10.1016/j.jbiomech.2013.07.036
10.1016/j.jbiomech.2005.04.014
10.1016/j.jbiomech.2004.03.009
10.1016/S0021-9991(02)00024-4
10.1016/j.gaitpost.2011.09.105
10.1007/s00366-007-0070-1
10.1016/j.jbiomech.2006.04.016
10.1016/S0003-9993(99)90279-4
10.1016/j.gaitpost.2004.05.002
10.1016/S0021-9290(99)00109-8
10.1007/BF02345966
10.1016/j.simpat.2006.09.001
10.1016/j.clinbiomech.2006.10.003
10.1016/S0021-9290(00)00155-X
10.1016/j.ics.2005.03.076
10.1016/j.jbiomech.2013.06.037
10.1016/j.gaitpost.2008.06.010
10.1016/j.gaitpost.2006.05.016
10.1123/jab.19.4.361
10.1016/S0167-9457(99)00023-8
10.1016/j.mechmachtheory.2012.07.010
10.1016/j.gaitpost.2007.07.012
10.1016/j.jbiomech.2008.06.001
10.1016/S0021-9290(00)00192-5
10.1177/875647939000600106
10.1115/1.2834295
10.1016/j.jbiomech.2005.12.003
10.1080/10255840903067080
10.1109/TBME.2007.901024
10.1016/S0966-6362(99)00011-9
10.1016/j.jbiomech.2004.02.010
10.1016/j.jbiomech.2005.02.010
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2014.04.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
Technology Research Database


MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 2329
ExternalDocumentID 3349839871
24835471
10_1016_j_jbiomech_2014_04_030
S0021929014002516
1_s2_0_S0021929014002516
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c605t-d9d80cd4d9924964bfbfdd4bcfe819dbf85c2d71645ea2b0a3bef3c89b3986c63
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 07:02:19 EDT 2025
Mon Jul 21 10:27:12 EDT 2025
Wed Aug 13 10:58:59 EDT 2025
Mon Jul 21 06:04:07 EDT 2025
Tue Jul 01 01:14:05 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Fri Feb 23 02:34:49 EST 2024
Sun Feb 23 10:20:46 EST 2025
Tue Aug 26 16:33:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Ground reaction forces and moments
Musculoskeletal model
Activities of daily living
Dynamic consistency
Inverse dynamics
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-d9d80cd4d9924964bfbfdd4bcfe819dbf85c2d71645ea2b0a3bef3c89b3986c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24835471
PQID 1540503322
PQPubID 1226346
PageCount 9
ParticipantIDs proquest_miscellaneous_1551061906
proquest_miscellaneous_1535629590
proquest_journals_1540503322
pubmed_primary_24835471
crossref_citationtrail_10_1016_j_jbiomech_2014_04_030
crossref_primary_10_1016_j_jbiomech_2014_04_030
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2014_04_030
elsevier_clinicalkeyesjournals_1_s2_0_S0021929014002516
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2014_04_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-18
PublicationDateYYYYMMDD 2014-07-18
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Fluit, R., Pellikaan, P., Carbone, V., Krogt, M.M.v.d., Damsgaard, M., Koopman, H.F.J.M., verdonschot, N., 2013. A new geometrically consistent musculoskeletal model of the lower extremity based on imaging and cadaver measurements. In: 11th International Symposium of Computer Methods in Biomechanics and Biomedical Engineering, Salt Lake City, Utah, USA.
Luinge, Veltink (bib18) 2005; 43
Richards (bib28) 1999; 18
Scheys, Jonkers, Schutyser, Pans, Spaepen, Suetens (bib32) 2005; 1281
Pearsall, Costigan (bib24) 1999; 9
Andriacchi, Dyrby (bib4) 2005; 38
Hesse, Konrad, Uhlenbrock (bib13) 1999; 80
Schache, Baker, Vaughan (bib31) 2007; 40
Taylor (bib37) 1990; 6
Greenwood (bib12) 1988
Leardini, Chiari, Della Croce, Cappozzo (bib17) 2005; 21
Oosterwaal, Telfer, Torholm, Carbes, van Rhijn, Macduff, Meijer, Woodburn (bib21) 2011
Andersen, Damsgaard, MacWilliams, Rasmussen (bib2) 2010; 13
Rao, Amarantini, Berton, Favier (bib25) 2006; 39
Oh, Choi, Mun (bib20) 2013; 46
Riemer, Hsiao-Wecksler, Zhang (bib29) 2008; 27
Schwartz, Rozumalski (bib34) 2005; 38
Rasmussen, J., Damsgaard, M., Christensen, S.T., 2000. Inverse-inverse dynamics simulation of musculoskeletal systems. In: European Society of Biomechanics Royal Academy of Medicine in Ireland.
Anderson, Pandy (bib3) 2001; 34
O׳Connor, Thorpe, O׳Malley, Vaughan (bib19) 2007; 25
Robert, Causse, Monnier (bib30) 2013; 46
Kuo (bib16) 1998; 120
Sprague, Geers (bib36) 2003; 184
Ren, Jones, Howard (bib27) 2008; 41
Thelen, Anderson (bib38) 2006; 39
Wilken, Rodriguez, Brawner, Darter (bib41) 2012; 35
Audu, Kirsch, Triolo (bib5) 2003; 19
Pamies-Vila, Font-Llagunes, Cuadrado, Alonso (bib23) 2012; 58
Audu, Kirsch, Triolo (bib6) 2007; 40
Winter (bib42) 2009
Klein Horsman, Koopman, van der Helm, Prose, Veeger (bib15) 2007; 22
Schmiedmayer, Kastner (bib33) 1999; 32
Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib9) 2006; 14
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib10) 2007; 54
.
OpenSim User׳s Guide, Section Residual Reduction Algorithm. Last edit from 10th of June, 2013.
Choi, Lee, Mun (bib7) 2013; 14
Collins, Adamczyk, Ferris, Kuo (bib8) 2009; 29
Schwer (bib35) 2007; 23
Vicon (bib39) 2002
Vanheule, V., Andersen, M.S., Wirix-Speetjens, R., Jonkers, I., Victor, J., Van den Sloten, J., 2013. Modeling of patient-specific knee kinematics and ligament behavior using force-dependent kinematics. In: XXIV Congress of the International Society of Biomechanics. Natal, Brazil.
Alexander, Andriacchi (bib1) 2001; 34
John, C.T., Anderson, F.C., Guendelman, E., Higginson, J.S., Delp, S.L., 2007. Long-Duration Muscle-Actuated Simulations of Walking at Multiple Speeds. In: American Society of Biomechanics. Stanford, California, USA.
10.1016/j.jbiomech.2014.04.030_bib26
Oosterwaal (10.1016/j.jbiomech.2014.04.030_bib21) 2011
Anderson (10.1016/j.jbiomech.2014.04.030_bib3) 2001; 34
Kuo (10.1016/j.jbiomech.2014.04.030_bib16) 1998; 120
10.1016/j.jbiomech.2014.04.030_bib22
10.1016/j.jbiomech.2014.04.030_bib40
Hesse (10.1016/j.jbiomech.2014.04.030_bib13) 1999; 80
Damsgaard (10.1016/j.jbiomech.2014.04.030_bib9) 2006; 14
Scheys (10.1016/j.jbiomech.2014.04.030_bib32) 2005; 1281
Wilken (10.1016/j.jbiomech.2014.04.030_bib41) 2012; 35
Winter (10.1016/j.jbiomech.2014.04.030_bib42) 2009
Greenwood (10.1016/j.jbiomech.2014.04.030_bib12) 1988
Rao (10.1016/j.jbiomech.2014.04.030_bib25) 2006; 39
Schmiedmayer (10.1016/j.jbiomech.2014.04.030_bib33) 1999; 32
Choi (10.1016/j.jbiomech.2014.04.030_bib7) 2013; 14
O׳Connor (10.1016/j.jbiomech.2014.04.030_bib19) 2007; 25
Audu (10.1016/j.jbiomech.2014.04.030_bib5) 2003; 19
Riemer (10.1016/j.jbiomech.2014.04.030_bib29) 2008; 27
Thelen (10.1016/j.jbiomech.2014.04.030_bib38) 2006; 39
Leardini (10.1016/j.jbiomech.2014.04.030_bib17) 2005; 21
Richards (10.1016/j.jbiomech.2014.04.030_bib28) 1999; 18
Klein Horsman (10.1016/j.jbiomech.2014.04.030_bib15) 2007; 22
Oh (10.1016/j.jbiomech.2014.04.030_bib20) 2013; 46
Luinge (10.1016/j.jbiomech.2014.04.030_bib18) 2005; 43
Collins (10.1016/j.jbiomech.2014.04.030_bib8) 2009; 29
10.1016/j.jbiomech.2014.04.030_bib14
Schwartz (10.1016/j.jbiomech.2014.04.030_bib34) 2005; 38
Pamies-Vila (10.1016/j.jbiomech.2014.04.030_bib23) 2012; 58
Schwer (10.1016/j.jbiomech.2014.04.030_bib35) 2007; 23
Taylor (10.1016/j.jbiomech.2014.04.030_bib37) 1990; 6
10.1016/j.jbiomech.2014.04.030_bib11
Delp (10.1016/j.jbiomech.2014.04.030_bib10) 2007; 54
Andriacchi (10.1016/j.jbiomech.2014.04.030_bib4) 2005; 38
Robert (10.1016/j.jbiomech.2014.04.030_bib30) 2013; 46
Audu (10.1016/j.jbiomech.2014.04.030_bib6) 2007; 40
Andersen (10.1016/j.jbiomech.2014.04.030_bib2) 2010; 13
Sprague (10.1016/j.jbiomech.2014.04.030_bib36) 2003; 184
Schache (10.1016/j.jbiomech.2014.04.030_bib31) 2007; 40
Vicon (10.1016/j.jbiomech.2014.04.030_bib39) 2002
Ren (10.1016/j.jbiomech.2014.04.030_bib27) 2008; 41
Alexander (10.1016/j.jbiomech.2014.04.030_bib1) 2001; 34
Pearsall (10.1016/j.jbiomech.2014.04.030_bib24) 1999; 9
References_xml – volume: 13
  start-page: 171
  year: 2010
  end-page: 183
  ident: bib2
  article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 9
  start-page: 173
  year: 1999
  end-page: 183
  ident: bib24
  article-title: The effect of segment parameter error on gait analysis results
  publication-title: Gait Posture
– reference: Fluit, R., Pellikaan, P., Carbone, V., Krogt, M.M.v.d., Damsgaard, M., Koopman, H.F.J.M., verdonschot, N., 2013. A new geometrically consistent musculoskeletal model of the lower extremity based on imaging and cadaver measurements. In: 11th International Symposium of Computer Methods in Biomechanics and Biomedical Engineering, Salt Lake City, Utah, USA.
– year: 2009
  ident: bib42
  article-title: Biomechanics and Motor Control of Human Movement
– volume: 34
  start-page: 355
  year: 2001
  end-page: 361
  ident: bib1
  article-title: Correcting for deformation in skin-based marker systems
  publication-title: J. Biomech.
– volume: 14
  start-page: 475
  year: 2013
  end-page: 483
  ident: bib7
  article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 25
  start-page: 469
  year: 2007
  end-page: 474
  ident: bib19
  article-title: Automatic detection of gait events using kinematic data
  publication-title: Gait Posture
– reference: OpenSim User׳s Guide, Section Residual Reduction Algorithm. Last edit from 10th of June, 2013. 〈
– volume: 23
  start-page: 295
  year: 2007
  end-page: 309
  ident: bib35
  article-title: Validation metrics for response histories: perspectives and case studies
  publication-title: Eng. Comput. (Germany)
– reference: Vanheule, V., Andersen, M.S., Wirix-Speetjens, R., Jonkers, I., Victor, J., Van den Sloten, J., 2013. Modeling of patient-specific knee kinematics and ligament behavior using force-dependent kinematics. In: XXIV Congress of the International Society of Biomechanics. Natal, Brazil.
– volume: 22
  start-page: 239
  year: 2007
  end-page: 247
  ident: bib15
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 29
  start-page: 59
  year: 2009
  end-page: 64
  ident: bib8
  article-title: A simple method for calibrating force plates and force treadmills using an instrumented pole
  publication-title: Gait Posture
– reference: 〉.
– volume: 1281
  start-page: 62
  year: 2005
  end-page: 67
  ident: bib32
  article-title: Image based methods to generate subject-specific musculoskeletal models for gait analysis
  publication-title: Int. Congress Ser.
– volume: 38
  start-page: 293
  year: 2005
  end-page: 298
  ident: bib4
  article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee
  publication-title: J. Biomech.
– start-page: 389
  year: 1988
  end-page: 468
  ident: bib12
  article-title: Dynamics of a Rigid Body
  publication-title: Principle of Dynamics
– volume: 38
  start-page: 107
  year: 2005
  end-page: 116
  ident: bib34
  article-title: A new method for estimating joint parameters from motion data
  publication-title: J. Biomech.
– volume: 39
  start-page: 1107
  year: 2006
  end-page: 1115
  ident: bib38
  article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data
  publication-title: J. Biomech.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib10
  article-title: OpenSim: open-source software to create and analyze dynamic Simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 6
  start-page: 35
  year: 1990
  end-page: 39
  ident: bib37
  article-title: Interpretation of the correlation coefficient: a basic review
  publication-title: J. Diagn. Med. Sonogr.
– reference: John, C.T., Anderson, F.C., Guendelman, E., Higginson, J.S., Delp, S.L., 2007. Long-Duration Muscle-Actuated Simulations of Walking at Multiple Speeds. In: American Society of Biomechanics. Stanford, California, USA.
– year: 2002
  ident: bib39
  article-title: Plug-in-Gait modelling instructions. Vicon
– volume: 46
  start-page: 2220
  year: 2013
  end-page: 2227
  ident: bib30
  article-title: Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers
  publication-title: J. Biomech.
– volume: 35
  start-page: 301
  year: 2012
  end-page: 307
  ident: bib41
  article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults
  publication-title: Gait Posture
– volume: 39
  start-page: 1531
  year: 2006
  end-page: 1536
  ident: bib25
  article-title: Influence of body segments׳ parameters estimation models on inverse dynamics solutions during gait
  publication-title: J. Biomech.
– volume: 34
  start-page: 153
  year: 2001
  end-page: 161
  ident: bib3
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
– volume: 19
  start-page: 361
  year: 2003
  end-page: 371
  ident: bib5
  article-title: A computational technique for determining the ground reaction forces in human bipedal stance
  publication-title: J. Appl. Biomech.
– volume: 46
  start-page: 2372
  year: 2013
  end-page: 2380
  ident: bib20
  article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model
  publication-title: J. Biomech.
– volume: 43
  start-page: 273
  year: 2005
  end-page: 282
  ident: bib18
  article-title: Measuring orientation of human body segments using miniature gyroscopes and accelerometers
  publication-title: Med. Biol. Eng. Comput.
– volume: 184
  start-page: 149
  year: 2003
  end-page: 162
  ident: bib36
  article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation
  publication-title: J. Comput. Phys.
– volume: 40
  start-page: 1115
  year: 2007
  end-page: 1124
  ident: bib6
  article-title: Experimental verification of a computational technique for determining ground reactions in human bipedal stance
  publication-title: J. Biomech.
– reference: Rasmussen, J., Damsgaard, M., Christensen, S.T., 2000. Inverse-inverse dynamics simulation of musculoskeletal systems. In: European Society of Biomechanics Royal Academy of Medicine in Ireland.
– volume: 32
  start-page: 1237
  year: 1999
  end-page: 1242
  ident: bib33
  article-title: Parameters influencing the accuracy of the point of force application determined with piezoelectric force plates
  publication-title: J. Biomech.
– volume: 58
  start-page: 153
  year: 2012
  end-page: 164
  ident: bib23
  article-title: Analysis of different uncertainties in the inverse dynamic analysis of human gait
  publication-title: Mech. Mach. Theory
– volume: 41
  start-page: 2750
  year: 2008
  end-page: 2759
  ident: bib27
  article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics
  publication-title: J. Biomech.
– volume: 80
  start-page: 421
  year: 1999
  end-page: 427
  ident: bib13
  article-title: Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects
  publication-title: Arch. Phys. Med. Rehabil.
– volume: 40
  start-page: 9
  year: 2007
  end-page: 19
  ident: bib31
  article-title: Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames
  publication-title: J. Biomech.
– volume: 27
  start-page: 578
  year: 2008
  end-page: 588
  ident: bib29
  article-title: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait
  publication-title: Gait Posture
– volume: 14
  start-page: 1100
  year: 2006
  end-page: 1111
  ident: bib9
  article-title: Analysis of musculoskeletal systems in the anybody modeling system
  publication-title: Simul. Model. Pract. Theory
– volume: 18
  start-page: 589
  year: 1999
  end-page: 602
  ident: bib28
  article-title: The measurement of human motion: a comparison of commercially available systems
  publication-title: Hum. Mov. Sci.
– volume: 120
  start-page: 148
  year: 1998
  end-page: 159
  ident: bib16
  article-title: A least-squares estimation approach to improving the precision of inverse dynamics computations
  publication-title: J. Biomech. Eng.Trans. ASME
– start-page: 12
  year: 2011
  ident: bib21
  article-title: Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study
  publication-title: BMC Musculoskelet. Disord.
– volume: 21
  start-page: 212
  year: 2005
  end-page: 225
  ident: bib17
  article-title: Human movement analysis using stereophotogrammetry. Part 3 soft tissue artifact assessment and compensation
  publication-title: Gait Posture
– start-page: 389
  year: 1988
  ident: 10.1016/j.jbiomech.2014.04.030_bib12
  article-title: Dynamics of a Rigid Body
– volume: 14
  start-page: 475
  year: 2013
  ident: 10.1016/j.jbiomech.2014.04.030_bib7
  article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-013-0064-4
– ident: 10.1016/j.jbiomech.2014.04.030_bib14
– volume: 46
  start-page: 2372
  year: 2013
  ident: 10.1016/j.jbiomech.2014.04.030_bib20
  article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.07.036
– start-page: 12
  year: 2011
  ident: 10.1016/j.jbiomech.2014.04.030_bib21
  article-title: Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study
  publication-title: BMC Musculoskelet. Disord.
– volume: 39
  start-page: 1531
  year: 2006
  ident: 10.1016/j.jbiomech.2014.04.030_bib25
  article-title: Influence of body segments׳ parameters estimation models on inverse dynamics solutions during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.04.014
– volume: 38
  start-page: 107
  year: 2005
  ident: 10.1016/j.jbiomech.2014.04.030_bib34
  article-title: A new method for estimating joint parameters from motion data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.009
– volume: 184
  start-page: 149
  year: 2003
  ident: 10.1016/j.jbiomech.2014.04.030_bib36
  article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(02)00024-4
– volume: 35
  start-page: 301
  year: 2012
  ident: 10.1016/j.jbiomech.2014.04.030_bib41
  article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.09.105
– year: 2009
  ident: 10.1016/j.jbiomech.2014.04.030_bib42
– volume: 23
  start-page: 295
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib35
  article-title: Validation metrics for response histories: perspectives and case studies
  publication-title: Eng. Comput. (Germany)
  doi: 10.1007/s00366-007-0070-1
– volume: 40
  start-page: 1115
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib6
  article-title: Experimental verification of a computational technique for determining ground reactions in human bipedal stance
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.016
– volume: 80
  start-page: 421
  year: 1999
  ident: 10.1016/j.jbiomech.2014.04.030_bib13
  article-title: Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/S0003-9993(99)90279-4
– volume: 21
  start-page: 212
  year: 2005
  ident: 10.1016/j.jbiomech.2014.04.030_bib17
  article-title: Human movement analysis using stereophotogrammetry. Part 3 soft tissue artifact assessment and compensation
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.05.002
– year: 2002
  ident: 10.1016/j.jbiomech.2014.04.030_bib39
– volume: 32
  start-page: 1237
  year: 1999
  ident: 10.1016/j.jbiomech.2014.04.030_bib33
  article-title: Parameters influencing the accuracy of the point of force application determined with piezoelectric force plates
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00109-8
– volume: 43
  start-page: 273
  year: 2005
  ident: 10.1016/j.jbiomech.2014.04.030_bib18
  article-title: Measuring orientation of human body segments using miniature gyroscopes and accelerometers
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345966
– volume: 14
  start-page: 1100
  year: 2006
  ident: 10.1016/j.jbiomech.2014.04.030_bib9
  article-title: Analysis of musculoskeletal systems in the anybody modeling system
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2006.09.001
– volume: 22
  start-page: 239
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib15
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2006.10.003
– volume: 34
  start-page: 153
  year: 2001
  ident: 10.1016/j.jbiomech.2014.04.030_bib3
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00155-X
– volume: 1281
  start-page: 62
  year: 2005
  ident: 10.1016/j.jbiomech.2014.04.030_bib32
  article-title: Image based methods to generate subject-specific musculoskeletal models for gait analysis
  publication-title: Int. Congress Ser.
  doi: 10.1016/j.ics.2005.03.076
– volume: 46
  start-page: 2220
  year: 2013
  ident: 10.1016/j.jbiomech.2014.04.030_bib30
  article-title: Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.06.037
– ident: 10.1016/j.jbiomech.2014.04.030_bib40
– volume: 29
  start-page: 59
  year: 2009
  ident: 10.1016/j.jbiomech.2014.04.030_bib8
  article-title: A simple method for calibrating force plates and force treadmills using an instrumented pole
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.06.010
– volume: 25
  start-page: 469
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib19
  article-title: Automatic detection of gait events using kinematic data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.05.016
– volume: 19
  start-page: 361
  year: 2003
  ident: 10.1016/j.jbiomech.2014.04.030_bib5
  article-title: A computational technique for determining the ground reaction forces in human bipedal stance
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.19.4.361
– ident: 10.1016/j.jbiomech.2014.04.030_bib11
– volume: 18
  start-page: 589
  year: 1999
  ident: 10.1016/j.jbiomech.2014.04.030_bib28
  article-title: The measurement of human motion: a comparison of commercially available systems
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/S0167-9457(99)00023-8
– volume: 58
  start-page: 153
  year: 2012
  ident: 10.1016/j.jbiomech.2014.04.030_bib23
  article-title: Analysis of different uncertainties in the inverse dynamic analysis of human gait
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.07.010
– volume: 27
  start-page: 578
  year: 2008
  ident: 10.1016/j.jbiomech.2014.04.030_bib29
  article-title: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.07.012
– volume: 41
  start-page: 2750
  year: 2008
  ident: 10.1016/j.jbiomech.2014.04.030_bib27
  article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.06.001
– volume: 34
  start-page: 355
  year: 2001
  ident: 10.1016/j.jbiomech.2014.04.030_bib1
  article-title: Correcting for deformation in skin-based marker systems
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00192-5
– ident: 10.1016/j.jbiomech.2014.04.030_bib26
– volume: 6
  start-page: 35
  year: 1990
  ident: 10.1016/j.jbiomech.2014.04.030_bib37
  article-title: Interpretation of the correlation coefficient: a basic review
  publication-title: J. Diagn. Med. Sonogr.
  doi: 10.1177/875647939000600106
– volume: 120
  start-page: 148
  year: 1998
  ident: 10.1016/j.jbiomech.2014.04.030_bib16
  article-title: A least-squares estimation approach to improving the precision of inverse dynamics computations
  publication-title: J. Biomech. Eng.Trans. ASME
  doi: 10.1115/1.2834295
– ident: 10.1016/j.jbiomech.2014.04.030_bib22
– volume: 40
  start-page: 9
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib31
  article-title: Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.12.003
– volume: 13
  start-page: 171
  year: 2010
  ident: 10.1016/j.jbiomech.2014.04.030_bib2
  article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840903067080
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2014.04.030_bib10
  article-title: OpenSim: open-source software to create and analyze dynamic Simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 9
  start-page: 173
  year: 1999
  ident: 10.1016/j.jbiomech.2014.04.030_bib24
  article-title: The effect of segment parameter error on gait analysis results
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00011-9
– volume: 38
  start-page: 293
  year: 2005
  ident: 10.1016/j.jbiomech.2014.04.030_bib4
  article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.010
– volume: 39
  start-page: 1107
  year: 2006
  ident: 10.1016/j.jbiomech.2014.04.030_bib38
  article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.02.010
SSID ssj0007479
Score 2.4980395
Snippet Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic...
Abstract Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2321
SubjectTerms Activities of Daily Living
Adult
Biomechanical Phenomena
Body Mass Index
Computer simulation
Contact
Dynamic consistency
Dynamics
Equations of motion
Female
Force plates
Ground reaction forces and moments
Grounds
Humans
Inverse dynamics
Kinematics
Male
Mathematical models
Middle Aged
Models, Anatomic
Models, Biological
Movement
Muscle, Skeletal - physiology
Muscular system
Musculoskeletal model
Optimization techniques
Physical Medicine and Rehabilitation
Range of Motion, Articular
Stress, Mechanical
Studies
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDqE9lHbTx7ZpUKH05qwsyQ8dQ0gIgZQeGgi9COsFu2y8IbsJ5JLfnhnZ3qT0SQs-2LIGCc1o9I00MwL4WIRaFdzFzJZOZUqoEt8qnVXRiarSHpdUCk4-_Vwen6mT8-J8Aw6GWBhyq-x1f6fTk7buSyb9aE4up1OK8cXZlo4BE1CmtNtKVSTle3cPbh4Il3s3jzyj2o-ihGd7sxTjng4lcpVSnpI39M8XqF8B0LQQHT2HZz2CZPtdJ1_ARmhHsL3fovV8ccs-seTTmTbLR_D0UbrBEWyd9gfp2_DtyxW9E1fYIjKK7Wg9QwDZFSGSRf3BGiy7WKQgONbFM7IbtK0X1_jLpWsn0M4met9M57dsPqXdiZdwdnT49eA4669ZyBzaMqvMa19z55XXZIuVykYbvVfWxYBwwdtYF054squK0AjLG2lDlK7WVuq6dKV8BZvtog1vgKH1IXwu0dwOTikemroRUuex9JWNIRdjKIaxNa7PQU5XYczN4Gw2MwNPDPHEcHwkH8NkTXfZZeH4I0U1sM4MMaaoFQ0uFP9GGZb95F6a3CyF4eYHARyDXlN-J8N_1erOIF_moSGC01yizh3Dh_VvnP90qNO0AdmNdSRCWF1o_rs6BVn-mmMXX3eyux5GoWjrr8rf_kfn38ET-qIt77zegc3V1XV4j1htZXfTZLwHKLY8tg
  priority: 102
  providerName: Elsevier
Title Prediction of ground reaction forces and moments during various activities of daily living
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929014002516
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929014002516
https://dx.doi.org/10.1016/j.jbiomech.2014.04.030
https://www.ncbi.nlm.nih.gov/pubmed/24835471
https://www.proquest.com/docview/1540503322
https://www.proquest.com/docview/1535629590
https://www.proquest.com/docview/1551061906
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5sC6IPolsvq3UZQXxLO5NMLvMkq7SsSpciFhZfhswNumyT2t0KffG3e85kEvugVYRAQpIhQ85cvu9cCXmdu0rkzPhEF0YkIhUFXJUyKb1Jy1Ja2FIxOPl4XsxOxcdFvogKt3V0q-zXxLBQ29agjvyAI7RgGYy_txffEqwahdbVWEJji-xg6jJ06SoXA-HC3PDRxYMnAAPYjQjh5f4yxLcHgwQXId0pekL_fnP6E_gMm9DRQ_Igokc67cT9iNxxzYjsThtgzufX9A0N_pxBUT4i92-kGhyRu8fRiL5Lvp5c4jVKhLaeYlxHYymAx-4WoFhYO2gN987bEABHu1hG-h14dXsFj0woOQEcG9vb-mx1TVdnqJl4TE6PDr-8nyWxxEJigMdsEittxYwVViIPK4T22lsrtPEOoILVvspNapFT5a5ONasz7XxmKqkzWRWmyJ6Q7aZt3DNCgXmklmdAtZ0Rgrm6qtNMcl_YUnvH0zHJ-3-rTMw_jmUwVqp3NFuqXiYKZaIYHBkbk4Oh3UWXgeOvLcpedKqPL4UVUcEm8X8t3TpO7LXiap0qptDGzWWwQQeWVoyJHFpG7NJhkn_66l4_vtSvDw3jfUxeDY9h7qNBp24ciBveyQC-ylyy297JkfVLBl182o3d4TemAtV-JX9-ewdekHvYW9Ro82qPbG8ur9xLgGIbPSFb-z_4JMy6CdmZfvg0m8P53eH85PNPlf02Ww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgGDLY6GAkYBbqOM4Dx8QKtBqS7urCrVSxcUktiN1tc2W7ha0f4rfyIzzoAcoCKnSHqIks7E845lvXjbAi9hlMuamDIrEyEAKmeBVqoK0NCJNlUWTSs3Jo3EyPJQfj-KjFfjR9sJQWWWrE72itjNDMfKNkKAFj1D-3p5-DejUKMqutkdo1GKx65bf0WWbv9n5gPx9KcT21sH7YdCcKhAYhO6LwCqbcWOlVeR6JLIoi9JaWZjSoXW0RZnFRlhyI2KXi4LnUeHKyGSqiFSWmCTC_70GqzJCV6YHq--2xvufOt2P4LwpKgkDBB78Qk_y5PXEd9T7FEgo_QarVHv9e3P4J7jrzd72Hbjd4FW2WQvYXVhxVR_WNiv01U-W7BXzFaQ-NN-HWxc2N-zD9VGTtl-Dz_tndE0ywGYlo06SyjKEq_UtxM2orViO905mvuWO1d2T7Bt68rNzfGT8IRfo1RO9zY-nSzY9pljIPTi8kum_D71qVrmHwNDXETaM0Ll3Rkru8iwXkQrLxKZF6UIxgLidW22aHc_p4I2pbkvbJrrliSaeaI6_iA9go6M7rff8-CtF2rJOtx2tqIM1mqX_o3TzRpXMdajnQnNNWfVQ-ay39wuTAaiOskFLNQr6p6-ut_Klf32oW2EDeN49Rm1DKaS8cshufCdCwKxixS97J6Y4g-I4xAe17HbTKCQFGtPw0eUDeAY3hgejPb23M959DDdp5BRPD7N16C3Ozt0TBIKL4mmz-hh8ueoF_xOE5XKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QtGHolutq1UjqG_jJpnMJQ8ixbq01pY-WFh8iTO5QJftTO1uK_vX_HWek7nYB60iFPZhmJnshJxLvnMNIS8Tl8uEGR-VqZGRFDKFq0xFmTciy5SFLRWLkw8O091j-XGSTFbIj64WBtMqO50YFLWtDfrIRxyhBYuB_0a-TYs42hm_O_sW4QlSGGntjtNoWGTfLb-D-TZ_u7cDtH4lxPjD5_e7UXvCQGQAxi8iq2zOjJVWoRmSytKX3lpZGu9gp7SlzxMjLJoUiStEyYq4dD42uSpjlacmjeF_b5HbWZxwlLFs0ht72Je-TS_hEUAQdqU6efpmGmrrQzCEy9BqFbOwf78x_gn4hg1wfI-st8iVbjesdp-suGpANrYrsNpPl_Q1DbmkwUk_IHevtDkckLWDNoC_Qb4cneM1cgOtPcWakspSAK7NLUDQoLdoAfdO61B8R5s6SnoJNn19AY9MOO4C7Hscb4uT2ZLOTtAr8oAc38jiPySrVV25R4SC1SMsj8HMd0ZK5oq8ELHiPrVZ6R0XQ5J0a6tN2_scj-CY6S7Jbao7mmikiWbwi9mQjPpxZ033j7-OyDrS6a62FbSxhg3q_0a6eatU5prrudBMY3ydqxD_DhZiOiSqH9nipgYP_dNXtzr-0r8-1MvakLzoH4PewWBSUTkgN7wTA3RWiWLXvZOgx0ExmOJmw7v9MgqJLseMP75-As_JGoi5_rR3uP-E3MGJo2Od51tkdXF-4Z4CIlyUz4LoUfL1pmX9J3s7dYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+ground+reaction+forces+and+moments+during+various+activities+of+daily+living&rft.jtitle=Journal+of+biomechanics&rft.au=Fluit%2C+R&rft.au=Andersen%2C+M+S&rft.au=Kolk%2C+S&rft.au=Verdonschot%2C+N&rft.date=2014-07-18&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=47&rft.issue=10&rft.spage=2321&rft_id=info:doi/10.1016%2Fj.jbiomech.2014.04.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929014X00096%2Fcov150h.gif