Prediction of ground reaction forces and moments during various activities of daily living
Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynami...
Saved in:
Published in | Journal of biomechanics Vol. 47; no. 10; pp. 2321 - 2329 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
18.07.2014
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. |
---|---|
AbstractList | Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model's dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the modelx super(3)s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics.Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences (P>0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced (P>0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. Abstract Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynamics problem. As a result, dynamic inconsistency will exist and lead to residual forces and moments. In this study, we present and evaluate a computational method to perform inverse dynamics-based simulations without force plates, which both improves the dynamic consistency as well as removes the model׳s dependency on measured external forces. Using the equations of motion and a scaled musculoskeletal model, the ground reaction forces and moments (GRF&Ms) are derived from three-dimensional full-body motion. The method entails a dynamic contact model and optimization techniques to solve the indeterminacy problem during a double contact phase and, in contrast to previously proposed techniques, does not require training or empirical data. The method was applied to nine healthy subjects performing several Activities of Daily Living (ADLs) and evaluated with simultaneously measured force plate data. Except for the transverse ground reaction moment, no significant differences ( P >0.05) were found between the mean predicted and measured GRF&Ms for almost all ADLs. The mean residual forces and moments, however, were significantly reduced ( P >0.05) in almost all ADLs using our method compared to conventional inverse dynamic simulations. Hence, the proposed method may be used instead of raw force plate data in human movement analysis using inverse dynamics. |
Author | Fluit, R. Kolk, S. Andersen, M.S. Verdonschot, N. Koopman, H.F.J.M. |
Author_xml | – sequence: 1 givenname: R. surname: Fluit fullname: Fluit, R. email: r.fluit@ctw.utwente.nl organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands – sequence: 2 givenname: M.S. surname: Andersen fullname: Andersen, M.S. organization: Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark – sequence: 3 givenname: S. surname: Kolk fullname: Kolk, S. organization: Radboud University Medical Centre, Radboud Institute for Health Sciences, Department of Rehabilitation, Nijmegen, The Netherlands – sequence: 4 givenname: N. surname: Verdonschot fullname: Verdonschot, N. organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands – sequence: 5 givenname: H.F.J.M. surname: Koopman fullname: Koopman, H.F.J.M. organization: Laboratory of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Enschede, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24835471$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEUx4NU7Lb6FcqAL77MenKdCYhYijcoKKgvvoRMklkzziY1mVnYb2-G7SLsgy0cSDj5nUv-51ygsxCDQ-gKwxoDFq-H9dD5uHXm15oAZmsoRuEJWuG2oTWhLZyhFQDBtSQSztFFzgMANKyRz9A5YS3lrMEr9PNrctabycdQxb7apDgHWyWnD64-JuNypYtvW6qFKVd2Tj5sqp1OPs7lqYA7P_lClXir_bivxuIJm-foaa_H7F7cn5fox4f3328-1bdfPn6-ub6tjQA-1VbaFoxlVkrCpGBd3_XWss70rsXSdn3LDbENFow7TTrQtHM9Na3sqGyFEfQSvTrkvUvxz-zypLY-GzeOOrjSocKcYxBYwmNQygWRXEJBX56gQ5xTKB8pFAMOlBJSqKt7au62zqq75Lc67dVR4AK8OQAmxZyT65Xxk160nVLRSmFQyzzVoI7zVMs8FRSjSxfiJPxY4cHAd4dAV5TfeZdUNt4FU4adnJmUjf7hFG9PUpjRB2_0-NvtXf4nh8pEgfq2bNuybJiVG8fi_wke08FfCP3oPg |
CitedBy_id | crossref_primary_10_1115_1_4064034 crossref_primary_10_1007_s10439_019_02409_8 crossref_primary_10_1155_2018_8487308 crossref_primary_10_1109_TNSRE_2018_2854605 crossref_primary_10_1242_bio_058595 crossref_primary_10_7717_peerj_19035 crossref_primary_10_1016_j_gaitpost_2022_04_005 crossref_primary_10_1016_j_jbiomech_2018_12_008 crossref_primary_10_14814_phy2_15076 crossref_primary_10_1016_j_medengphy_2017_11_008 crossref_primary_10_1115_1_4054866 crossref_primary_10_3390_s18061966 crossref_primary_10_1016_j_jbiomech_2015_08_027 crossref_primary_10_3390_app13148184 crossref_primary_10_5100_jje_50_256 crossref_primary_10_1109_TIM_2024_3481577 crossref_primary_10_1007_s11044_021_09808_7 crossref_primary_10_1080_24725838_2021_1941433 crossref_primary_10_3390_s17092085 crossref_primary_10_1016_j_measurement_2022_111344 crossref_primary_10_1016_j_ejogrb_2021_07_042 crossref_primary_10_1080_10255842_2017_1393804 crossref_primary_10_1016_j_gaitpost_2019_11_011 crossref_primary_10_1038_s41598_020_73856_w crossref_primary_10_1016_j_jbiomech_2024_112383 crossref_primary_10_3233_THC_240202 crossref_primary_10_3389_fneur_2022_830762 crossref_primary_10_3389_fbioe_2024_1286644 crossref_primary_10_1016_j_jbiomech_2024_111974 crossref_primary_10_1177_20556683221131557 crossref_primary_10_1016_j_jmbbm_2016_08_026 crossref_primary_10_1109_ACCESS_2021_3091649 crossref_primary_10_4028_p_mrM7AX crossref_primary_10_1177_0954411920947208 crossref_primary_10_3389_fnbot_2021_620928 crossref_primary_10_1016_j_compbiomed_2025_109739 crossref_primary_10_1115_1_4048572 crossref_primary_10_3390_s24092792 crossref_primary_10_1016_j_eswa_2023_122868 crossref_primary_10_1177_00187208221141652 crossref_primary_10_3390_s23094484 crossref_primary_10_1016_j_gaitpost_2020_12_025 crossref_primary_10_1109_TBME_2018_2854632 crossref_primary_10_1080_10255842_2020_1786072 crossref_primary_10_1109_TNSRE_2023_3347729 crossref_primary_10_1016_j_jbiomech_2018_06_006 crossref_primary_10_1017_wtc_2023_7 crossref_primary_10_1016_j_medengphy_2018_12_021 crossref_primary_10_1115_1_4051847 crossref_primary_10_1080_14763141_2020_1761993 crossref_primary_10_1016_j_jbiomech_2015_10_028 crossref_primary_10_1109_TNSRE_2017_2676465 crossref_primary_10_1123_jab_2023_0202 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1115_1_4054835 crossref_primary_10_1016_j_jbiomech_2019_04_037 crossref_primary_10_1016_j_jbiomech_2019_109327 crossref_primary_10_1016_j_jbiomech_2023_111770 crossref_primary_10_1016_j_jbiomech_2023_111896 crossref_primary_10_3390_s21217353 crossref_primary_10_1016_j_jbiomech_2025_112548 crossref_primary_10_1371_journal_pone_0244405 crossref_primary_10_3390_s22207825 crossref_primary_10_1007_s11044_017_9573_8 crossref_primary_10_1177_0954411920938902 crossref_primary_10_1016_j_gaitpost_2016_01_005 crossref_primary_10_3390_s17102181 crossref_primary_10_1109_ACCESS_2024_3434721 crossref_primary_10_1016_j_apergo_2020_103345 crossref_primary_10_1016_j_jbiomech_2019_03_004 crossref_primary_10_2139_ssrn_4091270 crossref_primary_10_1115_1_4067981 crossref_primary_10_1016_j_medengphy_2017_10_004 crossref_primary_10_1115_1_4067103 crossref_primary_10_1017_dsi_2019_410 crossref_primary_10_3390_s17010075 crossref_primary_10_1007_s00521_023_09081_z crossref_primary_10_1007_s11044_020_09739_9 crossref_primary_10_3389_fncom_2017_00096 crossref_primary_10_1016_j_cagd_2020_101855 crossref_primary_10_1080_10255842_2020_1715005 crossref_primary_10_3389_fbioe_2022_894568 crossref_primary_10_1016_j_jbiomech_2021_110334 crossref_primary_10_1123_jab_2017_0281 crossref_primary_10_3390_s24072163 crossref_primary_10_1016_j_jbiomech_2019_109552 crossref_primary_10_1016_j_jbiomech_2024_112118 crossref_primary_10_2139_ssrn_4052199 crossref_primary_10_3390_s24061941 crossref_primary_10_3390_s19173690 crossref_primary_10_3390_s17020299 crossref_primary_10_1016_j_medengphy_2016_12_001 crossref_primary_10_1007_s11517_024_03171_3 crossref_primary_10_1016_j_jbiomech_2019_07_002 crossref_primary_10_1115_1_4049199 crossref_primary_10_1186_s12984_024_01458_y crossref_primary_10_3389_fnhum_2020_00188 crossref_primary_10_1016_j_apergo_2019_102935 crossref_primary_10_1016_j_jbiomech_2017_02_025 crossref_primary_10_1016_j_heliyon_2024_e32078 crossref_primary_10_1007_s12283_022_00388_z crossref_primary_10_1186_s12938_019_0708_4 crossref_primary_10_1007_s11044_016_9537_4 crossref_primary_10_1016_j_jbiomech_2023_111439 crossref_primary_10_1016_j_jbiomech_2023_111712 crossref_primary_10_1017_S0263574718000711 crossref_primary_10_1155_2022_1151753 crossref_primary_10_3390_s22176454 crossref_primary_10_3390_s20195709 crossref_primary_10_1016_j_jbiomech_2024_112051 crossref_primary_10_1007_s10439_017_1852_2 crossref_primary_10_1016_j_jbiomech_2019_109412 crossref_primary_10_3389_fnbot_2019_00048 crossref_primary_10_21105_joss_00927 crossref_primary_10_3389_fneur_2017_00677 crossref_primary_10_3390_s21165588 crossref_primary_10_31436_iiumej_v26i1_3379 crossref_primary_10_1016_j_gaitpost_2025_01_014 crossref_primary_10_1371_journal_pone_0204575 crossref_primary_10_1371_journal_pone_0270423 crossref_primary_10_1016_j_jbiomech_2014_12_034 crossref_primary_10_3390_ijerph19159040 crossref_primary_10_1017_dsi_2019_406 crossref_primary_10_3389_fbioe_2020_00009 crossref_primary_10_1109_ACCESS_2021_3134056 crossref_primary_10_1007_s11517_023_02906_y crossref_primary_10_3389_fnhum_2023_1127613 crossref_primary_10_1007_s00521_019_04658_z crossref_primary_10_1186_s12984_022_00998_5 crossref_primary_10_1007_s11044_017_9605_4 crossref_primary_10_1016_j_mechmachtheory_2022_105046 crossref_primary_10_1007_s41449_022_00336_4 crossref_primary_10_3390_s19071681 crossref_primary_10_3390_s25041249 crossref_primary_10_3389_fbioe_2018_00162 crossref_primary_10_52628_90_4_12600 crossref_primary_10_2139_ssrn_4052247 crossref_primary_10_1109_TBME_2019_2913308 crossref_primary_10_3390_s21051804 |
Cites_doi | 10.1007/s12541-013-0064-4 10.1016/j.jbiomech.2013.07.036 10.1016/j.jbiomech.2005.04.014 10.1016/j.jbiomech.2004.03.009 10.1016/S0021-9991(02)00024-4 10.1016/j.gaitpost.2011.09.105 10.1007/s00366-007-0070-1 10.1016/j.jbiomech.2006.04.016 10.1016/S0003-9993(99)90279-4 10.1016/j.gaitpost.2004.05.002 10.1016/S0021-9290(99)00109-8 10.1007/BF02345966 10.1016/j.simpat.2006.09.001 10.1016/j.clinbiomech.2006.10.003 10.1016/S0021-9290(00)00155-X 10.1016/j.ics.2005.03.076 10.1016/j.jbiomech.2013.06.037 10.1016/j.gaitpost.2008.06.010 10.1016/j.gaitpost.2006.05.016 10.1123/jab.19.4.361 10.1016/S0167-9457(99)00023-8 10.1016/j.mechmachtheory.2012.07.010 10.1016/j.gaitpost.2007.07.012 10.1016/j.jbiomech.2008.06.001 10.1016/S0021-9290(00)00192-5 10.1177/875647939000600106 10.1115/1.2834295 10.1016/j.jbiomech.2005.12.003 10.1080/10255840903067080 10.1109/TBME.2007.901024 10.1016/S0966-6362(99)00011-9 10.1016/j.jbiomech.2004.02.010 10.1016/j.jbiomech.2005.02.010 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2014 |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2014.04.030 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 2329 |
ExternalDocumentID | 3349839871 24835471 10_1016_j_jbiomech_2014_04_030 S0021929014002516 1_s2_0_S0021929014002516 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c605t-d9d80cd4d9924964bfbfdd4bcfe819dbf85c2d71645ea2b0a3bef3c89b3986c63 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 07:02:19 EDT 2025 Mon Jul 21 10:27:12 EDT 2025 Wed Aug 13 10:58:59 EDT 2025 Mon Jul 21 06:04:07 EDT 2025 Tue Jul 01 01:14:05 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Fri Feb 23 02:34:49 EST 2024 Sun Feb 23 10:20:46 EST 2025 Tue Aug 26 16:33:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Ground reaction forces and moments Musculoskeletal model Activities of daily living Dynamic consistency Inverse dynamics |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-d9d80cd4d9924964bfbfdd4bcfe819dbf85c2d71645ea2b0a3bef3c89b3986c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24835471 |
PQID | 1540503322 |
PQPubID | 1226346 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1551061906 proquest_miscellaneous_1535629590 proquest_journals_1540503322 pubmed_primary_24835471 crossref_citationtrail_10_1016_j_jbiomech_2014_04_030 crossref_primary_10_1016_j_jbiomech_2014_04_030 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2014_04_030 elsevier_clinicalkeyesjournals_1_s2_0_S0021929014002516 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2014_04_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-18 |
PublicationDateYYYYMMDD | 2014-07-18 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Fluit, R., Pellikaan, P., Carbone, V., Krogt, M.M.v.d., Damsgaard, M., Koopman, H.F.J.M., verdonschot, N., 2013. A new geometrically consistent musculoskeletal model of the lower extremity based on imaging and cadaver measurements. In: 11th International Symposium of Computer Methods in Biomechanics and Biomedical Engineering, Salt Lake City, Utah, USA. Luinge, Veltink (bib18) 2005; 43 Richards (bib28) 1999; 18 Scheys, Jonkers, Schutyser, Pans, Spaepen, Suetens (bib32) 2005; 1281 Pearsall, Costigan (bib24) 1999; 9 Andriacchi, Dyrby (bib4) 2005; 38 Hesse, Konrad, Uhlenbrock (bib13) 1999; 80 Schache, Baker, Vaughan (bib31) 2007; 40 Taylor (bib37) 1990; 6 Greenwood (bib12) 1988 Leardini, Chiari, Della Croce, Cappozzo (bib17) 2005; 21 Oosterwaal, Telfer, Torholm, Carbes, van Rhijn, Macduff, Meijer, Woodburn (bib21) 2011 Andersen, Damsgaard, MacWilliams, Rasmussen (bib2) 2010; 13 Rao, Amarantini, Berton, Favier (bib25) 2006; 39 Oh, Choi, Mun (bib20) 2013; 46 Riemer, Hsiao-Wecksler, Zhang (bib29) 2008; 27 Schwartz, Rozumalski (bib34) 2005; 38 Rasmussen, J., Damsgaard, M., Christensen, S.T., 2000. Inverse-inverse dynamics simulation of musculoskeletal systems. In: European Society of Biomechanics Royal Academy of Medicine in Ireland. Anderson, Pandy (bib3) 2001; 34 O׳Connor, Thorpe, O׳Malley, Vaughan (bib19) 2007; 25 Robert, Causse, Monnier (bib30) 2013; 46 Kuo (bib16) 1998; 120 Sprague, Geers (bib36) 2003; 184 Ren, Jones, Howard (bib27) 2008; 41 Thelen, Anderson (bib38) 2006; 39 Wilken, Rodriguez, Brawner, Darter (bib41) 2012; 35 Audu, Kirsch, Triolo (bib5) 2003; 19 Pamies-Vila, Font-Llagunes, Cuadrado, Alonso (bib23) 2012; 58 Audu, Kirsch, Triolo (bib6) 2007; 40 Winter (bib42) 2009 Klein Horsman, Koopman, van der Helm, Prose, Veeger (bib15) 2007; 22 Schmiedmayer, Kastner (bib33) 1999; 32 Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib9) 2006; 14 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib10) 2007; 54 . OpenSim User׳s Guide, Section Residual Reduction Algorithm. Last edit from 10th of June, 2013. Choi, Lee, Mun (bib7) 2013; 14 Collins, Adamczyk, Ferris, Kuo (bib8) 2009; 29 Schwer (bib35) 2007; 23 Vicon (bib39) 2002 Vanheule, V., Andersen, M.S., Wirix-Speetjens, R., Jonkers, I., Victor, J., Van den Sloten, J., 2013. Modeling of patient-specific knee kinematics and ligament behavior using force-dependent kinematics. In: XXIV Congress of the International Society of Biomechanics. Natal, Brazil. Alexander, Andriacchi (bib1) 2001; 34 John, C.T., Anderson, F.C., Guendelman, E., Higginson, J.S., Delp, S.L., 2007. Long-Duration Muscle-Actuated Simulations of Walking at Multiple Speeds. In: American Society of Biomechanics. Stanford, California, USA. 10.1016/j.jbiomech.2014.04.030_bib26 Oosterwaal (10.1016/j.jbiomech.2014.04.030_bib21) 2011 Anderson (10.1016/j.jbiomech.2014.04.030_bib3) 2001; 34 Kuo (10.1016/j.jbiomech.2014.04.030_bib16) 1998; 120 10.1016/j.jbiomech.2014.04.030_bib22 10.1016/j.jbiomech.2014.04.030_bib40 Hesse (10.1016/j.jbiomech.2014.04.030_bib13) 1999; 80 Damsgaard (10.1016/j.jbiomech.2014.04.030_bib9) 2006; 14 Scheys (10.1016/j.jbiomech.2014.04.030_bib32) 2005; 1281 Wilken (10.1016/j.jbiomech.2014.04.030_bib41) 2012; 35 Winter (10.1016/j.jbiomech.2014.04.030_bib42) 2009 Greenwood (10.1016/j.jbiomech.2014.04.030_bib12) 1988 Rao (10.1016/j.jbiomech.2014.04.030_bib25) 2006; 39 Schmiedmayer (10.1016/j.jbiomech.2014.04.030_bib33) 1999; 32 Choi (10.1016/j.jbiomech.2014.04.030_bib7) 2013; 14 O׳Connor (10.1016/j.jbiomech.2014.04.030_bib19) 2007; 25 Audu (10.1016/j.jbiomech.2014.04.030_bib5) 2003; 19 Riemer (10.1016/j.jbiomech.2014.04.030_bib29) 2008; 27 Thelen (10.1016/j.jbiomech.2014.04.030_bib38) 2006; 39 Leardini (10.1016/j.jbiomech.2014.04.030_bib17) 2005; 21 Richards (10.1016/j.jbiomech.2014.04.030_bib28) 1999; 18 Klein Horsman (10.1016/j.jbiomech.2014.04.030_bib15) 2007; 22 Oh (10.1016/j.jbiomech.2014.04.030_bib20) 2013; 46 Luinge (10.1016/j.jbiomech.2014.04.030_bib18) 2005; 43 Collins (10.1016/j.jbiomech.2014.04.030_bib8) 2009; 29 10.1016/j.jbiomech.2014.04.030_bib14 Schwartz (10.1016/j.jbiomech.2014.04.030_bib34) 2005; 38 Pamies-Vila (10.1016/j.jbiomech.2014.04.030_bib23) 2012; 58 Schwer (10.1016/j.jbiomech.2014.04.030_bib35) 2007; 23 Taylor (10.1016/j.jbiomech.2014.04.030_bib37) 1990; 6 10.1016/j.jbiomech.2014.04.030_bib11 Delp (10.1016/j.jbiomech.2014.04.030_bib10) 2007; 54 Andriacchi (10.1016/j.jbiomech.2014.04.030_bib4) 2005; 38 Robert (10.1016/j.jbiomech.2014.04.030_bib30) 2013; 46 Audu (10.1016/j.jbiomech.2014.04.030_bib6) 2007; 40 Andersen (10.1016/j.jbiomech.2014.04.030_bib2) 2010; 13 Sprague (10.1016/j.jbiomech.2014.04.030_bib36) 2003; 184 Schache (10.1016/j.jbiomech.2014.04.030_bib31) 2007; 40 Vicon (10.1016/j.jbiomech.2014.04.030_bib39) 2002 Ren (10.1016/j.jbiomech.2014.04.030_bib27) 2008; 41 Alexander (10.1016/j.jbiomech.2014.04.030_bib1) 2001; 34 Pearsall (10.1016/j.jbiomech.2014.04.030_bib24) 1999; 9 |
References_xml | – volume: 13 start-page: 171 year: 2010 end-page: 183 ident: bib2 article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 9 start-page: 173 year: 1999 end-page: 183 ident: bib24 article-title: The effect of segment parameter error on gait analysis results publication-title: Gait Posture – reference: Fluit, R., Pellikaan, P., Carbone, V., Krogt, M.M.v.d., Damsgaard, M., Koopman, H.F.J.M., verdonschot, N., 2013. A new geometrically consistent musculoskeletal model of the lower extremity based on imaging and cadaver measurements. In: 11th International Symposium of Computer Methods in Biomechanics and Biomedical Engineering, Salt Lake City, Utah, USA. – year: 2009 ident: bib42 article-title: Biomechanics and Motor Control of Human Movement – volume: 34 start-page: 355 year: 2001 end-page: 361 ident: bib1 article-title: Correcting for deformation in skin-based marker systems publication-title: J. Biomech. – volume: 14 start-page: 475 year: 2013 end-page: 483 ident: bib7 article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements publication-title: Int. J. Precis. Eng. Manuf. – volume: 25 start-page: 469 year: 2007 end-page: 474 ident: bib19 article-title: Automatic detection of gait events using kinematic data publication-title: Gait Posture – reference: OpenSim User׳s Guide, Section Residual Reduction Algorithm. Last edit from 10th of June, 2013. 〈 – volume: 23 start-page: 295 year: 2007 end-page: 309 ident: bib35 article-title: Validation metrics for response histories: perspectives and case studies publication-title: Eng. Comput. (Germany) – reference: Vanheule, V., Andersen, M.S., Wirix-Speetjens, R., Jonkers, I., Victor, J., Van den Sloten, J., 2013. Modeling of patient-specific knee kinematics and ligament behavior using force-dependent kinematics. In: XXIV Congress of the International Society of Biomechanics. Natal, Brazil. – volume: 22 start-page: 239 year: 2007 end-page: 247 ident: bib15 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. (Bristol, Avon) – volume: 29 start-page: 59 year: 2009 end-page: 64 ident: bib8 article-title: A simple method for calibrating force plates and force treadmills using an instrumented pole publication-title: Gait Posture – reference: 〉. – volume: 1281 start-page: 62 year: 2005 end-page: 67 ident: bib32 article-title: Image based methods to generate subject-specific musculoskeletal models for gait analysis publication-title: Int. Congress Ser. – volume: 38 start-page: 293 year: 2005 end-page: 298 ident: bib4 article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee publication-title: J. Biomech. – start-page: 389 year: 1988 end-page: 468 ident: bib12 article-title: Dynamics of a Rigid Body publication-title: Principle of Dynamics – volume: 38 start-page: 107 year: 2005 end-page: 116 ident: bib34 article-title: A new method for estimating joint parameters from motion data publication-title: J. Biomech. – volume: 39 start-page: 1107 year: 2006 end-page: 1115 ident: bib38 article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data publication-title: J. Biomech. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib10 article-title: OpenSim: open-source software to create and analyze dynamic Simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 6 start-page: 35 year: 1990 end-page: 39 ident: bib37 article-title: Interpretation of the correlation coefficient: a basic review publication-title: J. Diagn. Med. Sonogr. – reference: John, C.T., Anderson, F.C., Guendelman, E., Higginson, J.S., Delp, S.L., 2007. Long-Duration Muscle-Actuated Simulations of Walking at Multiple Speeds. In: American Society of Biomechanics. Stanford, California, USA. – year: 2002 ident: bib39 article-title: Plug-in-Gait modelling instructions. Vicon – volume: 46 start-page: 2220 year: 2013 end-page: 2227 ident: bib30 article-title: Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers publication-title: J. Biomech. – volume: 35 start-page: 301 year: 2012 end-page: 307 ident: bib41 article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults publication-title: Gait Posture – volume: 39 start-page: 1531 year: 2006 end-page: 1536 ident: bib25 article-title: Influence of body segments׳ parameters estimation models on inverse dynamics solutions during gait publication-title: J. Biomech. – volume: 34 start-page: 153 year: 2001 end-page: 161 ident: bib3 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. – volume: 19 start-page: 361 year: 2003 end-page: 371 ident: bib5 article-title: A computational technique for determining the ground reaction forces in human bipedal stance publication-title: J. Appl. Biomech. – volume: 46 start-page: 2372 year: 2013 end-page: 2380 ident: bib20 article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model publication-title: J. Biomech. – volume: 43 start-page: 273 year: 2005 end-page: 282 ident: bib18 article-title: Measuring orientation of human body segments using miniature gyroscopes and accelerometers publication-title: Med. Biol. Eng. Comput. – volume: 184 start-page: 149 year: 2003 end-page: 162 ident: bib36 article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation publication-title: J. Comput. Phys. – volume: 40 start-page: 1115 year: 2007 end-page: 1124 ident: bib6 article-title: Experimental verification of a computational technique for determining ground reactions in human bipedal stance publication-title: J. Biomech. – reference: Rasmussen, J., Damsgaard, M., Christensen, S.T., 2000. Inverse-inverse dynamics simulation of musculoskeletal systems. In: European Society of Biomechanics Royal Academy of Medicine in Ireland. – volume: 32 start-page: 1237 year: 1999 end-page: 1242 ident: bib33 article-title: Parameters influencing the accuracy of the point of force application determined with piezoelectric force plates publication-title: J. Biomech. – volume: 58 start-page: 153 year: 2012 end-page: 164 ident: bib23 article-title: Analysis of different uncertainties in the inverse dynamic analysis of human gait publication-title: Mech. Mach. Theory – volume: 41 start-page: 2750 year: 2008 end-page: 2759 ident: bib27 article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics publication-title: J. Biomech. – volume: 80 start-page: 421 year: 1999 end-page: 427 ident: bib13 article-title: Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects publication-title: Arch. Phys. Med. Rehabil. – volume: 40 start-page: 9 year: 2007 end-page: 19 ident: bib31 article-title: Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames publication-title: J. Biomech. – volume: 27 start-page: 578 year: 2008 end-page: 588 ident: bib29 article-title: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait publication-title: Gait Posture – volume: 14 start-page: 1100 year: 2006 end-page: 1111 ident: bib9 article-title: Analysis of musculoskeletal systems in the anybody modeling system publication-title: Simul. Model. Pract. Theory – volume: 18 start-page: 589 year: 1999 end-page: 602 ident: bib28 article-title: The measurement of human motion: a comparison of commercially available systems publication-title: Hum. Mov. Sci. – volume: 120 start-page: 148 year: 1998 end-page: 159 ident: bib16 article-title: A least-squares estimation approach to improving the precision of inverse dynamics computations publication-title: J. Biomech. Eng.Trans. ASME – start-page: 12 year: 2011 ident: bib21 article-title: Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study publication-title: BMC Musculoskelet. Disord. – volume: 21 start-page: 212 year: 2005 end-page: 225 ident: bib17 article-title: Human movement analysis using stereophotogrammetry. Part 3 soft tissue artifact assessment and compensation publication-title: Gait Posture – start-page: 389 year: 1988 ident: 10.1016/j.jbiomech.2014.04.030_bib12 article-title: Dynamics of a Rigid Body – volume: 14 start-page: 475 year: 2013 ident: 10.1016/j.jbiomech.2014.04.030_bib7 article-title: Ground reaction forces predicted by using artificial neural network during asymmetric movements publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-013-0064-4 – ident: 10.1016/j.jbiomech.2014.04.030_bib14 – volume: 46 start-page: 2372 year: 2013 ident: 10.1016/j.jbiomech.2014.04.030_bib20 article-title: Prediction of ground reaction forces during gait based on kinematics and a neural network model publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.036 – start-page: 12 year: 2011 ident: 10.1016/j.jbiomech.2014.04.030_bib21 article-title: Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study publication-title: BMC Musculoskelet. Disord. – volume: 39 start-page: 1531 year: 2006 ident: 10.1016/j.jbiomech.2014.04.030_bib25 article-title: Influence of body segments׳ parameters estimation models on inverse dynamics solutions during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.04.014 – volume: 38 start-page: 107 year: 2005 ident: 10.1016/j.jbiomech.2014.04.030_bib34 article-title: A new method for estimating joint parameters from motion data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.009 – volume: 184 start-page: 149 year: 2003 ident: 10.1016/j.jbiomech.2014.04.030_bib36 article-title: Spectral elements and field separation for an acoustic fluid subject to cavitation publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00024-4 – volume: 35 start-page: 301 year: 2012 ident: 10.1016/j.jbiomech.2014.04.030_bib41 article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults publication-title: Gait Posture doi: 10.1016/j.gaitpost.2011.09.105 – year: 2009 ident: 10.1016/j.jbiomech.2014.04.030_bib42 – volume: 23 start-page: 295 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib35 article-title: Validation metrics for response histories: perspectives and case studies publication-title: Eng. Comput. (Germany) doi: 10.1007/s00366-007-0070-1 – volume: 40 start-page: 1115 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib6 article-title: Experimental verification of a computational technique for determining ground reactions in human bipedal stance publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.016 – volume: 80 start-page: 421 year: 1999 ident: 10.1016/j.jbiomech.2014.04.030_bib13 article-title: Treadmill walking with partial body weight support versus floor walking in hemiparetic subjects publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/S0003-9993(99)90279-4 – volume: 21 start-page: 212 year: 2005 ident: 10.1016/j.jbiomech.2014.04.030_bib17 article-title: Human movement analysis using stereophotogrammetry. Part 3 soft tissue artifact assessment and compensation publication-title: Gait Posture doi: 10.1016/j.gaitpost.2004.05.002 – year: 2002 ident: 10.1016/j.jbiomech.2014.04.030_bib39 – volume: 32 start-page: 1237 year: 1999 ident: 10.1016/j.jbiomech.2014.04.030_bib33 article-title: Parameters influencing the accuracy of the point of force application determined with piezoelectric force plates publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00109-8 – volume: 43 start-page: 273 year: 2005 ident: 10.1016/j.jbiomech.2014.04.030_bib18 article-title: Measuring orientation of human body segments using miniature gyroscopes and accelerometers publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345966 – volume: 14 start-page: 1100 year: 2006 ident: 10.1016/j.jbiomech.2014.04.030_bib9 article-title: Analysis of musculoskeletal systems in the anybody modeling system publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2006.09.001 – volume: 22 start-page: 239 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib15 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2006.10.003 – volume: 34 start-page: 153 year: 2001 ident: 10.1016/j.jbiomech.2014.04.030_bib3 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00155-X – volume: 1281 start-page: 62 year: 2005 ident: 10.1016/j.jbiomech.2014.04.030_bib32 article-title: Image based methods to generate subject-specific musculoskeletal models for gait analysis publication-title: Int. Congress Ser. doi: 10.1016/j.ics.2005.03.076 – volume: 46 start-page: 2220 year: 2013 ident: 10.1016/j.jbiomech.2014.04.030_bib30 article-title: Estimation of external contact loads using an inverse dynamics and optimization approach: general method and application to sit-to-stand maneuvers publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.06.037 – ident: 10.1016/j.jbiomech.2014.04.030_bib40 – volume: 29 start-page: 59 year: 2009 ident: 10.1016/j.jbiomech.2014.04.030_bib8 article-title: A simple method for calibrating force plates and force treadmills using an instrumented pole publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.06.010 – volume: 25 start-page: 469 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib19 article-title: Automatic detection of gait events using kinematic data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.05.016 – volume: 19 start-page: 361 year: 2003 ident: 10.1016/j.jbiomech.2014.04.030_bib5 article-title: A computational technique for determining the ground reaction forces in human bipedal stance publication-title: J. Appl. Biomech. doi: 10.1123/jab.19.4.361 – ident: 10.1016/j.jbiomech.2014.04.030_bib11 – volume: 18 start-page: 589 year: 1999 ident: 10.1016/j.jbiomech.2014.04.030_bib28 article-title: The measurement of human motion: a comparison of commercially available systems publication-title: Hum. Mov. Sci. doi: 10.1016/S0167-9457(99)00023-8 – volume: 58 start-page: 153 year: 2012 ident: 10.1016/j.jbiomech.2014.04.030_bib23 article-title: Analysis of different uncertainties in the inverse dynamic analysis of human gait publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2012.07.010 – volume: 27 start-page: 578 year: 2008 ident: 10.1016/j.jbiomech.2014.04.030_bib29 article-title: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.07.012 – volume: 41 start-page: 2750 year: 2008 ident: 10.1016/j.jbiomech.2014.04.030_bib27 article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.06.001 – volume: 34 start-page: 355 year: 2001 ident: 10.1016/j.jbiomech.2014.04.030_bib1 article-title: Correcting for deformation in skin-based marker systems publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00192-5 – ident: 10.1016/j.jbiomech.2014.04.030_bib26 – volume: 6 start-page: 35 year: 1990 ident: 10.1016/j.jbiomech.2014.04.030_bib37 article-title: Interpretation of the correlation coefficient: a basic review publication-title: J. Diagn. Med. Sonogr. doi: 10.1177/875647939000600106 – volume: 120 start-page: 148 year: 1998 ident: 10.1016/j.jbiomech.2014.04.030_bib16 article-title: A least-squares estimation approach to improving the precision of inverse dynamics computations publication-title: J. Biomech. Eng.Trans. ASME doi: 10.1115/1.2834295 – ident: 10.1016/j.jbiomech.2014.04.030_bib22 – volume: 40 start-page: 9 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib31 article-title: Differences in lower limb transverse plane joint moments during gait when expressed in two alternative reference frames publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.12.003 – volume: 13 start-page: 171 year: 2010 ident: 10.1016/j.jbiomech.2014.04.030_bib2 article-title: A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840903067080 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2014.04.030_bib10 article-title: OpenSim: open-source software to create and analyze dynamic Simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 9 start-page: 173 year: 1999 ident: 10.1016/j.jbiomech.2014.04.030_bib24 article-title: The effect of segment parameter error on gait analysis results publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00011-9 – volume: 38 start-page: 293 year: 2005 ident: 10.1016/j.jbiomech.2014.04.030_bib4 article-title: Interactions between kinematics and loading during walking for the normal and ACL deficient knee publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.02.010 – volume: 39 start-page: 1107 year: 2006 ident: 10.1016/j.jbiomech.2014.04.030_bib38 article-title: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.02.010 |
SSID | ssj0007479 |
Score | 2.4980395 |
Snippet | Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic... Abstract Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2321 |
SubjectTerms | Activities of Daily Living Adult Biomechanical Phenomena Body Mass Index Computer simulation Contact Dynamic consistency Dynamics Equations of motion Female Force plates Ground reaction forces and moments Grounds Humans Inverse dynamics Kinematics Male Mathematical models Middle Aged Models, Anatomic Models, Biological Movement Muscle, Skeletal - physiology Muscular system Musculoskeletal model Optimization techniques Physical Medicine and Rehabilitation Range of Motion, Articular Stress, Mechanical Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CDqE9lHbTx7ZpUKH05qwsyQ8dQ0gIgZQeGgi9COsFu2y8IbsJ5JLfnhnZ3qT0SQs-2LIGCc1o9I00MwL4WIRaFdzFzJZOZUqoEt8qnVXRiarSHpdUCk4-_Vwen6mT8-J8Aw6GWBhyq-x1f6fTk7buSyb9aE4up1OK8cXZlo4BE1CmtNtKVSTle3cPbh4Il3s3jzyj2o-ihGd7sxTjng4lcpVSnpI39M8XqF8B0LQQHT2HZz2CZPtdJ1_ARmhHsL3fovV8ccs-seTTmTbLR_D0UbrBEWyd9gfp2_DtyxW9E1fYIjKK7Wg9QwDZFSGSRf3BGiy7WKQgONbFM7IbtK0X1_jLpWsn0M4met9M57dsPqXdiZdwdnT49eA4669ZyBzaMqvMa19z55XXZIuVykYbvVfWxYBwwdtYF054squK0AjLG2lDlK7WVuq6dKV8BZvtog1vgKH1IXwu0dwOTikemroRUuex9JWNIRdjKIaxNa7PQU5XYczN4Gw2MwNPDPHEcHwkH8NkTXfZZeH4I0U1sM4MMaaoFQ0uFP9GGZb95F6a3CyF4eYHARyDXlN-J8N_1erOIF_moSGC01yizh3Dh_VvnP90qNO0AdmNdSRCWF1o_rs6BVn-mmMXX3eyux5GoWjrr8rf_kfn38ET-qIt77zegc3V1XV4j1htZXfTZLwHKLY8tg priority: 102 providerName: Elsevier |
Title | Prediction of ground reaction forces and moments during various activities of daily living |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929014002516 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929014002516 https://dx.doi.org/10.1016/j.jbiomech.2014.04.030 https://www.ncbi.nlm.nih.gov/pubmed/24835471 https://www.proquest.com/docview/1540503322 https://www.proquest.com/docview/1535629590 https://www.proquest.com/docview/1551061906 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5sC6IPolsvq3UZQXxLO5NMLvMkq7SsSpciFhZfhswNumyT2t0KffG3e85kEvugVYRAQpIhQ85cvu9cCXmdu0rkzPhEF0YkIhUFXJUyKb1Jy1Ja2FIxOPl4XsxOxcdFvogKt3V0q-zXxLBQ29agjvyAI7RgGYy_txffEqwahdbVWEJji-xg6jJ06SoXA-HC3PDRxYMnAAPYjQjh5f4yxLcHgwQXId0pekL_fnP6E_gMm9DRQ_Igokc67cT9iNxxzYjsThtgzufX9A0N_pxBUT4i92-kGhyRu8fRiL5Lvp5c4jVKhLaeYlxHYymAx-4WoFhYO2gN987bEABHu1hG-h14dXsFj0woOQEcG9vb-mx1TVdnqJl4TE6PDr-8nyWxxEJigMdsEittxYwVViIPK4T22lsrtPEOoILVvspNapFT5a5ONasz7XxmKqkzWRWmyJ6Q7aZt3DNCgXmklmdAtZ0Rgrm6qtNMcl_YUnvH0zHJ-3-rTMw_jmUwVqp3NFuqXiYKZaIYHBkbk4Oh3UWXgeOvLcpedKqPL4UVUcEm8X8t3TpO7LXiap0qptDGzWWwQQeWVoyJHFpG7NJhkn_66l4_vtSvDw3jfUxeDY9h7qNBp24ciBveyQC-ylyy297JkfVLBl182o3d4TemAtV-JX9-ewdekHvYW9Ro82qPbG8ur9xLgGIbPSFb-z_4JMy6CdmZfvg0m8P53eH85PNPlf02Ww |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrcTjgGDLY6GAkYBbqOM4Dx8QKtBqS7urCrVSxcUktiN1tc2W7ha0f4rfyIzzoAcoCKnSHqIks7E845lvXjbAi9hlMuamDIrEyEAKmeBVqoK0NCJNlUWTSs3Jo3EyPJQfj-KjFfjR9sJQWWWrE72itjNDMfKNkKAFj1D-3p5-DejUKMqutkdo1GKx65bf0WWbv9n5gPx9KcT21sH7YdCcKhAYhO6LwCqbcWOlVeR6JLIoi9JaWZjSoXW0RZnFRlhyI2KXi4LnUeHKyGSqiFSWmCTC_70GqzJCV6YHq--2xvufOt2P4LwpKgkDBB78Qk_y5PXEd9T7FEgo_QarVHv9e3P4J7jrzd72Hbjd4FW2WQvYXVhxVR_WNiv01U-W7BXzFaQ-NN-HWxc2N-zD9VGTtl-Dz_tndE0ywGYlo06SyjKEq_UtxM2orViO905mvuWO1d2T7Bt68rNzfGT8IRfo1RO9zY-nSzY9pljIPTi8kum_D71qVrmHwNDXETaM0Ll3Rkru8iwXkQrLxKZF6UIxgLidW22aHc_p4I2pbkvbJrrliSaeaI6_iA9go6M7rff8-CtF2rJOtx2tqIM1mqX_o3TzRpXMdajnQnNNWfVQ-ay39wuTAaiOskFLNQr6p6-ut_Klf32oW2EDeN49Rm1DKaS8cshufCdCwKxixS97J6Y4g-I4xAe17HbTKCQFGtPw0eUDeAY3hgejPb23M959DDdp5BRPD7N16C3Ozt0TBIKL4mmz-hh8ueoF_xOE5XKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFA61QtGHolutq1UjqG_jJpnMJQ8ixbq01pY-WFh8iTO5QJftTO1uK_vX_HWek7nYB60iFPZhmJnshJxLvnMNIS8Tl8uEGR-VqZGRFDKFq0xFmTciy5SFLRWLkw8O091j-XGSTFbIj64WBtMqO50YFLWtDfrIRxyhBYuB_0a-TYs42hm_O_sW4QlSGGntjtNoWGTfLb-D-TZ_u7cDtH4lxPjD5_e7UXvCQGQAxi8iq2zOjJVWoRmSytKX3lpZGu9gp7SlzxMjLJoUiStEyYq4dD42uSpjlacmjeF_b5HbWZxwlLFs0ht72Je-TS_hEUAQdqU6efpmGmrrQzCEy9BqFbOwf78x_gn4hg1wfI-st8iVbjesdp-suGpANrYrsNpPl_Q1DbmkwUk_IHevtDkckLWDNoC_Qb4cneM1cgOtPcWakspSAK7NLUDQoLdoAfdO61B8R5s6SnoJNn19AY9MOO4C7Hscb4uT2ZLOTtAr8oAc38jiPySrVV25R4SC1SMsj8HMd0ZK5oq8ELHiPrVZ6R0XQ5J0a6tN2_scj-CY6S7Jbao7mmikiWbwi9mQjPpxZ033j7-OyDrS6a62FbSxhg3q_0a6eatU5prrudBMY3ydqxD_DhZiOiSqH9nipgYP_dNXtzr-0r8-1MvakLzoH4PewWBSUTkgN7wTA3RWiWLXvZOgx0ExmOJmw7v9MgqJLseMP75-As_JGoi5_rR3uP-E3MGJo2Od51tkdXF-4Z4CIlyUz4LoUfL1pmX9J3s7dYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+ground+reaction+forces+and+moments+during+various+activities+of+daily+living&rft.jtitle=Journal+of+biomechanics&rft.au=Fluit%2C+R&rft.au=Andersen%2C+M+S&rft.au=Kolk%2C+S&rft.au=Verdonschot%2C+N&rft.date=2014-07-18&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=47&rft.issue=10&rft.spage=2321&rft_id=info:doi/10.1016%2Fj.jbiomech.2014.04.030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929014X00096%2Fcov150h.gif |