Enhancement of interleukin-2 production by bovine peripheral blood mononuclear cells treated with the combination of anti-programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 chimeric monoclonal antibodies

Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and thes...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 84; no. 1; pp. 6 - 15
Main Authors WATARI, Kei, KONNAI, Satoru, OKAGAWA, Tomohiro, MAEKAWA, Naoya, SAJIKI, Yamato, KATO, Yukinari, SUZUKI, Yasuhiko, MURATA, Shiro, OHASHI, Kazuhiko
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.01.2022
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.
AbstractList Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.
Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.
ArticleNumber 21-0552
Author OHASHI, Kazuhiko
KATO, Yukinari
MURATA, Shiro
WATARI, Kei
KONNAI, Satoru
MAEKAWA, Naoya
SUZUKI, Yasuhiko
OKAGAWA, Tomohiro
SAJIKI, Yamato
Author_xml – sequence: 1
  fullname: WATARI, Kei
  organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 2
  fullname: KONNAI, Satoru
  organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 3
  fullname: OKAGAWA, Tomohiro
  organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 4
  fullname: MAEKAWA, Naoya
  organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 5
  fullname: SAJIKI, Yamato
  organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 6
  fullname: KATO, Yukinari
  organization: Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
– sequence: 7
  fullname: SUZUKI, Yasuhiko
  organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 8
  fullname: MURATA, Shiro
  organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
– sequence: 9
  fullname: OHASHI, Kazuhiko
  organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34789592$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURLeFG2dkiQsHUmzn-4JUqvIhVeJSzpbjjDdeEjvYzsL-Uv4Ok93tCipxsS3PM69fz8xFcmadhSR5yegV4w1_t9mO4YqzlBYFf5KsWJZXaZVnzVmyog0r04oX9Dy5CGFDKWd52TxLzpGpm6Lhq-T3re2lVTCCjcRpYmwEP8D83diUk8m7blbROEvaHWnd1lggE3gz9eDlQNrBuY6MDi3NagDpiYJhCCR6kBE68tPEnsQeiHJja6zcK-Er0kaTovjay3FErkO8TwezlrYjjCyr2kUX3S-jyD0ZduPUO7yBfeYaLMmJ6s2ITtT-eTU4i36WaOs6A-F58lTLIcCL436ZfPt4e3_zOb37-unLzfVdqkpaxLQFWfKirJnOcpVVuqOKa40HKCrKeFU1vGYtq7VUsm211l3WMKRKVXVFU7fZZfL-oDvNLf5EYRmxMGLyZpR-J5w04t-INb1Yu62oa0YzVqLAm6OAdz9mCFGMJixVlBbcHAQvmoZWeV0u6OtH6MbNHv-NVMmxsxmrGFKv_nZ0svLQcwT4AVDeheBBC2XivjVo0AyCUbEMllgGS3AmlsHCpLePkh50_4N_OOCbEOUaTrD00eCgHOA6F2xZjkmnoOqlF2CzP_3c73g
CitedBy_id crossref_primary_10_1186_s13567_023_01213_6
crossref_primary_10_1128_iai_00210_22
Cites_doi 10.1007/978-3-642-01144-3_2
10.1016/S1074-7613(02)00362-X
10.1200/JCO.20.00995
10.1038/ni1515
10.1128/IAI.01014-15
10.1016/S1074-7613(00)00031-5
10.4049/jimmunol.1900342
10.1056/NEJMoa1910836
10.1016/j.jtho.2018.10.003
10.1056/NEJMoa1504030
10.1186/s13567-018-0543-9
10.1016/S1470-2045(16)30098-5
10.1126/science.1202947
10.2147/OTT.S105862
10.1016/j.vetimm.2014.10.006
10.1093/annonc/mdq013
10.1186/1297-9716-44-59
10.1200/JCO.2016.66.9929
10.1038/nature05115
10.18632/oncotarget.7421
10.1002/eji.200737423
10.4049/jimmunol.169.7.3475
10.1371/journal.pone.0174916
10.1002/iid3.93
10.1292/jvms.12-0374
10.1186/s12917-019-2082-7
10.1016/j.jhep.2013.02.022
10.3389/fimmu.2017.00650
10.4049/jimmunol.172.7.4100
10.1186/1297-9716-42-103
10.1002/hep.24249
10.1002/iid3.173
10.1371/journal.ppat.1000313
10.1128/IAI.00278-16
10.1128/IAI.00910-17
10.1111/imm.12243
10.1016/S1470-2045(09)70334-1
ContentType Journal Article
Copyright 2022 by the Japanese Society of Veterinary Science
2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 The Japanese Society of Veterinary Science 2022
Copyright_xml – notice: 2022 by the Japanese Society of Veterinary Science
– notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 The Japanese Society of Veterinary Science 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.21-0552
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 15
ExternalDocumentID PMC8810316
34789592
10_1292_jvms_21_0552
article_jvms_84_1_84_21_0552_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c605t-bea625681f34c37fd0c2ff37fe57012779281b18facabbfffd391fd06c7d598b3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 13:56:58 EDT 2025
Fri Jul 11 06:16:01 EDT 2025
Mon Jun 30 05:19:18 EDT 2025
Thu Jan 02 22:54:42 EST 2025
Thu Apr 24 22:51:35 EDT 2025
Tue Jul 01 00:31:09 EDT 2025
Sun Jul 28 05:07:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords interleukin-2
cattle
programmed death-ligand 1
chimeric antibody
cytotoxic T lymphocyte antigen 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-bea625681f34c37fd0c2ff37fe57012779281b18facabbfffd391fd06c7d598b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0552
PMID 34789592
PQID 2624693171
PQPubID 2028964
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810316
proquest_miscellaneous_2599074866
proquest_journals_2624693171
pubmed_primary_34789592
crossref_citationtrail_10_1292_jvms_21_0552
crossref_primary_10_1292_jvms_21_0552
jstage_primary_article_jvms_84_1_84_21_0552_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2022
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 15. Munn, D. H., Sharma, M. D. and Mellor, A. L. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100–4110.
4. Collins, A. V., Brodie, D. W., Gilbert, R. J., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., van der Merwe, P. A. and Davis, S. J. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201–210.
7. Goto, S., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Gondaira, S., Higuchi, H., Koiwa, M., Tajima, M., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis. Immun. Inflamm. Dis. 5: 355–363.
22. Okagawa, T., Konnai, S., Deringer, J. R., Ueti, M. W., Scoles, G. A., Murata, S., Ohashi, K. and Brown, W. C. 2016. Cooperation of PD-1 and LAG-3 contributes to T-cell exhaustion in Anaplasma marginale-infected cattle. Infect. Immun. 84: 2779–2790.
30. Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E., Barrera, P., Riezu-Boj, J. I., Larrea, E., Alfaro, C., Sarobe, P., Lasarte, J. J., Pérez-Gracia, J. L., Melero, I. and Prieto, J. 2013. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59: 81–88.
37. Watari, K., Konnai, S., Maekawa, N., Okagawa, T., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Immune inhibitory function of bovine CTLA-4 and the effects of its blockade in IFN-γ production. BMC Vet. Res. 15: 380.
38. Wolchok, J. D., Neyns, B., Linette, G., Negrier, S., Lutzky, J., Thomas, L., Waterfield, W., Schadendorf, D., Smylie, M., Guthrie, T. Jr., Grob, J. J., Chesney, J., Chin, K., Chen, K., Hoos, A., O’Day, S. J. and Lebbé, C. 2010. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11: 155–164.
3. Chuang, E., Fisher, T. S., Morgan, R. W., Robbins, M. D., Duerr, J. M., Vander Heiden, M. G., Gardner, J. P., Hambor, J. E., Neveu, M. J. and Thompson, C. B. 2000. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13: 313–322.
10. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2013. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet. Res. (Faisalabad) 44: 59.
14. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hogg, D., Hill, A., Márquez-Rodas, I., Haanen, J., Guidoboni, M., Maio, M., Schöffski, P., Carlino, M. S., Lebbé, C., McArthur, G., Ascierto, P. A., Daniels, G. A., Long, G. V., Bastholt, L., Rizzo, J. I., Balogh, A., Moshyk, A., Hodi, F. S. and Wolchok, J. D. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381: 1535–1546.
16. Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K. and Tsutsui, T. 2013. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. J. Vet. Med. Sci. 75: 1123–1126.
23. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Ikebuchi, R., Goto, S., Nakajima, C., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Anti-bovine programmed death-1 rat-bovine chimeric antibody for immunotherapy of bovine leukemia virus infection in cattle. Front. Immunol. 8: 650.
2. Bradbury, A. 2010. Cloning hybridoma cDNA by RACE. pp. 15–20. In: Antibody Engineering Vol. 1, 2nd ed. (Kontermann, R. and Dübel, S. eds.), Springer, Berlin.
29. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Watari, K., Minato, E., Kobayashi, A., Kohara, J., Yamada, S., Kaneko, M. K., Kato, Y., Takahashi, H., Terasaki, N., Takeda, A., Yamamoto, K., Toda, M., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Prostaglandin E2-induced immune exhaustion and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection. J. Immunol. 203: 1313–1324.
32. Schneider, H., Smith, X., Liu, H., Bismuth, G. and Rudd, C. E. 2008. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38: 40–47.
27. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Di Giacomo, A. M., Mortier, L., Rutkowski, P., Hassel, J. C., McNeil, C. M., Kalinka, E. A., Lebbé, C., Charles, J., Hernberg, M. M., Savage, K. J., Chiarion-Sileni, V., Mihalcioiu, C., Mauch, C., Arance, A., Cognetti, F., Ny, L., Schmidt, H., Schadendorf, D., Gogas, H., Zoco, J., Re, S., Ascierto, P. A. and Atkinson, V. 2020. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. J. Clin. Oncol. 38: 3937–3946.
31. Schneider, H., Mandelbrot, D. A., Greenwald, R. J., Ng, F., Lechler, R., Sharpe, A. H. and Rudd, C. E. 2002. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169: 3475–3479.
35. Suzuki, Y., Nakagawa, M., Kameda, Y., Konnai, S., Okagawa, T., Maekawa, N., Goto, S., Sajiki, Y., Ohashi, K., Murata, S., Kitahara, Y. and Yamamoto, K. 2020. Novel vector and use thereof. US patent application No. 17/054,936.
17. Nakamoto, N., Cho, H., Shaked, A., Olthoff, K., Valiga, M. E., Kaminski, M., Gostick, E., Price, D. A., Freeman, G. J., Wherry, E. J. and Chang, K. M. 2009. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5: e1000313.
36. Wang, X., Teng, F., Kong, L. and Yu, J. 2016. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 9: 5023–5039.
20. Ohira, K., Nakahara, A., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Ikebuchi, R., Kohara, J., Murata, S. and Ohashi, K. 2016. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis. 4: 52–63.
34. Suzuki, S., Konnai, S., Okagawa, T., Ikebuchi, R., Nishimori, A., Kohara, J., Mingala, C. N., Murata, S. and Ohashi, K. 2015. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 163: 115–124.
13. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill, A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur, G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S. and Wolchok, J. D. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373: 23–34.
19. O’Day, S. J., Maio, M., Chiarion-Sileni, V., Gajewski, T. F., Pehamberger, H., Bondarenko, I. N., Queirolo, P., Lundgren, L., Mikhailov, S., Roman, L., Verschraegen, C., Humphrey, R., Ibrahim, R., de Pril, V., Hoos, A. and Wolchok, J. D. 2010. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21: 1712–1717.
21. Okagawa, T., Konnai, S., Nishimori, A., Ikebuchi, R., Mizorogi, S., Nagata, R., Kawaji, S., Tanaka, S., Kagawa, Y., Murata, S., Mori, Y. and Ohashi, K. 2015. Bovine immunoinhibitory receptors contribute to suppression of mycobacterium avium subsp. paratuberculosis-specific T-cell responses. Infect. Immun. 84: 77–89.
12. Kaufmann, D. E., Kavanagh, D. G., Pereyra, F., Zaunders, J. J., Mackey, E. W., Miura, T., Palmer, S., Brockman, M., Rathod, A., Piechocka-Trocha, A., Baker, B., Zhu, B., Le Gall, S., Waring, M. T., Ahern, R., Moss, K., Kelleher, A. D., Coffin, J. M., Freeman, G. J., Rosenberg, E. S. and Walker, B. D. 2007. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8: 1246–1254.
1. Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., Jäger, D., Pietanza, M. C., Le, D. T., de Braud, F., Morse, M. A., Ascierto, P. A., Horn, L., Amin, A., Pillai, R. N., Evans, J., Chau, I., Bono, P., Atmaca, A., Sharma, P., Harbison, C. T., Lin, C. S., Christensen, O. and Calvo, E. 2016. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17: 883–895.
5. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D., Leslie, A. J., DePierres, C., Mncube, Z., Duraiswamy, J., Zhu, B., Eichbaum, Q., Altfeld, M., Wherry, E. J., Coovadia, H. M., Goulder, P. J., Klenerman, P., Ahmed, R., Freeman, G. J. and Walker, B. D. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354.
26. Ready, N., Farago, A. F., de Braud, F., Atmaca, A., Hellmann, M. D., Schneider, J. G., Spigel, D. R., Moreno, V., Chau, I., Hann, C. L., Eder, J. P., Steele, N. L., Pieters, A., Fairchild, J. and Antonia, S. J. 2019. Third-line nivolumab monotherapy in recurrent SCLC: checkmate 032. J. Thorac. Oncol. 14: 237–244.
8. Huang, P. Y., Guo, S. S., Zhang, Y., Lu, J. B., Chen, Q. Y., Tang, L. Q., Zhang, L., Liu, L. T., Zhang, L. and Mai, H. Q. 2016. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget 7: 13060–13068.
18. Nishimori, A., Konnai, S., Okagawa, T., Maekawa, N., Ikebuchi, R., Goto, S., Sajiki, Y., Suzuki, Y., Kohara, J., Ogasawara, S.,
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4. Collins, A. V., Brodie, D. W., Gilbert, R. J., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., van der Merwe, P. A. and Davis, S. J. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201–210.
– reference: 10. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2013. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet. Res. (Faisalabad) 44: 59.
– reference: 36. Wang, X., Teng, F., Kong, L. and Yu, J. 2016. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 9: 5023–5039.
– reference: 6. Gettinger, S., Rizvi, N. A., Chow, L. Q., Borghaei, H., Brahmer, J., Ready, N., Gerber, D. E., Shepherd, F. A., Antonia, S., Goldman, J. W., Juergens, R. A., Laurie, S. A., Nathan, F. E., Shen, Y., Harbison, C. T. and Hellmann, M. D. 2016. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 34: 2980–2987.
– reference: 20. Ohira, K., Nakahara, A., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Ikebuchi, R., Kohara, J., Murata, S. and Ohashi, K. 2016. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis. 4: 52–63.
– reference: 37. Watari, K., Konnai, S., Maekawa, N., Okagawa, T., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Immune inhibitory function of bovine CTLA-4 and the effects of its blockade in IFN-γ production. BMC Vet. Res. 15: 380.
– reference: 22. Okagawa, T., Konnai, S., Deringer, J. R., Ueti, M. W., Scoles, G. A., Murata, S., Ohashi, K. and Brown, W. C. 2016. Cooperation of PD-1 and LAG-3 contributes to T-cell exhaustion in Anaplasma marginale-infected cattle. Infect. Immun. 84: 2779–2790.
– reference: 18. Nishimori, A., Konnai, S., Okagawa, T., Maekawa, N., Ikebuchi, R., Goto, S., Sajiki, Y., Suzuki, Y., Kohara, J., Ogasawara, S., Kato, Y., Murata, S. and Ohashi, K. 2017. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection. PLoS One 12: e0174916.
– reference: 17. Nakamoto, N., Cho, H., Shaked, A., Olthoff, K., Valiga, M. E., Kaminski, M., Gostick, E., Price, D. A., Freeman, G. J., Wherry, E. J. and Chang, K. M. 2009. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5: e1000313.
– reference: 13. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill, A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur, G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S. and Wolchok, J. D. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373: 23–34.
– reference: 25. Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J., Jeffery, L. E., Kaur, S., Briggs, Z., Hou, T. Z., Futter, C. E., Anderson, G., Walker, L. S. and Sansom, D. M. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600–603.
– reference: 21. Okagawa, T., Konnai, S., Nishimori, A., Ikebuchi, R., Mizorogi, S., Nagata, R., Kawaji, S., Tanaka, S., Kagawa, Y., Murata, S., Mori, Y. and Ohashi, K. 2015. Bovine immunoinhibitory receptors contribute to suppression of mycobacterium avium subsp. paratuberculosis-specific T-cell responses. Infect. Immun. 84: 77–89.
– reference: 23. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Ikebuchi, R., Goto, S., Nakajima, C., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Anti-bovine programmed death-1 rat-bovine chimeric antibody for immunotherapy of bovine leukemia virus infection in cattle. Front. Immunol. 8: 650.
– reference: 28. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Ikebuchi, R., Nagata, R., Kawaji, S., Kagawa, Y., Yamada, S., Kato, Y., Nakajima, C., Suzuki, Y., Murata, S., Mori, Y. and Ohashi, K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect. Immun. 86: e00910–e00917.
– reference: 32. Schneider, H., Smith, X., Liu, H., Bismuth, G. and Rudd, C. E. 2008. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38: 40–47.
– reference: 1. Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., Jäger, D., Pietanza, M. C., Le, D. T., de Braud, F., Morse, M. A., Ascierto, P. A., Horn, L., Amin, A., Pillai, R. N., Evans, J., Chau, I., Bono, P., Atmaca, A., Sharma, P., Harbison, C. T., Lin, C. S., Christensen, O. and Calvo, E. 2016. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17: 883–895.
– reference: 8. Huang, P. Y., Guo, S. S., Zhang, Y., Lu, J. B., Chen, Q. Y., Tang, L. Q., Zhang, L., Liu, L. T., Zhang, L. and Mai, H. Q. 2016. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget 7: 13060–13068.
– reference: 27. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Di Giacomo, A. M., Mortier, L., Rutkowski, P., Hassel, J. C., McNeil, C. M., Kalinka, E. A., Lebbé, C., Charles, J., Hernberg, M. M., Savage, K. J., Chiarion-Sileni, V., Mihalcioiu, C., Mauch, C., Arance, A., Cognetti, F., Ny, L., Schmidt, H., Schadendorf, D., Gogas, H., Zoco, J., Re, S., Ascierto, P. A. and Atkinson, V. 2020. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. J. Clin. Oncol. 38: 3937–3946.
– reference: 16. Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K. and Tsutsui, T. 2013. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. J. Vet. Med. Sci. 75: 1123–1126.
– reference: 15. Munn, D. H., Sharma, M. D. and Mellor, A. L. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100–4110.
– reference: 31. Schneider, H., Mandelbrot, D. A., Greenwald, R. J., Ng, F., Lechler, R., Sharpe, A. H. and Rudd, C. E. 2002. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169: 3475–3479.
– reference: 33. Schurich, A., Khanna, P., Lopes, A. R., Han, K. J., Peppa, D., Micco, L., Nebbia, G., Kennedy, P. T., Geretti, A. M., Dusheiko, G. and Maini, M. K. 2011. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53: 1494–1503.
– reference: 26. Ready, N., Farago, A. F., de Braud, F., Atmaca, A., Hellmann, M. D., Schneider, J. G., Spigel, D. R., Moreno, V., Chau, I., Hann, C. L., Eder, J. P., Steele, N. L., Pieters, A., Fairchild, J. and Antonia, S. J. 2019. Third-line nivolumab monotherapy in recurrent SCLC: checkmate 032. J. Thorac. Oncol. 14: 237–244.
– reference: 7. Goto, S., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Gondaira, S., Higuchi, H., Koiwa, M., Tajima, M., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis. Immun. Inflamm. Dis. 5: 355–363.
– reference: 9. Ikebuchi, R., Konnai, S., Shirai, T., Sunden, Y., Murata, S., Onuma, M. and Ohashi, K. 2011. Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade. Vet. Res. (Faisalabad) 42: 103.
– reference: 12. Kaufmann, D. E., Kavanagh, D. G., Pereyra, F., Zaunders, J. J., Mackey, E. W., Miura, T., Palmer, S., Brockman, M., Rathod, A., Piechocka-Trocha, A., Baker, B., Zhu, B., Le Gall, S., Waring, M. T., Ahern, R., Moss, K., Kelleher, A. D., Coffin, J. M., Freeman, G. J., Rosenberg, E. S. and Walker, B. D. 2007. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8: 1246–1254.
– reference: 19. O’Day, S. J., Maio, M., Chiarion-Sileni, V., Gajewski, T. F., Pehamberger, H., Bondarenko, I. N., Queirolo, P., Lundgren, L., Mikhailov, S., Roman, L., Verschraegen, C., Humphrey, R., Ibrahim, R., de Pril, V., Hoos, A. and Wolchok, J. D. 2010. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21: 1712–1717.
– reference: 11. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2014. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. Immunology 142: 551–561.
– reference: 14. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hogg, D., Hill, A., Márquez-Rodas, I., Haanen, J., Guidoboni, M., Maio, M., Schöffski, P., Carlino, M. S., Lebbé, C., McArthur, G., Ascierto, P. A., Daniels, G. A., Long, G. V., Bastholt, L., Rizzo, J. I., Balogh, A., Moshyk, A., Hodi, F. S. and Wolchok, J. D. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381: 1535–1546.
– reference: 29. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Watari, K., Minato, E., Kobayashi, A., Kohara, J., Yamada, S., Kaneko, M. K., Kato, Y., Takahashi, H., Terasaki, N., Takeda, A., Yamamoto, K., Toda, M., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Prostaglandin E2-induced immune exhaustion and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection. J. Immunol. 203: 1313–1324.
– reference: 30. Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E., Barrera, P., Riezu-Boj, J. I., Larrea, E., Alfaro, C., Sarobe, P., Lasarte, J. J., Pérez-Gracia, J. L., Melero, I. and Prieto, J. 2013. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59: 81–88.
– reference: 34. Suzuki, S., Konnai, S., Okagawa, T., Ikebuchi, R., Nishimori, A., Kohara, J., Mingala, C. N., Murata, S. and Ohashi, K. 2015. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 163: 115–124.
– reference: 38. Wolchok, J. D., Neyns, B., Linette, G., Negrier, S., Lutzky, J., Thomas, L., Waterfield, W., Schadendorf, D., Smylie, M., Guthrie, T. Jr., Grob, J. J., Chesney, J., Chin, K., Chen, K., Hoos, A., O’Day, S. J. and Lebbé, C. 2010. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11: 155–164.
– reference: 5. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D., Leslie, A. J., DePierres, C., Mncube, Z., Duraiswamy, J., Zhu, B., Eichbaum, Q., Altfeld, M., Wherry, E. J., Coovadia, H. M., Goulder, P. J., Klenerman, P., Ahmed, R., Freeman, G. J. and Walker, B. D. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354.
– reference: 24. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Goto, S., Ikebuchi, R., Kohara, J., Suzuki, Y., Yamada, S., Kato, Y., Murata, S. and Ohashi, K. 2018. Cooperation of PD-1 and LAG-3 in the exhaustion of CD4+ and CD8+ T cells during bovine leukemia virus infection. Vet. Res. (Faisalabad) 49: 50.
– reference: 2. Bradbury, A. 2010. Cloning hybridoma cDNA by RACE. pp. 15–20. In: Antibody Engineering Vol. 1, 2nd ed. (Kontermann, R. and Dübel, S. eds.), Springer, Berlin.
– reference: 3. Chuang, E., Fisher, T. S., Morgan, R. W., Robbins, M. D., Duerr, J. M., Vander Heiden, M. G., Gardner, J. P., Hambor, J. E., Neveu, M. J. and Thompson, C. B. 2000. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13: 313–322.
– reference: 35. Suzuki, Y., Nakagawa, M., Kameda, Y., Konnai, S., Okagawa, T., Maekawa, N., Goto, S., Sajiki, Y., Ohashi, K., Murata, S., Kitahara, Y. and Yamamoto, K. 2020. Novel vector and use thereof. US patent application No. 17/054,936.
– ident: 2
  doi: 10.1007/978-3-642-01144-3_2
– ident: 4
  doi: 10.1016/S1074-7613(02)00362-X
– ident: 27
  doi: 10.1200/JCO.20.00995
– ident: 12
  doi: 10.1038/ni1515
– ident: 21
  doi: 10.1128/IAI.01014-15
– ident: 3
  doi: 10.1016/S1074-7613(00)00031-5
– ident: 29
  doi: 10.4049/jimmunol.1900342
– ident: 35
– ident: 14
  doi: 10.1056/NEJMoa1910836
– ident: 26
  doi: 10.1016/j.jtho.2018.10.003
– ident: 13
  doi: 10.1056/NEJMoa1504030
– ident: 24
  doi: 10.1186/s13567-018-0543-9
– ident: 1
  doi: 10.1016/S1470-2045(16)30098-5
– ident: 25
  doi: 10.1126/science.1202947
– ident: 36
  doi: 10.2147/OTT.S105862
– ident: 34
  doi: 10.1016/j.vetimm.2014.10.006
– ident: 19
  doi: 10.1093/annonc/mdq013
– ident: 10
  doi: 10.1186/1297-9716-44-59
– ident: 6
  doi: 10.1200/JCO.2016.66.9929
– ident: 5
  doi: 10.1038/nature05115
– ident: 8
  doi: 10.18632/oncotarget.7421
– ident: 32
  doi: 10.1002/eji.200737423
– ident: 31
  doi: 10.4049/jimmunol.169.7.3475
– ident: 18
  doi: 10.1371/journal.pone.0174916
– ident: 20
  doi: 10.1002/iid3.93
– ident: 16
  doi: 10.1292/jvms.12-0374
– ident: 37
  doi: 10.1186/s12917-019-2082-7
– ident: 30
  doi: 10.1016/j.jhep.2013.02.022
– ident: 23
  doi: 10.3389/fimmu.2017.00650
– ident: 15
  doi: 10.4049/jimmunol.172.7.4100
– ident: 9
  doi: 10.1186/1297-9716-42-103
– ident: 33
  doi: 10.1002/hep.24249
– ident: 7
  doi: 10.1002/iid3.173
– ident: 17
  doi: 10.1371/journal.ppat.1000313
– ident: 22
  doi: 10.1128/IAI.00278-16
– ident: 28
  doi: 10.1128/IAI.00910-17
– ident: 11
  doi: 10.1111/imm.12243
– ident: 38
  doi: 10.1016/S1470-2045(09)70334-1
SSID ssj0021469
Score 2.3010528
Snippet Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6
SubjectTerms Animals
Antibodies
Antibodies, Monoclonal
Antigens
Apoptosis
B7-H1 Antigen
Cattle
CD80 antigen
CD86 antigen
chimeric antibody
CTLA-4 Antigen
CTLA-4 protein
cytotoxic T lymphocyte antigen 4
Cytotoxicity
Immune response
Immunology
Interleukin 2
Leukocytes, Mononuclear
Ligands
Lymphocytes T
Mice
Monoclonal antibodies
PD-1 protein
PD-L1 protein
Peripheral blood mononuclear cells
Programmed Cell Death 1 Receptor
programmed death-ligand 1
Title Enhancement of interleukin-2 production by bovine peripheral blood mononuclear cells treated with the combination of anti-programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 chimeric monoclonal antibodies
URI https://www.jstage.jst.go.jp/article/jvms/84/1/84_21-0552/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/34789592
https://www.proquest.com/docview/2624693171
https://www.proquest.com/docview/2599074866
https://pubmed.ncbi.nlm.nih.gov/PMC8810316
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2022, Vol.84(1), pp.6-15
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqglAvCMorpVSDBCfksnYSJxFCCKFWBbScuqi3KHbsbkpI2n2g7i_l7zDjZCO2KhcuURSP5c3O53hmPP6GsVdmJLV1IuQafQEeGSl4oUzEo8hkYaazRBZ0OHn8TZ1Moi9n8dkWW1cb7f_A-a2uHdWTmszqw-ur1Qec8O89N0Im3178-jk_xEFGcYwf4zu4JiVUy2AcDfsJVL26Y90Tiie46vcp8Dd777B7YZSkWZzJjXXq7gWaauf2Niv0ZjLlX6vT8QN2vzcr4WOHg4dsyza7bPc75br4A7cw7vfQH7HfR82UVE1hQWgdEGHErLbLH1XDJVx2DLCoLdAr0BRvsEBsyJ5-oAaf6A6I3bYhJuRiBhT6n4NPWLclUFwX0KgERDI63V7vNAoqsOJ9Mhi-BpRkevK6Oi-aEgTQ1awW7aK9rgycQr1ClLX4xPqeiHKIwEwrv7_khzc1-RC-VbeUCvmYTY6PTj-d8L68AzfoQy24tgU6XyoVLoxMmLhyZKRzeGPjhDbEk0yiTS1SV5hCa-dcGWYCpZRJyjhLdfiEbePL2mcMXFgYkxSSyAcjp4hARxgrY6lwKbJCB-zNWpm56bnPqQRHnZMPhCjICQW5FDmhIGCvB-nLjvPjH3LvOlwMUv1s76TSKBd06aWHRjpOh9-kgO2vwZSvYZ9LJRGpaNOJgL0cmnHGky6LxrZLlIkzimikSgXsaYe94Qes0RuwZAOVgwCxiW-2NNXUs4qnKVX8UHv_3fM525F0NsTHp_bZ9mK2tC_QYlvoA_RVPn898FPyD7lpSx8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+interleukin-2+production+by+bovine+peripheral+blood+mononuclear+cells+treated+with+the+combination+of+anti-programmed+death-ligand+1+and+cytotoxic+T+lymphocyte+antigen+4+chimeric+monoclonal+antibodies&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=WATARI%2C+Kei&rft.au=KONNAI%2C+Satoru&rft.au=OKAGAWA%2C+Tomohiro&rft.au=MAEKAWA%2C+Naoya&rft.date=2022-01-01&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=84&rft.issue=1&rft.spage=6&rft.epage=15&rft_id=info:doi/10.1292%2Fjvms.21-0552&rft_id=info%3Apmid%2F34789592&rft.externalDocID=PMC8810316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon