Enhancement of interleukin-2 production by bovine peripheral blood mononuclear cells treated with the combination of anti-programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 chimeric monoclonal antibodies
Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and thes...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 84; no. 1; pp. 6 - 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.01.2022
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration. |
---|---|
AbstractList | Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration. Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration. |
ArticleNumber | 21-0552 |
Author | OHASHI, Kazuhiko KATO, Yukinari MURATA, Shiro WATARI, Kei KONNAI, Satoru MAEKAWA, Naoya SUZUKI, Yasuhiko OKAGAWA, Tomohiro SAJIKI, Yamato |
Author_xml | – sequence: 1 fullname: WATARI, Kei organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 2 fullname: KONNAI, Satoru organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 3 fullname: OKAGAWA, Tomohiro organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 4 fullname: MAEKAWA, Naoya organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 5 fullname: SAJIKI, Yamato organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 6 fullname: KATO, Yukinari organization: Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan – sequence: 7 fullname: SUZUKI, Yasuhiko organization: Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 8 fullname: MURATA, Shiro organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan – sequence: 9 fullname: OHASHI, Kazuhiko organization: Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34789592$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURLeFG2dkiQsHUmzn-4JUqvIhVeJSzpbjjDdeEjvYzsL-Uv4Ok93tCipxsS3PM69fz8xFcmadhSR5yegV4w1_t9mO4YqzlBYFf5KsWJZXaZVnzVmyog0r04oX9Dy5CGFDKWd52TxLzpGpm6Lhq-T3re2lVTCCjcRpYmwEP8D83diUk8m7blbROEvaHWnd1lggE3gz9eDlQNrBuY6MDi3NagDpiYJhCCR6kBE68tPEnsQeiHJja6zcK-Er0kaTovjay3FErkO8TwezlrYjjCyr2kUX3S-jyD0ZduPUO7yBfeYaLMmJ6s2ITtT-eTU4i36WaOs6A-F58lTLIcCL436ZfPt4e3_zOb37-unLzfVdqkpaxLQFWfKirJnOcpVVuqOKa40HKCrKeFU1vGYtq7VUsm211l3WMKRKVXVFU7fZZfL-oDvNLf5EYRmxMGLyZpR-J5w04t-INb1Yu62oa0YzVqLAm6OAdz9mCFGMJixVlBbcHAQvmoZWeV0u6OtH6MbNHv-NVMmxsxmrGFKv_nZ0svLQcwT4AVDeheBBC2XivjVo0AyCUbEMllgGS3AmlsHCpLePkh50_4N_OOCbEOUaTrD00eCgHOA6F2xZjkmnoOqlF2CzP_3c73g |
CitedBy_id | crossref_primary_10_1186_s13567_023_01213_6 crossref_primary_10_1128_iai_00210_22 |
Cites_doi | 10.1007/978-3-642-01144-3_2 10.1016/S1074-7613(02)00362-X 10.1200/JCO.20.00995 10.1038/ni1515 10.1128/IAI.01014-15 10.1016/S1074-7613(00)00031-5 10.4049/jimmunol.1900342 10.1056/NEJMoa1910836 10.1016/j.jtho.2018.10.003 10.1056/NEJMoa1504030 10.1186/s13567-018-0543-9 10.1016/S1470-2045(16)30098-5 10.1126/science.1202947 10.2147/OTT.S105862 10.1016/j.vetimm.2014.10.006 10.1093/annonc/mdq013 10.1186/1297-9716-44-59 10.1200/JCO.2016.66.9929 10.1038/nature05115 10.18632/oncotarget.7421 10.1002/eji.200737423 10.4049/jimmunol.169.7.3475 10.1371/journal.pone.0174916 10.1002/iid3.93 10.1292/jvms.12-0374 10.1186/s12917-019-2082-7 10.1016/j.jhep.2013.02.022 10.3389/fimmu.2017.00650 10.4049/jimmunol.172.7.4100 10.1186/1297-9716-42-103 10.1002/hep.24249 10.1002/iid3.173 10.1371/journal.ppat.1000313 10.1128/IAI.00278-16 10.1128/IAI.00910-17 10.1111/imm.12243 10.1016/S1470-2045(09)70334-1 |
ContentType | Journal Article |
Copyright | 2022 by the Japanese Society of Veterinary Science 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Japanese Society of Veterinary Science 2022 |
Copyright_xml | – notice: 2022 by the Japanese Society of Veterinary Science – notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Japanese Society of Veterinary Science 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.21-0552 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 15 |
ExternalDocumentID | PMC8810316 34789592 10_1292_jvms_21_0552 article_jvms_84_1_84_21_0552_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c605t-bea625681f34c37fd0c2ff37fe57012779281b18facabbfffd391fd06c7d598b3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 13:56:58 EDT 2025 Fri Jul 11 06:16:01 EDT 2025 Mon Jun 30 05:19:18 EDT 2025 Thu Jan 02 22:54:42 EST 2025 Thu Apr 24 22:51:35 EDT 2025 Tue Jul 01 00:31:09 EDT 2025 Sun Jul 28 05:07:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | interleukin-2 cattle programmed death-ligand 1 chimeric antibody cytotoxic T lymphocyte antigen 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-bea625681f34c37fd0c2ff37fe57012779281b18facabbfffd391fd06c7d598b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.21-0552 |
PMID | 34789592 |
PQID | 2624693171 |
PQPubID | 2028964 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8810316 proquest_miscellaneous_2599074866 proquest_journals_2624693171 pubmed_primary_34789592 crossref_citationtrail_10_1292_jvms_21_0552 crossref_primary_10_1292_jvms_21_0552 jstage_primary_article_jvms_84_1_84_21_0552_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2022 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 15. Munn, D. H., Sharma, M. D. and Mellor, A. L. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100–4110. 4. Collins, A. V., Brodie, D. W., Gilbert, R. J., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., van der Merwe, P. A. and Davis, S. J. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201–210. 7. Goto, S., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Gondaira, S., Higuchi, H., Koiwa, M., Tajima, M., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis. Immun. Inflamm. Dis. 5: 355–363. 22. Okagawa, T., Konnai, S., Deringer, J. R., Ueti, M. W., Scoles, G. A., Murata, S., Ohashi, K. and Brown, W. C. 2016. Cooperation of PD-1 and LAG-3 contributes to T-cell exhaustion in Anaplasma marginale-infected cattle. Infect. Immun. 84: 2779–2790. 30. Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E., Barrera, P., Riezu-Boj, J. I., Larrea, E., Alfaro, C., Sarobe, P., Lasarte, J. J., Pérez-Gracia, J. L., Melero, I. and Prieto, J. 2013. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59: 81–88. 37. Watari, K., Konnai, S., Maekawa, N., Okagawa, T., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Immune inhibitory function of bovine CTLA-4 and the effects of its blockade in IFN-γ production. BMC Vet. Res. 15: 380. 38. Wolchok, J. D., Neyns, B., Linette, G., Negrier, S., Lutzky, J., Thomas, L., Waterfield, W., Schadendorf, D., Smylie, M., Guthrie, T. Jr., Grob, J. J., Chesney, J., Chin, K., Chen, K., Hoos, A., O’Day, S. J. and Lebbé, C. 2010. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11: 155–164. 3. Chuang, E., Fisher, T. S., Morgan, R. W., Robbins, M. D., Duerr, J. M., Vander Heiden, M. G., Gardner, J. P., Hambor, J. E., Neveu, M. J. and Thompson, C. B. 2000. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13: 313–322. 10. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2013. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet. Res. (Faisalabad) 44: 59. 14. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hogg, D., Hill, A., Márquez-Rodas, I., Haanen, J., Guidoboni, M., Maio, M., Schöffski, P., Carlino, M. S., Lebbé, C., McArthur, G., Ascierto, P. A., Daniels, G. A., Long, G. V., Bastholt, L., Rizzo, J. I., Balogh, A., Moshyk, A., Hodi, F. S. and Wolchok, J. D. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381: 1535–1546. 16. Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K. and Tsutsui, T. 2013. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. J. Vet. Med. Sci. 75: 1123–1126. 23. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Ikebuchi, R., Goto, S., Nakajima, C., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Anti-bovine programmed death-1 rat-bovine chimeric antibody for immunotherapy of bovine leukemia virus infection in cattle. Front. Immunol. 8: 650. 2. Bradbury, A. 2010. Cloning hybridoma cDNA by RACE. pp. 15–20. In: Antibody Engineering Vol. 1, 2nd ed. (Kontermann, R. and Dübel, S. eds.), Springer, Berlin. 29. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Watari, K., Minato, E., Kobayashi, A., Kohara, J., Yamada, S., Kaneko, M. K., Kato, Y., Takahashi, H., Terasaki, N., Takeda, A., Yamamoto, K., Toda, M., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Prostaglandin E2-induced immune exhaustion and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection. J. Immunol. 203: 1313–1324. 32. Schneider, H., Smith, X., Liu, H., Bismuth, G. and Rudd, C. E. 2008. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38: 40–47. 27. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Di Giacomo, A. M., Mortier, L., Rutkowski, P., Hassel, J. C., McNeil, C. M., Kalinka, E. A., Lebbé, C., Charles, J., Hernberg, M. M., Savage, K. J., Chiarion-Sileni, V., Mihalcioiu, C., Mauch, C., Arance, A., Cognetti, F., Ny, L., Schmidt, H., Schadendorf, D., Gogas, H., Zoco, J., Re, S., Ascierto, P. A. and Atkinson, V. 2020. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. J. Clin. Oncol. 38: 3937–3946. 31. Schneider, H., Mandelbrot, D. A., Greenwald, R. J., Ng, F., Lechler, R., Sharpe, A. H. and Rudd, C. E. 2002. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169: 3475–3479. 35. Suzuki, Y., Nakagawa, M., Kameda, Y., Konnai, S., Okagawa, T., Maekawa, N., Goto, S., Sajiki, Y., Ohashi, K., Murata, S., Kitahara, Y. and Yamamoto, K. 2020. Novel vector and use thereof. US patent application No. 17/054,936. 17. Nakamoto, N., Cho, H., Shaked, A., Olthoff, K., Valiga, M. E., Kaminski, M., Gostick, E., Price, D. A., Freeman, G. J., Wherry, E. J. and Chang, K. M. 2009. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5: e1000313. 36. Wang, X., Teng, F., Kong, L. and Yu, J. 2016. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 9: 5023–5039. 20. Ohira, K., Nakahara, A., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Ikebuchi, R., Kohara, J., Murata, S. and Ohashi, K. 2016. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis. 4: 52–63. 34. Suzuki, S., Konnai, S., Okagawa, T., Ikebuchi, R., Nishimori, A., Kohara, J., Mingala, C. N., Murata, S. and Ohashi, K. 2015. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 163: 115–124. 13. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill, A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur, G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S. and Wolchok, J. D. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373: 23–34. 19. O’Day, S. J., Maio, M., Chiarion-Sileni, V., Gajewski, T. F., Pehamberger, H., Bondarenko, I. N., Queirolo, P., Lundgren, L., Mikhailov, S., Roman, L., Verschraegen, C., Humphrey, R., Ibrahim, R., de Pril, V., Hoos, A. and Wolchok, J. D. 2010. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21: 1712–1717. 21. Okagawa, T., Konnai, S., Nishimori, A., Ikebuchi, R., Mizorogi, S., Nagata, R., Kawaji, S., Tanaka, S., Kagawa, Y., Murata, S., Mori, Y. and Ohashi, K. 2015. Bovine immunoinhibitory receptors contribute to suppression of mycobacterium avium subsp. paratuberculosis-specific T-cell responses. Infect. Immun. 84: 77–89. 12. Kaufmann, D. E., Kavanagh, D. G., Pereyra, F., Zaunders, J. J., Mackey, E. W., Miura, T., Palmer, S., Brockman, M., Rathod, A., Piechocka-Trocha, A., Baker, B., Zhu, B., Le Gall, S., Waring, M. T., Ahern, R., Moss, K., Kelleher, A. D., Coffin, J. M., Freeman, G. J., Rosenberg, E. S. and Walker, B. D. 2007. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8: 1246–1254. 1. Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., Jäger, D., Pietanza, M. C., Le, D. T., de Braud, F., Morse, M. A., Ascierto, P. A., Horn, L., Amin, A., Pillai, R. N., Evans, J., Chau, I., Bono, P., Atmaca, A., Sharma, P., Harbison, C. T., Lin, C. S., Christensen, O. and Calvo, E. 2016. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17: 883–895. 5. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D., Leslie, A. J., DePierres, C., Mncube, Z., Duraiswamy, J., Zhu, B., Eichbaum, Q., Altfeld, M., Wherry, E. J., Coovadia, H. M., Goulder, P. J., Klenerman, P., Ahmed, R., Freeman, G. J. and Walker, B. D. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354. 26. Ready, N., Farago, A. F., de Braud, F., Atmaca, A., Hellmann, M. D., Schneider, J. G., Spigel, D. R., Moreno, V., Chau, I., Hann, C. L., Eder, J. P., Steele, N. L., Pieters, A., Fairchild, J. and Antonia, S. J. 2019. Third-line nivolumab monotherapy in recurrent SCLC: checkmate 032. J. Thorac. Oncol. 14: 237–244. 8. Huang, P. Y., Guo, S. S., Zhang, Y., Lu, J. B., Chen, Q. Y., Tang, L. Q., Zhang, L., Liu, L. T., Zhang, L. and Mai, H. Q. 2016. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget 7: 13060–13068. 18. Nishimori, A., Konnai, S., Okagawa, T., Maekawa, N., Ikebuchi, R., Goto, S., Sajiki, Y., Suzuki, Y., Kohara, J., Ogasawara, S., 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 4. Collins, A. V., Brodie, D. W., Gilbert, R. J., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D. I., van der Merwe, P. A. and Davis, S. J. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17: 201–210. – reference: 10. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2013. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet. Res. (Faisalabad) 44: 59. – reference: 36. Wang, X., Teng, F., Kong, L. and Yu, J. 2016. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther. 9: 5023–5039. – reference: 6. Gettinger, S., Rizvi, N. A., Chow, L. Q., Borghaei, H., Brahmer, J., Ready, N., Gerber, D. E., Shepherd, F. A., Antonia, S., Goldman, J. W., Juergens, R. A., Laurie, S. A., Nathan, F. E., Shen, Y., Harbison, C. T. and Hellmann, M. D. 2016. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 34: 2980–2987. – reference: 20. Ohira, K., Nakahara, A., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Ikebuchi, R., Kohara, J., Murata, S. and Ohashi, K. 2016. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immun. Inflamm. Dis. 4: 52–63. – reference: 37. Watari, K., Konnai, S., Maekawa, N., Okagawa, T., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Immune inhibitory function of bovine CTLA-4 and the effects of its blockade in IFN-γ production. BMC Vet. Res. 15: 380. – reference: 22. Okagawa, T., Konnai, S., Deringer, J. R., Ueti, M. W., Scoles, G. A., Murata, S., Ohashi, K. and Brown, W. C. 2016. Cooperation of PD-1 and LAG-3 contributes to T-cell exhaustion in Anaplasma marginale-infected cattle. Infect. Immun. 84: 2779–2790. – reference: 18. Nishimori, A., Konnai, S., Okagawa, T., Maekawa, N., Ikebuchi, R., Goto, S., Sajiki, Y., Suzuki, Y., Kohara, J., Ogasawara, S., Kato, Y., Murata, S. and Ohashi, K. 2017. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection. PLoS One 12: e0174916. – reference: 17. Nakamoto, N., Cho, H., Shaked, A., Olthoff, K., Valiga, M. E., Kaminski, M., Gostick, E., Price, D. A., Freeman, G. J., Wherry, E. J. and Chang, K. M. 2009. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog. 5: e1000313. – reference: 13. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., Ferrucci, P. F., Hill, A., Wagstaff, J., Carlino, M. S., Haanen, J. B., Maio, M., Marquez-Rodas, I., McArthur, G. A., Ascierto, P. A., Long, G. V., Callahan, M. K., Postow, M. A., Grossmann, K., Sznol, M., Dreno, B., Bastholt, L., Yang, A., Rollin, L. M., Horak, C., Hodi, F. S. and Wolchok, J. D. 2015. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373: 23–34. – reference: 25. Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J., Jeffery, L. E., Kaur, S., Briggs, Z., Hou, T. Z., Futter, C. E., Anderson, G., Walker, L. S. and Sansom, D. M. 2011. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600–603. – reference: 21. Okagawa, T., Konnai, S., Nishimori, A., Ikebuchi, R., Mizorogi, S., Nagata, R., Kawaji, S., Tanaka, S., Kagawa, Y., Murata, S., Mori, Y. and Ohashi, K. 2015. Bovine immunoinhibitory receptors contribute to suppression of mycobacterium avium subsp. paratuberculosis-specific T-cell responses. Infect. Immun. 84: 77–89. – reference: 23. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Ikebuchi, R., Goto, S., Nakajima, C., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Anti-bovine programmed death-1 rat-bovine chimeric antibody for immunotherapy of bovine leukemia virus infection in cattle. Front. Immunol. 8: 650. – reference: 28. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Ikebuchi, R., Nagata, R., Kawaji, S., Kagawa, Y., Yamada, S., Kato, Y., Nakajima, C., Suzuki, Y., Murata, S., Mori, Y. and Ohashi, K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect. Immun. 86: e00910–e00917. – reference: 32. Schneider, H., Smith, X., Liu, H., Bismuth, G. and Rudd, C. E. 2008. CTLA-4 disrupts ZAP70 microcluster formation with reduced T cell/APC dwell times and calcium mobilization. Eur. J. Immunol. 38: 40–47. – reference: 1. Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., Jäger, D., Pietanza, M. C., Le, D. T., de Braud, F., Morse, M. A., Ascierto, P. A., Horn, L., Amin, A., Pillai, R. N., Evans, J., Chau, I., Bono, P., Atmaca, A., Sharma, P., Harbison, C. T., Lin, C. S., Christensen, O. and Calvo, E. 2016. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17: 883–895. – reference: 8. Huang, P. Y., Guo, S. S., Zhang, Y., Lu, J. B., Chen, Q. Y., Tang, L. Q., Zhang, L., Liu, L. T., Zhang, L. and Mai, H. Q. 2016. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget 7: 13060–13068. – reference: 27. Robert, C., Long, G. V., Brady, B., Dutriaux, C., Di Giacomo, A. M., Mortier, L., Rutkowski, P., Hassel, J. C., McNeil, C. M., Kalinka, E. A., Lebbé, C., Charles, J., Hernberg, M. M., Savage, K. J., Chiarion-Sileni, V., Mihalcioiu, C., Mauch, C., Arance, A., Cognetti, F., Ny, L., Schmidt, H., Schadendorf, D., Gogas, H., Zoco, J., Re, S., Ascierto, P. A. and Atkinson, V. 2020. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. J. Clin. Oncol. 38: 3937–3946. – reference: 16. Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K. and Tsutsui, T. 2013. Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. J. Vet. Med. Sci. 75: 1123–1126. – reference: 15. Munn, D. H., Sharma, M. D. and Mellor, A. L. 2004. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol. 172: 4100–4110. – reference: 31. Schneider, H., Mandelbrot, D. A., Greenwald, R. J., Ng, F., Lechler, R., Sharpe, A. H. and Rudd, C. E. 2002. Cutting edge: CTLA-4 (CD152) differentially regulates mitogen-activated protein kinases (extracellular signal-regulated kinase and c-Jun N-terminal kinase) in CD4+ T cells from receptor/ligand-deficient mice. J. Immunol. 169: 3475–3479. – reference: 33. Schurich, A., Khanna, P., Lopes, A. R., Han, K. J., Peppa, D., Micco, L., Nebbia, G., Kennedy, P. T., Geretti, A. M., Dusheiko, G. and Maini, M. K. 2011. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53: 1494–1503. – reference: 26. Ready, N., Farago, A. F., de Braud, F., Atmaca, A., Hellmann, M. D., Schneider, J. G., Spigel, D. R., Moreno, V., Chau, I., Hann, C. L., Eder, J. P., Steele, N. L., Pieters, A., Fairchild, J. and Antonia, S. J. 2019. Third-line nivolumab monotherapy in recurrent SCLC: checkmate 032. J. Thorac. Oncol. 14: 237–244. – reference: 7. Goto, S., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Gondaira, S., Higuchi, H., Koiwa, M., Tajima, M., Kohara, J., Ogasawara, S., Kato, Y., Suzuki, Y., Murata, S. and Ohashi, K. 2017. Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis. Immun. Inflamm. Dis. 5: 355–363. – reference: 9. Ikebuchi, R., Konnai, S., Shirai, T., Sunden, Y., Murata, S., Onuma, M. and Ohashi, K. 2011. Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade. Vet. Res. (Faisalabad) 42: 103. – reference: 12. Kaufmann, D. E., Kavanagh, D. G., Pereyra, F., Zaunders, J. J., Mackey, E. W., Miura, T., Palmer, S., Brockman, M., Rathod, A., Piechocka-Trocha, A., Baker, B., Zhu, B., Le Gall, S., Waring, M. T., Ahern, R., Moss, K., Kelleher, A. D., Coffin, J. M., Freeman, G. J., Rosenberg, E. S. and Walker, B. D. 2007. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8: 1246–1254. – reference: 19. O’Day, S. J., Maio, M., Chiarion-Sileni, V., Gajewski, T. F., Pehamberger, H., Bondarenko, I. N., Queirolo, P., Lundgren, L., Mikhailov, S., Roman, L., Verschraegen, C., Humphrey, R., Ibrahim, R., de Pril, V., Hoos, A. and Wolchok, J. D. 2010. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21: 1712–1717. – reference: 11. Ikebuchi, R., Konnai, S., Okagawa, T., Yokoyama, K., Nakajima, C., Suzuki, Y., Murata, S. and Ohashi, K. 2014. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. Immunology 142: 551–561. – reference: 14. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Rutkowski, P., Lao, C. D., Cowey, C. L., Schadendorf, D., Wagstaff, J., Dummer, R., Ferrucci, P. F., Smylie, M., Hogg, D., Hill, A., Márquez-Rodas, I., Haanen, J., Guidoboni, M., Maio, M., Schöffski, P., Carlino, M. S., Lebbé, C., McArthur, G., Ascierto, P. A., Daniels, G. A., Long, G. V., Bastholt, L., Rizzo, J. I., Balogh, A., Moshyk, A., Hodi, F. S. and Wolchok, J. D. 2019. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381: 1535–1546. – reference: 29. Sajiki, Y., Konnai, S., Okagawa, T., Nishimori, A., Maekawa, N., Goto, S., Watari, K., Minato, E., Kobayashi, A., Kohara, J., Yamada, S., Kaneko, M. K., Kato, Y., Takahashi, H., Terasaki, N., Takeda, A., Yamamoto, K., Toda, M., Suzuki, Y., Murata, S. and Ohashi, K. 2019. Prostaglandin E2-induced immune exhaustion and enhancement of antiviral effects by anti-PD-L1 antibody combined with COX-2 inhibitor in bovine leukemia virus infection. J. Immunol. 203: 1313–1324. – reference: 30. Sangro, B., Gomez-Martin, C., de la Mata, M., Iñarrairaegui, M., Garralda, E., Barrera, P., Riezu-Boj, J. I., Larrea, E., Alfaro, C., Sarobe, P., Lasarte, J. J., Pérez-Gracia, J. L., Melero, I. and Prieto, J. 2013. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 59: 81–88. – reference: 34. Suzuki, S., Konnai, S., Okagawa, T., Ikebuchi, R., Nishimori, A., Kohara, J., Mingala, C. N., Murata, S. and Ohashi, K. 2015. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 163: 115–124. – reference: 38. Wolchok, J. D., Neyns, B., Linette, G., Negrier, S., Lutzky, J., Thomas, L., Waterfield, W., Schadendorf, D., Smylie, M., Guthrie, T. Jr., Grob, J. J., Chesney, J., Chin, K., Chen, K., Hoos, A., O’Day, S. J. and Lebbé, C. 2010. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 11: 155–164. – reference: 5. Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., Mackey, E. W., Miller, J. D., Leslie, A. J., DePierres, C., Mncube, Z., Duraiswamy, J., Zhu, B., Eichbaum, Q., Altfeld, M., Wherry, E. J., Coovadia, H. M., Goulder, P. J., Klenerman, P., Ahmed, R., Freeman, G. J. and Walker, B. D. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354. – reference: 24. Okagawa, T., Konnai, S., Nishimori, A., Maekawa, N., Goto, S., Ikebuchi, R., Kohara, J., Suzuki, Y., Yamada, S., Kato, Y., Murata, S. and Ohashi, K. 2018. Cooperation of PD-1 and LAG-3 in the exhaustion of CD4+ and CD8+ T cells during bovine leukemia virus infection. Vet. Res. (Faisalabad) 49: 50. – reference: 2. Bradbury, A. 2010. Cloning hybridoma cDNA by RACE. pp. 15–20. In: Antibody Engineering Vol. 1, 2nd ed. (Kontermann, R. and Dübel, S. eds.), Springer, Berlin. – reference: 3. Chuang, E., Fisher, T. S., Morgan, R. W., Robbins, M. D., Duerr, J. M., Vander Heiden, M. G., Gardner, J. P., Hambor, J. E., Neveu, M. J. and Thompson, C. B. 2000. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13: 313–322. – reference: 35. Suzuki, Y., Nakagawa, M., Kameda, Y., Konnai, S., Okagawa, T., Maekawa, N., Goto, S., Sajiki, Y., Ohashi, K., Murata, S., Kitahara, Y. and Yamamoto, K. 2020. Novel vector and use thereof. US patent application No. 17/054,936. – ident: 2 doi: 10.1007/978-3-642-01144-3_2 – ident: 4 doi: 10.1016/S1074-7613(02)00362-X – ident: 27 doi: 10.1200/JCO.20.00995 – ident: 12 doi: 10.1038/ni1515 – ident: 21 doi: 10.1128/IAI.01014-15 – ident: 3 doi: 10.1016/S1074-7613(00)00031-5 – ident: 29 doi: 10.4049/jimmunol.1900342 – ident: 35 – ident: 14 doi: 10.1056/NEJMoa1910836 – ident: 26 doi: 10.1016/j.jtho.2018.10.003 – ident: 13 doi: 10.1056/NEJMoa1504030 – ident: 24 doi: 10.1186/s13567-018-0543-9 – ident: 1 doi: 10.1016/S1470-2045(16)30098-5 – ident: 25 doi: 10.1126/science.1202947 – ident: 36 doi: 10.2147/OTT.S105862 – ident: 34 doi: 10.1016/j.vetimm.2014.10.006 – ident: 19 doi: 10.1093/annonc/mdq013 – ident: 10 doi: 10.1186/1297-9716-44-59 – ident: 6 doi: 10.1200/JCO.2016.66.9929 – ident: 5 doi: 10.1038/nature05115 – ident: 8 doi: 10.18632/oncotarget.7421 – ident: 32 doi: 10.1002/eji.200737423 – ident: 31 doi: 10.4049/jimmunol.169.7.3475 – ident: 18 doi: 10.1371/journal.pone.0174916 – ident: 20 doi: 10.1002/iid3.93 – ident: 16 doi: 10.1292/jvms.12-0374 – ident: 37 doi: 10.1186/s12917-019-2082-7 – ident: 30 doi: 10.1016/j.jhep.2013.02.022 – ident: 23 doi: 10.3389/fimmu.2017.00650 – ident: 15 doi: 10.4049/jimmunol.172.7.4100 – ident: 9 doi: 10.1186/1297-9716-42-103 – ident: 33 doi: 10.1002/hep.24249 – ident: 7 doi: 10.1002/iid3.173 – ident: 17 doi: 10.1371/journal.ppat.1000313 – ident: 22 doi: 10.1128/IAI.00278-16 – ident: 28 doi: 10.1128/IAI.00910-17 – ident: 11 doi: 10.1111/imm.12243 – ident: 38 doi: 10.1016/S1470-2045(09)70334-1 |
SSID | ssj0021469 |
Score | 2.3010528 |
Snippet | Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6 |
SubjectTerms | Animals Antibodies Antibodies, Monoclonal Antigens Apoptosis B7-H1 Antigen Cattle CD80 antigen CD86 antigen chimeric antibody CTLA-4 Antigen CTLA-4 protein cytotoxic T lymphocyte antigen 4 Cytotoxicity Immune response Immunology Interleukin 2 Leukocytes, Mononuclear Ligands Lymphocytes T Mice Monoclonal antibodies PD-1 protein PD-L1 protein Peripheral blood mononuclear cells Programmed Cell Death 1 Receptor programmed death-ligand 1 |
Title | Enhancement of interleukin-2 production by bovine peripheral blood mononuclear cells treated with the combination of anti-programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 chimeric monoclonal antibodies |
URI | https://www.jstage.jst.go.jp/article/jvms/84/1/84_21-0552/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/34789592 https://www.proquest.com/docview/2624693171 https://www.proquest.com/docview/2599074866 https://pubmed.ncbi.nlm.nih.gov/PMC8810316 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2022, Vol.84(1), pp.6-15 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqglAvCMorpVSDBCfksnYSJxFCCKFWBbScuqi3KHbsbkpI2n2g7i_l7zDjZCO2KhcuURSP5c3O53hmPP6GsVdmJLV1IuQafQEeGSl4oUzEo8hkYaazRBZ0OHn8TZ1Moi9n8dkWW1cb7f_A-a2uHdWTmszqw-ur1Qec8O89N0Im3178-jk_xEFGcYwf4zu4JiVUy2AcDfsJVL26Y90Tiie46vcp8Dd777B7YZSkWZzJjXXq7gWaauf2Niv0ZjLlX6vT8QN2vzcr4WOHg4dsyza7bPc75br4A7cw7vfQH7HfR82UVE1hQWgdEGHErLbLH1XDJVx2DLCoLdAr0BRvsEBsyJ5-oAaf6A6I3bYhJuRiBhT6n4NPWLclUFwX0KgERDI63V7vNAoqsOJ9Mhi-BpRkevK6Oi-aEgTQ1awW7aK9rgycQr1ClLX4xPqeiHKIwEwrv7_khzc1-RC-VbeUCvmYTY6PTj-d8L68AzfoQy24tgU6XyoVLoxMmLhyZKRzeGPjhDbEk0yiTS1SV5hCa-dcGWYCpZRJyjhLdfiEbePL2mcMXFgYkxSSyAcjp4hARxgrY6lwKbJCB-zNWpm56bnPqQRHnZMPhCjICQW5FDmhIGCvB-nLjvPjH3LvOlwMUv1s76TSKBd06aWHRjpOh9-kgO2vwZSvYZ9LJRGpaNOJgL0cmnHGky6LxrZLlIkzimikSgXsaYe94Qes0RuwZAOVgwCxiW-2NNXUs4qnKVX8UHv_3fM525F0NsTHp_bZ9mK2tC_QYlvoA_RVPn898FPyD7lpSx8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+interleukin-2+production+by+bovine+peripheral+blood+mononuclear+cells+treated+with+the+combination+of+anti-programmed+death-ligand+1+and+cytotoxic+T+lymphocyte+antigen+4+chimeric+monoclonal+antibodies&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=WATARI%2C+Kei&rft.au=KONNAI%2C+Satoru&rft.au=OKAGAWA%2C+Tomohiro&rft.au=MAEKAWA%2C+Naoya&rft.date=2022-01-01&rft.pub=The+Japanese+Society+of+Veterinary+Science&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=84&rft.issue=1&rft.spage=6&rft.epage=15&rft_id=info:doi/10.1292%2Fjvms.21-0552&rft_id=info%3Apmid%2F34789592&rft.externalDocID=PMC8810316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |