tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria
Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking contr...
Saved in:
Published in | PLoS computational biology Vol. 10; no. 2; p. e1003454 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.02.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny. |
---|---|
AbstractList | Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.
If gene products work well in the networks of foreign cells, their genes may transfer horizontally between unrelated genomes. What factors dictate the ability to integrate into foreign networks? Different RNAs and proteins must interact specifically in order to function well as a system. For example, tRNA functions are determined by the interactions they have with other macromolecules. We have developed ways to predict, from genomic data alone, how tRNAs distinguish themselves to their specific interaction partners. Here, as proof of concept, we built a robust computational model from these bioinformatic predictions in seven lineages of Alphaproteobacteria. We validated our model by classifying hundreds of diverse alphaproteobacterial taxa and tested it on eight strains of SAR11, a phylogenetically controversial group that is highly abundant in the world's oceans. We found that different strains of SAR11 are more distantly related, both to each other and to mitochondria, than widely believed. We explain conflicting results about SAR11 as an artifact of bias created by the variability in base contents of alphaproteobacterial genomes. While this bias affects tRNAs too, our classifier appears unexpectedly robust to it. More broadly, our results suggest that traits governing macromolecular interactions may be more faithfully vertically inherited than the macromolecules themselves. Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny. Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny. Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny. |
Audience | Academic |
Author | Swingley, Wesley D. Amrine, Katherine C. H. Ardell, David H. |
AuthorAffiliation | Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America The Centre for Research and Technology, Hellas, Greece |
AuthorAffiliation_xml | – name: The Centre for Research and Technology, Hellas, Greece – name: Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America |
Author_xml | – sequence: 1 givenname: Katherine C. H. surname: Amrine fullname: Amrine, Katherine C. H. – sequence: 2 givenname: Wesley D. surname: Swingley fullname: Swingley, Wesley D. – sequence: 3 givenname: David H. surname: Ardell fullname: Ardell, David H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24586126$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkltr2zAYhs3oWA_bPxibL9eLZJJ1sL2LQSg7BEo7ko1dis-K5CgolivJZfn3VQ4tzS4GwwgL6Xlf6fv0nmcnnetUlr3FaIxJiT-u3OA7sONeNmaMESKU0RfZGWaMjErCqpNn89PsPIRVYlhV81fZaUFZxXHBz7LfcXYzyeem7SAOXoV8pu4V2BzyH85u-uXGqmhkfutNa7rc6Xw-mWGcz6MH04Uc1q5r84ntl9B7F5VrQEblDbzOXmqwQb05_C-yX1-__Lz6Prq-_Ta9mlyPJEcsjpoa0VKiEgihWi00NFjLQlY1QQ0QaBBoWDBcyZprXChdUUmAEV1SWSawJhfZ-71vb10Qh54EgRkqK4JZWSZiuicWDlai92YNfiMcGLFbcL4V4FONVgmJOVUqDao55VXdaEVRxUlJAXFcVcnr8-G0oVmrhVRd6oM9Mj3e6cxStO5ekDo9GS6SwYeDgXd3gwpRrE2QylrolBt296aYUbI7a7xHW0hXM512yVGmb6HWRqYsaJPWJ4TXiBc1I0lweSRITFR_YgtDCGI6n_0He3PMvnte9FO1jyFKAN0D0rsQvNJPCEZim9XHdxHbrIpDVpPs018yaSJE47atM_bf4gexTfFF |
CitedBy_id | crossref_primary_10_1007_s00239_021_09995_z crossref_primary_10_1038_nmicrobiol_2017_91 crossref_primary_10_1016_j_tpb_2019_03_007 crossref_primary_10_1093_gbe_evv032 crossref_primary_10_1186_s12862_019_1552_7 crossref_primary_10_1186_s12864_016_3314_x |
Cites_doi | 10.1038/nature00917 10.2323/jgam.44.201 10.1093/nar/gkp967 10.1371/journal.pgen.1001115 10.1038/333117a0 10.1073/pnas.1019177108 10.1111/j.1558-5646.2012.01735.x 10.1093/nar/gkl739 10.1371/journal.pone.0024457 10.1128/mBio.00252-12 10.1128/JB.00269-07 10.1073/pnas.0804861105 10.1098/rspb.1994.0040 10.1007/PL00006571 10.1371/journal.pbio.0020069 10.1186/1471-2105-10-421 10.1111/j.0014-3820.2005.tb01813.x 10.1093/molbev/msr203 10.1261/rna.726010 10.1038/ismej.2009.97 10.1371/journal.pone.0078858 10.1186/1745-6150-4-34 10.1101/sqb.2001.66.185 10.1101/gr.9.8.689 10.1101/gr.111765.110 10.1093/molbev/msp259 10.1093/nar/gkn772 10.1016/S0092-8674(02)00665-7 10.1085/jgp.49.6.305 10.1093/bioinformatics/btm404 10.1093/molbev/msl202 10.1126/science.1068696 10.1093/oxfordjournals.molbev.a004046 10.1016/j.febslet.2009.11.084 10.1007/s00239-005-0094-3 10.1126/science.279.5357.1665 10.1073/pnas.90.19.8763 10.1093/nar/gkj478 10.1080/10635150802429642 10.1186/gb-2005-6-2-r14 10.1093/molbev/msq333 10.1371/journal.pone.0009490 10.1126/science.1114057 10.1093/nar/gkj449 10.1006/tpbi.2002.1593 10.1101/gr.849004 10.1126/science.1232455 10.1016/S0723-2020(11)80303-6 10.1038/nsmb.1498 10.1093/molbev/msg138 10.1099/ijs.0.64821-0 10.1371/journal.pone.0024857 10.1016/j.cell.2012.05.036 10.1093/nar/25.5.0955 10.1128/JB.01203-06 10.1093/nar/gkl622 10.1073/pnas.0804445105 10.1073/pnas.1116871109 10.1016/S0959-437X(98)80030-0 10.1038/nature01240 10.1093/nar/gkq1007 10.1074/jbc.X113.453894 10.1073/pnas.192449699 10.1021/bi035708f 10.1093/nar/gkh152 10.1093/nar/26.22.5017 10.1006/jtbi.1996.0168 10.1080/10635150490445779 10.1073/pnas.96.7.3801 10.1145/1656274.1656278 10.1073/pnas.0810961106 10.1093/nar/26.1.148 10.1371/journal.pone.0030520 10.1371/journal.pgen.1002053 10.1128/MMBR.64.1.202-236.2000 10.1093/nar/gkm393 10.1016/S0968-0004(97)01135-3 10.1371/journal.pgen.1002961 10.1038/srep00013 10.1016/S0966-842X(98)01312-2 10.1038/nrmicro2593 10.1016/j.bpj.2010.09.062 10.1007/978-94-009-4109-0 10.1093/nar/22.11.2079 10.1186/1471-2180-7-106 10.1101/gr.361602 10.1101/gr.6649807 10.1016/j.biochi.2007.07.013 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Amrine et al 2014 Amrine et al 2014 Amrine et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Amrine KCH, Swingley WD, Ardell DH (2014) tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria. PLoS Comput Biol 10(2): e1003454. doi:10.1371/journal.pcbi.1003454 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Amrine et al 2014 Amrine et al – notice: 2014 Amrine et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Amrine KCH, Swingley WD, Ardell DH (2014) tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria. PLoS Comput Biol 10(2): e1003454. doi:10.1371/journal.pcbi.1003454 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1003454 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | tRNA Signatures Reveal Multiple Origins of SAR11 |
EISSN | 1553-7358 |
ExternalDocumentID | 1507831577 oai_doaj_org_article_c164ee64e4f64689bfe4086374a06188 PMC3937112 A369062953 24586126 10_1371_journal_pcbi_1003454 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ PMFND 7X8 PJZUB PPXIY PQGLB 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M0N M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c605t-b9047c07a334fedfab1fc2c8930ba3ab0afad518c96f12ef84c3a53f74c7fc293 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:13:21 EST 2021 Wed Aug 27 01:19:18 EDT 2025 Thu Aug 21 18:45:33 EDT 2025 Mon Jul 21 10:55:46 EDT 2025 Tue Jun 10 20:28:54 EDT 2025 Fri Jun 27 04:45:56 EDT 2025 Fri Jun 27 04:11:21 EDT 2025 Thu Apr 03 07:06:11 EDT 2025 Tue Jul 01 03:07:55 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-b9047c07a334fedfab1fc2c8930ba3ab0afad518c96f12ef84c3a53f74c7fc293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: KCHA WDS DHA. Performed the experiments: KCHA WDS DHA. Analyzed the data: KCHA WDS DHA. Contributed reagents/materials/analysis tools: KCHA WDS DHA. Wrote the paper: KCHA WDS DHA. Current address: Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1003454 |
PMID | 24586126 |
PQID | 1504154388 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1507831577 doaj_primary_oai_doaj_org_article_c164ee64e4f64689bfe4086374a06188 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937112 proquest_miscellaneous_1504154388 gale_infotracacademiconefile_A369062953 gale_incontextgauss_ISR_A369062953 gale_incontextgauss_ISN_A369062953 pubmed_primary_24586126 crossref_primary_10_1371_journal_pcbi_1003454 crossref_citationtrail_10_1371_journal_pcbi_1003454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Wu (ref43) 2004; 2 A Sethi (ref40) 2009; 106 E Freyhult (ref38) 2007; 89 PG Foster (ref13) 2004; 53 P Schimmel (ref75) 1993; 90 D Laslett (ref79) 2004; 32 SA Connolly (ref93) 2004; 43 HB Fraser (ref23) 2002; 296 YI Wolf (ref29) 1999; 9 M Hall (ref46) 2009; 11 JE Stajich (ref83) 2002; 12 K Shiba (ref33) 1997; 22 EW Sayers (ref77) 2010; 38 CR Woese (ref30) 2000; 64 K Williams (ref6) 2007; 189 JR Brown (ref28) 1999; 49 MS Rappé (ref52) 2002; 418 E Roberts (ref70) 2008; 105 C de Duve (ref74) 1988; 333 S Winker (ref69) 1991; 14 K Chen (ref71) 2010; 99 ES Haag (ref68) 2005; 59 J Viklund (ref11) 2012; 29 ref50 B Brindefalk (ref54) 2006; 24 C Wang (ref19) 2007; 189 D Kuo (ref60) 2010; 20 J Viklund (ref12) 2013; 8 ref89 S Gribaldo (ref1) 2002; 61 ref47 GE Crooks (ref94) 2004; 14 M Gouy (ref84) 2010; 27 M Larkin (ref87) 2007; 23 SS Abby (ref26) 2012; 109 ref88 NA Moran (ref17) 2002; 108 A Stamatakis (ref90) 2008; 57 B Brindefalk (ref9) 2011; 6 Y Uchino (ref48) 1998; 44 JC Dohm (ref53) 2006; 63 SJ Giovannoni (ref5) 2005; 309 A Wolfson (ref34) 2001; 66 RS Gupta (ref44) 2007; 7 FJ Silva (ref81) 2006; 34 E Freyhult (ref36) 2006; 34 R Giegé (ref37) 1998; 26 DH Ardell (ref20) 2010; 584 DL Hartl (ref65) 1996; 182 J Widmann (ref51) 2010; 16 O Cohen (ref24) 2011; 28 JP Gogarten (ref2) 2002; 19 T Abe (ref41) 2011; 39 E Bapteste (ref3) 2009; 4 JB Losos (ref14) 2012; 338 C Dale (ref15) 2003; 20 P Lapierre (ref22) 2012 P Beltrao (ref63) 2012; 150 R Hershberg (ref16) 2010; 6 PA Lind (ref18) 2008; 105 A Dufresne (ref58) 2005; 6 M Bailly (ref39) 2006; 34 C Camacho (ref86) 2009; 10 JC Thrash (ref8) 2011; 1 J Gorodkin (ref45) 1997; 13 RM Morris (ref4) 2002; 420 K Bullaughey (ref67) 2012; 67 A Barrière (ref62) 2012; 8 DH Ardell (ref21) 2006; 34 J Grote (ref57) 2012; 3 BZ He (ref66) 2011; 7 R Giege (ref35) 2008; 15 F Jühling (ref85) 2009; 37 ref73 P Lengyel (ref72) 1966; 49 R Jain (ref25) 1999; 96 N Rodríguez-Ezpeleta (ref10) 2012; 7 R Giegé (ref76) 2013; 288 H Tåquist (ref80) 2007; 35 M Hamady (ref92) 2010; 4 K Georgiades (ref7) 2011; 6 M Bailly-Bechet (ref32) 2007; 17 CP Andam (ref31) 2011; 9 TM Lowe (ref78) 1997; 25 SG Andersson (ref55) 1998; 6 P Schuster (ref59) 1994; 255 H Biebl (ref49) 2007; 57 ME Saks (ref64) 1998; 279 M Sprinzl (ref42) 1998; 26 CR Baker (ref61) 2011; 108 RF Doolittle (ref27) 1998; 8 T Itoh (ref56) 2002; 99 SR Eddy (ref82) 1994; 22 MN Price (ref91) 2010; 5 12167360 - Theor Popul Biol. 2002 Jun;61(4):391-408 23289561 - Evolution. 2013 Jan;67(1):49-65 12167859 - Nature. 2002 Aug 8;418(6898):630-3 17182897 - Mol Biol Evol. 2007 Mar;24(3):743-56 20838599 - PLoS Genet. 2010 Sep;6(9):e1001115 5338560 - J Gen Physiol. 1966 Jul;49(6):305-30 16473847 - Nucleic Acids Res. 2006;34(3):893-904 14704338 - Nucleic Acids Res. 2004;32(1):11-6 12762021 - Cold Spring Harb Symp Quant Biol. 2001;66:185-93 19944694 - FEBS Lett. 2010 Jan 21;584(2):325-33 17074748 - Nucleic Acids Res. 2006;34(21):6083-94 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35 17766853 - Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):1952-5 20224823 - PLoS One. 2010;5(3):e9490 18045498 - BMC Microbiol. 2007;7:106 15024419 - PLoS Biol. 2004 Mar;2(3):E69 21957463 - PLoS One. 2011;6(9):e24857 17483224 - J Bacteriol. 2007 Jul;189(13):4578-86 9914200 - Curr Opin Genet Dev. 1998 Dec;8(6):630-6 17591612 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W350-3 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84 15173120 - Genome Res. 2004 Jun;14(6):1188-90 21498688 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7493-8 17889982 - Biochimie. 2007 Oct;89(10):1276-88 9475985 - Comput Appl Biosci. 1997 Dec;13(6):583-6 21149642 - Mol Biol Evol. 2011 Apr;28(4):1481-9 21156135 - Biophys J. 2010 Dec 15;99(12):3930-40 20558546 - RNA. 2010 Aug;16(8):1469-77 22991429 - MBio. 2012;3(5). pii: e00252-12. doi: 10.1128/mBio.00252-12 18853362 - Syst Biol. 2008 Oct;57(5):758-71 15693943 - Genome Biol. 2005;6(2):R14 18768810 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13953-8 20978140 - Genome Res. 2010 Dec;20(12):1672-8 17172343 - J Bacteriol. 2007 Mar;189(5):1954-62 19001264 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16 12501429 - J Gen Appl Microbiol. 1998 Jun;44(3):201-210 21900598 - Mol Biol Evol. 2012 Feb;29(2):599-615 11976460 - Science. 2002 Apr 26;296(5568):750-2 23028368 - PLoS Genet. 2012 Sep;8(9):e1002961 12490947 - Nature. 2002 Dec 19-26;420(6917):806-10 22355532 - Sci Rep. 2011;1:13 16473848 - Nucleic Acids Res. 2006;34(3):905-16 10097118 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6 9433122 - Trends Biochem Sci. 1997 Dec;22(12):453-7 11893328 - Cell. 2002 Mar 8;108(5):583-6 7692438 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8 17473266 - Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1095-107 10486006 - J Mol Evol. 1999 Oct;49(4):485-95 12368254 - Genome Res. 2002 Oct;12(10):1611-8 19351898 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3 8029015 - Nucleic Acids Res. 1994 Jun 11;22(11):2079-88 22291975 - PLoS One. 2012;7(1):e30520 19710709 - ISME J. 2010 Jan;4(1):17-27 22908214 - Brief Bioinform. 2014 Jan;15(1):79-90 21666709 - Nat Rev Microbiol. 2011 Jul;9(7):543-55 11540071 - Syst Appl Microbiol. 1991;14(4):305-10 15503675 - Syst Biol. 2004 Jun;53(3):485-95 9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64 21572512 - PLoS Genet. 2011 Apr;7(4):e1002053 17785533 - Genome Res. 2007 Oct;17(10):1486-95 17071718 - Nucleic Acids Res. 2006;34(20):6015-22 22817900 - Cell. 2012 Jul 20;150(2):413-25 23239723 - Science. 2012 Dec 14;338(6113):1428-9 10704480 - Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36 22416123 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4962-7 12235368 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12944-8 14744140 - Biochemistry. 2004 Feb 3;43(4):962-9 9497276 - Science. 1998 Mar 13;279(5357):1665-70 24223857 - PLoS One. 2013;8(11):e78858 9717214 - Trends Microbiol. 1998 Jul;6(7):263-8 3367984 - Nature. 1988 May 12;333(6169):117-8 8944162 - J Theor Biol. 1996 Oct 7;182(3):303-9 23325807 - J Biol Chem. 2013 Mar 1;288(9):6679-87 12777518 - Mol Biol Evol. 2003 Aug;20(8):1188-94 16109880 - Science. 2005 Aug 19;309(5738):1242-5 20003500 - BMC Bioinformatics. 2009;10:421 12446813 - Mol Biol Evol. 2002 Dec;19(12):2226-38 18957446 - Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62 10447505 - Genome Res. 1999 Aug;9(8):689-710 18836497 - Nat Struct Mol Biol. 2008 Oct;15(10):1007-14 19788731 - Biol Direct. 2009;4:34 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53 16955236 - J Mol Evol. 2006 Oct;63(4):437-47 21935411 - PLoS One. 2011;6(9):e24457 16329236 - Evolution. 2005 Aug;59(8):1620-32 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
References_xml | – volume: 418 start-page: 630 year: 2002 ident: ref52 article-title: Cultivation of the ubiquitous SAR11 marine bacterioplankton clade publication-title: Nature doi: 10.1038/nature00917 – volume: 44 start-page: 201 year: 1998 ident: ref48 article-title: Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev publication-title: The Journal of General and Applied Microbiology doi: 10.2323/jgam.44.201 – volume: 38 start-page: D5 year: 2010 ident: ref77 article-title: Database resources of the National Center for Biotechnology Information publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp967 – volume: 6 year: 2010 ident: ref16 article-title: Evidence that mutation is universally biased towards AT in bacteria publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001115 – volume: 333 start-page: 117 year: 1988 ident: ref74 article-title: The second genetic code publication-title: Nature doi: 10.1038/333117a0 – ident: ref89 – volume: 108 start-page: 7493 year: 2011 ident: ref61 article-title: Extensive DNA-binding specificity divergence of a conserved transcription regulator publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1019177108 – volume: 67 start-page: 49 year: 2012 ident: ref67 article-title: Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation publication-title: Evolution doi: 10.1111/j.1558-5646.2012.01735.x – volume: 34 start-page: 6015 year: 2006 ident: ref81 article-title: Differential annotation of tRNA genes with anticodon CAT in bacterial genomes publication-title: Nucleic Acids Research doi: 10.1093/nar/gkl739 – volume: 6 start-page: e24457 year: 2011 ident: ref9 article-title: A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade publication-title: PLoS ONE doi: 10.1371/journal.pone.0024457 – volume: 3 year: 2012 ident: ref57 article-title: Streamlining and core genome conservation among highly divergent members of the sar11 clade publication-title: mBio doi: 10.1128/mBio.00252-12 – volume: 189 start-page: 4578 year: 2007 ident: ref6 article-title: A robust species tree for the alphaproteobacteria publication-title: J Bacteriol doi: 10.1128/JB.00269-07 – volume: 105 start-page: 13953 year: 2008 ident: ref70 article-title: Molecular signatures of ribosomal evolution publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0804861105 – volume: 255 start-page: 279 year: 1994 ident: ref59 article-title: From sequences to shapes and back: a case study in RNA secondary structures publication-title: Proc Biol Sci doi: 10.1098/rspb.1994.0040 – volume: 49 start-page: 485 year: 1999 ident: ref28 article-title: Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases publication-title: J Mol Evol doi: 10.1007/PL00006571 – volume: 2 start-page: e69 year: 2004 ident: ref43 article-title: Phylogenomics of the reproductive parasite wolbachia pipientis wmel: A streamlined genome overrun by mobile genetic elements publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020069 – volume: 10 start-page: 421 year: 2009 ident: ref86 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 59 start-page: 1620 year: 2005 ident: ref68 article-title: Compensatory evolution of interacting gene products through multifunctional intermediates publication-title: Evolution doi: 10.1111/j.0014-3820.2005.tb01813.x – volume: 29 start-page: 599 year: 2012 ident: ref11 article-title: Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade publication-title: Mol Biol Evol doi: 10.1093/molbev/msr203 – volume: 16 start-page: 1469 year: 2010 ident: ref51 article-title: Stable tRNA-based phylogenies using only 76 nucleotides publication-title: RNA doi: 10.1261/rna.726010 – volume: 4 start-page: 17 year: 2010 ident: ref92 article-title: Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data publication-title: The ISME Journal doi: 10.1038/ismej.2009.97 – volume: 8 start-page: e78858 year: 2013 ident: ref12 article-title: Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade publication-title: PLoS ONE doi: 10.1371/journal.pone.0078858 – volume: 4 start-page: 34 year: 2009 ident: ref3 article-title: Prokaryotic evolution and the tree of life are two different things publication-title: Biol Direct doi: 10.1186/1745-6150-4-34 – volume: 66 start-page: 185 year: 2001 ident: ref34 article-title: tRNA conformity publication-title: Cold Spring Harbor Symposia on Quantitative Biology doi: 10.1101/sqb.2001.66.185 – volume: 9 start-page: 689 year: 1999 ident: ref29 article-title: Evolution of aminoacyl-tRNA synthetases– analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events publication-title: Genome Res doi: 10.1101/gr.9.8.689 – volume: 20 start-page: 1672 year: 2010 ident: ref60 article-title: Coevolution within a transcriptional network by compensatory trans and cis mutations publication-title: Genome Res doi: 10.1101/gr.111765.110 – volume: 27 start-page: 221 year: 2010 ident: ref84 article-title: Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msp259 – volume: 37 start-page: D159 year: 2009 ident: ref85 article-title: tRNAdb 2009: compilation of tRNA sequences and tRNA genes publication-title: Nucleic acids research doi: 10.1093/nar/gkn772 – volume: 108 start-page: 583 year: 2002 ident: ref17 article-title: Microbial minimalism: genome reduction in bacterial pathogens publication-title: Cell doi: 10.1016/S0092-8674(02)00665-7 – volume: 49 start-page: 305 year: 1966 ident: ref72 article-title: Problems in protein biosynthesis publication-title: J Gen Physiol doi: 10.1085/jgp.49.6.305 – volume: 23 start-page: 2947 year: 2007 ident: ref87 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 24 start-page: 743 year: 2006 ident: ref54 article-title: Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases publication-title: Mol Biol Evol doi: 10.1093/molbev/msl202 – volume: 296 start-page: 750 year: 2002 ident: ref23 article-title: Evolutionary rate in the protein interaction network publication-title: Science doi: 10.1126/science.1068696 – start-page: 1 year: 2012 ident: ref22 article-title: The impact of HGT on phylogenomic reconstruction methods publication-title: Briefings in Bioinformatics – volume: 19 start-page: 2226 year: 2002 ident: ref2 article-title: Prokaryotic evolution in light of gene transfer publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a004046 – volume: 584 start-page: 325 year: 2010 ident: ref20 article-title: Computational analysis of tRNA identity publication-title: FEBS Lett doi: 10.1016/j.febslet.2009.11.084 – ident: ref50 – ident: ref47 – volume: 63 start-page: 437 year: 2006 ident: ref53 article-title: Horizontal gene transfer in aminoacyl-tRNA synthetases including leucine-specific subtypes publication-title: Journal of Molecular Evolution doi: 10.1007/s00239-005-0094-3 – volume: 279 start-page: 1665 year: 1998 ident: ref64 article-title: Evolution of a transfer RNA gene through a point mutation in the anticodon publication-title: Science doi: 10.1126/science.279.5357.1665 – volume: 90 start-page: 8763 year: 1993 ident: ref75 article-title: An operational RNA code for amino acids and possible relationship to genetic code publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.90.19.8763 – volume: 34 start-page: 905 year: 2006 ident: ref36 article-title: Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos publication-title: Nucleic Acids Research doi: 10.1093/nar/gkj478 – volume: 57 start-page: 758 year: 2008 ident: ref90 article-title: A rapid bootstrap algorithm for the RAxML web servers publication-title: Systematic Biology doi: 10.1080/10635150802429642 – volume: 6 start-page: R14 year: 2005 ident: ref58 article-title: Accelerated evolution associated with genome reduction in a free-living prokaryote publication-title: Genome Biol doi: 10.1186/gb-2005-6-2-r14 – volume: 13 start-page: 583 year: 1997 ident: ref45 article-title: Displaying the information contents of structural RNA alignments: the structure logos publication-title: Computer Applications In the Biosciences : CABIOS – volume: 28 start-page: 1481 year: 2011 ident: ref24 article-title: The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer publication-title: Mol Biol Evol doi: 10.1093/molbev/msq333 – volume: 5 start-page: e9490 year: 2010 ident: ref91 article-title: Fasttree 2 – approximately maximum-likelihood trees for large alignments publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – volume: 309 start-page: 1242 year: 2005 ident: ref5 article-title: Genome streamlining in a cosmopolitan oceanic bacterium publication-title: Science doi: 10.1126/science.1114057 – volume: 34 start-page: 893 year: 2006 ident: ref21 article-title: TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj449 – volume: 61 start-page: 391 year: 2002 ident: ref1 article-title: Ancient phylogenetic relationships publication-title: Theor Popul Biol doi: 10.1006/tpbi.2002.1593 – volume: 14 start-page: 1188 year: 2004 ident: ref94 article-title: WebLogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 338 start-page: 1428 year: 2012 ident: ref14 article-title: Who speaks with a forked tongue publication-title: Science doi: 10.1126/science.1232455 – volume: 14 start-page: 305 year: 1991 ident: ref69 article-title: A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics publication-title: Systematic and Applied Microbiology doi: 10.1016/S0723-2020(11)80303-6 – volume: 15 start-page: 1007 year: 2008 ident: ref35 article-title: Toward a more complete view of tRNA biology publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1498 – volume: 20 start-page: 1188 year: 2003 ident: ref15 article-title: Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration publication-title: Mol Biol Evol doi: 10.1093/molbev/msg138 – volume: 57 start-page: 1095 year: 2007 ident: ref49 article-title: Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense publication-title: International Journal of Systematic and Evolutionary Microbiology doi: 10.1099/ijs.0.64821-0 – volume: 6 start-page: e24857 year: 2011 ident: ref7 article-title: Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion publication-title: PLoS ONE doi: 10.1371/journal.pone.0024857 – volume: 150 start-page: 413 year: 2012 ident: ref63 article-title: Systematic functional prioritization of protein posttranslational modifications publication-title: Cell doi: 10.1016/j.cell.2012.05.036 – volume: 25 start-page: 955 year: 1997 ident: ref78 article-title: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence publication-title: Nucleic Acids Res doi: 10.1093/nar/25.5.0955 – volume: 189 start-page: 1954 year: 2007 ident: ref19 article-title: Loss of a Universal tRNA Feature publication-title: J Bacteriol doi: 10.1128/JB.01203-06 – volume: 34 start-page: 6083 year: 2006 ident: ref39 article-title: A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl622 – volume: 105 start-page: 17878 year: 2008 ident: ref18 article-title: Whole-genome mutational biases in bacteria publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0804445105 – volume: 109 start-page: 4962 year: 2012 ident: ref26 article-title: Lateral gene transfer as a support for the tree of life publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1116871109 – volume: 8 start-page: 630 year: 1998 ident: ref27 article-title: Evolutionary anomalies among the aminoacyl-tRNA synthetases publication-title: Current opinion in genetics & development doi: 10.1016/S0959-437X(98)80030-0 – volume: 420 start-page: 806 year: 2002 ident: ref4 article-title: SAR 11 clade dominates ocean surface bacterioplankton communities publication-title: Nature doi: 10.1038/nature01240 – volume: 39 start-page: D210 year: 2011 ident: ref41 article-title: tRNADB-CE 2011: tRNA gene database curated manually by experts publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq1007 – volume: 288 start-page: 6679 year: 2013 ident: ref76 article-title: Fifty years excitement with science: Recollections with and without tRNA publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.X113.453894 – volume: 99 start-page: 12944 year: 2002 ident: ref56 article-title: Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.192449699 – volume: 43 start-page: 962 year: 2004 ident: ref93 article-title: G1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase publication-title: Biochemistry doi: 10.1021/bi035708f – volume: 32 start-page: 11 year: 2004 ident: ref79 article-title: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences publication-title: Nucleic Acids Research doi: 10.1093/nar/gkh152 – volume: 26 start-page: 5017 year: 1998 ident: ref37 article-title: Universal rules and idiosyncratic features in tRNA identity publication-title: Nucleic Acids Res doi: 10.1093/nar/26.22.5017 – volume: 182 start-page: 303 year: 1996 ident: ref65 article-title: Compensatory nearly neutral mutations: selection without adaptation publication-title: Journal of Theoretical Biology doi: 10.1006/jtbi.1996.0168 – volume: 53 start-page: 485 year: 2004 ident: ref13 article-title: Modeling compositional heterogeneity publication-title: Systematic Biology doi: 10.1080/10635150490445779 – volume: 96 start-page: 3801 year: 1999 ident: ref25 article-title: Horizontal gene transfer among genomes: the complexity hypothesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.7.3801 – volume: 11 start-page: 10 year: 2009 ident: ref46 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explor Newsl doi: 10.1145/1656274.1656278 – volume: 106 start-page: 6620 year: 2009 ident: ref40 article-title: Dynamical networks in tRNA:protein complexes publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0810961106 – volume: 26 start-page: 148 year: 1998 ident: ref42 article-title: Compilation of tRNA sequences and sequences of tRNA genes publication-title: Nucleic Acids Research doi: 10.1093/nar/26.1.148 – volume: 7 start-page: e30520 year: 2012 ident: ref10 article-title: The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria publication-title: PLoS ONE doi: 10.1371/journal.pone.0030520 – volume: 7 start-page: e1002053 year: 2011 ident: ref66 article-title: Does positive selection drive transcription factor binding site turnover? a test with drosophila cis-regulatory modules publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002053 – ident: ref73 – volume: 64 start-page: 202 year: 2000 ident: ref30 article-title: Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.64.1.202-236.2000 – volume: 35 start-page: W350 year: 2007 ident: ref80 article-title: TFAM 1.0: an online tRNA function classifier publication-title: Nucleic Acids Research doi: 10.1093/nar/gkm393 – volume: 22 start-page: 453 year: 1997 ident: ref33 article-title: Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains publication-title: Trends in biochemical sciences doi: 10.1016/S0968-0004(97)01135-3 – volume: 8 start-page: e1002961 year: 2012 ident: ref62 article-title: Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002961 – volume: 1 year: 2011 ident: ref8 article-title: Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade publication-title: Sci Rep doi: 10.1038/srep00013 – volume: 6 start-page: 263 year: 1998 ident: ref55 article-title: Reductive evolution of resident genomes publication-title: Trends in microbiology doi: 10.1016/S0966-842X(98)01312-2 – volume: 9 start-page: 543 year: 2011 ident: ref31 article-title: Biased gene transfer in microbial evolution publication-title: Nat Rev Micro doi: 10.1038/nrmicro2593 – volume: 99 start-page: 3930 year: 2010 ident: ref71 article-title: Functional role of ribosomal signatures publication-title: Biophys J doi: 10.1016/j.bpj.2010.09.062 – ident: ref88 doi: 10.1007/978-94-009-4109-0 – volume: 22 start-page: 2079 year: 1994 ident: ref82 article-title: RNA sequence analysis using covariance models publication-title: Nucleic Acids Research doi: 10.1093/nar/22.11.2079 – volume: 7 start-page: 106 year: 2007 ident: ref44 article-title: Phylogenomics and signature proteins for the alpha proteobacteria and its main groups publication-title: BMC Microbiol doi: 10.1186/1471-2180-7-106 – volume: 12 start-page: 1611 year: 2002 ident: ref83 article-title: The Bioperl toolkit: Perl modules for the life sciences publication-title: Genome Res doi: 10.1101/gr.361602 – volume: 17 start-page: 1486 year: 2007 ident: ref32 article-title: Causes for the intriguing presence of tRNAs in phages publication-title: Genome Res doi: 10.1101/gr.6649807 – volume: 89 start-page: 1276 year: 2007 ident: ref38 article-title: New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria publication-title: Biochimie doi: 10.1016/j.biochi.2007.07.013 – reference: 16955236 - J Mol Evol. 2006 Oct;63(4):437-47 – reference: 11893328 - Cell. 2002 Mar 8;108(5):583-6 – reference: 21957463 - PLoS One. 2011;6(9):e24857 – reference: 19001264 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83 – reference: 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84 – reference: 17766853 - Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):1952-5 – reference: 21666709 - Nat Rev Microbiol. 2011 Jul;9(7):543-55 – reference: 20003500 - BMC Bioinformatics. 2009;10:421 – reference: 23289561 - Evolution. 2013 Jan;67(1):49-65 – reference: 18957446 - Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62 – reference: 19710709 - ISME J. 2010 Jan;4(1):17-27 – reference: 12368254 - Genome Res. 2002 Oct;12(10):1611-8 – reference: 9475985 - Comput Appl Biosci. 1997 Dec;13(6):583-6 – reference: 22991429 - MBio. 2012;3(5). pii: e00252-12. doi: 10.1128/mBio.00252-12 – reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4 – reference: 21498688 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7493-8 – reference: 17172343 - J Bacteriol. 2007 Mar;189(5):1954-62 – reference: 24223857 - PLoS One. 2013;8(11):e78858 – reference: 16473848 - Nucleic Acids Res. 2006;34(3):905-16 – reference: 20978140 - Genome Res. 2010 Dec;20(12):1672-8 – reference: 17889982 - Biochimie. 2007 Oct;89(10):1276-88 – reference: 17182897 - Mol Biol Evol. 2007 Mar;24(3):743-56 – reference: 20838599 - PLoS Genet. 2010 Sep;6(9):e1001115 – reference: 12777518 - Mol Biol Evol. 2003 Aug;20(8):1188-94 – reference: 18768810 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13953-8 – reference: 17785533 - Genome Res. 2007 Oct;17(10):1486-95 – reference: 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35 – reference: 3367984 - Nature. 1988 May 12;333(6169):117-8 – reference: 16329236 - Evolution. 2005 Aug;59(8):1620-32 – reference: 17591612 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W350-3 – reference: 16109880 - Science. 2005 Aug 19;309(5738):1242-5 – reference: 15693943 - Genome Biol. 2005;6(2):R14 – reference: 23239723 - Science. 2012 Dec 14;338(6113):1428-9 – reference: 23325807 - J Biol Chem. 2013 Mar 1;288(9):6679-87 – reference: 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53 – reference: 19944694 - FEBS Lett. 2010 Jan 21;584(2):325-33 – reference: 9717214 - Trends Microbiol. 1998 Jul;6(7):263-8 – reference: 12235368 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12944-8 – reference: 10704480 - Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36 – reference: 22416123 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4962-7 – reference: 21156135 - Biophys J. 2010 Dec 15;99(12):3930-40 – reference: 9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64 – reference: 14744140 - Biochemistry. 2004 Feb 3;43(4):962-9 – reference: 8944162 - J Theor Biol. 1996 Oct 7;182(3):303-9 – reference: 17473266 - Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1095-107 – reference: 17483224 - J Bacteriol. 2007 Jul;189(13):4578-86 – reference: 18045498 - BMC Microbiol. 2007;7:106 – reference: 10486006 - J Mol Evol. 1999 Oct;49(4):485-95 – reference: 14704338 - Nucleic Acids Res. 2004;32(1):11-6 – reference: 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3 – reference: 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16 – reference: 23028368 - PLoS Genet. 2012 Sep;8(9):e1002961 – reference: 21935411 - PLoS One. 2011;6(9):e24457 – reference: 20224823 - PLoS One. 2010;5(3):e9490 – reference: 11976460 - Science. 2002 Apr 26;296(5568):750-2 – reference: 10447505 - Genome Res. 1999 Aug;9(8):689-710 – reference: 12762021 - Cold Spring Harb Symp Quant Biol. 2001;66:185-93 – reference: 17071718 - Nucleic Acids Res. 2006;34(20):6015-22 – reference: 17074748 - Nucleic Acids Res. 2006;34(21):6083-94 – reference: 22291975 - PLoS One. 2012;7(1):e30520 – reference: 9433122 - Trends Biochem Sci. 1997 Dec;22(12):453-7 – reference: 22908214 - Brief Bioinform. 2014 Jan;15(1):79-90 – reference: 10097118 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6 – reference: 21149642 - Mol Biol Evol. 2011 Apr;28(4):1481-9 – reference: 19788731 - Biol Direct. 2009;4:34 – reference: 5338560 - J Gen Physiol. 1966 Jul;49(6):305-30 – reference: 15024419 - PLoS Biol. 2004 Mar;2(3):E69 – reference: 22817900 - Cell. 2012 Jul 20;150(2):413-25 – reference: 12167859 - Nature. 2002 Aug 8;418(6898):630-3 – reference: 11540071 - Syst Appl Microbiol. 1991;14(4):305-10 – reference: 20558546 - RNA. 2010 Aug;16(8):1469-77 – reference: 21900598 - Mol Biol Evol. 2012 Feb;29(2):599-615 – reference: 12490947 - Nature. 2002 Dec 19-26;420(6917):806-10 – reference: 12501429 - J Gen Appl Microbiol. 1998 Jun;44(3):201-210 – reference: 9497276 - Science. 1998 Mar 13;279(5357):1665-70 – reference: 7692438 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8 – reference: 9914200 - Curr Opin Genet Dev. 1998 Dec;8(6):630-6 – reference: 12167360 - Theor Popul Biol. 2002 Jun;61(4):391-408 – reference: 21572512 - PLoS Genet. 2011 Apr;7(4):e1002053 – reference: 18836497 - Nat Struct Mol Biol. 2008 Oct;15(10):1007-14 – reference: 16473847 - Nucleic Acids Res. 2006;34(3):893-904 – reference: 18853362 - Syst Biol. 2008 Oct;57(5):758-71 – reference: 19351898 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5 – reference: 12446813 - Mol Biol Evol. 2002 Dec;19(12):2226-38 – reference: 22355532 - Sci Rep. 2011;1:13 – reference: 15503675 - Syst Biol. 2004 Jun;53(3):485-95 – reference: 8029015 - Nucleic Acids Res. 1994 Jun 11;22(11):2079-88 – reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90 – reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 |
SSID | ssj0035896 |
Score | 2.1198206 |
Snippet | Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions.... Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions.... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003454 |
SubjectTerms | Alphaproteobacteria - classification Alphaproteobacteria - genetics Aminoacyl-tRNA synthetases Bacterial Proteins - genetics Bias Biology Computational Biology Evolution Evolution, Molecular Gene Regulatory Networks Gene Transfer, Horizontal Genes Genome, Bacterial Genomics Mitochondrial DNA Models, Genetic Phylogenetics Phylogeny Physiological aspects Rhodospirillales - classification Rhodospirillales - genetics RNA, Bacterial - genetics RNA, Transfer - genetics Transfer RNA |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJSQuiO_t8iGDkDiFTTLj2jkWxGpBoocuK3qzbK8NK1VJRdrD_nvGdlptEGgvHHJJXqR4Zpx5lsdvGHtbCkVJo4LCN6Yu4oqhMB6hKNEZbCSYkHQLvi5mZxf4ZSVWN1p9xZqwLA-cDXfiiM97TxfSWzPV2OCRaDhINJSKVDrmSzlvv5jK_2AQKnXmik1xCgm4Gg7NgaxOBh-93zh7FWsEAAWOklLS7j_8oSebddf_jX7-WUV5Iy2dPmD3Bz7J53kcD9kd3z5id3OHyevH7Pt2uZjzWKSRBDx7HhWbCG_4pltfk4mj9rbjuT0W7wI_ny-rivepc0TPUysins7jJkEHmvxJ3Nk8YRenn759PCuGXgqFowXLtrBNidKV0gBg8JfB2Cq42hFbKa0BY0sTzKWolGtmoap9UOjACAgSnSRgA0_ZpO1af8S4RPSm8TLY4NBasEI5RV7x5PTaNW7KYG9M7Qah8fjVa512zyQtOLJtdHSBHlwwZcXhrU0W2rgF_yH66YCNMtnpBgWPHoJH3xY8U_YmellHIYw2Vtr8MLu-15_PF3oOScK5EfBP0HIEejeAQkeDdWY43UAmiwJbI-RRDKn9oHodKbmCSkg5Za_3YaZplsetG9P6bpcwxLQQ4ic_y2F3GHmNQhFPnU2ZHAXkyDTjJ-3Vz6QkntQQq_r4f9jyObtHZBJzRfsLNtn-2vmXRNi29lWam78BOyQ9SA priority: 102 providerName: Directory of Open Access Journals |
Title | tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24586126 https://www.proquest.com/docview/1504154388 https://pubmed.ncbi.nlm.nih.gov/PMC3937112 https://doaj.org/article/c164ee64e4f64689bfe4086374a06188 http://dx.doi.org/10.1371/journal.pcbi.1003454 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_1PoI2BntysS0pkh_GcLZm3aBhpAvLm5BUqSsEO4sTWP77nWQ7zKNle4iD7bMtne6sO0v6_RB6kzABnUZKYpurLPYZQ6wsJXFCjaI5J8oF3ILz6ehsTr8s2OIAdZytrQLrG1M7zyc1Xy9Pfv3cvQeHfxdYG3jaXXSyMvraj_oTyughOoK-iXtXPaf7cQXCRGDs8mQ5MYe9djHdbXfpdVYB03__5h6sllV9U1j69-zKP7qryX10r40zcdEYxgN0YMuH6E7DPLl7hL5vZtMC-8kbAdizxh7JCeQVXlXLHajeY3Ib3NBm4crhi2KWprgOjBI1DhRFOKzTDUAP8FIIoM_qMZpPTr99OItbjoXYQCKziXWeUG4Srgihzl46pVNnMgNRTKIVUTpRTl2yVJh85NLMOkENUYw4Tg0HwZw8QYOyKu0xwpxSq3LLnXaGak00E0Y4Sy0YQ2ZyEyHSKVOaFoDcl3opw6gah0Sk0Y30TSDbJohQvL9q1QBw_EN-7NtpL-vhs8OBan0lW2-UBpJEa-FHwRRHItdQTMjtCKcK4hshIvTat7L0ABmln4FzpbZ1LT9fTGVBArRzzsitQrOe0NtWyFVQWaPaVQ-gMg-81ZM89ibVVaqWPlQXJGWcR-hVZ2YSvN8P6ajSVtsgAxEYJb7ITxuz29c8o0xA_DqKEO8ZZE81_TPl9Y-AMB5QEtPs2X889zm6CzEkbSayv0CDzXprX0KcttFDdMgXHLZi8mmIjorxx_EE_sen06-zYfj2MQzO-Rs-JUMU |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=tRNA+signatures+reveal+a+polyphyletic+origin+of+SAR11+strains+among+alphaproteobacteria&rft.jtitle=PLoS+computational+biology&rft.au=Amrine%2C+Katherine+C+H&rft.au=Swingley%2C+Wesley+D&rft.au=Ardell%2C+David+H&rft.date=2014-02-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=10&rft.issue=2&rft.spage=e1003454&rft_id=info:doi/10.1371%2Fjournal.pcbi.1003454&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |