tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria

Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking contr...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 10; no. 2; p. e1003454
Main Authors Amrine, Katherine C. H., Swingley, Wesley D., Ardell, David H.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.
AbstractList Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny. If gene products work well in the networks of foreign cells, their genes may transfer horizontally between unrelated genomes. What factors dictate the ability to integrate into foreign networks? Different RNAs and proteins must interact specifically in order to function well as a system. For example, tRNA functions are determined by the interactions they have with other macromolecules. We have developed ways to predict, from genomic data alone, how tRNAs distinguish themselves to their specific interaction partners. Here, as proof of concept, we built a robust computational model from these bioinformatic predictions in seven lineages of Alphaproteobacteria. We validated our model by classifying hundreds of diverse alphaproteobacterial taxa and tested it on eight strains of SAR11, a phylogenetically controversial group that is highly abundant in the world's oceans. We found that different strains of SAR11 are more distantly related, both to each other and to mitochondria, than widely believed. We explain conflicting results about SAR11 as an artifact of bias created by the variability in base contents of alphaproteobacterial genomes. While this bias affects tRNAs too, our classifier appears unexpectedly robust to it. More broadly, our results suggest that traits governing macromolecular interactions may be more faithfully vertically inherited than the macromolecules themselves.
Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.
Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.
  Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions. Extensive variation in size, structure and base composition of alphaproteobacterial genomes has complicated their phylogenomics, sparking controversy over the origins and closest relatives of the SAR11 strains. SAR11 are highly abundant, cosmopolitan aquatic Alphaproteobacteria with streamlined, A+T-biased genomes. A dominant view holds that SAR11 are monophyletic and related to both Rickettsiales and the ancestor of mitochondria. Other studies dispute this, finding evidence of a polyphyletic origin of SAR11 with most strains distantly related to Rickettsiales. Although careful evolutionary modeling can reduce bias and noise in phylogenomic inference, entirely different approaches may be useful to extract robust phylogenetic signals from genomes. Here we develop simple phyloclassifiers from bioinformatically derived tRNA Class-Informative Features (CIFs), features predicted to target tRNAs for specific interactions within the tRNA interaction network. Our tRNA CIF-based model robustly and accurately classifies alphaproteobacterial genomes into one of seven undisputed monophyletic orders or families, despite great variability in tRNA gene complement sizes and base compositions. Our model robustly rejects monophyly of SAR11, classifying all but one strain as Rhizobiales with strong statistical support. Yet remarkably, conventional phylogenetic analysis of tRNAs classifies all SAR11 strains identically as Rickettsiales. We attribute this discrepancy to convergence of SAR11 and Rickettsiales tRNA base compositions. Thus, tRNA CIFs appear more robust to compositional convergence than tRNA sequences generally. Our results suggest that tRNA-CIF-based phyloclassification is robust to HGT of components of the tRNA interaction network, such as aminoacyl-tRNA synthetases. We explain why tRNAs are especially advantageous for prediction of traits governing macromolecular interactions from genomic data, and why such traits may be advantageous in the search for robust signals to address difficult problems in classification and phylogeny.
Audience Academic
Author Swingley, Wesley D.
Amrine, Katherine C. H.
Ardell, David H.
AuthorAffiliation Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
The Centre for Research and Technology, Hellas, Greece
AuthorAffiliation_xml – name: The Centre for Research and Technology, Hellas, Greece
– name: Program in Quantitative and Systems Biology, University of California, Merced, Merced, California, United States of America
Author_xml – sequence: 1
  givenname: Katherine C. H.
  surname: Amrine
  fullname: Amrine, Katherine C. H.
– sequence: 2
  givenname: Wesley D.
  surname: Swingley
  fullname: Swingley, Wesley D.
– sequence: 3
  givenname: David H.
  surname: Ardell
  fullname: Ardell, David H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24586126$$D View this record in MEDLINE/PubMed
BookMark eNqVkltr2zAYhs3oWA_bPxibL9eLZJJ1sL2LQSg7BEo7ko1dis-K5CgolivJZfn3VQ4tzS4GwwgL6Xlf6fv0nmcnnetUlr3FaIxJiT-u3OA7sONeNmaMESKU0RfZGWaMjErCqpNn89PsPIRVYlhV81fZaUFZxXHBz7LfcXYzyeem7SAOXoV8pu4V2BzyH85u-uXGqmhkfutNa7rc6Xw-mWGcz6MH04Uc1q5r84ntl9B7F5VrQEblDbzOXmqwQb05_C-yX1-__Lz6Prq-_Ta9mlyPJEcsjpoa0VKiEgihWi00NFjLQlY1QQ0QaBBoWDBcyZprXChdUUmAEV1SWSawJhfZ-71vb10Qh54EgRkqK4JZWSZiuicWDlai92YNfiMcGLFbcL4V4FONVgmJOVUqDao55VXdaEVRxUlJAXFcVcnr8-G0oVmrhVRd6oM9Mj3e6cxStO5ekDo9GS6SwYeDgXd3gwpRrE2QylrolBt296aYUbI7a7xHW0hXM512yVGmb6HWRqYsaJPWJ4TXiBc1I0lweSRITFR_YgtDCGI6n_0He3PMvnte9FO1jyFKAN0D0rsQvNJPCEZim9XHdxHbrIpDVpPs018yaSJE47atM_bf4gexTfFF
CitedBy_id crossref_primary_10_1007_s00239_021_09995_z
crossref_primary_10_1038_nmicrobiol_2017_91
crossref_primary_10_1016_j_tpb_2019_03_007
crossref_primary_10_1093_gbe_evv032
crossref_primary_10_1186_s12862_019_1552_7
crossref_primary_10_1186_s12864_016_3314_x
Cites_doi 10.1038/nature00917
10.2323/jgam.44.201
10.1093/nar/gkp967
10.1371/journal.pgen.1001115
10.1038/333117a0
10.1073/pnas.1019177108
10.1111/j.1558-5646.2012.01735.x
10.1093/nar/gkl739
10.1371/journal.pone.0024457
10.1128/mBio.00252-12
10.1128/JB.00269-07
10.1073/pnas.0804861105
10.1098/rspb.1994.0040
10.1007/PL00006571
10.1371/journal.pbio.0020069
10.1186/1471-2105-10-421
10.1111/j.0014-3820.2005.tb01813.x
10.1093/molbev/msr203
10.1261/rna.726010
10.1038/ismej.2009.97
10.1371/journal.pone.0078858
10.1186/1745-6150-4-34
10.1101/sqb.2001.66.185
10.1101/gr.9.8.689
10.1101/gr.111765.110
10.1093/molbev/msp259
10.1093/nar/gkn772
10.1016/S0092-8674(02)00665-7
10.1085/jgp.49.6.305
10.1093/bioinformatics/btm404
10.1093/molbev/msl202
10.1126/science.1068696
10.1093/oxfordjournals.molbev.a004046
10.1016/j.febslet.2009.11.084
10.1007/s00239-005-0094-3
10.1126/science.279.5357.1665
10.1073/pnas.90.19.8763
10.1093/nar/gkj478
10.1080/10635150802429642
10.1186/gb-2005-6-2-r14
10.1093/molbev/msq333
10.1371/journal.pone.0009490
10.1126/science.1114057
10.1093/nar/gkj449
10.1006/tpbi.2002.1593
10.1101/gr.849004
10.1126/science.1232455
10.1016/S0723-2020(11)80303-6
10.1038/nsmb.1498
10.1093/molbev/msg138
10.1099/ijs.0.64821-0
10.1371/journal.pone.0024857
10.1016/j.cell.2012.05.036
10.1093/nar/25.5.0955
10.1128/JB.01203-06
10.1093/nar/gkl622
10.1073/pnas.0804445105
10.1073/pnas.1116871109
10.1016/S0959-437X(98)80030-0
10.1038/nature01240
10.1093/nar/gkq1007
10.1074/jbc.X113.453894
10.1073/pnas.192449699
10.1021/bi035708f
10.1093/nar/gkh152
10.1093/nar/26.22.5017
10.1006/jtbi.1996.0168
10.1080/10635150490445779
10.1073/pnas.96.7.3801
10.1145/1656274.1656278
10.1073/pnas.0810961106
10.1093/nar/26.1.148
10.1371/journal.pone.0030520
10.1371/journal.pgen.1002053
10.1128/MMBR.64.1.202-236.2000
10.1093/nar/gkm393
10.1016/S0968-0004(97)01135-3
10.1371/journal.pgen.1002961
10.1038/srep00013
10.1016/S0966-842X(98)01312-2
10.1038/nrmicro2593
10.1016/j.bpj.2010.09.062
10.1007/978-94-009-4109-0
10.1093/nar/22.11.2079
10.1186/1471-2180-7-106
10.1101/gr.361602
10.1101/gr.6649807
10.1016/j.biochi.2007.07.013
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Amrine et al 2014 Amrine et al
2014 Amrine et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Amrine KCH, Swingley WD, Ardell DH (2014) tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria. PLoS Comput Biol 10(2): e1003454. doi:10.1371/journal.pcbi.1003454
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Amrine et al 2014 Amrine et al
– notice: 2014 Amrine et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Amrine KCH, Swingley WD, Ardell DH (2014) tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria. PLoS Comput Biol 10(2): e1003454. doi:10.1371/journal.pcbi.1003454
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1003454
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate tRNA Signatures Reveal Multiple Origins of SAR11
EISSN 1553-7358
ExternalDocumentID 1507831577
oai_doaj_org_article_c164ee64e4f64689bfe4086374a06188
PMC3937112
A369062953
24586126
10_1371_journal_pcbi_1003454
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
RIG
RZL
WOQ
PMFND
7X8
PJZUB
PPXIY
PQGLB
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M0N
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c605t-b9047c07a334fedfab1fc2c8930ba3ab0afad518c96f12ef84c3a53f74c7fc293
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:13:21 EST 2021
Wed Aug 27 01:19:18 EDT 2025
Thu Aug 21 18:45:33 EDT 2025
Mon Jul 21 10:55:46 EDT 2025
Tue Jun 10 20:28:54 EDT 2025
Fri Jun 27 04:45:56 EDT 2025
Fri Jun 27 04:11:21 EDT 2025
Thu Apr 03 07:06:11 EDT 2025
Tue Jul 01 03:07:55 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-b9047c07a334fedfab1fc2c8930ba3ab0afad518c96f12ef84c3a53f74c7fc293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: KCHA WDS DHA. Performed the experiments: KCHA WDS DHA. Analyzed the data: KCHA WDS DHA. Contributed reagents/materials/analysis tools: KCHA WDS DHA. Wrote the paper: KCHA WDS DHA.
Current address: Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1003454
PMID 24586126
PQID 1504154388
PQPubID 23479
ParticipantIDs plos_journals_1507831577
doaj_primary_oai_doaj_org_article_c164ee64e4f64689bfe4086374a06188
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3937112
proquest_miscellaneous_1504154388
gale_infotracacademiconefile_A369062953
gale_incontextgauss_ISR_A369062953
gale_incontextgauss_ISN_A369062953
pubmed_primary_24586126
crossref_primary_10_1371_journal_pcbi_1003454
crossref_citationtrail_10_1371_journal_pcbi_1003454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Wu (ref43) 2004; 2
A Sethi (ref40) 2009; 106
E Freyhult (ref38) 2007; 89
PG Foster (ref13) 2004; 53
P Schimmel (ref75) 1993; 90
D Laslett (ref79) 2004; 32
SA Connolly (ref93) 2004; 43
HB Fraser (ref23) 2002; 296
YI Wolf (ref29) 1999; 9
M Hall (ref46) 2009; 11
JE Stajich (ref83) 2002; 12
K Shiba (ref33) 1997; 22
EW Sayers (ref77) 2010; 38
CR Woese (ref30) 2000; 64
K Williams (ref6) 2007; 189
JR Brown (ref28) 1999; 49
MS Rappé (ref52) 2002; 418
E Roberts (ref70) 2008; 105
C de Duve (ref74) 1988; 333
S Winker (ref69) 1991; 14
K Chen (ref71) 2010; 99
ES Haag (ref68) 2005; 59
J Viklund (ref11) 2012; 29
ref50
B Brindefalk (ref54) 2006; 24
C Wang (ref19) 2007; 189
D Kuo (ref60) 2010; 20
J Viklund (ref12) 2013; 8
ref89
S Gribaldo (ref1) 2002; 61
ref47
GE Crooks (ref94) 2004; 14
M Gouy (ref84) 2010; 27
M Larkin (ref87) 2007; 23
SS Abby (ref26) 2012; 109
ref88
NA Moran (ref17) 2002; 108
A Stamatakis (ref90) 2008; 57
B Brindefalk (ref9) 2011; 6
Y Uchino (ref48) 1998; 44
JC Dohm (ref53) 2006; 63
SJ Giovannoni (ref5) 2005; 309
A Wolfson (ref34) 2001; 66
RS Gupta (ref44) 2007; 7
FJ Silva (ref81) 2006; 34
E Freyhult (ref36) 2006; 34
R Giegé (ref37) 1998; 26
DH Ardell (ref20) 2010; 584
DL Hartl (ref65) 1996; 182
J Widmann (ref51) 2010; 16
O Cohen (ref24) 2011; 28
JP Gogarten (ref2) 2002; 19
T Abe (ref41) 2011; 39
E Bapteste (ref3) 2009; 4
JB Losos (ref14) 2012; 338
C Dale (ref15) 2003; 20
P Lapierre (ref22) 2012
P Beltrao (ref63) 2012; 150
R Hershberg (ref16) 2010; 6
PA Lind (ref18) 2008; 105
A Dufresne (ref58) 2005; 6
M Bailly (ref39) 2006; 34
C Camacho (ref86) 2009; 10
JC Thrash (ref8) 2011; 1
J Gorodkin (ref45) 1997; 13
RM Morris (ref4) 2002; 420
K Bullaughey (ref67) 2012; 67
A Barrière (ref62) 2012; 8
DH Ardell (ref21) 2006; 34
J Grote (ref57) 2012; 3
BZ He (ref66) 2011; 7
R Giege (ref35) 2008; 15
F Jühling (ref85) 2009; 37
ref73
P Lengyel (ref72) 1966; 49
R Jain (ref25) 1999; 96
N Rodríguez-Ezpeleta (ref10) 2012; 7
R Giegé (ref76) 2013; 288
H Tåquist (ref80) 2007; 35
M Hamady (ref92) 2010; 4
K Georgiades (ref7) 2011; 6
M Bailly-Bechet (ref32) 2007; 17
CP Andam (ref31) 2011; 9
TM Lowe (ref78) 1997; 25
SG Andersson (ref55) 1998; 6
P Schuster (ref59) 1994; 255
H Biebl (ref49) 2007; 57
ME Saks (ref64) 1998; 279
M Sprinzl (ref42) 1998; 26
CR Baker (ref61) 2011; 108
RF Doolittle (ref27) 1998; 8
T Itoh (ref56) 2002; 99
SR Eddy (ref82) 1994; 22
MN Price (ref91) 2010; 5
12167360 - Theor Popul Biol. 2002 Jun;61(4):391-408
23289561 - Evolution. 2013 Jan;67(1):49-65
12167859 - Nature. 2002 Aug 8;418(6898):630-3
17182897 - Mol Biol Evol. 2007 Mar;24(3):743-56
20838599 - PLoS Genet. 2010 Sep;6(9):e1001115
5338560 - J Gen Physiol. 1966 Jul;49(6):305-30
16473847 - Nucleic Acids Res. 2006;34(3):893-904
14704338 - Nucleic Acids Res. 2004;32(1):11-6
12762021 - Cold Spring Harb Symp Quant Biol. 2001;66:185-93
19944694 - FEBS Lett. 2010 Jan 21;584(2):325-33
17074748 - Nucleic Acids Res. 2006;34(21):6083-94
9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35
17766853 - Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):1952-5
20224823 - PLoS One. 2010;5(3):e9490
18045498 - BMC Microbiol. 2007;7:106
15024419 - PLoS Biol. 2004 Mar;2(3):E69
21957463 - PLoS One. 2011;6(9):e24857
17483224 - J Bacteriol. 2007 Jul;189(13):4578-86
9914200 - Curr Opin Genet Dev. 1998 Dec;8(6):630-6
17591612 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W350-3
7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84
15173120 - Genome Res. 2004 Jun;14(6):1188-90
21498688 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7493-8
17889982 - Biochimie. 2007 Oct;89(10):1276-88
9475985 - Comput Appl Biosci. 1997 Dec;13(6):583-6
21149642 - Mol Biol Evol. 2011 Apr;28(4):1481-9
21156135 - Biophys J. 2010 Dec 15;99(12):3930-40
20558546 - RNA. 2010 Aug;16(8):1469-77
22991429 - MBio. 2012;3(5). pii: e00252-12. doi: 10.1128/mBio.00252-12
18853362 - Syst Biol. 2008 Oct;57(5):758-71
15693943 - Genome Biol. 2005;6(2):R14
18768810 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13953-8
20978140 - Genome Res. 2010 Dec;20(12):1672-8
17172343 - J Bacteriol. 2007 Mar;189(5):1954-62
19001264 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83
19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16
12501429 - J Gen Appl Microbiol. 1998 Jun;44(3):201-210
21900598 - Mol Biol Evol. 2012 Feb;29(2):599-615
11976460 - Science. 2002 Apr 26;296(5568):750-2
23028368 - PLoS Genet. 2012 Sep;8(9):e1002961
12490947 - Nature. 2002 Dec 19-26;420(6917):806-10
22355532 - Sci Rep. 2011;1:13
16473848 - Nucleic Acids Res. 2006;34(3):905-16
10097118 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6
9433122 - Trends Biochem Sci. 1997 Dec;22(12):453-7
11893328 - Cell. 2002 Mar 8;108(5):583-6
7692438 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8
17473266 - Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1095-107
10486006 - J Mol Evol. 1999 Oct;49(4):485-95
12368254 - Genome Res. 2002 Oct;12(10):1611-8
19351898 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5
21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3
8029015 - Nucleic Acids Res. 1994 Jun 11;22(11):2079-88
22291975 - PLoS One. 2012;7(1):e30520
19710709 - ISME J. 2010 Jan;4(1):17-27
22908214 - Brief Bioinform. 2014 Jan;15(1):79-90
21666709 - Nat Rev Microbiol. 2011 Jul;9(7):543-55
11540071 - Syst Appl Microbiol. 1991;14(4):305-10
15503675 - Syst Biol. 2004 Jun;53(3):485-95
9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64
21572512 - PLoS Genet. 2011 Apr;7(4):e1002053
17785533 - Genome Res. 2007 Oct;17(10):1486-95
17071718 - Nucleic Acids Res. 2006;34(20):6015-22
22817900 - Cell. 2012 Jul 20;150(2):413-25
23239723 - Science. 2012 Dec 14;338(6113):1428-9
10704480 - Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36
22416123 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4962-7
12235368 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12944-8
14744140 - Biochemistry. 2004 Feb 3;43(4):962-9
9497276 - Science. 1998 Mar 13;279(5357):1665-70
24223857 - PLoS One. 2013;8(11):e78858
9717214 - Trends Microbiol. 1998 Jul;6(7):263-8
3367984 - Nature. 1988 May 12;333(6169):117-8
8944162 - J Theor Biol. 1996 Oct 7;182(3):303-9
23325807 - J Biol Chem. 2013 Mar 1;288(9):6679-87
12777518 - Mol Biol Evol. 2003 Aug;20(8):1188-94
16109880 - Science. 2005 Aug 19;309(5738):1242-5
20003500 - BMC Bioinformatics. 2009;10:421
12446813 - Mol Biol Evol. 2002 Dec;19(12):2226-38
18957446 - Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62
10447505 - Genome Res. 1999 Aug;9(8):689-710
18836497 - Nat Struct Mol Biol. 2008 Oct;15(10):1007-14
19788731 - Biol Direct. 2009;4:34
9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53
16955236 - J Mol Evol. 2006 Oct;63(4):437-47
21935411 - PLoS One. 2011;6(9):e24457
16329236 - Evolution. 2005 Aug;59(8):1620-32
17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
References_xml – volume: 418
  start-page: 630
  year: 2002
  ident: ref52
  article-title: Cultivation of the ubiquitous SAR11 marine bacterioplankton clade
  publication-title: Nature
  doi: 10.1038/nature00917
– volume: 44
  start-page: 201
  year: 1998
  ident: ref48
  article-title: Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev
  publication-title: The Journal of General and Applied Microbiology
  doi: 10.2323/jgam.44.201
– volume: 38
  start-page: D5
  year: 2010
  ident: ref77
  article-title: Database resources of the National Center for Biotechnology Information
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp967
– volume: 6
  year: 2010
  ident: ref16
  article-title: Evidence that mutation is universally biased towards AT in bacteria
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001115
– volume: 333
  start-page: 117
  year: 1988
  ident: ref74
  article-title: The second genetic code
  publication-title: Nature
  doi: 10.1038/333117a0
– ident: ref89
– volume: 108
  start-page: 7493
  year: 2011
  ident: ref61
  article-title: Extensive DNA-binding specificity divergence of a conserved transcription regulator
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1019177108
– volume: 67
  start-page: 49
  year: 2012
  ident: ref67
  article-title: Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2012.01735.x
– volume: 34
  start-page: 6015
  year: 2006
  ident: ref81
  article-title: Differential annotation of tRNA genes with anticodon CAT in bacterial genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkl739
– volume: 6
  start-page: e24457
  year: 2011
  ident: ref9
  article-title: A Phylometagenomic Exploration of Oceanic Alphaproteobacteria Reveals Mitochondrial Relatives Unrelated to the SAR11 Clade
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024457
– volume: 3
  year: 2012
  ident: ref57
  article-title: Streamlining and core genome conservation among highly divergent members of the sar11 clade
  publication-title: mBio
  doi: 10.1128/mBio.00252-12
– volume: 189
  start-page: 4578
  year: 2007
  ident: ref6
  article-title: A robust species tree for the alphaproteobacteria
  publication-title: J Bacteriol
  doi: 10.1128/JB.00269-07
– volume: 105
  start-page: 13953
  year: 2008
  ident: ref70
  article-title: Molecular signatures of ribosomal evolution
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0804861105
– volume: 255
  start-page: 279
  year: 1994
  ident: ref59
  article-title: From sequences to shapes and back: a case study in RNA secondary structures
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.1994.0040
– volume: 49
  start-page: 485
  year: 1999
  ident: ref28
  article-title: Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases
  publication-title: J Mol Evol
  doi: 10.1007/PL00006571
– volume: 2
  start-page: e69
  year: 2004
  ident: ref43
  article-title: Phylogenomics of the reproductive parasite wolbachia pipientis wmel: A streamlined genome overrun by mobile genetic elements
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020069
– volume: 10
  start-page: 421
  year: 2009
  ident: ref86
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 59
  start-page: 1620
  year: 2005
  ident: ref68
  article-title: Compensatory evolution of interacting gene products through multifunctional intermediates
  publication-title: Evolution
  doi: 10.1111/j.0014-3820.2005.tb01813.x
– volume: 29
  start-page: 599
  year: 2012
  ident: ref11
  article-title: Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr203
– volume: 16
  start-page: 1469
  year: 2010
  ident: ref51
  article-title: Stable tRNA-based phylogenies using only 76 nucleotides
  publication-title: RNA
  doi: 10.1261/rna.726010
– volume: 4
  start-page: 17
  year: 2010
  ident: ref92
  article-title: Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data
  publication-title: The ISME Journal
  doi: 10.1038/ismej.2009.97
– volume: 8
  start-page: e78858
  year: 2013
  ident: ref12
  article-title: Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078858
– volume: 4
  start-page: 34
  year: 2009
  ident: ref3
  article-title: Prokaryotic evolution and the tree of life are two different things
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-4-34
– volume: 66
  start-page: 185
  year: 2001
  ident: ref34
  article-title: tRNA conformity
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
  doi: 10.1101/sqb.2001.66.185
– volume: 9
  start-page: 689
  year: 1999
  ident: ref29
  article-title: Evolution of aminoacyl-tRNA synthetases– analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events
  publication-title: Genome Res
  doi: 10.1101/gr.9.8.689
– volume: 20
  start-page: 1672
  year: 2010
  ident: ref60
  article-title: Coevolution within a transcriptional network by compensatory trans and cis mutations
  publication-title: Genome Res
  doi: 10.1101/gr.111765.110
– volume: 27
  start-page: 221
  year: 2010
  ident: ref84
  article-title: Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msp259
– volume: 37
  start-page: D159
  year: 2009
  ident: ref85
  article-title: tRNAdb 2009: compilation of tRNA sequences and tRNA genes
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkn772
– volume: 108
  start-page: 583
  year: 2002
  ident: ref17
  article-title: Microbial minimalism: genome reduction in bacterial pathogens
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00665-7
– volume: 49
  start-page: 305
  year: 1966
  ident: ref72
  article-title: Problems in protein biosynthesis
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.49.6.305
– volume: 23
  start-page: 2947
  year: 2007
  ident: ref87
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 24
  start-page: 743
  year: 2006
  ident: ref54
  article-title: Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msl202
– volume: 296
  start-page: 750
  year: 2002
  ident: ref23
  article-title: Evolutionary rate in the protein interaction network
  publication-title: Science
  doi: 10.1126/science.1068696
– start-page: 1
  year: 2012
  ident: ref22
  article-title: The impact of HGT on phylogenomic reconstruction methods
  publication-title: Briefings in Bioinformatics
– volume: 19
  start-page: 2226
  year: 2002
  ident: ref2
  article-title: Prokaryotic evolution in light of gene transfer
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a004046
– volume: 584
  start-page: 325
  year: 2010
  ident: ref20
  article-title: Computational analysis of tRNA identity
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.11.084
– ident: ref50
– ident: ref47
– volume: 63
  start-page: 437
  year: 2006
  ident: ref53
  article-title: Horizontal gene transfer in aminoacyl-tRNA synthetases including leucine-specific subtypes
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/s00239-005-0094-3
– volume: 279
  start-page: 1665
  year: 1998
  ident: ref64
  article-title: Evolution of a transfer RNA gene through a point mutation in the anticodon
  publication-title: Science
  doi: 10.1126/science.279.5357.1665
– volume: 90
  start-page: 8763
  year: 1993
  ident: ref75
  article-title: An operational RNA code for amino acids and possible relationship to genetic code
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.90.19.8763
– volume: 34
  start-page: 905
  year: 2006
  ident: ref36
  article-title: Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkj478
– volume: 57
  start-page: 758
  year: 2008
  ident: ref90
  article-title: A rapid bootstrap algorithm for the RAxML web servers
  publication-title: Systematic Biology
  doi: 10.1080/10635150802429642
– volume: 6
  start-page: R14
  year: 2005
  ident: ref58
  article-title: Accelerated evolution associated with genome reduction in a free-living prokaryote
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-2-r14
– volume: 13
  start-page: 583
  year: 1997
  ident: ref45
  article-title: Displaying the information contents of structural RNA alignments: the structure logos
  publication-title: Computer Applications In the Biosciences : CABIOS
– volume: 28
  start-page: 1481
  year: 2011
  ident: ref24
  article-title: The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msq333
– volume: 5
  start-page: e9490
  year: 2010
  ident: ref91
  article-title: Fasttree 2 – approximately maximum-likelihood trees for large alignments
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– volume: 309
  start-page: 1242
  year: 2005
  ident: ref5
  article-title: Genome streamlining in a cosmopolitan oceanic bacterium
  publication-title: Science
  doi: 10.1126/science.1114057
– volume: 34
  start-page: 893
  year: 2006
  ident: ref21
  article-title: TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj449
– volume: 61
  start-page: 391
  year: 2002
  ident: ref1
  article-title: Ancient phylogenetic relationships
  publication-title: Theor Popul Biol
  doi: 10.1006/tpbi.2002.1593
– volume: 14
  start-page: 1188
  year: 2004
  ident: ref94
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 338
  start-page: 1428
  year: 2012
  ident: ref14
  article-title: Who speaks with a forked tongue
  publication-title: Science
  doi: 10.1126/science.1232455
– volume: 14
  start-page: 305
  year: 1991
  ident: ref69
  article-title: A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics
  publication-title: Systematic and Applied Microbiology
  doi: 10.1016/S0723-2020(11)80303-6
– volume: 15
  start-page: 1007
  year: 2008
  ident: ref35
  article-title: Toward a more complete view of tRNA biology
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1498
– volume: 20
  start-page: 1188
  year: 2003
  ident: ref15
  article-title: Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msg138
– volume: 57
  start-page: 1095
  year: 2007
  ident: ref49
  article-title: Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense
  publication-title: International Journal of Systematic and Evolutionary Microbiology
  doi: 10.1099/ijs.0.64821-0
– volume: 6
  start-page: e24857
  year: 2011
  ident: ref7
  article-title: Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024857
– volume: 150
  start-page: 413
  year: 2012
  ident: ref63
  article-title: Systematic functional prioritization of protein posttranslational modifications
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.036
– volume: 25
  start-page: 955
  year: 1997
  ident: ref78
  article-title: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.5.0955
– volume: 189
  start-page: 1954
  year: 2007
  ident: ref19
  article-title: Loss of a Universal tRNA Feature
  publication-title: J Bacteriol
  doi: 10.1128/JB.01203-06
– volume: 34
  start-page: 6083
  year: 2006
  ident: ref39
  article-title: A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl622
– volume: 105
  start-page: 17878
  year: 2008
  ident: ref18
  article-title: Whole-genome mutational biases in bacteria
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0804445105
– volume: 109
  start-page: 4962
  year: 2012
  ident: ref26
  article-title: Lateral gene transfer as a support for the tree of life
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1116871109
– volume: 8
  start-page: 630
  year: 1998
  ident: ref27
  article-title: Evolutionary anomalies among the aminoacyl-tRNA synthetases
  publication-title: Current opinion in genetics & development
  doi: 10.1016/S0959-437X(98)80030-0
– volume: 420
  start-page: 806
  year: 2002
  ident: ref4
  article-title: SAR 11 clade dominates ocean surface bacterioplankton communities
  publication-title: Nature
  doi: 10.1038/nature01240
– volume: 39
  start-page: D210
  year: 2011
  ident: ref41
  article-title: tRNADB-CE 2011: tRNA gene database curated manually by experts
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq1007
– volume: 288
  start-page: 6679
  year: 2013
  ident: ref76
  article-title: Fifty years excitement with science: Recollections with and without tRNA
  publication-title: Journal of Biological Chemistry
  doi: 10.1074/jbc.X113.453894
– volume: 99
  start-page: 12944
  year: 2002
  ident: ref56
  article-title: Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.192449699
– volume: 43
  start-page: 962
  year: 2004
  ident: ref93
  article-title: G1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase
  publication-title: Biochemistry
  doi: 10.1021/bi035708f
– volume: 32
  start-page: 11
  year: 2004
  ident: ref79
  article-title: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkh152
– volume: 26
  start-page: 5017
  year: 1998
  ident: ref37
  article-title: Universal rules and idiosyncratic features in tRNA identity
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.22.5017
– volume: 182
  start-page: 303
  year: 1996
  ident: ref65
  article-title: Compensatory nearly neutral mutations: selection without adaptation
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.1996.0168
– volume: 53
  start-page: 485
  year: 2004
  ident: ref13
  article-title: Modeling compositional heterogeneity
  publication-title: Systematic Biology
  doi: 10.1080/10635150490445779
– volume: 96
  start-page: 3801
  year: 1999
  ident: ref25
  article-title: Horizontal gene transfer among genomes: the complexity hypothesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.7.3801
– volume: 11
  start-page: 10
  year: 2009
  ident: ref46
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor Newsl
  doi: 10.1145/1656274.1656278
– volume: 106
  start-page: 6620
  year: 2009
  ident: ref40
  article-title: Dynamical networks in tRNA:protein complexes
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0810961106
– volume: 26
  start-page: 148
  year: 1998
  ident: ref42
  article-title: Compilation of tRNA sequences and sequences of tRNA genes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/26.1.148
– volume: 7
  start-page: e30520
  year: 2012
  ident: ref10
  article-title: The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030520
– volume: 7
  start-page: e1002053
  year: 2011
  ident: ref66
  article-title: Does positive selection drive transcription factor binding site turnover? a test with drosophila cis-regulatory modules
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002053
– ident: ref73
– volume: 64
  start-page: 202
  year: 2000
  ident: ref30
  article-title: Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.64.1.202-236.2000
– volume: 35
  start-page: W350
  year: 2007
  ident: ref80
  article-title: TFAM 1.0: an online tRNA function classifier
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkm393
– volume: 22
  start-page: 453
  year: 1997
  ident: ref33
  article-title: Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains
  publication-title: Trends in biochemical sciences
  doi: 10.1016/S0968-0004(97)01135-3
– volume: 8
  start-page: e1002961
  year: 2012
  ident: ref62
  article-title: Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002961
– volume: 1
  year: 2011
  ident: ref8
  article-title: Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade
  publication-title: Sci Rep
  doi: 10.1038/srep00013
– volume: 6
  start-page: 263
  year: 1998
  ident: ref55
  article-title: Reductive evolution of resident genomes
  publication-title: Trends in microbiology
  doi: 10.1016/S0966-842X(98)01312-2
– volume: 9
  start-page: 543
  year: 2011
  ident: ref31
  article-title: Biased gene transfer in microbial evolution
  publication-title: Nat Rev Micro
  doi: 10.1038/nrmicro2593
– volume: 99
  start-page: 3930
  year: 2010
  ident: ref71
  article-title: Functional role of ribosomal signatures
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2010.09.062
– ident: ref88
  doi: 10.1007/978-94-009-4109-0
– volume: 22
  start-page: 2079
  year: 1994
  ident: ref82
  article-title: RNA sequence analysis using covariance models
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/22.11.2079
– volume: 7
  start-page: 106
  year: 2007
  ident: ref44
  article-title: Phylogenomics and signature proteins for the alpha proteobacteria and its main groups
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-7-106
– volume: 12
  start-page: 1611
  year: 2002
  ident: ref83
  article-title: The Bioperl toolkit: Perl modules for the life sciences
  publication-title: Genome Res
  doi: 10.1101/gr.361602
– volume: 17
  start-page: 1486
  year: 2007
  ident: ref32
  article-title: Causes for the intriguing presence of tRNAs in phages
  publication-title: Genome Res
  doi: 10.1101/gr.6649807
– volume: 89
  start-page: 1276
  year: 2007
  ident: ref38
  article-title: New computational methods reveal tRNA identity element divergence between Proteobacteria and Cyanobacteria
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2007.07.013
– reference: 16955236 - J Mol Evol. 2006 Oct;63(4):437-47
– reference: 11893328 - Cell. 2002 Mar 8;108(5):583-6
– reference: 21957463 - PLoS One. 2011;6(9):e24857
– reference: 19001264 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83
– reference: 7517565 - Proc Biol Sci. 1994 Mar 22;255(1344):279-84
– reference: 17766853 - Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):1952-5
– reference: 21666709 - Nat Rev Microbiol. 2011 Jul;9(7):543-55
– reference: 20003500 - BMC Bioinformatics. 2009;10:421
– reference: 23289561 - Evolution. 2013 Jan;67(1):49-65
– reference: 18957446 - Nucleic Acids Res. 2009 Jan;37(Database issue):D159-62
– reference: 19710709 - ISME J. 2010 Jan;4(1):17-27
– reference: 12368254 - Genome Res. 2002 Oct;12(10):1611-8
– reference: 9475985 - Comput Appl Biosci. 1997 Dec;13(6):583-6
– reference: 22991429 - MBio. 2012;3(5). pii: e00252-12. doi: 10.1128/mBio.00252-12
– reference: 19854763 - Mol Biol Evol. 2010 Feb;27(2):221-4
– reference: 21498688 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7493-8
– reference: 17172343 - J Bacteriol. 2007 Mar;189(5):1954-62
– reference: 24223857 - PLoS One. 2013;8(11):e78858
– reference: 16473848 - Nucleic Acids Res. 2006;34(3):905-16
– reference: 20978140 - Genome Res. 2010 Dec;20(12):1672-8
– reference: 17889982 - Biochimie. 2007 Oct;89(10):1276-88
– reference: 17182897 - Mol Biol Evol. 2007 Mar;24(3):743-56
– reference: 20838599 - PLoS Genet. 2010 Sep;6(9):e1001115
– reference: 12777518 - Mol Biol Evol. 2003 Aug;20(8):1188-94
– reference: 18768810 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13953-8
– reference: 17785533 - Genome Res. 2007 Oct;17(10):1486-95
– reference: 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35
– reference: 3367984 - Nature. 1988 May 12;333(6169):117-8
– reference: 16329236 - Evolution. 2005 Aug;59(8):1620-32
– reference: 17591612 - Nucleic Acids Res. 2007 Jul;35(Web Server issue):W350-3
– reference: 16109880 - Science. 2005 Aug 19;309(5738):1242-5
– reference: 15693943 - Genome Biol. 2005;6(2):R14
– reference: 23239723 - Science. 2012 Dec 14;338(6113):1428-9
– reference: 23325807 - J Biol Chem. 2013 Mar 1;288(9):6679-87
– reference: 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53
– reference: 19944694 - FEBS Lett. 2010 Jan 21;584(2):325-33
– reference: 9717214 - Trends Microbiol. 1998 Jul;6(7):263-8
– reference: 12235368 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12944-8
– reference: 10704480 - Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36
– reference: 22416123 - Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4962-7
– reference: 21156135 - Biophys J. 2010 Dec 15;99(12):3930-40
– reference: 9023104 - Nucleic Acids Res. 1997 Mar 1;25(5):955-64
– reference: 14744140 - Biochemistry. 2004 Feb 3;43(4):962-9
– reference: 8944162 - J Theor Biol. 1996 Oct 7;182(3):303-9
– reference: 17473266 - Int J Syst Evol Microbiol. 2007 May;57(Pt 5):1095-107
– reference: 17483224 - J Bacteriol. 2007 Jul;189(13):4578-86
– reference: 18045498 - BMC Microbiol. 2007;7:106
– reference: 10486006 - J Mol Evol. 1999 Oct;49(4):485-95
– reference: 14704338 - Nucleic Acids Res. 2004;32(1):11-6
– reference: 21071414 - Nucleic Acids Res. 2011 Jan;39(Database issue):D210-3
– reference: 19910364 - Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16
– reference: 23028368 - PLoS Genet. 2012 Sep;8(9):e1002961
– reference: 21935411 - PLoS One. 2011;6(9):e24457
– reference: 20224823 - PLoS One. 2010;5(3):e9490
– reference: 11976460 - Science. 2002 Apr 26;296(5568):750-2
– reference: 10447505 - Genome Res. 1999 Aug;9(8):689-710
– reference: 12762021 - Cold Spring Harb Symp Quant Biol. 2001;66:185-93
– reference: 17071718 - Nucleic Acids Res. 2006;34(20):6015-22
– reference: 17074748 - Nucleic Acids Res. 2006;34(21):6083-94
– reference: 22291975 - PLoS One. 2012;7(1):e30520
– reference: 9433122 - Trends Biochem Sci. 1997 Dec;22(12):453-7
– reference: 22908214 - Brief Bioinform. 2014 Jan;15(1):79-90
– reference: 10097118 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801-6
– reference: 21149642 - Mol Biol Evol. 2011 Apr;28(4):1481-9
– reference: 19788731 - Biol Direct. 2009;4:34
– reference: 5338560 - J Gen Physiol. 1966 Jul;49(6):305-30
– reference: 15024419 - PLoS Biol. 2004 Mar;2(3):E69
– reference: 22817900 - Cell. 2012 Jul 20;150(2):413-25
– reference: 12167859 - Nature. 2002 Aug 8;418(6898):630-3
– reference: 11540071 - Syst Appl Microbiol. 1991;14(4):305-10
– reference: 20558546 - RNA. 2010 Aug;16(8):1469-77
– reference: 21900598 - Mol Biol Evol. 2012 Feb;29(2):599-615
– reference: 12490947 - Nature. 2002 Dec 19-26;420(6917):806-10
– reference: 12501429 - J Gen Appl Microbiol. 1998 Jun;44(3):201-210
– reference: 9497276 - Science. 1998 Mar 13;279(5357):1665-70
– reference: 7692438 - Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8
– reference: 9914200 - Curr Opin Genet Dev. 1998 Dec;8(6):630-6
– reference: 12167360 - Theor Popul Biol. 2002 Jun;61(4):391-408
– reference: 21572512 - PLoS Genet. 2011 Apr;7(4):e1002053
– reference: 18836497 - Nat Struct Mol Biol. 2008 Oct;15(10):1007-14
– reference: 16473847 - Nucleic Acids Res. 2006;34(3):893-904
– reference: 18853362 - Syst Biol. 2008 Oct;57(5):758-71
– reference: 19351898 - Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6620-5
– reference: 12446813 - Mol Biol Evol. 2002 Dec;19(12):2226-38
– reference: 22355532 - Sci Rep. 2011;1:13
– reference: 15503675 - Syst Biol. 2004 Jun;53(3):485-95
– reference: 8029015 - Nucleic Acids Res. 1994 Jun 11;22(11):2079-88
– reference: 15173120 - Genome Res. 2004 Jun;14(6):1188-90
– reference: 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8
SSID ssj0035896
Score 2.1198206
Snippet Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions....
  Molecular phylogenetics and phylogenomics are subject to noise from horizontal gene transfer (HGT) and bias from convergence in macromolecular compositions....
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003454
SubjectTerms Alphaproteobacteria - classification
Alphaproteobacteria - genetics
Aminoacyl-tRNA synthetases
Bacterial Proteins - genetics
Bias
Biology
Computational Biology
Evolution
Evolution, Molecular
Gene Regulatory Networks
Gene Transfer, Horizontal
Genes
Genome, Bacterial
Genomics
Mitochondrial DNA
Models, Genetic
Phylogenetics
Phylogeny
Physiological aspects
Rhodospirillales - classification
Rhodospirillales - genetics
RNA, Bacterial - genetics
RNA, Transfer - genetics
Transfer RNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQJSQuiO_t8iGDkDiFTTLj2jkWxGpBoocuK3qzbK8NK1VJRdrD_nvGdlptEGgvHHJJXqR4Zpx5lsdvGHtbCkVJo4LCN6Yu4oqhMB6hKNEZbCSYkHQLvi5mZxf4ZSVWN1p9xZqwLA-cDXfiiM97TxfSWzPV2OCRaDhINJSKVDrmSzlvv5jK_2AQKnXmik1xCgm4Gg7NgaxOBh-93zh7FWsEAAWOklLS7j_8oSebddf_jX7-WUV5Iy2dPmD3Bz7J53kcD9kd3z5id3OHyevH7Pt2uZjzWKSRBDx7HhWbCG_4pltfk4mj9rbjuT0W7wI_ny-rivepc0TPUysins7jJkEHmvxJ3Nk8YRenn759PCuGXgqFowXLtrBNidKV0gBg8JfB2Cq42hFbKa0BY0sTzKWolGtmoap9UOjACAgSnSRgA0_ZpO1af8S4RPSm8TLY4NBasEI5RV7x5PTaNW7KYG9M7Qah8fjVa512zyQtOLJtdHSBHlwwZcXhrU0W2rgF_yH66YCNMtnpBgWPHoJH3xY8U_YmellHIYw2Vtr8MLu-15_PF3oOScK5EfBP0HIEejeAQkeDdWY43UAmiwJbI-RRDKn9oHodKbmCSkg5Za_3YaZplsetG9P6bpcwxLQQ4ic_y2F3GHmNQhFPnU2ZHAXkyDTjJ-3Vz6QkntQQq_r4f9jyObtHZBJzRfsLNtn-2vmXRNi29lWam78BOyQ9SA
  priority: 102
  providerName: Directory of Open Access Journals
Title tRNA Signatures Reveal a Polyphyletic Origin of SAR11 Strains among Alphaproteobacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/24586126
https://www.proquest.com/docview/1504154388
https://pubmed.ncbi.nlm.nih.gov/PMC3937112
https://doaj.org/article/c164ee64e4f64689bfe4086374a06188
http://dx.doi.org/10.1371/journal.pcbi.1003454
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_1PoI2BntysS0pkh_GcLZm3aBhpAvLm5BUqSsEO4sTWP77nWQ7zKNle4iD7bMtne6sO0v6_RB6kzABnUZKYpurLPYZQ6wsJXFCjaI5J8oF3ILz6ehsTr8s2OIAdZytrQLrG1M7zyc1Xy9Pfv3cvQeHfxdYG3jaXXSyMvraj_oTyughOoK-iXtXPaf7cQXCRGDs8mQ5MYe9djHdbXfpdVYB03__5h6sllV9U1j69-zKP7qryX10r40zcdEYxgN0YMuH6E7DPLl7hL5vZtMC-8kbAdizxh7JCeQVXlXLHajeY3Ib3NBm4crhi2KWprgOjBI1DhRFOKzTDUAP8FIIoM_qMZpPTr99OItbjoXYQCKziXWeUG4Srgihzl46pVNnMgNRTKIVUTpRTl2yVJh85NLMOkENUYw4Tg0HwZw8QYOyKu0xwpxSq3LLnXaGak00E0Y4Sy0YQ2ZyEyHSKVOaFoDcl3opw6gah0Sk0Y30TSDbJohQvL9q1QBw_EN-7NtpL-vhs8OBan0lW2-UBpJEa-FHwRRHItdQTMjtCKcK4hshIvTat7L0ABmln4FzpbZ1LT9fTGVBArRzzsitQrOe0NtWyFVQWaPaVQ-gMg-81ZM89ibVVaqWPlQXJGWcR-hVZ2YSvN8P6ajSVtsgAxEYJb7ITxuz29c8o0xA_DqKEO8ZZE81_TPl9Y-AMB5QEtPs2X889zm6CzEkbSayv0CDzXprX0KcttFDdMgXHLZi8mmIjorxx_EE_sen06-zYfj2MQzO-Rs-JUMU
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=tRNA+signatures+reveal+a+polyphyletic+origin+of+SAR11+strains+among+alphaproteobacteria&rft.jtitle=PLoS+computational+biology&rft.au=Amrine%2C+Katherine+C+H&rft.au=Swingley%2C+Wesley+D&rft.au=Ardell%2C+David+H&rft.date=2014-02-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=10&rft.issue=2&rft.spage=e1003454&rft_id=info:doi/10.1371%2Fjournal.pcbi.1003454&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon