Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries
LiNi 1/3 Mn 1/3 Co 1/3 O 2 -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular crac...
Saved in:
Published in | Nature communications Vol. 8; no. 1; p. 14101 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.01.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LiNi
1/3
Mn
1/3
Co
1/3
O
2
-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi
1/3
Mn
1/3
Co
1/3
O
2
cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials.
Cycling-induced fracture can limit conditions for stable operation for various lithium-ion electrode materials. Here, the authors characterize fracture in nickel-manganese-cobalt oxide microscopically and provide evidence for dislocation-assisted, intragranular fracture operating above a critical voltage threshold. |
---|---|
AbstractList | LiNi1/3 Mn1/3 Co1/3 O2 -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3 Mn1/3 Co1/3 O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. Cycling-induced fracture can limit conditions for stable operation for various lithium-ion electrode materials. Here, the authors characterize fracture in nickel-manganese-cobalt oxide microscopically and provide evidence for dislocation-assisted, intragranular fracture operating above a critical voltage threshold. LiNi1/3Mn1/3Co1/3O2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers advantage of high energy density and alleviation of cathode side reactions/corrosions, but introduces other drawbacks, such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in the commercial NMC333 layered cathode by using advanced S/TEM. We found that the formation of the intragranular cracks is directly associated with high voltage cycling, which is an electrochemically driven and diffusion controlled process. The intragranular cracks were noticed to be characteristically initiated from grain interior, a consequence of dislocation based crack incubation mechanism. This observation is in sharp contrast with the general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surface. As a result, our study indicates that maintain a structural stability is the key step toward high voltage operation of layered cathode materials. LiNi Mn Co O -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi Mn Co O cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. LiNi 1/3 Mn 1/3 Co 1/3 O 2 -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. Cycling-induced fracture can limit conditions for stable operation for various lithium-ion electrode materials. Here, the authors characterize fracture in nickel-manganese-cobalt oxide microscopically and provide evidence for dislocation-assisted, intragranular fracture operating above a critical voltage threshold. LiNi 1/3 Mn 1/3 Co 1/3 O 2 -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3Mn1/3Co1/3O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. |
ArticleNumber | 14101 |
Author | Xiao, Jie Yan, Pengfei Zhang, Ji-Guang Gu, Meng Wang, Chong-Min Zheng, Jianming |
Author_xml | – sequence: 1 givenname: Pengfei surname: Yan fullname: Yan, Pengfei organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory – sequence: 2 givenname: Jianming surname: Zheng fullname: Zheng, Jianming organization: Energy and Environment Directorate, Pacific Northwest National Laboratory – sequence: 3 givenname: Meng surname: Gu fullname: Gu, Meng organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory – sequence: 4 givenname: Jie surname: Xiao fullname: Xiao, Jie organization: Energy and Environment Directorate, Pacific Northwest National Laboratory – sequence: 5 givenname: Ji-Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji-Guang email: Jiguang.zhang@pnnl.gov organization: Energy and Environment Directorate, Pacific Northwest National Laboratory – sequence: 6 givenname: Chong-Min surname: Wang fullname: Wang, Chong-Min email: Chongmin.wang@pnnl.gov organization: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28091602$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1339807$$D View this record in Osti.gov |
BookMark | eNp1kk1v1DAQQCNUREvpiTuK4IIEAduxHedSCVV8VKrEBc7WxLETL45dbKfS_nu83VJtK8jBcZw3LzOTeV4d-eB1Vb3E6ANGrfjoVViWhClG-El1QhDFDe5Ie3SwP67OUtqgcrU9FpQ-q46JQD3miJxU20ufI0wR_Oog1iqC-mX9VEOqoTzZbBW4eoAYrY61CbGe7TQ3N8FlmHS9pt0aTO1gq2OTclxVXqMeawV5DqO-DXE2z3ZdGht8UeWsiyy9qJ4acEmf3d1Pq59fPv-4-NZcff96efHpqlEcsdwMfFSiN4orTo3mfAADFEY-Dp1SfYeZItC1XFCsRzADb7EwnWa8NZT1LYb2tLrce8cAG3kd7QJxKwNYeXsQ4iQhljKdlgIMIaxjRI-KGkA9GYD0TCvRIcb4znW-d12vw1IgvWueeyB9-MbbWU7hRjJCsUCsCF7vBSFlK5OyWatZBe-1yhK3bS9QV6C3d1-J4feqU5aLTUo7B16HNUksOGaY9qwt6JtH6Cas0Zd-FoqJ0hgqdtSrw7Tv8_07BgV4twdUDClFbe4RjORuzuTBnBUaP6JLHZDL3y01W_efmPf7mFTMftLxINF_4H8AC2HoDw |
CitedBy_id | crossref_primary_10_1007_s41918_019_00032_8 crossref_primary_10_1149_1945_7111_ac239f crossref_primary_10_1016_j_xcrp_2020_100137 crossref_primary_10_1002_smtd_202100920 crossref_primary_10_1002_anie_201904469 crossref_primary_10_1016_j_jpowsour_2018_05_088 crossref_primary_10_1021_acsenergylett_1c02135 crossref_primary_10_1002_smtd_202200887 crossref_primary_10_1038_s41467_021_22635_w crossref_primary_10_1002_celc_202400162 crossref_primary_10_1016_j_matt_2021_05_005 crossref_primary_10_3103_S1062873823703471 crossref_primary_10_1016_j_jpowsour_2024_234412 crossref_primary_10_1002_adfm_202410485 crossref_primary_10_1021_acsami_8b19902 crossref_primary_10_1021_acsami_2c09285 crossref_primary_10_1016_j_electacta_2021_139417 crossref_primary_10_1149_1945_7111_ad4398 crossref_primary_10_1016_j_nanoen_2024_109644 crossref_primary_10_1039_C9TA02803J crossref_primary_10_1016_j_xcrp_2021_100642 crossref_primary_10_1149_2_0721912jes crossref_primary_10_1016_j_est_2024_112441 crossref_primary_10_1016_j_trechm_2022_04_010 crossref_primary_10_1021_acsami_9b13906 crossref_primary_10_1002_admi_201901749 crossref_primary_10_1002_anie_201812472 crossref_primary_10_1002_aenm_202202795 crossref_primary_10_1016_j_nanoen_2019_05_021 crossref_primary_10_1021_acsami_1c20789 crossref_primary_10_1021_jacs_1c00497 crossref_primary_10_1016_j_ijsolstr_2021_111098 crossref_primary_10_1021_acs_iecr_9b01236 crossref_primary_10_1016_j_ijmecsci_2020_106183 crossref_primary_10_1016_j_jpowsour_2021_230227 crossref_primary_10_1002_aenm_202301199 crossref_primary_10_1016_j_mechmat_2020_103652 crossref_primary_10_1002_ange_202000262 crossref_primary_10_1007_s12274_017_1761_6 crossref_primary_10_1007_s41918_022_00137_7 crossref_primary_10_1007_s11581_019_03430_6 crossref_primary_10_1002_anie_202307802 crossref_primary_10_1039_D1EE01216A crossref_primary_10_1016_j_cej_2024_157194 crossref_primary_10_1016_j_ssi_2021_115673 crossref_primary_10_6023_A21060260 crossref_primary_10_1016_j_jallcom_2022_164024 crossref_primary_10_1016_j_electacta_2024_143861 crossref_primary_10_1002_aenm_202100884 crossref_primary_10_1039_D1TA05767G crossref_primary_10_1021_acs_energyfuels_4c04598 crossref_primary_10_1016_j_nanoen_2020_105021 crossref_primary_10_1038_s41467_024_54331_w crossref_primary_10_1016_j_nanoen_2024_109620 crossref_primary_10_1016_j_jeurceramsoc_2023_08_021 crossref_primary_10_1039_C8EE00309B crossref_primary_10_1016_j_isci_2024_109557 crossref_primary_10_1039_D4TA03016H crossref_primary_10_1002_batt_202100110 crossref_primary_10_1016_j_cej_2024_158153 crossref_primary_10_1088_1361_6463_acca90 crossref_primary_10_1021_acsami_0c16648 crossref_primary_10_1016_j_apsusc_2024_161181 crossref_primary_10_1016_j_matt_2023_02_001 crossref_primary_10_1016_j_ceramint_2019_06_261 crossref_primary_10_1016_j_cej_2024_153821 crossref_primary_10_1039_C8TA08973F crossref_primary_10_1149_1945_7111_ad3ec3 crossref_primary_10_1002_adma_201805889 crossref_primary_10_1016_j_cej_2024_149575 crossref_primary_10_1149_1945_7111_abd919 crossref_primary_10_1016_j_ensm_2023_102828 crossref_primary_10_1016_j_ijmecsci_2024_109034 crossref_primary_10_1002_cssc_202101901 crossref_primary_10_1021_acs_nanolett_9b04620 crossref_primary_10_1039_D2TA01850K crossref_primary_10_1021_jacs_4c02198 crossref_primary_10_1021_acs_chemmater_2c01234 crossref_primary_10_1016_j_jcis_2024_02_150 crossref_primary_10_1038_s41467_019_12310_6 crossref_primary_10_1021_acsami_1c15271 crossref_primary_10_1002_ange_202216155 crossref_primary_10_1002_ange_201812472 crossref_primary_10_1016_j_actamat_2022_118229 crossref_primary_10_1002_smtd_202201658 crossref_primary_10_1016_j_ceramint_2018_12_169 crossref_primary_10_1039_C7CS00863E crossref_primary_10_1016_j_apt_2024_104608 crossref_primary_10_1016_j_nanoen_2020_105364 crossref_primary_10_1038_s41467_018_06211_3 crossref_primary_10_1021_acs_chemrev_2c00002 crossref_primary_10_1016_j_jallcom_2019_153048 crossref_primary_10_1021_acs_chemrev_2c00022 crossref_primary_10_1016_j_cej_2021_128735 crossref_primary_10_1016_j_jallcom_2025_179198 crossref_primary_10_1016_j_ensm_2021_02_003 crossref_primary_10_1016_j_jpowsour_2018_12_011 crossref_primary_10_1016_j_ensm_2021_02_009 crossref_primary_10_1016_j_electacta_2017_12_064 crossref_primary_10_1016_j_est_2024_114823 crossref_primary_10_1021_acs_nanolett_1c04464 crossref_primary_10_2139_ssrn_3983711 crossref_primary_10_1016_j_compositesb_2024_112100 crossref_primary_10_1016_j_ensm_2020_01_027 crossref_primary_10_1149_2_0191811jes crossref_primary_10_1016_j_esci_2022_02_006 crossref_primary_10_1002_celc_202300353 crossref_primary_10_1007_s11581_019_03363_0 crossref_primary_10_1021_acsaem_1c01811 crossref_primary_10_1021_acs_chemmater_3c00924 crossref_primary_10_1039_C8TA12494A crossref_primary_10_1021_acsami_2c09194 crossref_primary_10_1038_s41560_018_0191_3 crossref_primary_10_1002_smll_202310321 crossref_primary_10_1021_acsenergylett_2c01996 crossref_primary_10_1039_D1EE02898G crossref_primary_10_1016_j_jpowsour_2018_05_029 crossref_primary_10_1016_j_nanoen_2024_110413 crossref_primary_10_3390_batteries9030156 crossref_primary_10_5796_electrochemistry_19_00022 crossref_primary_10_1016_j_jpowsour_2018_11_015 crossref_primary_10_1016_j_cej_2024_157032 crossref_primary_10_1002_smtd_202300310 crossref_primary_10_1016_j_jcis_2024_08_078 crossref_primary_10_1039_D2TA02865D crossref_primary_10_1107_S1600577520002076 crossref_primary_10_1038_s41699_025_00539_3 crossref_primary_10_1002_aenm_202203654 crossref_primary_10_1093_nsr_nwad252 crossref_primary_10_1016_j_jallcom_2023_173064 crossref_primary_10_1016_j_jcis_2024_06_239 crossref_primary_10_1002_anie_202000262 crossref_primary_10_1002_adfm_202203070 crossref_primary_10_1002_aenm_202003227 crossref_primary_10_1002_adfm_202104730 crossref_primary_10_1021_acs_jpcc_0c10901 crossref_primary_10_1016_j_ssi_2019_06_006 crossref_primary_10_1021_acsenergylett_2c01521 crossref_primary_10_1021_acs_energyfuels_3c02949 crossref_primary_10_1016_j_cej_2023_141515 crossref_primary_10_1021_acs_iecr_4c03224 crossref_primary_10_1002_nano_202000030 crossref_primary_10_1021_acsnano_0c08575 crossref_primary_10_1088_2515_7655_acd41a crossref_primary_10_1002_celc_201900599 crossref_primary_10_1021_acsenergylett_9b01381 crossref_primary_10_1002_smtd_201800006 crossref_primary_10_1016_j_jmst_2023_02_005 crossref_primary_10_1039_D4MA00754A crossref_primary_10_1016_j_actamat_2022_118212 crossref_primary_10_1039_D4EB00022F crossref_primary_10_1039_C9TA01720H crossref_primary_10_1002_aenm_202001035 crossref_primary_10_1038_s41467_020_16824_2 crossref_primary_10_1002_aenm_202303758 crossref_primary_10_1002_smll_201701802 crossref_primary_10_1016_j_ensm_2023_103050 crossref_primary_10_1021_acsami_2c23076 crossref_primary_10_1002_sstr_202100082 crossref_primary_10_1149_1945_7111_ac8ee3 crossref_primary_10_1016_j_nanoen_2018_09_051 crossref_primary_10_1021_acsenergylett_4c03455 crossref_primary_10_1007_s43673_024_00138_2 crossref_primary_10_1016_j_ijsolstr_2018_02_033 crossref_primary_10_1021_acsaem_3c00932 crossref_primary_10_1002_adfm_202211171 crossref_primary_10_1016_j_est_2023_109267 crossref_primary_10_1002_ange_202307802 crossref_primary_10_1002_celc_202300165 crossref_primary_10_1016_j_est_2022_105507 crossref_primary_10_1016_j_nanoen_2021_106252 crossref_primary_10_1002_admi_201701447 crossref_primary_10_1016_j_ijrmhm_2023_106490 crossref_primary_10_1039_D4EE02074J crossref_primary_10_1021_acsami_8b04023 crossref_primary_10_1002_bte2_20220036 crossref_primary_10_1016_j_jpowsour_2020_229218 crossref_primary_10_1002_aenm_202001026 crossref_primary_10_1016_j_ensm_2024_103324 crossref_primary_10_1021_acsami_3c05749 crossref_primary_10_1016_j_jpowsour_2024_234133 crossref_primary_10_1002_inf2_12507 crossref_primary_10_1016_j_apsusc_2019_04_020 crossref_primary_10_1021_acsenergylett_0c02699 crossref_primary_10_1002_aenm_202200889 crossref_primary_10_1038_s41565_019_0428_8 crossref_primary_10_1088_0256_307X_38_7_076102 crossref_primary_10_1016_j_jechem_2021_06_017 crossref_primary_10_1021_acsami_4c02691 crossref_primary_10_1016_j_electacta_2020_137120 crossref_primary_10_1038_s41467_024_45373_1 crossref_primary_10_1016_j_ensm_2021_01_007 crossref_primary_10_1021_acsami_4c11041 crossref_primary_10_1016_j_cej_2025_161243 crossref_primary_10_1021_acsami_1c02294 crossref_primary_10_1002_ange_202008144 crossref_primary_10_1021_acs_chemmater_1c03185 crossref_primary_10_1039_D3TA07967H crossref_primary_10_1149_1945_7111_abace9 crossref_primary_10_1021_acsenergylett_8b01819 crossref_primary_10_1002_aenm_202302209 crossref_primary_10_1002_adfm_201900247 crossref_primary_10_1021_acs_chemmater_3c01182 crossref_primary_10_1002_aenm_202200615 crossref_primary_10_1016_j_nanoen_2018_09_073 crossref_primary_10_1021_acsaem_0c01851 crossref_primary_10_1016_j_ceramint_2022_06_087 crossref_primary_10_1016_j_jpowsour_2018_11_053 crossref_primary_10_1039_D1EE01388B crossref_primary_10_1007_s12274_021_3890_1 crossref_primary_10_1016_j_jallcom_2023_173304 crossref_primary_10_1021_acsami_9b05100 crossref_primary_10_1021_jacs_8b13798 crossref_primary_10_1017_S1431927619010894 crossref_primary_10_1002_nano_202000008 crossref_primary_10_1038_s41586_022_05115_z crossref_primary_10_1016_j_matt_2021_03_012 crossref_primary_10_1016_j_jallcom_2025_179685 crossref_primary_10_1149_1945_7111_abc4bf crossref_primary_10_1021_acsami_9b18542 crossref_primary_10_1002_slct_201900874 crossref_primary_10_1021_acsnano_0c06910 crossref_primary_10_1039_D2NR05701H crossref_primary_10_1002_elt2_27 crossref_primary_10_1039_D0TA10415A crossref_primary_10_1002_celc_201901991 crossref_primary_10_1002_cssc_201903283 crossref_primary_10_1016_j_est_2024_111417 crossref_primary_10_1016_j_ensm_2022_03_001 crossref_primary_10_1016_j_joule_2020_10_010 crossref_primary_10_1038_s41467_018_06166_5 crossref_primary_10_1039_D3SE00844D crossref_primary_10_1149_1945_7111_ac4540 crossref_primary_10_1021_acsami_3c12245 crossref_primary_10_1021_acsenergylett_4c02476 crossref_primary_10_1038_s41467_022_28052_x crossref_primary_10_1021_acsaem_3c00602 crossref_primary_10_1016_j_joule_2017_08_001 crossref_primary_10_1093_nsr_nwae254 crossref_primary_10_1021_acsami_2c12098 crossref_primary_10_1039_D0EE00859A crossref_primary_10_1007_s11581_024_05438_z crossref_primary_10_1149_1945_7111_abacea crossref_primary_10_1002_aic_16068 crossref_primary_10_1007_s43207_020_00098_x crossref_primary_10_1016_j_jallcom_2022_167638 crossref_primary_10_1007_s11814_024_00327_7 crossref_primary_10_1016_j_jpowsour_2020_229148 crossref_primary_10_1021_acsaem_0c02406 crossref_primary_10_1021_acs_jpclett_4c01929 crossref_primary_10_1016_j_electacta_2022_141386 crossref_primary_10_1016_j_jpowsour_2019_05_048 crossref_primary_10_1016_j_mtnano_2019_100040 crossref_primary_10_1039_C8TA10329A crossref_primary_10_1021_acsenergylett_1c00279 crossref_primary_10_1002_aenm_201900674 crossref_primary_10_1002_smll_202407740 crossref_primary_10_1016_j_nanoen_2024_110276 crossref_primary_10_1002_aenm_201902731 crossref_primary_10_1016_j_joule_2023_09_006 crossref_primary_10_1039_C7EE03031B crossref_primary_10_3390_en11102712 crossref_primary_10_1002_aenm_201703415 crossref_primary_10_1016_j_jmps_2024_105724 crossref_primary_10_1002_smll_202302208 crossref_primary_10_1016_j_jallcom_2021_159619 crossref_primary_10_1038_s41529_022_00255_z crossref_primary_10_1002_aenm_201802057 crossref_primary_10_1002_cjoc_202000344 crossref_primary_10_1002_smll_202306807 crossref_primary_10_1002_smtd_202000551 crossref_primary_10_3390_molecules28104007 crossref_primary_10_1016_j_electacta_2019_06_016 crossref_primary_10_3390_cleantechnol5030044 crossref_primary_10_1016_j_jallcom_2023_172272 crossref_primary_10_1039_C8TA10438G crossref_primary_10_1126_science_abg5998 crossref_primary_10_1039_C7TA08073E crossref_primary_10_1016_j_jpowsour_2017_02_075 crossref_primary_10_1007_s12274_021_3784_2 crossref_primary_10_1016_j_jpowsour_2017_04_094 crossref_primary_10_1016_j_carbon_2024_119615 crossref_primary_10_1002_adma_202212098 crossref_primary_10_1016_j_apsusc_2022_155097 crossref_primary_10_3390_inorganics11050182 crossref_primary_10_1016_j_jechem_2020_02_029 crossref_primary_10_1002_aenm_202003404 crossref_primary_10_1002_aenm_202003767 crossref_primary_10_1021_acsami_1c14239 crossref_primary_10_1016_j_jallcom_2022_166317 crossref_primary_10_1038_s41565_024_01734_x crossref_primary_10_1007_s11431_018_9485_6 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1149_2_0491813jes crossref_primary_10_1016_j_esci_2024_100276 crossref_primary_10_1002_smll_202106927 crossref_primary_10_1360_SSPMA_2024_0480 crossref_primary_10_1021_acsenergylett_8b00805 crossref_primary_10_1002_aenm_202000368 crossref_primary_10_1016_j_jpowsour_2020_229247 crossref_primary_10_1002_admi_202002113 crossref_primary_10_1073_pnas_2211436119 crossref_primary_10_1007_s41918_022_00166_2 crossref_primary_10_1016_j_nanoen_2020_105061 crossref_primary_10_1007_s00707_021_03014_4 crossref_primary_10_1016_j_electacta_2022_141285 crossref_primary_10_1038_s41467_023_37122_7 crossref_primary_10_1016_j_ensm_2024_103350 crossref_primary_10_1016_j_seppur_2023_124280 crossref_primary_10_1021_acs_chemmater_0c02398 crossref_primary_10_1002_cey2_298 crossref_primary_10_1016_j_electacta_2019_06_034 crossref_primary_10_1002_ange_202301241 crossref_primary_10_1021_acsami_1c05535 crossref_primary_10_1016_j_ensm_2021_01_018 crossref_primary_10_1021_acsnano_1c00304 crossref_primary_10_1039_D2TA06127A crossref_primary_10_1021_acsaem_9b01354 crossref_primary_10_1021_acsaem_2c01753 crossref_primary_10_1021_acssuschemeng_0c01491 crossref_primary_10_1016_j_jmps_2018_07_021 crossref_primary_10_1021_acsenergylett_7b00921 crossref_primary_10_1007_s12274_019_2421_9 crossref_primary_10_1039_C9TA00224C crossref_primary_10_1021_acsami_0c16685 crossref_primary_10_1016_j_jpowsour_2020_229359 crossref_primary_10_1016_j_jallcom_2022_167862 crossref_primary_10_1016_j_nanoen_2023_109070 crossref_primary_10_1002_aenm_202201510 crossref_primary_10_1038_s41598_019_45531_2 crossref_primary_10_1016_j_ijsolstr_2022_111688 crossref_primary_10_1016_j_nanoen_2021_106206 crossref_primary_10_1021_acsenergylett_4c02430 crossref_primary_10_1039_D2QM00930G crossref_primary_10_1039_D4TA02355B crossref_primary_10_1016_j_jelechem_2023_117864 crossref_primary_10_1016_j_jechem_2021_05_048 crossref_primary_10_1021_acs_chemrev_1c00565 crossref_primary_10_1016_j_cej_2022_136825 crossref_primary_10_1021_acsami_3c15670 crossref_primary_10_1021_acsomega_4c00318 crossref_primary_10_1021_acs_chemrev_1c00327 crossref_primary_10_1177_09544070241293593 crossref_primary_10_1016_j_mattod_2022_10_021 crossref_primary_10_1038_s41560_021_00776_y crossref_primary_10_1002_aenm_201801957 crossref_primary_10_1016_j_actamat_2024_119751 crossref_primary_10_1021_acs_accounts_7b00506 crossref_primary_10_1002_advs_201902844 crossref_primary_10_1002_adma_202200912 crossref_primary_10_1016_j_jmps_2022_104839 crossref_primary_10_1088_1361_6528_ad0d25 crossref_primary_10_1016_j_cej_2020_124846 crossref_primary_10_1002_smll_201906433 crossref_primary_10_1021_jacs_2c13787 crossref_primary_10_3390_app13095608 crossref_primary_10_1021_acsnano_4c00202 crossref_primary_10_1021_acsaem_1c01442 crossref_primary_10_1021_acsami_2c15054 crossref_primary_10_1002_aenm_202401336 crossref_primary_10_1021_acsami_0c20100 crossref_primary_10_1088_1674_1056_ad01a3 crossref_primary_10_1016_j_cej_2023_144051 crossref_primary_10_1016_j_cej_2021_128487 crossref_primary_10_1149_1945_7111_ab6288 crossref_primary_10_1002_anie_202008144 crossref_primary_10_1039_D4MH01037J crossref_primary_10_1016_j_jechem_2023_12_011 crossref_primary_10_1073_pnas_2409494122 crossref_primary_10_1039_D2TA08703K crossref_primary_10_3390_en16196958 crossref_primary_10_1016_j_jallcom_2018_03_192 crossref_primary_10_1002_smll_201904388 crossref_primary_10_1016_j_est_2024_110944 crossref_primary_10_1149_1945_7111_acb5c9 crossref_primary_10_1016_j_ceramint_2021_08_167 crossref_primary_10_1021_acs_nanolett_7b01546 crossref_primary_10_1016_j_mtener_2023_101374 crossref_primary_10_1016_j_cej_2020_124709 crossref_primary_10_1016_j_cej_2024_155588 crossref_primary_10_1016_j_etran_2023_100233 crossref_primary_10_1016_j_jpowsour_2018_08_056 crossref_primary_10_1007_s12598_022_01983_6 crossref_primary_10_1016_j_jpowsour_2022_232223 crossref_primary_10_1016_j_jpowsour_2017_06_042 crossref_primary_10_1021_acs_nanolett_1c00862 crossref_primary_10_1039_C7CP06615E crossref_primary_10_1039_D4CC06113F crossref_primary_10_3866_PKU_WHXB202308051 crossref_primary_10_1021_acsami_8b06399 crossref_primary_10_1016_j_matt_2023_05_014 crossref_primary_10_1016_j_ceramint_2021_01_161 crossref_primary_10_1021_acs_nanolett_2c01103 crossref_primary_10_1039_D1TA02639A crossref_primary_10_1039_D4EE03027C crossref_primary_10_1080_21663831_2023_2180332 crossref_primary_10_1021_acsami_8b00873 crossref_primary_10_1149_1945_7111_ad2d17 crossref_primary_10_1002_aenm_202302845 crossref_primary_10_1016_j_jechem_2022_02_015 crossref_primary_10_1002_batt_202000099 crossref_primary_10_1002_bkcs_12118 crossref_primary_10_1039_D2TA02492F crossref_primary_10_1016_j_cej_2022_139442 crossref_primary_10_1002_aenm_202002506 crossref_primary_10_1039_C9TA03191J crossref_primary_10_1002_adfm_202409956 crossref_primary_10_1021_jacs_0c02203 crossref_primary_10_1016_j_enchem_2023_100103 crossref_primary_10_1002_advs_201800843 crossref_primary_10_1002_adma_202308380 crossref_primary_10_1002_adfm_202109421 crossref_primary_10_1002_adma_201904816 crossref_primary_10_1002_aenm_201703154 crossref_primary_10_1038_s41467_024_45490_x crossref_primary_10_1021_acsami_2c08724 crossref_primary_10_1007_s12274_023_5960_z crossref_primary_10_1016_j_ceramint_2021_01_055 crossref_primary_10_1021_acs_jpclett_4c00748 crossref_primary_10_1021_jacs_3c08733 crossref_primary_10_1002_cssc_202201169 crossref_primary_10_1021_acsenergylett_1c01976 crossref_primary_10_1021_acs_nanolett_8b01036 crossref_primary_10_1149_1945_7111_ace130 crossref_primary_10_1007_s10483_024_3119_6 crossref_primary_10_1038_s41563_022_01461_5 crossref_primary_10_1016_j_apenergy_2024_123202 crossref_primary_10_1016_j_ensm_2022_08_010 crossref_primary_10_1021_acs_chemmater_1c02118 crossref_primary_10_1016_j_ensm_2022_08_011 crossref_primary_10_1002_adfm_202200796 crossref_primary_10_1016_j_cej_2022_139336 crossref_primary_10_1016_j_jpowsour_2022_231037 crossref_primary_10_1016_j_jechem_2023_05_048 crossref_primary_10_1149_1945_7111_abf780 crossref_primary_10_1016_j_cej_2021_133731 crossref_primary_10_1016_j_jpowsour_2022_231035 crossref_primary_10_1149_1945_7111_abc032 crossref_primary_10_1038_s41563_020_0767_8 crossref_primary_10_1007_s10338_025_00584_x crossref_primary_10_1016_j_jechem_2022_11_016 crossref_primary_10_1021_acsnano_4c10476 crossref_primary_10_1002_aenm_201801975 crossref_primary_10_1016_j_susmat_2021_e00305 crossref_primary_10_1021_acsenergylett_0c02281 crossref_primary_10_1016_j_engfracmech_2024_110647 crossref_primary_10_1088_2515_7655_ab83e1 crossref_primary_10_3390_batteries9120575 crossref_primary_10_1016_j_cej_2024_150099 crossref_primary_10_1016_j_jpowsour_2022_231195 crossref_primary_10_1016_j_ensm_2022_01_035 crossref_primary_10_1016_j_jechem_2019_09_011 crossref_primary_10_1017_S1431927620024368 crossref_primary_10_3866_PKU_WHXB202307034 crossref_primary_10_1016_j_geits_2024_100154 crossref_primary_10_1021_acs_nanolett_3c00712 crossref_primary_10_1002_smll_202107048 crossref_primary_10_1016_j_cej_2024_154344 crossref_primary_10_1016_j_jpowsour_2023_232799 crossref_primary_10_1021_jacs_2c03549 crossref_primary_10_1007_s41918_024_00231_y crossref_primary_10_1016_j_cej_2022_140578 crossref_primary_10_1016_j_ensm_2022_01_038 crossref_primary_10_1039_D0TA06375D crossref_primary_10_1002_adma_202413760 crossref_primary_10_1021_acsami_9b18946 crossref_primary_10_1002_advs_202307397 crossref_primary_10_1007_s12274_020_3015_2 crossref_primary_10_1016_j_jpowsour_2025_236635 crossref_primary_10_1016_j_ensm_2019_08_006 crossref_primary_10_1016_j_est_2023_109866 crossref_primary_10_1149_1945_7111_ac3905 crossref_primary_10_1016_j_jpowsour_2020_228207 crossref_primary_10_1016_j_ensm_2023_02_003 crossref_primary_10_1021_acs_jpcc_1c07765 crossref_primary_10_1002_eem2_12132 crossref_primary_10_1038_s41467_023_37999_4 crossref_primary_10_1088_1361_6463_ab60ea crossref_primary_10_1016_j_matt_2021_10_001 crossref_primary_10_1088_2631_7990_ad97f6 crossref_primary_10_1016_j_jechem_2019_04_018 crossref_primary_10_1002_tcr_202200119 crossref_primary_10_1016_j_jpowsour_2024_234054 crossref_primary_10_1016_j_cej_2024_148905 crossref_primary_10_1016_j_joule_2021_09_005 crossref_primary_10_1039_D1CS00450F crossref_primary_10_1016_j_electacta_2022_141411 crossref_primary_10_1002_adfm_202420706 crossref_primary_10_1021_acsnano_3c10986 crossref_primary_10_1016_j_ensm_2017_05_011 crossref_primary_10_1002_admi_202102078 crossref_primary_10_1039_D0CC06849G crossref_primary_10_1021_acs_iecr_9b05074 crossref_primary_10_1016_j_ensm_2024_103759 crossref_primary_10_1016_j_ssi_2019_115087 crossref_primary_10_1038_s41560_019_0387_1 crossref_primary_10_1016_j_etran_2019_100011 crossref_primary_10_1016_j_jallcom_2020_154571 crossref_primary_10_1002_eem2_12161 crossref_primary_10_1002_solr_201700120 crossref_primary_10_1021_acsnano_4c15960 crossref_primary_10_1016_j_apsusc_2024_161804 crossref_primary_10_1021_acssuschemeng_2c03268 crossref_primary_10_1016_j_eng_2024_03_024 crossref_primary_10_1557_s43579_024_00644_2 crossref_primary_10_1039_D2TA02242G crossref_primary_10_1002_smll_202201522 crossref_primary_10_1016_j_ceramint_2024_06_003 crossref_primary_10_1016_j_electacta_2022_140357 crossref_primary_10_1016_j_ensm_2022_01_054 crossref_primary_10_1016_j_ensm_2022_11_016 crossref_primary_10_1016_j_ijmecsci_2020_105608 crossref_primary_10_1021_acs_jpcc_3c05419 crossref_primary_10_1016_j_joule_2021_09_015 crossref_primary_10_1039_C8CS00322J crossref_primary_10_1021_acsami_7b17424 crossref_primary_10_1039_C8EE00155C crossref_primary_10_1016_j_ensm_2020_12_026 crossref_primary_10_1039_D3CS00741C crossref_primary_10_1002_adfm_202000396 crossref_primary_10_1039_D0EE03914D crossref_primary_10_1016_j_ces_2022_117865 crossref_primary_10_1002_smtd_201900355 crossref_primary_10_1149_1945_7111_ac6a81 crossref_primary_10_1016_j_cej_2023_144592 crossref_primary_10_1002_aenm_201901597 crossref_primary_10_1016_j_jechem_2021_07_029 crossref_primary_10_1016_j_jallcom_2021_162155 crossref_primary_10_1016_j_cej_2023_145552 crossref_primary_10_1016_j_jcis_2023_08_101 crossref_primary_10_1021_acsaem_2c04186 crossref_primary_10_15541_jim20190568 crossref_primary_10_1021_acsenergylett_1c00203 crossref_primary_10_1021_acs_chemmater_2c03069 crossref_primary_10_1021_acsnano_0c02237 crossref_primary_10_1002_aenm_202403970 crossref_primary_10_1039_C8DT02161A crossref_primary_10_1038_s41560_024_01465_2 crossref_primary_10_1021_acsami_3c09043 crossref_primary_10_1021_acs_jpcc_9b01126 crossref_primary_10_1016_j_electacta_2022_140349 crossref_primary_10_1016_j_cej_2022_140249 crossref_primary_10_1126_science_abc3167 crossref_primary_10_1002_aenm_202404933 crossref_primary_10_1016_j_est_2023_107453 crossref_primary_10_1016_j_ensm_2020_12_018 crossref_primary_10_1016_j_etran_2019_100034 crossref_primary_10_1016_j_jpowsour_2018_06_046 crossref_primary_10_1021_acsami_0c10010 crossref_primary_10_1016_j_apsusc_2025_162716 crossref_primary_10_1038_s41563_022_01324_z crossref_primary_10_1039_C7TA08410B crossref_primary_10_1088_1361_6463_adb85a crossref_primary_10_1002_smll_202302086 crossref_primary_10_1007_s10853_020_04788_z crossref_primary_10_1021_acsaem_1c01292 crossref_primary_10_1002_smll_202205508 crossref_primary_10_1016_j_actamat_2021_116914 crossref_primary_10_1039_D3NA00201B crossref_primary_10_1016_j_coelec_2021_100831 crossref_primary_10_1002_smll_201901019 crossref_primary_10_1016_j_ensm_2022_07_016 crossref_primary_10_1021_acsenergylett_0c00700 crossref_primary_10_1002_aenm_202403002 crossref_primary_10_1002_aenm_202202022 crossref_primary_10_1016_j_jelechem_2024_118123 crossref_primary_10_1021_acsami_8b10016 crossref_primary_10_1016_j_jmst_2020_05_001 crossref_primary_10_1016_j_jcis_2021_10_061 crossref_primary_10_1039_D4NR01489H crossref_primary_10_1021_acsami_2c13832 crossref_primary_10_1002_aenm_201801202 crossref_primary_10_1016_j_jelechem_2022_116623 crossref_primary_10_1002_adfm_202010291 crossref_primary_10_1002_cnma_202100168 crossref_primary_10_1016_j_matt_2020_10_026 crossref_primary_10_1021_acsami_0c12541 crossref_primary_10_1021_acsaem_3c01340 crossref_primary_10_1021_acs_chemmater_8b04418 crossref_primary_10_1016_j_eml_2024_102164 crossref_primary_10_1088_1361_6528_abd127 crossref_primary_10_1002_adma_202411311 crossref_primary_10_1002_eem2_12331 crossref_primary_10_1021_acsaem_8b00545 crossref_primary_10_1002_adma_201900985 crossref_primary_10_1038_s41467_022_30020_4 crossref_primary_10_1016_j_ceramint_2019_04_250 crossref_primary_10_1016_j_isci_2018_12_028 crossref_primary_10_1002_aenm_202204328 crossref_primary_10_1039_C7TA10308E crossref_primary_10_1021_acsami_2c02920 crossref_primary_10_1016_j_eml_2018_05_010 crossref_primary_10_1016_j_nanoen_2021_105854 crossref_primary_10_3390_en15239168 crossref_primary_10_1038_s41467_022_34717_4 crossref_primary_10_1016_j_jpowsour_2021_230066 crossref_primary_10_1017_S1431927618014381 crossref_primary_10_1002_adfm_201808825 crossref_primary_10_1021_acsenergylett_9b02410 crossref_primary_10_1021_acsmaterialslett_9b00476 crossref_primary_10_1007_s12274_024_6901_5 crossref_primary_10_1021_acs_nanolett_1c03852 crossref_primary_10_1021_acs_nanolett_1c03973 crossref_primary_10_1039_D4TA05089D crossref_primary_10_1016_j_actamat_2022_118158 crossref_primary_10_1016_j_jpowsour_2023_232921 crossref_primary_10_1016_j_est_2021_103830 crossref_primary_10_1016_j_est_2023_107634 crossref_primary_10_1002_adfm_202004748 crossref_primary_10_1021_acs_jpcc_1c02400 crossref_primary_10_1002_anie_202422726 crossref_primary_10_1038_s41467_021_26290_z crossref_primary_10_1002_eem2_12242 crossref_primary_10_1557_s43577_024_00749_y crossref_primary_10_1002_adma_202407029 crossref_primary_10_1002_anie_202216155 crossref_primary_10_1002_celc_202100125 crossref_primary_10_1016_j_ensm_2023_01_010 crossref_primary_10_1016_j_ijsolstr_2025_113300 crossref_primary_10_1021_acsami_9b03830 crossref_primary_10_1002_aenm_202403386 crossref_primary_10_1039_D0QI01021A crossref_primary_10_1016_j_electacta_2018_09_123 crossref_primary_10_1016_j_ensm_2022_12_029 crossref_primary_10_1016_j_ultras_2024_107400 crossref_primary_10_1002_ange_201904469 crossref_primary_10_1038_s41563_022_01421_z crossref_primary_10_1016_j_jallcom_2021_159239 crossref_primary_10_1016_j_est_2023_108875 crossref_primary_10_1039_D1TA10329F crossref_primary_10_1016_j_nanoen_2020_104450 crossref_primary_10_1016_j_ensm_2021_10_018 crossref_primary_10_1016_j_nanoen_2020_105420 crossref_primary_10_1021_acs_chemmater_7b05305 crossref_primary_10_1021_acsami_0c01687 crossref_primary_10_1002_adfm_202107769 crossref_primary_10_1021_acsnano_4c14322 crossref_primary_10_1016_j_scriptamat_2021_113991 crossref_primary_10_1021_acs_chemmater_7b03230 crossref_primary_10_1007_s40820_021_00643_1 crossref_primary_10_1002_batt_202100075 crossref_primary_10_1063_5_0051092 crossref_primary_10_1039_D3EE04115H crossref_primary_10_1016_j_jpowsour_2018_09_037 crossref_primary_10_1016_j_jpowsour_2019_01_084 crossref_primary_10_1021_acs_chemmater_9b01557 crossref_primary_10_1016_j_est_2020_101616 crossref_primary_10_1002_cnma_202300148 crossref_primary_10_1039_D1SE01137E crossref_primary_10_1149_1945_7111_abaa17 crossref_primary_10_1038_s43246_023_00418_8 crossref_primary_10_1021_acsami_4c08777 crossref_primary_10_1016_j_mattod_2020_10_028 crossref_primary_10_1016_j_xcrp_2023_101480 crossref_primary_10_1146_annurev_matsci_080522_104112 crossref_primary_10_1016_j_jpowsour_2017_11_020 crossref_primary_10_1021_acsami_0c01558 crossref_primary_10_1016_j_cej_2023_148223 crossref_primary_10_1016_j_jpowsour_2019_226773 crossref_primary_10_1016_j_jpowsour_2023_232702 crossref_primary_10_1038_s41563_024_01899_9 crossref_primary_10_1002_adma_202419253 crossref_primary_10_1016_j_electacta_2024_145223 crossref_primary_10_1002_admi_202300578 crossref_primary_10_1016_j_jallcom_2018_09_281 crossref_primary_10_1021_acsami_2c08278 crossref_primary_10_3390_inorganics10080111 crossref_primary_10_1021_acsaem_4c00279 crossref_primary_10_1007_s41918_024_00211_2 crossref_primary_10_1016_j_electacta_2019_01_144 crossref_primary_10_1149_2_0941714jes crossref_primary_10_1016_j_jechem_2024_11_005 crossref_primary_10_1038_s41560_020_00693_6 crossref_primary_10_1002_advs_202306347 crossref_primary_10_1039_D2TA00135G crossref_primary_10_1021_acsaem_0c03187 crossref_primary_10_1016_j_ceramint_2022_02_289 crossref_primary_10_1021_acsmaterialslett_4c00714 crossref_primary_10_1039_D4CS00826J crossref_primary_10_1038_s41560_018_0184_2 crossref_primary_10_1039_C9TA06579B crossref_primary_10_1007_s11705_024_2435_z crossref_primary_10_3390_batteries9040218 crossref_primary_10_1002_sstr_202000042 crossref_primary_10_1016_j_cej_2023_146156 crossref_primary_10_1021_acsami_9b23470 crossref_primary_10_1016_j_bioadv_2023_213309 crossref_primary_10_1016_j_jelechem_2024_118206 crossref_primary_10_1039_D4NR02780A crossref_primary_10_1002_smll_202403828 crossref_primary_10_1016_j_jallcom_2019_153208 crossref_primary_10_1021_acsaem_2c00084 crossref_primary_10_1016_j_jallcom_2023_169768 crossref_primary_10_1149_1945_7111_ac2ebd crossref_primary_10_1016_j_jmps_2024_106013 crossref_primary_10_1021_acsnano_4c03128 crossref_primary_10_1039_D4SC03805C crossref_primary_10_1016_j_ensm_2023_102969 crossref_primary_10_1016_j_cjac_2023_100250 crossref_primary_10_1016_j_joule_2022_04_001 crossref_primary_10_1016_j_nanoen_2021_106900 crossref_primary_10_1038_s41560_018_0207_z crossref_primary_10_1021_acsami_9b15608 crossref_primary_10_1002_aenm_202404999 crossref_primary_10_1016_j_nanoen_2021_106901 crossref_primary_10_1021_acsnano_3c08712 crossref_primary_10_1039_D0CP01851A crossref_primary_10_1021_acsenergylett_7b00263 crossref_primary_10_1016_j_cej_2021_131978 crossref_primary_10_1016_j_apsusc_2017_02_115 crossref_primary_10_1063_5_0182553 crossref_primary_10_1021_acsami_0c00643 crossref_primary_10_1016_j_ensm_2022_07_034 crossref_primary_10_1002_smsc_202100107 crossref_primary_10_1149_1945_7111_ac766c crossref_primary_10_1021_acsaem_2c04111 crossref_primary_10_1039_D3DT02957C crossref_primary_10_1149_1945_7111_ab8401 crossref_primary_10_1149_2_0651903jes crossref_primary_10_1002_adma_202200777 crossref_primary_10_1021_acsnano_9b07473 crossref_primary_10_1038_s41560_024_01616_5 crossref_primary_10_1002_adma_202312292 crossref_primary_10_1016_j_jechem_2023_10_056 crossref_primary_10_1016_j_nanoen_2018_11_046 crossref_primary_10_1002_adma_202209357 crossref_primary_10_1002_advs_202203639 crossref_primary_10_1016_j_electacta_2021_138145 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1016_j_jpowsour_2023_232850 crossref_primary_10_1016_j_pmatsci_2024_101247 crossref_primary_10_1016_j_nanoen_2022_108016 crossref_primary_10_1038_s41524_021_00567_9 crossref_primary_10_1002_aenm_201803963 crossref_primary_10_1021_acsnano_9b05047 crossref_primary_10_1016_j_energy_2024_131294 crossref_primary_10_1016_j_isci_2022_104260 crossref_primary_10_1016_j_ceramint_2019_12_064 crossref_primary_10_1038_s41467_021_25611_6 crossref_primary_10_1016_j_jpowsour_2020_228701 crossref_primary_10_1039_C9NJ03174J crossref_primary_10_1021_acssuschemeng_1c04076 crossref_primary_10_1038_s41467_018_04862_w crossref_primary_10_1038_s41560_024_01605_8 crossref_primary_10_1007_s12274_022_4852_y crossref_primary_10_1007_s00339_024_07897_7 crossref_primary_10_1016_j_electacta_2018_07_224 crossref_primary_10_1039_D2MH01588A crossref_primary_10_1002_aenm_201903139 crossref_primary_10_1016_j_mattod_2024_02_003 crossref_primary_10_1021_acs_chemmater_9b00149 crossref_primary_10_1021_acs_nanolett_4c00688 crossref_primary_10_1016_j_jechem_2024_11_016 crossref_primary_10_1016_j_nanoen_2020_104643 crossref_primary_10_3390_batteries9100485 crossref_primary_10_1016_j_jallcom_2023_170522 crossref_primary_10_1149_1945_7111_ac0bf5 crossref_primary_10_1021_acsami_9b02440 crossref_primary_10_1039_C8SC03385D crossref_primary_10_1002_admi_202100392 crossref_primary_10_1002_aenm_202003197 crossref_primary_10_1039_D4TA03727H crossref_primary_10_1002_anie_202301241 crossref_primary_10_1016_j_jechem_2024_05_020 crossref_primary_10_1103_PRXEnergy_3_013012 |
Cites_doi | 10.1038/ncomms4529 10.1021/nn305065u 10.1002/cctc.201500402 10.1149/2.0721509jes 10.1021/acs.nanolett.5b00045 10.1002/adma.201104106 10.1038/ncomms11441 10.1002/aenm.201501010 10.1016/j.elecom.2006.06.005 10.1002/adma.201404620 10.1002/aenm.201300015 10.1038/nenergy.2015.4 10.1149/2.0341514jes 10.1149/1.3464773 10.1021/nl4019275 10.1016/j.jpowsour.2011.05.049 10.1149/2.090206jes 10.1021/nl5038598 10.1039/C4TA06856D 10.1021/nl401849t 10.1021/cm504257m 10.1021/acs.chemmater.5b03510 10.1039/c0jm01971b 10.1021/acs.chemmater.5b02952 10.1149/1.2192695 10.1038/nmat4137 10.1016/j.actamat.2013.06.006 10.1038/ncomms9711 10.1126/science.1253149 10.1149/1.2966694 10.1002/aenm.201501717 10.1039/C3EE42704H 10.1149/1.2826746 10.1126/science.aac8260 10.1016/j.jpowsour.2014.01.010 10.1016/j.pmatsci.2014.02.001 10.1002/aenm.201300998 10.1149/1.3526597 10.1149/1.1391631 10.1149/1.3076137 10.1149/2.030112jes 10.1149/2.0281602jes 10.1021/nl5022859 10.1557/mrs2007.63 10.1021/cm502071h 10.1016/j.electacta.2013.09.065 10.1039/b211558a 10.1038/ncomms4536 10.1557/JMR.2010.0142 10.1116/1.3660699 10.1021/jp309724q 10.1038/ncomms6381 10.1126/science.aaa1313 10.1039/c1ee01131f 10.1149/1.1792271 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Jan 2017 Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Jan 2017 – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/ncomms14101 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14101 |
ExternalDocumentID | oai_doaj_org_article_8af225752edc4fa092ba295ec870556a PMC5241805 1339807 4302250921 28091602 10_1038_ncomms14101 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 AAADF AAPBV AAYJO ADQMX AEDAW AFGXO AFNRJ OIOZB OTOTI ZA5 5PM PUEGO |
ID | FETCH-LOGICAL-c605t-b6dc89fc6c64fe66bafa4ad6db7cc9715c2a736841edafb6318f7e563f45931a3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:58 EDT 2025 Thu Aug 21 18:04:10 EDT 2025 Wed Nov 29 06:10:48 EST 2023 Fri Jul 11 03:29:53 EDT 2025 Wed Aug 13 11:00:14 EDT 2025 Mon Jul 21 05:50:00 EDT 2025 Tue Jul 01 02:31:34 EDT 2025 Thu Apr 24 22:58:30 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-b6dc89fc6c64fe66bafa4ad6db7cc9715c2a736841edafb6318f7e563f45931a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PNNL-SA-118952 USDOE AC05-76RL01830 These authors contributed equally to this work |
ORCID | 0000-0001-7343-4609 0000000173434609 |
OpenAccessLink | https://doaj.org/article/8af225752edc4fa092ba295ec870556a |
PMID | 28091602 |
PQID | 1858736483 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8af225752edc4fa092ba295ec870556a pubmedcentral_primary_oai_pubmedcentral_nih_gov_5241805 osti_scitechconnect_1339807 proquest_miscellaneous_1861514953 proquest_journals_1858736483 pubmed_primary_28091602 crossref_primary_10_1038_ncomms14101 crossref_citationtrail_10_1038_ncomms14101 springer_journals_10_1038_ncomms14101 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-16 |
PublicationDateYYYYMMDD | 2017-01-16 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shukla (CR14) 2015; 6 Seok Jung, Cavanagh, Yan, George, Manthiram (CR21) 2011; 158 Yang (CR18) 2015; 27 Lee (CR31) 2014; 14 Lin (CR2) 2014; 5 Ulvestad (CR49) 2015; 348 Zheng (CR19) 2008; 155 Liao (CR24) 2014; 345 Lin (CR28) 2016; 1 Choi, Manthiram (CR35) 2004; 7 Zheng (CR5) 2013; 13 He (CR16) 2016; 7 Mukhopadhyay, Sheldon (CR29) 2014; 63 Wise (CR25) 2015; 27 Zhou (CR36) 2014; 5 Hu, Zhao, Suo (CR42) 2010; 25 Li (CR27) 2014; 7 Min, Jo, Choi, Kim, Kang (CR26) 2016; 6 Sathiya (CR1) 2015; 14 Nadimpalli, Sethuraman, Abraham, Bower, Guduru (CR34) 2015; 162 Robertz, Novak (CR33) 2015; 162 Zheng (CR20) 2014; 26 Tan, Wu, Li, Chen, Chen (CR43) 2013; 117 Miller, Proff, Wen, Abraham, Bareno (CR32) 2013; 3 Woodford, Chiang, Carter (CR44) 2010; 157 Zhu, Ophus, Ciston, Wang (CR50) 2013; 61 Kim, Kim, Jeong, Nam, Cho (CR39) 2015; 15 Kalnaus, Rhodes, Daniel (CR48) 2011; 196 Sun (CR23) 2012; 24 Yoon, Chung, McBreen, Yang (CR37) 2006; 8 Wang, Jang, Huang, Sadoway, Chiang (CR41) 1999; 146 Dolotko, Senyshyn, Mühlbauer, Nikolowski, Ehrenberg (CR38) 2014; 255 Li, Zhang, Zhang, Wang, Zhang (CR53) 2014; 5 Wu (CR15) 2015; 3 Yan (CR9) 2015; 27 Gabrisch, Wilcox, Doeff (CR52) 2008; 11 Knoops, Donders, van de Sanden, Notten, Kessels (CR22) 2012; 30 Muto (CR11) 2009; 156 Manthiram, Knight, Myung, Oh, Sun (CR47) 2016; 6 Kobayashi (CR10) 2003; 13 Hong (CR12) 2010; 20 Gu, Xiao, Hu, Li, Ikuhara (CR8) 2015; 27 Rana (CR7) 2014; 4 Woo, Borisevich, Koch, Guliants (CR55) 2015; 7 Kiziltaş-Yavuz (CR30) 2013; 113 Boulineau, Simonin, Colin, Bourbon, Patoux (CR17) 2013; 13 Chen, Song, Richardson (CR40) 2006; 9 Mayer, Giannuzzi, Kamino, Michael (CR54) 2011; 32 Park, Lu, Sastry (CR46) 2011; 158 Shadow Huang, Wang (CR51) 2012; 159 Yan (CR4) 2015; 15 Klinsmann, Rosato, Kamlah, McMeeking (CR45) 2016; 163 Xu, Fell, Chi, Meng (CR3) 2011; 4 Gu (CR6) 2013; 7 McCalla (CR13) 2015; 350 DJ Miller (BFncomms14101_CR32) 2013; 3 S Kalnaus (BFncomms14101_CR48) 2011; 196 H-Y Shadow Huang (BFncomms14101_CR51) 2012; 159 YN Zhou (BFncomms14101_CR36) 2014; 5 J Hong (BFncomms14101_CR12) 2010; 20 G Chen (BFncomms14101_CR40) 2006; 9 P Yan (BFncomms14101_CR9) 2015; 27 M Klinsmann (BFncomms14101_CR45) 2016; 163 Y Wu (BFncomms14101_CR15) 2015; 3 F Lin (BFncomms14101_CR28) 2016; 1 P Yan (BFncomms14101_CR4) 2015; 15 Y Seok Jung (BFncomms14101_CR21) 2011; 158 N Kiziltaş-Yavuz (BFncomms14101_CR30) 2013; 113 A Manthiram (BFncomms14101_CR47) 2016; 6 S Muto (BFncomms14101_CR11) 2009; 156 J Mayer (BFncomms14101_CR54) 2011; 32 A Ulvestad (BFncomms14101_CR49) 2015; 348 E McCalla (BFncomms14101_CR13) 2015; 350 JM Zheng (BFncomms14101_CR19) 2008; 155 F Lin (BFncomms14101_CR2) 2014; 5 B Xu (BFncomms14101_CR3) 2011; 4 K He (BFncomms14101_CR16) 2016; 7 J Park (BFncomms14101_CR46) 2011; 158 H Kim (BFncomms14101_CR39) 2015; 15 AK Shukla (BFncomms14101_CR14) 2015; 6 Y Hu (BFncomms14101_CR42) 2010; 25 HCM Knoops (BFncomms14101_CR22) 2012; 30 J Choi (BFncomms14101_CR35) 2004; 7 LL Li (BFncomms14101_CR53) 2014; 5 R Robertz (BFncomms14101_CR33) 2015; 162 AM Wise (BFncomms14101_CR25) 2015; 27 J Zheng (BFncomms14101_CR20) 2014; 26 H Kobayashi (BFncomms14101_CR10) 2003; 13 SH Min (BFncomms14101_CR26) 2016; 6 M Gu (BFncomms14101_CR6) 2013; 7 J Rana (BFncomms14101_CR7) 2014; 4 A Boulineau (BFncomms14101_CR17) 2013; 13 J Zheng (BFncomms14101_CR5) 2013; 13 EJ Lee (BFncomms14101_CR31) 2014; 14 Y-K Sun (BFncomms14101_CR23) 2012; 24 O Dolotko (BFncomms14101_CR38) 2014; 255 M Sathiya (BFncomms14101_CR1) 2015; 14 H Gabrisch (BFncomms14101_CR52) 2008; 11 P Yang (BFncomms14101_CR18) 2015; 27 Y Zhu (BFncomms14101_CR50) 2013; 61 G Tan (BFncomms14101_CR43) 2013; 117 A Mukhopadhyay (BFncomms14101_CR29) 2014; 63 HG Liao (BFncomms14101_CR24) 2014; 345 X Li (BFncomms14101_CR27) 2014; 7 WH Woodford (BFncomms14101_CR44) 2010; 157 H Wang (BFncomms14101_CR41) 1999; 146 L Gu (BFncomms14101_CR8) 2015; 27 J Woo (BFncomms14101_CR55) 2015; 7 WS Yoon (BFncomms14101_CR37) 2006; 8 SPV Nadimpalli (BFncomms14101_CR34) 2015; 162 25668708 - Nano Lett. 2015 Mar 11;15(3):2111-9 24960550 - Nano Lett. 2014 Aug 13;14(8):4873-80 22362564 - Adv Mater. 2012 Mar 2;24(9):1192-6 26510508 - Nat Commun. 2015 Oct 29;6:8711 25437258 - Nat Mater. 2015 Feb;14(2):230-8 25485638 - Nano Lett. 2015 Jan 14;15(1):514-22 25677246 - Adv Mater. 2015 Apr 1;27(13):2134-49 23237664 - ACS Nano. 2013 Jan 22;7(1):760-7 23802657 - Nano Lett. 2013 Aug 14;13(8):3824-30 24670975 - Nat Commun. 2014 Mar 27;5:3529 27157119 - Nat Commun. 2016 May 09;7:11441 24667520 - Nat Commun. 2014 Mar 26;5:3536 23876058 - Nano Lett. 2013 Aug 14;13(8):3857-63 26089511 - Science. 2015 Jun 19;348(6241):1344-7 26680196 - Science. 2015 Dec 18;350(6267):1516-21 25451540 - Nat Commun. 2014 Nov 18;5:5381 25146287 - Science. 2014 Aug 22;345(6199):916-9 |
References_xml | – volume: 5 start-page: 3529 year: 2014 ident: CR2 article-title: Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms4529 – volume: 7 start-page: 760 year: 2013 end-page: 767 ident: CR6 article-title: Formation of the spinel phase in the layered composite cathode used in li-ion batteries publication-title: ACS nano doi: 10.1021/nn305065u – volume: 7 start-page: 3731 year: 2015 end-page: 3737 ident: CR55 article-title: Quantitative analysis of HAADF–STEM images of MoVTeTaO M1 phase catalyst for propane ammoxidation to acrylonitrile publication-title: ChemCatChem doi: 10.1002/cctc.201500402 – volume: 162 start-page: A1823 year: 2015 end-page: A1828 ident: CR33 article-title: Structural changes and microstrain generated on LiNi Co Al O during cycling: effects on the electrochemical performance publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721509jes – volume: 15 start-page: 2111 year: 2015 end-page: 2119 ident: CR39 article-title: A new coating method for alleviating surface degradation of LiNi Co Mn O cathode material: nanoscale surface treatment of primary particles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00045 – volume: 24 start-page: 1192 year: 2012 end-page: 1196 ident: CR23 article-title: The role of AlF coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201104106 – volume: 7 start-page: 11441 year: 2016 ident: CR16 article-title: Visualizing non-equilibrium lithiation of spinel oxide via transmission electron microscopy publication-title: Nat. Commun. doi: 10.1038/ncomms11441 – volume: 6 start-page: 1501010 year: 2016 ident: CR47 article-title: Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501010 – volume: 8 start-page: 1257 year: 2006 end-page: 1262 ident: CR37 article-title: A comparative study on structural changes of LiCo Ni Mn O and LiNi Co Al O during first charge using XRD publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.06.005 – volume: 27 start-page: 2134 year: 2015 end-page: 2149 ident: CR8 article-title: Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries publication-title: Adv. Mater. doi: 10.1002/adma.201404620 – volume: 3 start-page: 1098 year: 2013 end-page: 1103 ident: CR32 article-title: Observation of microstructural evolution in Li battery cathode oxide particles by electron microscopy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300015 – volume: 1 start-page: 15004 year: 2016 ident: CR28 article-title: Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2015.4 – volume: 162 start-page: A2656 year: 2015 end-page: A2663 ident: CR34 article-title: Stress Evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341514jes – volume: 157 start-page: A1052 year: 2010 end-page: A1059 ident: CR44 article-title: ‘Electrochemical shock’ of intercalation electrodes: a fracture mechanics analysis publication-title: J. Electrochem. Soc. doi: 10.1149/1.3464773 – volume: 13 start-page: 3857 year: 2013 end-page: 3863 ident: CR17 article-title: First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries publication-title: Nano Lett. doi: 10.1021/nl4019275 – volume: 196 start-page: 8116 year: 2011 end-page: 8124 ident: CR48 article-title: A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.049 – volume: 159 start-page: A815 year: 2012 end-page: A821 ident: CR51 article-title: Dislocation based stress developments in lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.090206jes – volume: 15 start-page: 514 year: 2015 end-page: 522 ident: CR4 article-title: Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li Ni Mn O cathode material for lithium ion batteries publication-title: Nano Lett. doi: 10.1021/nl5038598 – volume: 3 start-page: 5385 year: 2015 end-page: 5391 ident: CR15 article-title: Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06856D – volume: 13 start-page: 3824 year: 2013 end-page: 3830 ident: CR5 article-title: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process publication-title: Nano Lett. doi: 10.1021/nl401849t – volume: 27 start-page: 975 year: 2015 end-page: 982 ident: CR9 article-title: Probing the degradation mechanism of Li MnO cathode for li-ion batteries publication-title: Chem. Mater. doi: 10.1021/cm504257m – volume: 27 start-page: 7447 year: 2015 end-page: 7451 ident: CR18 article-title: Phosphorus enrichment as a new composition in the solid electrolyte interphase of high-voltage cathodes and its effects on battery cycling publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03510 – volume: 20 start-page: 10179 year: 2010 end-page: 10186 ident: CR12 article-title: Structural evolution of layered Li Ni Mn O upon electrochemical cycling in a Li rechargeable battery publication-title: J. Mater. Chem. doi: 10.1039/c0jm01971b – volume: 27 start-page: 6146 year: 2015 end-page: 6154 ident: CR25 article-title: Effect of Al O coating on stabilizing LiNi Mn Co O cathodes publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02952 – volume: 9 start-page: A295 year: 2006 end-page: A298 ident: CR40 article-title: Electron microscopy study of the LiFePO to FePO phase transition publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2192695 – volume: 14 start-page: 230 year: 2015 end-page: 238 ident: CR1 article-title: Origin of voltage decay in high-capacity layered oxide electrodes publication-title: Nat. Mater. doi: 10.1038/nmat4137 – volume: 61 start-page: 5646 year: 2013 end-page: 5663 ident: CR50 article-title: Interface lattice displacement measurement to 1 pm by geometric phase analysis on aberration-corrected HAADF STEM images publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.006 – volume: 6 start-page: 8711 year: 2015 ident: CR14 article-title: Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides publication-title: Nat. Commun. doi: 10.1038/ncomms9711 – volume: 345 start-page: 916 year: 2014 end-page: 919 ident: CR24 article-title: Facet development during platinum nanocube growth publication-title: Science doi: 10.1126/science.1253149 – volume: 155 start-page: A775 year: 2008 end-page: A782 ident: CR19 article-title: The effects of AlF coating on the performance of Li[Li Mn Ni Co ]O positive electrode material for lithium-ion battery publication-title: J. Electrochem. Soc. doi: 10.1149/1.2966694 – volume: 6 start-page: 1501717 year: 2016 ident: CR26 article-title: A layer-structured electrode material reformed by a PO -O hybrid framework toward enhanced lithium storage and stability publication-title: Adv. Energy Mater doi: 10.1002/aenm.201501717 – volume: 7 start-page: 768 year: 2014 end-page: 778 ident: CR27 article-title: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application publication-title: Energ Environ. Sci. doi: 10.1039/C3EE42704H – volume: 11 start-page: A25 year: 2008 end-page: A29 ident: CR52 article-title: TEM study of fracturing in spherical and plate-like LiFePO particles publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2826746 – volume: 350 start-page: 1516 year: 2015 end-page: 1521 ident: CR13 article-title: Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries publication-title: Science doi: 10.1126/science.aac8260 – volume: 255 start-page: 197 year: 2014 end-page: 203 ident: CR38 article-title: Understanding structural changes in NMC Li-ion cells by neutron diffraction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.010 – volume: 63 start-page: 58 year: 2014 end-page: 116 ident: CR29 article-title: Deformation and stress in electrode materials for Li-ion batteries publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.02.001 – volume: 4 start-page: 1300998 year: 2014 ident: CR7 article-title: Structural changes in Li MnO cathode material for li-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300998 – volume: 158 start-page: A201 year: 2011 end-page: A206 ident: CR46 article-title: Numerical simulation of stress evolution in lithium manganese dioxide particles due to coupled phase transition and intercalation publication-title: J. Electrochem. Soc. doi: 10.1149/1.3526597 – volume: 146 start-page: 473 year: 1999 end-page: 480 ident: CR41 article-title: TEM study of electrochemical cycling‐induced damage and disorder in LiCoO cathodes for rechargeable lithium batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391631 – volume: 156 start-page: A371 year: 2009 end-page: A377 ident: CR11 article-title: Capacity-fading mechanisms of LiNiO -based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy publication-title: J. Electrochem. Soc. doi: 10.1149/1.3076137 – volume: 158 start-page: A1298 year: 2011 end-page: A1302 ident: CR21 article-title: Effects of atomic layer deposition of Al O on the Li[Li Mn Ni Co ]O cathode for lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.030112jes – volume: 163 start-page: A102 year: 2016 end-page: A118 ident: CR45 article-title: Modeling crack growth during Li extraction in storage particles using a fracture phase field approach publication-title: J. Electrochem. Soc. doi: 10.1149/2.0281602jes – volume: 14 start-page: 4873 year: 2014 end-page: 4880 ident: CR31 article-title: Development of microstrain in aged lithium transition metal oxides publication-title: Nano Lett. doi: 10.1021/nl5022859 – volume: 32 start-page: 400 year: 2011 end-page: 407 ident: CR54 article-title: TEM sample preparation and FIB-induced damage publication-title: MRS Bull. doi: 10.1557/mrs2007.63 – volume: 26 start-page: 6320 year: 2014 end-page: 6327 ident: CR20 article-title: Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials publication-title: Chem. Mater. doi: 10.1021/cm502071h – volume: 113 start-page: 313 year: 2013 end-page: 321 ident: CR30 article-title: Synthesis, structural, magnetic and electrochemical properties of LiNi Mn Co O prepared by a sol-gel method using table sugar as chelating agent publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.065 – volume: 13 start-page: 590 year: 2003 end-page: 595 ident: CR10 article-title: Changes in the structure and physical properties of the solid solution LiNi Mn O with variation in its composition publication-title: J. Mater. Chem. doi: 10.1039/b211558a – volume: 5 start-page: 3536 year: 2014 ident: CR53 article-title: Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary publication-title: Nat. Commun. doi: 10.1038/ncomms4536 – volume: 25 start-page: 1007 year: 2010 end-page: 1010 ident: CR42 article-title: Averting cracks caused by insertion reaction in lithium–ion batteries publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0142 – volume: 30 start-page: 010801 year: 2012 ident: CR22 article-title: Atomic layer deposition for nanostructured Li-ion batteries publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3660699 – volume: 117 start-page: 6013 year: 2013 end-page: 6021 ident: CR43 article-title: Coralline glassy lithium phosphate-coated LiFePO cathodes with improved power capability for lithium ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp309724q – volume: 5 start-page: 5381 year: 2014 ident: CR36 article-title: Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6381 – volume: 348 start-page: 1344 year: 2015 end-page: 1347 ident: CR49 article-title: Topological defect dynamics in operando battery nanoparticles publication-title: Science doi: 10.1126/science.aaa1313 – volume: 4 start-page: 2223 year: 2011 end-page: 2233 ident: CR3 article-title: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01131f – volume: 7 start-page: A365 year: 2004 end-page: A368 ident: CR35 article-title: Comparison of the electrochemical behaviors of stoichiometric LiNi Co Mn O and lithium excess Li (Ni Co Mn ) O publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1792271 – volume: 24 start-page: 1192 year: 2012 ident: BFncomms14101_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201104106 – volume: 113 start-page: 313 year: 2013 ident: BFncomms14101_CR30 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.065 – volume: 158 start-page: A1298 year: 2011 ident: BFncomms14101_CR21 publication-title: J. Electrochem. Soc. doi: 10.1149/2.030112jes – volume: 350 start-page: 1516 year: 2015 ident: BFncomms14101_CR13 publication-title: Science doi: 10.1126/science.aac8260 – volume: 155 start-page: A775 year: 2008 ident: BFncomms14101_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2966694 – volume: 345 start-page: 916 year: 2014 ident: BFncomms14101_CR24 publication-title: Science doi: 10.1126/science.1253149 – volume: 6 start-page: 1501717 year: 2016 ident: BFncomms14101_CR26 publication-title: Adv. Energy Mater doi: 10.1002/aenm.201501717 – volume: 14 start-page: 230 year: 2015 ident: BFncomms14101_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat4137 – volume: 61 start-page: 5646 year: 2013 ident: BFncomms14101_CR50 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.06.006 – volume: 15 start-page: 514 year: 2015 ident: BFncomms14101_CR4 publication-title: Nano Lett. doi: 10.1021/nl5038598 – volume: 26 start-page: 6320 year: 2014 ident: BFncomms14101_CR20 publication-title: Chem. Mater. doi: 10.1021/cm502071h – volume: 7 start-page: 3731 year: 2015 ident: BFncomms14101_CR55 publication-title: ChemCatChem doi: 10.1002/cctc.201500402 – volume: 162 start-page: A1823 year: 2015 ident: BFncomms14101_CR33 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721509jes – volume: 255 start-page: 197 year: 2014 ident: BFncomms14101_CR38 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.010 – volume: 7 start-page: 768 year: 2014 ident: BFncomms14101_CR27 publication-title: Energ Environ. Sci. doi: 10.1039/C3EE42704H – volume: 348 start-page: 1344 year: 2015 ident: BFncomms14101_CR49 publication-title: Science doi: 10.1126/science.aaa1313 – volume: 1 start-page: 15004 year: 2016 ident: BFncomms14101_CR28 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.4 – volume: 8 start-page: 1257 year: 2006 ident: BFncomms14101_CR37 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.06.005 – volume: 117 start-page: 6013 year: 2013 ident: BFncomms14101_CR43 publication-title: J. Phys. Chem. C doi: 10.1021/jp309724q – volume: 156 start-page: A371 year: 2009 ident: BFncomms14101_CR11 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3076137 – volume: 13 start-page: 3857 year: 2013 ident: BFncomms14101_CR17 publication-title: Nano Lett. doi: 10.1021/nl4019275 – volume: 32 start-page: 400 year: 2011 ident: BFncomms14101_CR54 publication-title: MRS Bull. doi: 10.1557/mrs2007.63 – volume: 3 start-page: 1098 year: 2013 ident: BFncomms14101_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300015 – volume: 162 start-page: A2656 year: 2015 ident: BFncomms14101_CR34 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341514jes – volume: 27 start-page: 975 year: 2015 ident: BFncomms14101_CR9 publication-title: Chem. Mater. doi: 10.1021/cm504257m – volume: 27 start-page: 2134 year: 2015 ident: BFncomms14101_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201404620 – volume: 157 start-page: A1052 year: 2010 ident: BFncomms14101_CR44 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3464773 – volume: 14 start-page: 4873 year: 2014 ident: BFncomms14101_CR31 publication-title: Nano Lett. doi: 10.1021/nl5022859 – volume: 3 start-page: 5385 year: 2015 ident: BFncomms14101_CR15 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06856D – volume: 5 start-page: 5381 year: 2014 ident: BFncomms14101_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms6381 – volume: 7 start-page: A365 year: 2004 ident: BFncomms14101_CR35 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1792271 – volume: 4 start-page: 2223 year: 2011 ident: BFncomms14101_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01131f – volume: 13 start-page: 590 year: 2003 ident: BFncomms14101_CR10 publication-title: J. Mater. Chem. doi: 10.1039/b211558a – volume: 6 start-page: 8711 year: 2015 ident: BFncomms14101_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms9711 – volume: 27 start-page: 7447 year: 2015 ident: BFncomms14101_CR18 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03510 – volume: 27 start-page: 6146 year: 2015 ident: BFncomms14101_CR25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02952 – volume: 159 start-page: A815 year: 2012 ident: BFncomms14101_CR51 publication-title: J. Electrochem. Soc. doi: 10.1149/2.090206jes – volume: 146 start-page: 473 year: 1999 ident: BFncomms14101_CR41 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1391631 – volume: 7 start-page: 11441 year: 2016 ident: BFncomms14101_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms11441 – volume: 163 start-page: A102 year: 2016 ident: BFncomms14101_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0281602jes – volume: 5 start-page: 3529 year: 2014 ident: BFncomms14101_CR2 publication-title: Nat. Commun. doi: 10.1038/ncomms4529 – volume: 7 start-page: 760 year: 2013 ident: BFncomms14101_CR6 publication-title: ACS nano doi: 10.1021/nn305065u – volume: 4 start-page: 1300998 year: 2014 ident: BFncomms14101_CR7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300998 – volume: 13 start-page: 3824 year: 2013 ident: BFncomms14101_CR5 publication-title: Nano Lett. doi: 10.1021/nl401849t – volume: 5 start-page: 3536 year: 2014 ident: BFncomms14101_CR53 publication-title: Nat. Commun. doi: 10.1038/ncomms4536 – volume: 196 start-page: 8116 year: 2011 ident: BFncomms14101_CR48 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.049 – volume: 158 start-page: A201 year: 2011 ident: BFncomms14101_CR46 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3526597 – volume: 25 start-page: 1007 year: 2010 ident: BFncomms14101_CR42 publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0142 – volume: 20 start-page: 10179 year: 2010 ident: BFncomms14101_CR12 publication-title: J. Mater. Chem. doi: 10.1039/c0jm01971b – volume: 6 start-page: 1501010 year: 2016 ident: BFncomms14101_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501010 – volume: 63 start-page: 58 year: 2014 ident: BFncomms14101_CR29 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.02.001 – volume: 11 start-page: A25 year: 2008 ident: BFncomms14101_CR52 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2826746 – volume: 15 start-page: 2111 year: 2015 ident: BFncomms14101_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00045 – volume: 30 start-page: 010801 year: 2012 ident: BFncomms14101_CR22 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.3660699 – volume: 9 start-page: A295 year: 2006 ident: BFncomms14101_CR40 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2192695 – reference: 27157119 - Nat Commun. 2016 May 09;7:11441 – reference: 25437258 - Nat Mater. 2015 Feb;14(2):230-8 – reference: 22362564 - Adv Mater. 2012 Mar 2;24(9):1192-6 – reference: 23876058 - Nano Lett. 2013 Aug 14;13(8):3857-63 – reference: 24667520 - Nat Commun. 2014 Mar 26;5:3536 – reference: 23237664 - ACS Nano. 2013 Jan 22;7(1):760-7 – reference: 24960550 - Nano Lett. 2014 Aug 13;14(8):4873-80 – reference: 25668708 - Nano Lett. 2015 Mar 11;15(3):2111-9 – reference: 26089511 - Science. 2015 Jun 19;348(6241):1344-7 – reference: 23802657 - Nano Lett. 2013 Aug 14;13(8):3824-30 – reference: 25146287 - Science. 2014 Aug 22;345(6199):916-9 – reference: 24670975 - Nat Commun. 2014 Mar 27;5:3529 – reference: 25451540 - Nat Commun. 2014 Nov 18;5:5381 – reference: 26680196 - Science. 2015 Dec 18;350(6267):1516-21 – reference: 26510508 - Nat Commun. 2015 Oct 29;6:8711 – reference: 25485638 - Nano Lett. 2015 Jan 14;15(1):514-22 – reference: 25677246 - Adv Mater. 2015 Apr 1;27(13):2134-49 |
SSID | ssj0000391844 |
Score | 2.6733918 |
Snippet | LiNi
1/3
Mn
1/3
Co
1/3
O
2
-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers... LiNi Mn Co O -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages... LiNi1/3 Mn1/3 Co1/3 O2 -layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers... LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers... LiNi1/3Mn1/3Co1/3O2 (NMC333) layered cathode is often fabricated as secondary particles of consisting of densely packed primary particles, which offers... Cycling-induced fracture can limit conditions for stable operation for various lithium-ion electrode materials. Here, the authors characterize fracture in... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14101 |
SubjectTerms | 639/301/299/161 639/4077/4079/891 batteries Cracks dislocation electrochemistry Electrodes Electrolytes Electrons ENERGY STORAGE Environmental Molecular Sciences Laboratory high voltage cycling Humanities and Social Sciences intragranular crack layered cathode Lithium lithium ion battery multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC5kQfAivo27SgvrRQibR79yVHFZPXhyYW9NpR_uwm4i8zjsv7eqkxlm3AUvnoZMKqFTj-6v0pWvAI6lDlJKbMpQG0MJiqxLWydfoiH4Skehwlzl-0OfncvvF-pip9UX14RN9MCT4k4sJnI5o5oYvExYdU2PTaeit5kHJkMjWvN2kqk8B7cdpS5y_iCvau3JQAa8WXJVY723BGWmfvoZKaLuQ5l3iyX_2jHNC9HpE3g8I0jxaRr5U3gQh2fwcOopefscbr_xDX7REsQFpsIv0PPbcIFLgXQ0NTYQPS64VZ0gyCqYsbikWWpFU4tYc6GZGJO4RgLj5UQvu17EIJjgdQwxX0LY_fJqfVOSUelW_EEQJdwv4Pz0688vZ-XcX6H0lMSsyl4Hb7vktdcyRa17TCiRO0wZ7ztTK9-gabWVdQyYek3hn0xUuk1SdW2N7Us4GMYhvgaBKmkdCEqi6WWQLZJg54NvrE00LfQFfNyo3PmZfJx7YFy7vAneWrdjnwKOt8K_J86N-8U-s-22IkyUnf8g93Gz-7h_uU8Bh2x5R3iDSXM9Vxf5laPMvbOVKeBo4xBuju2lI4RjSS3StgW8356mqOStFhziuGYZRopcu1vAq8l_tuNsLPmrrpoCzJ5n7T3I_pnh6jIzfyvCW7ZSBXzY-ODOsO5q6M3_0NAhPGoYylTcUPwIDsjv4lsCYqv-XY65P4UANbE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXVN5pCzJSuSBZzcOxnRMCRFU4cKLS3qKJH22lNin7OPTfM-Nkly6tOK2ymViO5-HP9uQbgEOlvVIKS-kLY2iBogppi-gkGoKvdOVzTFm-P_XJqfoxq2fThttiSqtcx8QUqP3geI_8iOYVayqtbPXp-rfkqlF8ujqV0HgIj5i6jFO6zMxs9liY_dwqNX2Wl1f2qKcmrxac21hsTUSJr59-BvKr-7Dm3ZTJf85N03R0vAtPJxwpPo-KfwYPQv8cHo-VJW9ewM13buCMJiJOMxVujo73xAUuBNLVWN5AdDjngnWCgKtg3mJJsWpJAUasON1MDFFcIkFyOZLMrubBC6Z5HXxIjxCCP79YXUlSLTXFnwXRsvslnB5_-_X1RE5VFqSjpcxSdto720SnnVYxaN1hRIVcZ8o415iidiXSwFtVBI-x0xQEogm1rqKqm6rA6hXs9EMf3oDAOmrtCVCi6ZRXFZJg47wrrY0UHLoMPq6HvHUTBTlXwrhs01F4Zdtb-sngcCN8PTJv3C_2hXW3EWG67PTHMD9rJ-9rLUaKW6YuSYEqYt6UHZZNHZxNZEKYwT5rviXUwdS5jnOM3LKl9Xtjc5PBwdog2snDF-1fe8zg_eY2-SYfuGAfhhXLMF7kDN4MXo_2s-lnaQmp6bzMwGxZ1taLbN_pL84T_3dNqMvmdQYf1jZ4q1t3R2jv_93fhyclQ5WcC4YfwA5ZVHhLQGvZvUve9AfYpC0w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hIiQuiDehBRmpXJAs8nBs5wgrqsKBE5V6syZ23FZqk2ofh_57ZpxstEt74BQ5mUSOZ8b-Jp58A3CsdFBKYSlDYQwFKKqQtoheoiH4Sq2QY8ry_a1Pz9Sv8_p84tleTWmVI6Vlmqa32WFfe2rdrDgpkUKdx8zZzua80Iv5gwpTnVulpn_w8sru3rO36iRyfjoM5EQPAcv7-ZH_bJKmtefkOTybQKP4NnbzBTzq-pfwZCwjefcK7n7yAy5o1eGcUuGX6PkDuMCVQGqNtQxEi0uuTicIpQomKZY0Ma1pNhEbzi0TQxTXSPhbjoyyNDRBMKfrELp0C8H1y6vNjSQ90qP4HyCKsV_D2cmPP4tTOZVUkJ7ilrVsdfC2iV57rWKndYsRFXJRKeN9Y4ral2gqbVXRBYytJo-Ppqt1FVXdVAVWb-CgH_ruHQiso9aB0COaVgVVIQk2PvjS2kgzQZvBl-2QOz_xjXPZi2uX9r0r63b0k8HxLHw70mw8LPaddTeLMDd2OjEsL9xkK85ipEnK1CUpUEXMm7LFsqk7bxNzEGZwyJp3BDGYJ9dzQpFfOwrWG5ubDI62BuEmd145AjWWhkXZKoNP82VyRN5dwb4bNizD4JDTdTN4O9rP3M_SEizTeZmB2bOsvRfZv9JfXSay75ogls3rDD5vbXCnW_dH6P1_yh3C05IBSs5lwo_ggEyr-0Dwat1-TG71F3UQKao priority: 102 providerName: Springer Nature |
Title | Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries |
URI | https://link.springer.com/article/10.1038/ncomms14101 https://www.ncbi.nlm.nih.gov/pubmed/28091602 https://www.proquest.com/docview/1858736483 https://www.proquest.com/docview/1861514953 https://www.osti.gov/servlets/purl/1339807 https://pubmed.ncbi.nlm.nih.gov/PMC5241805 https://doaj.org/article/8af225752edc4fa092ba295ec870556a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zb9NAEB6VVki8IO6almiRyguSIbbXu-sHhNKooUSiQkCkvFnjtbetlNqQQyL_nhkfUdOGl1i210d2jv1mPfsNwIlUuZQSQz8PtKYARQa-CZz1URN8pb28j3WW74U6n8jxNJ7uQVeMs-3Axc7QjutJTeazD3__rD-TwX9qloybjyXJ5mbBCYsUBh3QkKTZQr-1OL92yVFCkYxs1-fduYb5gA0Nm6qdWukGp5rDnzYV2dou_Hk_jfLOt9R6iBo9gcctthSDRhmewl5RPoOHTbXJ9XNYf-UbXNLgxKmnws7R8jy5wIVA2mtKHogM51zEThCYFcxl7JP_WpLTEStOQROVEzMkmO43xLOreZELpn6t8qK-hFD91fXqxidx0614qRCF4i9gMjr7NTz328oLvqXwZulnKrcmcVZZJV2hVIYOJXLtKW1tooPYhqgjZWRQ5OgyRY7B6SJWkZNxEgUYvYT9siqLQxAYO6VyApmoM5nLCKlhYnMbGuPIYWQevO-6PLUtLTlXx5il9efxyKS3ROXByabx74aNY3ezU5bdpglTaNcHqvll2lpkatCRL9NxSAKUDvtJmGGYxIU1NcEQenDEkk8JiTCdruW8I7tMKaZPTF97cNwpRNopbUrYx1C3SBN58HZzmuyVP8JgWVQrbsMYkrN6PXjV6M_mPTs19EBvadbWH9k-U15f1ZzgMam96ccevOt08NZr3e-h1_999hE8Chm59Ll--DHskzIVbwh3LbMePNBTTb9m9KUHB4PB-OeYtqdnF99_0NGhGvbqGY1ebXv_ACQSNoM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLOEFjBSe0GKmjiO7RwQ4lXt0tJTK-0tOHbcVmqTsg-h_VP8Rmbyoksrbj2tsnEcx_P6xh7PAGwL6YQQhocuVgodFBGHOvY2NArhK165yDRRvodydCy-TdLJGvzuz8JQWGWvExtF7WpLa-S7aFe0SqTQyYfLnyFVjaLd1b6ERssW--XyF7pss_fjL0jfHc73vh59HoVdVYHQInSfh4V0VmfeSiuFL6UsjDfCUF0lZW2m4tRygy_SIi6d8YVEpveqTGXiRZolsUmw3ztwFw1vRBKlJmpY06Fs61qI7hhglOjdCj_hYkaxlPGK4WvqA-BPjXJ8E7a9HqL5zz5tY_72HsHDDreyjy2jPYa1snoC99pKlsunsBxTBydo-CisldmpsbQGz8yMGbxqyymwwkypQB5DoMwoT3KIunGOCo0tKLyN1Z6dG3QBwjap7WJaOkZpZWtXNo-gx3B6trgIkZWwKzqGhG7-Mzi-lfl_DutVXZUvgJnUS-kQwBpVCCcSgw0z6yzX2qMyKgJ41095bruU51R54zxvtt4TnV-hTwDbQ-PLNtPHzc0-Ee2GJpSeu_mjnp7knbTn2njUkyrlSEDhTZTxwvAsLa1ukheZADaJ8jmiHErVaymmyc7zOEkyHakAtnqGyDuNMsv_8n8Ab4fbqAtog8dUZb2gNoRPKWI4gI2Wf4Zxco3IUEY8ALXCWSsfsnqnOjtt8o2niPJ0lAaw0_PglWFdn6GX_x_-G7g_Ovp-kB-MD_c34QEnmBRRsfItWEfuKl8hyJsXrxvJYvDjtkX5D4rXa9U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJvQAkZqL0jRJrFjOweEgLLqUlRxoNLeguPYbaU2KfsQ2r_Gr2MmL7q04tbTKpuJ43ge_sYezwDsCFkKIUwSlrFS6KCIONSxt6FRCF_xqoxME-V7KPePxJdpOt2A3_1ZGAqr7G1iY6jL2tIa-QjnFa24FJqPfBcW8W1v_P7iZ0gVpGintS-n0YrIgVv9Qvdt_m6yh7zeTZLx5--f9sOuwkBoEcYvwkKWVmfeSiuFd1IWxhthqMaSsjZTcWoTgy_VInal8YVEBfDKpZJ7kWY8NhzbvQW3FU9j0jE1VcP6DmVe10J0RwIjrkcVfs75nOIq47VJsKkVgD816vR1OPdquOY_e7bNVDh-APc7DMs-tEL3EDZc9QjutFUtV49hNaEGjnESpBBXZmfG0no8M3Nm8KotrcAKM6NieQxBM6OcySHayQUaN7akUDdWe3Zm0B0I2wS3y5krGaWYrUvXPILew8np8jxEscKm6EgSuvxP4OhGxv8pbFZ15Z4DM6mXskQwa1QhSsENEma2tInWHg1TEcDbfshz26U_pyocZ3mzDc91fok_AewMxBdt1o_ryT4S7wYSStXd_FHPjvNO83NtPNpMlSbIQOFNlCWFSbLUWd0kMjIBbBHnc0Q8lLbXUnyTXeQx55mOVADbvUDknXWZ5391IYA3w220C7TZYypXL4mGsCpFDwfwrJWfoZ-JRpQooyQAtSZZax-yfqc6PWlyj6eI-HSUBrDby-Clbl0doRf_7_5ruItKnH-dHB5swb2EEBOVhZLbsInC5V4i3lsUrxrFYvDjpjX5Dx6PcBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intragranular+cracking+as+a+critical+barrier+for+high-voltage+usage+of+layer-structured+cathode+for+lithium-ion+batteries&rft.jtitle=Nature+communications&rft.au=Yan%2C+Pengfei&rft.au=Zheng%2C+Jianming&rft.au=Gu%2C+Meng&rft.au=Xiao%2C+Jie&rft.date=2017-01-16&rft.eissn=2041-1723&rft.volume=8&rft.spage=14101&rft_id=info:doi/10.1038%2Fncomms14101&rft_id=info%3Apmid%2F28091602&rft.externalDocID=28091602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |