Mosaic Copy Number Variation in Human Neurons
We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 342; no. 6158; pp. 632 - 637 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
01.11.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.1243472 |
Cover
Loading…
Abstract | We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 4 1% of neurons have at least one mega base-sea le de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. |
---|---|
AbstractList | We used single cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and post-mortem human brains. We identified aneuploid neurons as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single cell sequencing of endogenous human frontal cortex neurons revealed that 13%-41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic copy number variation is abundant in human neurons. Not All Neurons Are AlikeAs life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations-no two alike-with deletions more common than duplications. Not All Neurons Are Alike As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations—no two alike—with deletions more common than duplications. As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll ) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations--no two alike--with deletions more common than duplications. [PUBLICATION ABSTRACT] We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. [PUBLICATION ABSTRACT] We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 4 1% of neurons have at least one mega base-sea le de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632 ; see the Perspective by Macosko and McCarroll ) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations—no two alike—with deletions more common than duplications. Single-cell genomics reveals that individual adult human neurons acquire diverse individual genomes. [Also see Perspective by Macosko and McCarroll ] We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. |
Author | Lindberg, Michael R. Brennend, Kristen J. Cowing-Zitron, Chris Vermeesch, Joris R. Lasken, Roger S. Gage, Fred H. McConnell, Michael J. Piper, Julia C. Shumilina, Svetlana Voet, Thierry Hall, Ira M. |
AuthorAffiliation | 1 Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037 3 Center for Human Genetics, K.U. Leuven, Leuven, Belgium 8 Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908 6 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 2 Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037 5 J. Craig Venter Institute, San Diego, CA 92121 4 Wellcome Trust Sanger Institute, Cambridge, UK 7 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 9 Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 |
AuthorAffiliation_xml | – name: 9 Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 – name: 5 J. Craig Venter Institute, San Diego, CA 92121 – name: 4 Wellcome Trust Sanger Institute, Cambridge, UK – name: 1 Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037 – name: 2 Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037 – name: 3 Center for Human Genetics, K.U. Leuven, Leuven, Belgium – name: 7 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 – name: 6 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 – name: 8 Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908 |
Author_xml | – sequence: 1 givenname: Michael J. surname: McConnell fullname: McConnell, Michael J. – sequence: 2 givenname: Michael R. surname: Lindberg fullname: Lindberg, Michael R. – sequence: 3 givenname: Kristen J. surname: Brennend fullname: Brennend, Kristen J. – sequence: 4 givenname: Julia C. surname: Piper fullname: Piper, Julia C. – sequence: 5 givenname: Thierry surname: Voet fullname: Voet, Thierry – sequence: 6 givenname: Chris surname: Cowing-Zitron fullname: Cowing-Zitron, Chris – sequence: 7 givenname: Svetlana surname: Shumilina fullname: Shumilina, Svetlana – sequence: 8 givenname: Roger S. surname: Lasken fullname: Lasken, Roger S. – sequence: 9 givenname: Joris R. surname: Vermeesch fullname: Vermeesch, Joris R. – sequence: 10 givenname: Ira M. surname: Hall fullname: Hall, Ira M. – sequence: 11 givenname: Fred H. surname: Gage fullname: Gage, Fred H. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975276$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24179226$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMydQJFSJS1p_f1wqoVWhSG25VFwtx3HAq8Re7ASp_z0OG7alh_bkw_zeG8-bOQIHIQYHwFsETxHC_Cxb74J1pwhTQgV-AVYIKlYrDMkBWEFIeC2hYIfgKOcNhKWmyCtwiCkSCmO-AvV1zMbbah23d9XNNDQuVd9N8mb0MVQ-VJfTYEJ146YUQ34NXnamz-7N8h6D288Xt-vL-urbl6_rT1e15ZCNdUORY6jBnWqVIrRtDeugdcoZ2vHyg9YySaTizGDLlOBISGQEtoQ5yRtKjsH5znY7NYNrrQtjMr3eJj-YdKej8fr_SvA_9Y_4WxMlGJakGHxcDFL8Nbk86sFn6_reBBenrHGJgkjCIHsWRZxDiihm6HmUUokxE2R2_fAI3cQphZLZTAkmuESqUO8fzrkf8N96CnCyACZb03fJBOvzPSfmecXMne04m2LOyXV7BEE9H4peDkUvh1IU7JHC-vHv0kugvn9C926n2-Qxpn0binnJFCHyB1CRygU |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1038_nprot_2014_067 crossref_primary_10_1016_j_trecan_2016_09_003 crossref_primary_10_1101_gr_247882_118 crossref_primary_10_1186_s12864_017_4286_1 crossref_primary_10_1146_annurev_genom_091416_035324 crossref_primary_10_1016_j_tig_2015_03_013 crossref_primary_10_1007_s11825_014_0010_6 crossref_primary_10_1111_pcn_12632 crossref_primary_10_3390_cells10082056 crossref_primary_10_1186_s40478_022_01452_2 crossref_primary_10_1016_j_copbio_2014_03_001 crossref_primary_10_1111_dgd_12898 crossref_primary_10_1038_nmeth_2768 crossref_primary_10_1038_srep03807 crossref_primary_10_1016_j_eplepsyres_2019_106161 crossref_primary_10_1038_ncomms8549 crossref_primary_10_1038_nrn3730 crossref_primary_10_1016_j_celrep_2018_12_107 crossref_primary_10_12688_f1000research_7223_1 crossref_primary_10_1016_j_gene_2021_145995 crossref_primary_10_1134_S181971242104005X crossref_primary_10_1016_j_dnarep_2018_08_019 crossref_primary_10_1038_s41467_021_24236_z crossref_primary_10_1016_j_pt_2014_07_002 crossref_primary_10_1016_j_arr_2021_101342 crossref_primary_10_1186_s13578_019_0314_y crossref_primary_10_1093_nar_gky463 crossref_primary_10_1038_s10038_021_00964_4 crossref_primary_10_1038_srep11415 crossref_primary_10_1111_febs_14053 crossref_primary_10_1038_mp_2016_88 crossref_primary_10_1016_j_conb_2017_12_004 crossref_primary_10_1038_s41587_022_01568_9 crossref_primary_10_1016_j_mad_2016_03_007 crossref_primary_10_1098_rsob_180074 crossref_primary_10_1073_pnas_1804194115 crossref_primary_10_1158_1541_7786_MCR_15_0330 crossref_primary_10_5607_en_2014_23_4_271 crossref_primary_10_1016_j_biopsych_2024_10_023 crossref_primary_10_1038_s41421_024_00719_3 crossref_primary_10_1038_srep23500 crossref_primary_10_3389_fgene_2020_548719 crossref_primary_10_1111_ejn_12607 crossref_primary_10_1111_bpa_12958 crossref_primary_10_1038_s41588_022_01180_2 crossref_primary_10_1002_gcc_22704 crossref_primary_10_1016_j_molcel_2015_05_005 crossref_primary_10_1016_j_neuron_2016_02_004 crossref_primary_10_1371_journal_pgen_1004126 crossref_primary_10_1101_gr_188060_114 crossref_primary_10_1134_S0026893321010155 crossref_primary_10_1007_s10577_023_09740_w crossref_primary_10_1038_ncomms5227 crossref_primary_10_1038_s41467_024_51821_9 crossref_primary_10_1186_s40169_017_0139_4 crossref_primary_10_1038_nature17316 crossref_primary_10_1038_nbt_3711 crossref_primary_10_3389_fnins_2025_1552790 crossref_primary_10_1038_nrn_2016_46 crossref_primary_10_18632_oncotarget_3633 crossref_primary_10_1371_journal_pgen_1004358 crossref_primary_10_3390_jcm8030288 crossref_primary_10_1080_14737159_2018_1523723 crossref_primary_10_1002_stem_1779 crossref_primary_10_1038_nrn3656 crossref_primary_10_1016_j_celrep_2021_109290 crossref_primary_10_1073_pnas_1415287111 crossref_primary_10_1146_annurev_genet_120213_092412 crossref_primary_10_1016_j_jmb_2014_08_001 crossref_primary_10_1186_s40478_019_0873_5 crossref_primary_10_1007_s11434_014_0634_6 crossref_primary_10_1016_j_jneumeth_2019_108350 crossref_primary_10_1073_pnas_1503328112 crossref_primary_10_3390_genes5041064 crossref_primary_10_1242_dev_133058 crossref_primary_10_3390_genes10060407 crossref_primary_10_1073_pnas_1513988112 crossref_primary_10_1152_physiolgenomics_00049_2017 crossref_primary_10_1073_pnas_1717798114 crossref_primary_10_1111_jnc_13629 crossref_primary_10_1016_j_jgg_2014_09_005 crossref_primary_10_3390_v8050123 crossref_primary_10_1063_1_5090235 crossref_primary_10_1091_mbc_E17_01_0031 crossref_primary_10_1016_j_arr_2021_101316 crossref_primary_10_1146_annurev_genom_083118_015241 crossref_primary_10_1038_nmeth_2783 crossref_primary_10_1016_j_ajhg_2015_05_008 crossref_primary_10_1093_pcmedi_pbac002 crossref_primary_10_1111_pbi_12691 crossref_primary_10_1101_gr_215517_116 crossref_primary_10_1101_gr_262667_120 crossref_primary_10_1002_bies_201400218 crossref_primary_10_3389_fragi_2022_991460 crossref_primary_10_1038_s41598_020_58165_6 crossref_primary_10_1126_sciadv_abd6454 crossref_primary_10_1186_s12864_015_1713_z crossref_primary_10_12688_f1000research_7095_1 crossref_primary_10_1038_nrg_2016_145 crossref_primary_10_1016_j_nbd_2023_106208 crossref_primary_10_1016_j_ajpath_2015_10_033 crossref_primary_10_1002_hipo_23475 crossref_primary_10_1093_gbe_evv132 crossref_primary_10_1016_j_omtm_2020_04_016 crossref_primary_10_1038_s41580_019_0186_3 crossref_primary_10_1146_annurev_neuro_071714_033828 crossref_primary_10_1074_jbc_R113_516419 crossref_primary_10_1158_2159_8290_CD_21_0245 crossref_primary_10_3390_ijms21051860 crossref_primary_10_1242_dmm_049673 crossref_primary_10_1017_thg_2017_69 crossref_primary_10_1007_s00439_019_02047_z crossref_primary_10_1038_nmeth_3578 crossref_primary_10_1093_brain_awy157 crossref_primary_10_1038_s41565_018_0315_8 crossref_primary_10_1159_000369606 crossref_primary_10_1016_j_cell_2020_06_024 crossref_primary_10_1038_s41467_020_15794_9 crossref_primary_10_1038_s42003_024_06940_w crossref_primary_10_1038_mp_2016_158 crossref_primary_10_1038_nrc_2017_52 crossref_primary_10_1016_j_cell_2015_12_039 crossref_primary_10_1016_j_nantod_2023_101807 crossref_primary_10_1016_j_nbd_2019_104503 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1038_ncomms7822 crossref_primary_10_1093_nargab_lqad042 crossref_primary_10_3390_ijms222212354 crossref_primary_10_1186_s12916_020_01763_y crossref_primary_10_1016_j_biopsych_2013_12_004 crossref_primary_10_1002_bies_201500097 crossref_primary_10_1007_s00441_017_2728_3 crossref_primary_10_1016_j_gde_2014_06_004 crossref_primary_10_1186_s13073_021_00889_9 crossref_primary_10_1016_j_ajhg_2015_04_011 crossref_primary_10_1038_nrg_2016_159 crossref_primary_10_1016_j_conb_2017_10_013 crossref_primary_10_1038_s41591_025_03530_z crossref_primary_10_1038_s41467_020_19394_5 crossref_primary_10_1016_j_canlet_2023_216281 crossref_primary_10_1016_j_csbj_2023_02_034 crossref_primary_10_1038_nrg3785 crossref_primary_10_1093_bfgp_elv014 crossref_primary_10_1039_C6MB00388E crossref_primary_10_1016_j_stem_2019_12_013 crossref_primary_10_1016_j_mcn_2017_05_007 crossref_primary_10_1126_science_1246942 crossref_primary_10_1002_bies_201670915 crossref_primary_10_1007_s12038_015_9508_6 crossref_primary_10_1038_nrg_2015_16 crossref_primary_10_1371_journal_pgen_1004646 crossref_primary_10_1016_j_ajhg_2023_06_013 crossref_primary_10_1002_cyto_a_23783 crossref_primary_10_1016_j_gde_2014_04_002 crossref_primary_10_1038_srep25928 crossref_primary_10_1038_s41576_024_00808_9 crossref_primary_10_1093_nar_gkx1195 crossref_primary_10_3389_fgene_2014_00192 crossref_primary_10_1371_journal_pcbi_1010576 crossref_primary_10_3389_fcimb_2021_614665 crossref_primary_10_1016_j_cub_2014_05_021 crossref_primary_10_1038_s41598_018_21806_y crossref_primary_10_1073_pnas_2316271121 crossref_primary_10_1172_jci_insight_141553 crossref_primary_10_1002_mds_25883 crossref_primary_10_1074_jbc_REV120_009192 crossref_primary_10_1016_j_euroneuro_2014_01_009 crossref_primary_10_1101_gr_275453_121 crossref_primary_10_1016_j_ygeno_2019_10_004 crossref_primary_10_1016_j_alcohol_2018_05_004 crossref_primary_10_1038_s41598_019_46606_w crossref_primary_10_3389_fgene_2020_00370 crossref_primary_10_1038_nmeth_3370 crossref_primary_10_3390_cells10113246 crossref_primary_10_1007_s12064_017_0251_4 crossref_primary_10_1016_j_tig_2018_04_003 crossref_primary_10_1089_scd_2014_0030 crossref_primary_10_1016_j_blre_2022_101001 crossref_primary_10_1038_s41423_024_01250_x crossref_primary_10_1016_j_gde_2020_05_002 crossref_primary_10_1186_s12864_017_3674_x crossref_primary_10_1016_j_pneurobio_2022_102386 crossref_primary_10_1038_nrg3999 crossref_primary_10_1016_j_medj_2022_09_009 crossref_primary_10_1007_s00702_014_1309_9 crossref_primary_10_1016_j_ajhg_2016_05_014 crossref_primary_10_1016_j_neuron_2014_12_028 crossref_primary_10_1016_j_neurobiolaging_2017_04_008 crossref_primary_10_1038_emm_2016_53 crossref_primary_10_1016_j_neuron_2014_06_034 crossref_primary_10_1016_j_gde_2020_12_013 crossref_primary_10_1002_evan_21831 crossref_primary_10_1016_j_neuroscience_2018_01_050 crossref_primary_10_1007_s00401_015_1465_5 crossref_primary_10_1007_s00438_015_1130_7 crossref_primary_10_1371_journal_pone_0105585 crossref_primary_10_1016_j_tig_2024_05_008 crossref_primary_10_1002_cne_23777 crossref_primary_10_1038_nn_4388 crossref_primary_10_1016_j_stem_2015_09_016 crossref_primary_10_2492_inflammregen_34_087 crossref_primary_10_3389_fgene_2022_878508 crossref_primary_10_1038_s41598_017_05436_4 crossref_primary_10_1073_pnas_1803792115 crossref_primary_10_1111_nyas_12547 crossref_primary_10_1007_s00401_018_1939_3 crossref_primary_10_1002_cne_23740 crossref_primary_10_1093_nar_gkac1044 crossref_primary_10_1038_s41580_021_00436_9 crossref_primary_10_1007_s00122_021_03965_1 crossref_primary_10_1056_NEJMoa1614814 crossref_primary_10_3390_genes11070730 crossref_primary_10_1093_bioinformatics_bty286 crossref_primary_10_1101_gr_177121_114 crossref_primary_10_4161_cc_29704 crossref_primary_10_1016_j_brainres_2014_10_009 crossref_primary_10_1016_j_gpb_2018_07_007 crossref_primary_10_1038_nm_3982 crossref_primary_10_1128_MCB_00652_15 crossref_primary_10_3389_fnmol_2018_00163 crossref_primary_10_1038_nrn4020 crossref_primary_10_1007_s12264_023_01124_8 crossref_primary_10_1038_nmeth_4140 crossref_primary_10_1038_s41467_019_10411_w crossref_primary_10_1088_0953_8984_26_7_073102 crossref_primary_10_1515_revneuro_2016_0027 crossref_primary_10_1038_s41586_024_08129_x crossref_primary_10_3389_fcell_2021_618113 crossref_primary_10_1002_em_22215 crossref_primary_10_3390_genes10050379 crossref_primary_10_1007_s00401_018_1850_y crossref_primary_10_1038_s41746_019_0191_0 crossref_primary_10_1007_s40142_018_0152_y crossref_primary_10_1080_14728222_2017_1316715 crossref_primary_10_1146_annurev_genom_121520_081242 crossref_primary_10_1007_s00204_018_2326_5 crossref_primary_10_1093_nar_gky1279 crossref_primary_10_1002_gcc_22693 crossref_primary_10_1186_s13059_016_0976_2 crossref_primary_10_3389_fcell_2016_00100 crossref_primary_10_1016_j_biopsych_2024_06_015 crossref_primary_10_1053_j_seminhematol_2021_10_004 crossref_primary_10_1007_s40473_019_00192_3 crossref_primary_10_1016_j_tcb_2014_08_004 crossref_primary_10_1016_j_stem_2018_04_014 crossref_primary_10_1016_j_jid_2022_07_001 crossref_primary_10_1016_j_mehy_2019_04_009 crossref_primary_10_1016_j_gde_2013_12_004 crossref_primary_10_1016_j_tplants_2017_08_006 crossref_primary_10_1371_journal_pone_0135007 crossref_primary_10_1002_ajmg_b_32225 crossref_primary_10_1016_j_cell_2014_02_010 crossref_primary_10_2144_000114362 crossref_primary_10_1089_scd_2019_0217 crossref_primary_10_3389_fmed_2018_00034 crossref_primary_10_1016_j_cell_2016_01_048 crossref_primary_10_1111_nan_12465 crossref_primary_10_1007_s13238_018_0540_9 crossref_primary_10_1038_s42003_019_0401_y crossref_primary_10_1186_s13059_021_02285_3 crossref_primary_10_1038_s41598_018_30759_1 crossref_primary_10_1016_j_conbuildmat_2017_05_165 crossref_primary_10_1073_pnas_1812702115 crossref_primary_10_1038_nrm4025 crossref_primary_10_12688_f1000research_9495_1 crossref_primary_10_12688_f1000research_9495_2 crossref_primary_10_12688_f1000research_9495_3 crossref_primary_10_1146_annurev_genet_120417_031534 crossref_primary_10_1016_j_chaos_2018_08_027 crossref_primary_10_1101_gr_276451_121 crossref_primary_10_7555_JBR_35_20210026 crossref_primary_10_1016_j_tins_2015_02_003 crossref_primary_10_1093_cvr_cvv017 crossref_primary_10_1126_science_aan8690 crossref_primary_10_3390_ijms21238922 crossref_primary_10_1063_1_5002681 crossref_primary_10_1038_s41467_024_48392_0 crossref_primary_10_1016_j_tins_2019_08_004 crossref_primary_10_1111_nyas_14786 crossref_primary_10_1038_s41380_018_0207_1 crossref_primary_10_1016_j_devcel_2015_01_035 crossref_primary_10_3390_cancers16101814 crossref_primary_10_1016_j_tma_2017_09_003 crossref_primary_10_1126_science_aab1785 crossref_primary_10_1038_s41398_018_0342_0 crossref_primary_10_1038_s41583_022_00572_x crossref_primary_10_7554_eLife_12966 crossref_primary_10_1007_s42484_020_00017_7 crossref_primary_10_1016_j_celrep_2018_02_008 crossref_primary_10_1038_nmeth_4154 crossref_primary_10_1186_s13039_022_00624_y crossref_primary_10_1093_bioinformatics_btu730 crossref_primary_10_1101_gad_314351_118 crossref_primary_10_1016_j_brainres_2019_146345 crossref_primary_10_1186_s12864_020_07224_3 crossref_primary_10_1111_jnc_14036 crossref_primary_10_3389_fnagi_2021_747989 crossref_primary_10_1007_s42764_021_00056_9 crossref_primary_10_1007_s12551_024_01179_5 crossref_primary_10_1016_j_imu_2017_10_008 crossref_primary_10_1038_s41583_021_00433_z crossref_primary_10_1126_science_aak9761 crossref_primary_10_1146_annurev_genet_120417_031501 crossref_primary_10_1073_pnas_1520964113 crossref_primary_10_1038_s41598_022_16516_5 crossref_primary_10_3390_genes12071071 crossref_primary_10_1083_jcb_2156pi crossref_primary_10_1111_1755_0998_12959 crossref_primary_10_1007_s40142_018_0154_9 crossref_primary_10_1016_j_stem_2014_10_018 crossref_primary_10_1002_dneu_22626 crossref_primary_10_1101_gr_198937_115 crossref_primary_10_1002_rmb2_12221 crossref_primary_10_15252_embr_202154217 crossref_primary_10_3389_fnins_2019_00277 crossref_primary_10_1002_chem_201800305 crossref_primary_10_1016_j_stemcr_2016_05_006 crossref_primary_10_1038_s41598_017_03711_y crossref_primary_10_1007_s13311_014_0302_1 crossref_primary_10_1038_s42255_020_0196_7 crossref_primary_10_1093_bioinformatics_btu540 crossref_primary_10_3390_genes9120580 crossref_primary_10_1101_cshperspect_a036210 crossref_primary_10_3389_fnhum_2014_00255 crossref_primary_10_1101_gr_168286_113 crossref_primary_10_1126_science_aaf1204 crossref_primary_10_1098_rstb_2013_0506 crossref_primary_10_1146_annurev_genom_111320_090436 crossref_primary_10_1101_gad_301325_117 crossref_primary_10_1002_jnr_24428 crossref_primary_10_1186_s12915_017_0409_z crossref_primary_10_3390_ijms23126449 crossref_primary_10_1016_j_virol_2018_07_011 crossref_primary_10_1371_journal_pone_0180467 crossref_primary_10_1126_sciadv_abf3329 crossref_primary_10_1186_s12864_015_1916_3 crossref_primary_10_1016_j_cell_2015_03_026 crossref_primary_10_1016_j_celrep_2014_07_043 crossref_primary_10_1002_humu_23000 crossref_primary_10_1371_journal_pone_0128916 crossref_primary_10_1126_science_aal1641 crossref_primary_10_1007_s15005_015_1336_6 crossref_primary_10_1038_nbt_3129 crossref_primary_10_1093_hmg_ddz191 crossref_primary_10_1146_annurev_physiol_061121_040048 crossref_primary_10_1073_pnas_1719907115 crossref_primary_10_1016_j_tins_2024_09_006 crossref_primary_10_5698_1535_7511_15_5_265 crossref_primary_10_4252_wjsc_v8_i6_216 crossref_primary_10_1016_j_bbcan_2017_02_001 crossref_primary_10_1093_bib_bbac264 crossref_primary_10_3390_ijms23105847 crossref_primary_10_1111_jnc_13670 crossref_primary_10_1038_s41575_020_0284_x crossref_primary_10_1016_j_stemcr_2015_10_011 crossref_primary_10_1186_s13008_020_0059_3 crossref_primary_10_3390_mi9080367 crossref_primary_10_1523_JNEUROSCI_0319_20_2020 crossref_primary_10_1038_s41593_020_00766_5 crossref_primary_10_1038_mp_2016_24 crossref_primary_10_1186_s12915_023_01714_y crossref_primary_10_1016_j_jtbi_2021_110984 crossref_primary_10_1038_s41467_023_40898_3 crossref_primary_10_1038_srep40764 crossref_primary_10_1186_s12864_021_07395_7 crossref_primary_10_1016_j_automatica_2021_110075 crossref_primary_10_7554_eLife_03297 crossref_primary_10_1038_s41579_020_00444_0 crossref_primary_10_1155_2018_2406170 crossref_primary_10_3390_cells11223564 crossref_primary_10_1016_j_coisb_2016_12_004 crossref_primary_10_1016_j_devcel_2024_10_023 crossref_primary_10_1371_journal_pbio_3002723 crossref_primary_10_7554_eLife_05116 crossref_primary_10_1016_j_biosystems_2024_105361 crossref_primary_10_1111_cge_12476 crossref_primary_10_1007_s00412_016_0615_4 crossref_primary_10_1016_j_pnpbp_2017_12_013 crossref_primary_10_2217_pgs_14_131 crossref_primary_10_1016_j_trci_2017_08_009 crossref_primary_10_1016_j_ygeno_2014_08_005 crossref_primary_10_1038_s41593_018_0257_3 crossref_primary_10_1038_ncomms9897 crossref_primary_10_1111_nyas_14012 crossref_primary_10_1186_s13100_018_0128_1 crossref_primary_10_1016_j_mrfmmm_2016_10_002 crossref_primary_10_1080_23808993_2016_1176527 crossref_primary_10_3390_cells10071565 crossref_primary_10_1038_s41380_018_0129_y crossref_primary_10_1038_s41467_022_33642_w |
Cites_doi | 10.1016/j.cell.2012.02.025 10.1016/j.semcdb.2013.02.003 10.1073/pnas.1213736109 10.1016/j.bbrc.2004.05.093 10.1016/j.cell.2005.04.028 10.1038/nature11629 10.1523/JNEUROSCI.4560-04.2005 10.1186/2047-217X-1-12 10.1093/bioinformatics/bts652 10.1016/j.tins.2010.04.001 10.1016/j.stem.2010.12.003 10.1101/gr.816903 10.1038/nature08248 10.1093/bioinformatics/btp324 10.1073/pnas.082089499 10.1016/S0092-8674(02)00828-0 10.1371/journal.pone.0000558 10.1093/bioinformatics/btq033 10.1093/biostatistics/kxh008 10.1093/nar/gks1048 10.1038/nature03663 10.1042/BST0370450 10.1101/gr.102970.109 10.1016/j.ajhg.2007.12.011 10.1073/pnas.231487398 10.1002/cne.22436 10.1038/nature09915 10.1038/4601087a 10.1128/MCB.25.17.7780-7795.2005 10.1016/j.stem.2011.07.018 10.1126/science.1213307 10.1038/nature10531 10.1038/nature09807 10.1186/1472-6750-7-19 10.1038/nn.3356 10.1038/nprot.2012.039 10.1038/nm.1924 10.1038/435890a 10.1093/nar/gkn378 10.1002/humu.20815 10.1016/j.jmb.2005.02.043 10.1016/j.cell.2012.09.035 10.1016/S0092-8674(02)00839-5 10.1186/gb-2010-11-12-r119 10.1101/gr.143677.112 10.1101/gr.134395.111 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1126/science.1243472 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Neurosciences Abstracts AGRICOLA Materials Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 637 |
ExternalDocumentID | PMC3975283 3114780181 24179226 27975276 10_1126_science_1243472 42620011 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCCDPHP CDC HHS grantid: DP20D006493-01 – fundername: NICHD NIH HHS grantid: HHSN275200900001O – fundername: PHS HHS grantid: HHSN2752009000011C – fundername: NICHD NIH HHS grantid: HHSN275200900011C – fundername: NIGMS NIH HHS grantid: T32 GM008136 – fundername: NIMH NIH HHS grantid: R01 MH095741 – fundername: NIH HHS grantid: DP2 OD006493 – fundername: NICHD NIH HHS grantid: N01-HD-9-011 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK AAYXX ABDPE ABJCF ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AGFXO AJUXI ALIPV ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CITATION CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB ZCG ZGI ZVL ZVM ZXP ZY4 ~G0 ~H1 ABTAH GX1 IQODW UIG YCJ ZKG CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c605t-b41e51b2f9d9934dda5f0ce9ea4f6593dc5838965a2c59761781a72c35e86b43 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 13:35:49 EDT 2025 Fri Jul 11 15:33:14 EDT 2025 Fri Jul 11 09:23:08 EDT 2025 Sun Aug 24 03:36:50 EDT 2025 Fri Jul 25 10:55:55 EDT 2025 Mon Jul 21 05:49:47 EDT 2025 Wed Apr 02 07:25:24 EDT 2025 Tue Jul 01 04:10:03 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Sun Aug 24 12:10:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6158 |
Keywords | Human Cell line Neuron Stem cell DNA Central nervous system Precursor cell Postmortem Frontal cortex Fibroblast Encephalon |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c605t-b41e51b2f9d9934dda5f0ce9ea4f6593dc5838965a2c59761781a72c35e86b43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Present Address: Icahn School of Medicine at Mount Sinai, New York, NY 10029 Present Address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 |
OpenAccessLink | http://doi.org/10.1126/science.1243472 |
PMID | 24179226 |
PQID | 1447576819 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3975283 proquest_miscellaneous_2000383505 proquest_miscellaneous_1660414251 proquest_miscellaneous_1448225735 proquest_journals_1447576819 pubmed_primary_24179226 pascalfrancis_primary_27975276 crossref_primary_10_1126_science_1243472 crossref_citationtrail_10_1126_science_1243472 jstor_primary_42620011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 24179207 - Science. 2013 Nov 1;342(6158):564-5 11698687 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13361-6 16009139 - Cell. 2005 Jul 15;122(1):133-43 19396175 - Nat Med. 2009 May;15(5):577-83 15194483 - Biochem Biophys Res Commun. 2004 Jul 9;319(4):1117-23 15745943 - J Neurosci. 2005 Mar 2;25(9):2176-80 17593959 - PLoS One. 2007;2(6):e558 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69 17430586 - BMC Biotechnol. 2007;7:19 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18 19713921 - Nature. 2009 Aug 27;460(7259):1087-8 22403181 - Science. 2012 Apr 6;336(6077):82-6 19657334 - Nature. 2009 Aug 27;460(7259):1127-31 11959976 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6 15475419 - Biostatistics. 2004 Oct;5(4):557-72 12176320 - Cell. 2002 Aug 9;110(3):327-38 15959497 - Nature. 2005 Jun 16;435(7044):890-1 23101622 - Cell. 2012 Oct 26;151(3):483-96 21490598 - Nature. 2011 May 12;473(7346):221-5 15959507 - Nature. 2005 Jun 16;435(7044):903-10 22037309 - Nature. 2011 Nov 24;479(7374):534-7 20471112 - Trends Neurosci. 2010 Aug;33(8):345-54 23043118 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18018-23 23525040 - Nat Neurosci. 2013 May;16(5):613-21 21143862 - Genome Biol. 2010;11(12):R119 15843013 - J Mol Biol. 2005 May 13;348(4):791-800 19290880 - Biochem Soc Trans. 2009 Apr;37(Pt 2):450-3 12176319 - Cell. 2002 Aug 9;110(3):315-25 16107723 - Mol Cell Biol. 2005 Sep;25(17):7780-95 21399628 - Nature. 2011 Apr 7;472(7341):90-4 18570184 - Hum Mutat. 2008 Sep;29(9):1118-24 22555242 - Nat Protoc. 2012 Jun;7(6):1024-41 23160490 - Nature. 2012 Dec 20;492(7429):438-42 18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71 |
References_xml | – ident: e_1_3_2_37_2 doi: 10.1016/j.cell.2012.02.025 – ident: e_1_3_2_11_2 doi: 10.1016/j.semcdb.2013.02.003 – ident: e_1_3_2_25_2 doi: 10.1073/pnas.1213736109 – ident: e_1_3_2_28_2 doi: 10.1016/j.bbrc.2004.05.093 – ident: e_1_3_2_14_2 doi: 10.1016/j.cell.2005.04.028 – ident: e_1_3_2_23_2 doi: 10.1038/nature11629 – ident: e_1_3_2_3_2 doi: 10.1523/JNEUROSCI.4560-04.2005 – ident: e_1_3_2_36_2 doi: 10.1186/2047-217X-1-12 – ident: e_1_3_2_46_2 doi: 10.1093/bioinformatics/bts652 – ident: e_1_3_2_9_2 doi: 10.1016/j.tins.2010.04.001 – ident: e_1_3_2_21_2 doi: 10.1016/j.stem.2010.12.003 – ident: e_1_3_2_35_2 doi: 10.1101/gr.816903 – ident: e_1_3_2_34_2 doi: 10.1038/nature08248 – ident: e_1_3_2_41_2 doi: 10.1093/bioinformatics/btp324 – ident: e_1_3_2_15_2 doi: 10.1073/pnas.082089499 – ident: e_1_3_2_30_2 doi: 10.1016/S0092-8674(02)00828-0 – ident: e_1_3_2_4_2 doi: 10.1371/journal.pone.0000558 – ident: e_1_3_2_45_2 doi: 10.1093/bioinformatics/btq033 – ident: e_1_3_2_19_2 doi: 10.1093/biostatistics/kxh008 – ident: e_1_3_2_40_2 doi: 10.1093/nar/gks1048 – ident: e_1_3_2_5_2 doi: 10.1038/nature03663 – ident: e_1_3_2_17_2 doi: 10.1042/BST0370450 – ident: e_1_3_2_42_2 doi: 10.1101/gr.102970.109 – ident: e_1_3_2_24_2 doi: 10.1016/j.ajhg.2007.12.011 – ident: e_1_3_2_2_2 doi: 10.1073/pnas.231487398 – ident: e_1_3_2_39_2 doi: 10.1002/cne.22436 – ident: e_1_3_2_20_2 doi: 10.1038/nature09915 – ident: e_1_3_2_10_2 doi: 10.1038/4601087a – ident: e_1_3_2_32_2 doi: 10.1128/MCB.25.17.7780-7795.2005 – ident: e_1_3_2_43_2 doi: 10.1016/j.stem.2011.07.018 – ident: e_1_3_2_29_2 doi: 10.1126/science.1213307 – ident: e_1_3_2_6_2 doi: 10.1038/nature10531 – ident: e_1_3_2_13_2 doi: 10.1038/nature09807 – ident: e_1_3_2_18_2 doi: 10.1186/1472-6750-7-19 – ident: e_1_3_2_27_2 doi: 10.1038/nn.3356 – ident: e_1_3_2_22_2 doi: 10.1038/nprot.2012.039 – ident: e_1_3_2_12_2 doi: 10.1038/nm.1924 – ident: e_1_3_2_8_2 doi: 10.1038/435890a – ident: e_1_3_2_38_2 doi: 10.1093/nar/gkn378 – ident: e_1_3_2_26_2 doi: 10.1002/humu.20815 – ident: e_1_3_2_31_2 doi: 10.1016/j.jmb.2005.02.043 – ident: e_1_3_2_7_2 doi: 10.1016/j.cell.2012.09.035 – ident: e_1_3_2_33_2 doi: 10.1016/S0092-8674(02)00839-5 – ident: e_1_3_2_16_2 doi: 10.1186/gb-2010-11-12-r119 – ident: e_1_3_2_44_2 doi: 10.1101/gr.143677.112 – ident: e_1_3_2_47_2 doi: 10.1101/gr.134395.111 – reference: 21490598 - Nature. 2011 May 12;473(7346):221-5 – reference: 18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71 – reference: 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69 – reference: 20471112 - Trends Neurosci. 2010 Aug;33(8):345-54 – reference: 15843013 - J Mol Biol. 2005 May 13;348(4):791-800 – reference: 19290880 - Biochem Soc Trans. 2009 Apr;37(Pt 2):450-3 – reference: 22555242 - Nat Protoc. 2012 Jun;7(6):1024-41 – reference: 21143862 - Genome Biol. 2010;11(12):R119 – reference: 15959497 - Nature. 2005 Jun 16;435(7044):890-1 – reference: 19657334 - Nature. 2009 Aug 27;460(7259):1127-31 – reference: 16107723 - Mol Cell Biol. 2005 Sep;25(17):7780-95 – reference: 12176320 - Cell. 2002 Aug 9;110(3):327-38 – reference: 22403181 - Science. 2012 Apr 6;336(6077):82-6 – reference: 15745943 - J Neurosci. 2005 Mar 2;25(9):2176-80 – reference: 23160490 - Nature. 2012 Dec 20;492(7429):438-42 – reference: 23525040 - Nat Neurosci. 2013 May;16(5):613-21 – reference: 11698687 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13361-6 – reference: 18570184 - Hum Mutat. 2008 Sep;29(9):1118-24 – reference: 17430586 - BMC Biotechnol. 2007;7:19 – reference: 24179207 - Science. 2013 Nov 1;342(6158):564-5 – reference: 16009139 - Cell. 2005 Jul 15;122(1):133-43 – reference: 11959976 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6 – reference: 15959507 - Nature. 2005 Jun 16;435(7044):903-10 – reference: 19396175 - Nat Med. 2009 May;15(5):577-83 – reference: 23101622 - Cell. 2012 Oct 26;151(3):483-96 – reference: 12176319 - Cell. 2002 Aug 9;110(3):315-25 – reference: 19713921 - Nature. 2009 Aug 27;460(7259):1087-8 – reference: 22037309 - Nature. 2011 Nov 24;479(7374):534-7 – reference: 15194483 - Biochem Biophys Res Commun. 2004 Jul 9;319(4):1117-23 – reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72 – reference: 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18 – reference: 23043118 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18018-23 – reference: 17593959 - PLoS One. 2007;2(6):e558 – reference: 21399628 - Nature. 2011 Apr 7;472(7341):90-4 |
SSID | ssj0009593 |
Score | 2.5955284 |
Snippet | We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and... As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al.... As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al.... Not All Neurons Are AlikeAs life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody... Not All Neurons Are Alike As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody... We used single cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 632 |
SubjectTerms | Aneuploidy antibody diversity Biological and medical sciences Cell differentiation Cell lines Cells Chromosomes DNA Copy Number Variations Fibroblasts frontal lobe Frontal Lobe - cytology Fundamental and applied biological sciences. Psychology genome Genomes Genomics Humans Immune system Individualized Instruction Induced Pluripotent Stem Cells - cytology Male Mosaicism mutation Neural Stem Cells - cytology Neurogenesis Neurons Neurons - cytology Sequence Analysis, DNA Sequence Deletion Sequencing Single-Cell Analysis Somatic cells Stem cells Vertebrates: nervous system and sense organs |
Title | Mosaic Copy Number Variation in Human Neurons |
URI | https://www.jstor.org/stable/42620011 https://www.ncbi.nlm.nih.gov/pubmed/24179226 https://www.proquest.com/docview/1447576819 https://www.proquest.com/docview/1448225735 https://www.proquest.com/docview/1660414251 https://www.proquest.com/docview/2000383505 https://pubmed.ncbi.nlm.nih.gov/PMC3975283 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBsMAmMKEg9DVarEX0keO2CakIp4KNLeKsdJRKWRRmuLNP56zvbla6wIeImq-JykvvP5fvZ9EPJW54plvASQE5ci4HnJAiUAuCZMKWWqoqQ2tmr-WV5-5Z-uxNVoVPe8lnbbbKp_3htX8j9chXvAVxMl-w-cbR8KN-A38BeuwGG4_hWP5-uNWumJXte3E1faY_IDsK9qHBhdAT6bshI35dAMbWY0mJftkU2PUa3v4cx5CDQOA9itt3sw1z1PGXTB706aDOBv_Meaxs5B8QZ0PLpVWlVTVF3PL6vayZKJ31a4lYubExHDKD27tjiFGppakDRkfY3LOO2JFthUSU-FSrff-btq7xWjLKZgljAeDyiBN_V3y2lqyqpReifFtl20m6YH5IACsKBjcjA7_3B-MUjUjCmgesFVzftM7mh8wsCQcb6sxrFWbWBula4oyn2o5a7zbc-aWTwhjxGG-DMnU4dkVFRH5KErTHp7RA6R0xv_DPOSv3tKAiduvhE334mb34qbv6p8K24-itszsrj4uHh_GWC1jUADpN0GGY8KEWW0THOwWXmeK1GGukgLxUsJg5Jrc8KeSqGoBhRqQksjFVPNRJHIjLNjMq7WVfGC-ADalJBMaplqnkiWgQkYJXkaKmnqeqUemTYjt9SYid4URLleWkRK5RJHfYmj7pGztkPtkrDsJz22rGjpbMUFWMQ8cjrgTUtA4zQWNJYeOWmYtcQ5vgFgzGODyCP46DdtM2hgc6ymqmK9szRgZYuYiT_QSBnyCNbHaD8Ntcf0DCCJR547Gek-EoXOI_FAeloCkyV-2FKtvtls8cz8vYS93PvMV-RRN3VPyHh7syteg6W9zU5xcvwC-OjSJg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+copy+number+variation+in+human+neurons&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=McConnell%2C+Michael+J&rft.au=Lindberg%2C+Michael+R&rft.au=Brennand%2C+Kristen+J&rft.au=Piper%2C+Julia+C&rft.date=2013-11-01&rft.eissn=1095-9203&rft.volume=342&rft.issue=6158&rft.spage=632&rft_id=info:doi/10.1126%2Fscience.1243472&rft_id=info%3Apmid%2F24179226&rft.externalDocID=24179226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |