Mosaic Copy Number Variation in Human Neurons

We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 342; no. 6158; pp. 632 - 637
Main Authors McConnell, Michael J., Lindberg, Michael R., Brennend, Kristen J., Piper, Julia C., Voet, Thierry, Cowing-Zitron, Chris, Shumilina, Svetlana, Lasken, Roger S., Vermeesch, Joris R., Hall, Ira M., Gage, Fred H.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 01.11.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1243472

Cover

Loading…
Abstract We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 4 1% of neurons have at least one mega base-sea le de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
AbstractList We used single cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and post-mortem human brains. We identified aneuploid neurons as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single cell sequencing of endogenous human frontal cortex neurons revealed that 13%-41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic copy number variation is abundant in human neurons.
Not All Neurons Are AlikeAs life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations-no two alike-with deletions more common than duplications.
Not All Neurons Are Alike As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations—no two alike—with deletions more common than duplications.
As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632; see the Perspective by Macosko and McCarroll ) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations--no two alike--with deletions more common than duplications. [PUBLICATION ABSTRACT] We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons. [PUBLICATION ABSTRACT]
We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 4 1% of neurons have at least one mega base-sea le de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al. (p. 632 ; see the Perspective by Macosko and McCarroll ) now show that human neurons also diversify. Neurons taken from postmortem human frontal cortex tissue and neurons derived from induced pluripotent stem cell differentiation in vitro showed surprising diversity in individual cell genomes. Up to 41% of the frontal cortex neurons had copy number variations—no two alike—with deletions more common than duplications. Single-cell genomics reveals that individual adult human neurons acquire diverse individual genomes. [Also see Perspective by Macosko and McCarroll ] We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.
Author Lindberg, Michael R.
Brennend, Kristen J.
Cowing-Zitron, Chris
Vermeesch, Joris R.
Lasken, Roger S.
Gage, Fred H.
McConnell, Michael J.
Piper, Julia C.
Shumilina, Svetlana
Voet, Thierry
Hall, Ira M.
AuthorAffiliation 1 Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037
3 Center for Human Genetics, K.U. Leuven, Leuven, Belgium
8 Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908
6 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
2 Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037
5 J. Craig Venter Institute, San Diego, CA 92121
4 Wellcome Trust Sanger Institute, Cambridge, UK
7 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
9 Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
AuthorAffiliation_xml – name: 9 Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
– name: 5 J. Craig Venter Institute, San Diego, CA 92121
– name: 4 Wellcome Trust Sanger Institute, Cambridge, UK
– name: 1 Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037
– name: 2 Crick-Jacobs Center for Theoretical and Computational Biology, Salk Institute for Biological Studies, La Jolla, CA 92037
– name: 3 Center for Human Genetics, K.U. Leuven, Leuven, Belgium
– name: 7 Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
– name: 6 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
– name: 8 Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908
Author_xml – sequence: 1
  givenname: Michael J.
  surname: McConnell
  fullname: McConnell, Michael J.
– sequence: 2
  givenname: Michael R.
  surname: Lindberg
  fullname: Lindberg, Michael R.
– sequence: 3
  givenname: Kristen J.
  surname: Brennend
  fullname: Brennend, Kristen J.
– sequence: 4
  givenname: Julia C.
  surname: Piper
  fullname: Piper, Julia C.
– sequence: 5
  givenname: Thierry
  surname: Voet
  fullname: Voet, Thierry
– sequence: 6
  givenname: Chris
  surname: Cowing-Zitron
  fullname: Cowing-Zitron, Chris
– sequence: 7
  givenname: Svetlana
  surname: Shumilina
  fullname: Shumilina, Svetlana
– sequence: 8
  givenname: Roger S.
  surname: Lasken
  fullname: Lasken, Roger S.
– sequence: 9
  givenname: Joris R.
  surname: Vermeesch
  fullname: Vermeesch, Joris R.
– sequence: 10
  givenname: Ira M.
  surname: Hall
  fullname: Hall, Ira M.
– sequence: 11
  givenname: Fred H.
  surname: Gage
  fullname: Gage, Fred H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975276$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24179226$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMydQJFSJS1p_f1wqoVWhSG25VFwtx3HAq8Re7ASp_z0OG7alh_bkw_zeG8-bOQIHIQYHwFsETxHC_Cxb74J1pwhTQgV-AVYIKlYrDMkBWEFIeC2hYIfgKOcNhKWmyCtwiCkSCmO-AvV1zMbbah23d9XNNDQuVd9N8mb0MVQ-VJfTYEJ146YUQ34NXnamz-7N8h6D288Xt-vL-urbl6_rT1e15ZCNdUORY6jBnWqVIrRtDeugdcoZ2vHyg9YySaTizGDLlOBISGQEtoQ5yRtKjsH5znY7NYNrrQtjMr3eJj-YdKej8fr_SvA_9Y_4WxMlGJakGHxcDFL8Nbk86sFn6_reBBenrHGJgkjCIHsWRZxDiihm6HmUUokxE2R2_fAI3cQphZLZTAkmuESqUO8fzrkf8N96CnCyACZb03fJBOvzPSfmecXMne04m2LOyXV7BEE9H4peDkUvh1IU7JHC-vHv0kugvn9C926n2-Qxpn0binnJFCHyB1CRygU
CODEN SCIEAS
CitedBy_id crossref_primary_10_1038_nprot_2014_067
crossref_primary_10_1016_j_trecan_2016_09_003
crossref_primary_10_1101_gr_247882_118
crossref_primary_10_1186_s12864_017_4286_1
crossref_primary_10_1146_annurev_genom_091416_035324
crossref_primary_10_1016_j_tig_2015_03_013
crossref_primary_10_1007_s11825_014_0010_6
crossref_primary_10_1111_pcn_12632
crossref_primary_10_3390_cells10082056
crossref_primary_10_1186_s40478_022_01452_2
crossref_primary_10_1016_j_copbio_2014_03_001
crossref_primary_10_1111_dgd_12898
crossref_primary_10_1038_nmeth_2768
crossref_primary_10_1038_srep03807
crossref_primary_10_1016_j_eplepsyres_2019_106161
crossref_primary_10_1038_ncomms8549
crossref_primary_10_1038_nrn3730
crossref_primary_10_1016_j_celrep_2018_12_107
crossref_primary_10_12688_f1000research_7223_1
crossref_primary_10_1016_j_gene_2021_145995
crossref_primary_10_1134_S181971242104005X
crossref_primary_10_1016_j_dnarep_2018_08_019
crossref_primary_10_1038_s41467_021_24236_z
crossref_primary_10_1016_j_pt_2014_07_002
crossref_primary_10_1016_j_arr_2021_101342
crossref_primary_10_1186_s13578_019_0314_y
crossref_primary_10_1093_nar_gky463
crossref_primary_10_1038_s10038_021_00964_4
crossref_primary_10_1038_srep11415
crossref_primary_10_1111_febs_14053
crossref_primary_10_1038_mp_2016_88
crossref_primary_10_1016_j_conb_2017_12_004
crossref_primary_10_1038_s41587_022_01568_9
crossref_primary_10_1016_j_mad_2016_03_007
crossref_primary_10_1098_rsob_180074
crossref_primary_10_1073_pnas_1804194115
crossref_primary_10_1158_1541_7786_MCR_15_0330
crossref_primary_10_5607_en_2014_23_4_271
crossref_primary_10_1016_j_biopsych_2024_10_023
crossref_primary_10_1038_s41421_024_00719_3
crossref_primary_10_1038_srep23500
crossref_primary_10_3389_fgene_2020_548719
crossref_primary_10_1111_ejn_12607
crossref_primary_10_1111_bpa_12958
crossref_primary_10_1038_s41588_022_01180_2
crossref_primary_10_1002_gcc_22704
crossref_primary_10_1016_j_molcel_2015_05_005
crossref_primary_10_1016_j_neuron_2016_02_004
crossref_primary_10_1371_journal_pgen_1004126
crossref_primary_10_1101_gr_188060_114
crossref_primary_10_1134_S0026893321010155
crossref_primary_10_1007_s10577_023_09740_w
crossref_primary_10_1038_ncomms5227
crossref_primary_10_1038_s41467_024_51821_9
crossref_primary_10_1186_s40169_017_0139_4
crossref_primary_10_1038_nature17316
crossref_primary_10_1038_nbt_3711
crossref_primary_10_3389_fnins_2025_1552790
crossref_primary_10_1038_nrn_2016_46
crossref_primary_10_18632_oncotarget_3633
crossref_primary_10_1371_journal_pgen_1004358
crossref_primary_10_3390_jcm8030288
crossref_primary_10_1080_14737159_2018_1523723
crossref_primary_10_1002_stem_1779
crossref_primary_10_1038_nrn3656
crossref_primary_10_1016_j_celrep_2021_109290
crossref_primary_10_1073_pnas_1415287111
crossref_primary_10_1146_annurev_genet_120213_092412
crossref_primary_10_1016_j_jmb_2014_08_001
crossref_primary_10_1186_s40478_019_0873_5
crossref_primary_10_1007_s11434_014_0634_6
crossref_primary_10_1016_j_jneumeth_2019_108350
crossref_primary_10_1073_pnas_1503328112
crossref_primary_10_3390_genes5041064
crossref_primary_10_1242_dev_133058
crossref_primary_10_3390_genes10060407
crossref_primary_10_1073_pnas_1513988112
crossref_primary_10_1152_physiolgenomics_00049_2017
crossref_primary_10_1073_pnas_1717798114
crossref_primary_10_1111_jnc_13629
crossref_primary_10_1016_j_jgg_2014_09_005
crossref_primary_10_3390_v8050123
crossref_primary_10_1063_1_5090235
crossref_primary_10_1091_mbc_E17_01_0031
crossref_primary_10_1016_j_arr_2021_101316
crossref_primary_10_1146_annurev_genom_083118_015241
crossref_primary_10_1038_nmeth_2783
crossref_primary_10_1016_j_ajhg_2015_05_008
crossref_primary_10_1093_pcmedi_pbac002
crossref_primary_10_1111_pbi_12691
crossref_primary_10_1101_gr_215517_116
crossref_primary_10_1101_gr_262667_120
crossref_primary_10_1002_bies_201400218
crossref_primary_10_3389_fragi_2022_991460
crossref_primary_10_1038_s41598_020_58165_6
crossref_primary_10_1126_sciadv_abd6454
crossref_primary_10_1186_s12864_015_1713_z
crossref_primary_10_12688_f1000research_7095_1
crossref_primary_10_1038_nrg_2016_145
crossref_primary_10_1016_j_nbd_2023_106208
crossref_primary_10_1016_j_ajpath_2015_10_033
crossref_primary_10_1002_hipo_23475
crossref_primary_10_1093_gbe_evv132
crossref_primary_10_1016_j_omtm_2020_04_016
crossref_primary_10_1038_s41580_019_0186_3
crossref_primary_10_1146_annurev_neuro_071714_033828
crossref_primary_10_1074_jbc_R113_516419
crossref_primary_10_1158_2159_8290_CD_21_0245
crossref_primary_10_3390_ijms21051860
crossref_primary_10_1242_dmm_049673
crossref_primary_10_1017_thg_2017_69
crossref_primary_10_1007_s00439_019_02047_z
crossref_primary_10_1038_nmeth_3578
crossref_primary_10_1093_brain_awy157
crossref_primary_10_1038_s41565_018_0315_8
crossref_primary_10_1159_000369606
crossref_primary_10_1016_j_cell_2020_06_024
crossref_primary_10_1038_s41467_020_15794_9
crossref_primary_10_1038_s42003_024_06940_w
crossref_primary_10_1038_mp_2016_158
crossref_primary_10_1038_nrc_2017_52
crossref_primary_10_1016_j_cell_2015_12_039
crossref_primary_10_1016_j_nantod_2023_101807
crossref_primary_10_1016_j_nbd_2019_104503
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1038_ncomms7822
crossref_primary_10_1093_nargab_lqad042
crossref_primary_10_3390_ijms222212354
crossref_primary_10_1186_s12916_020_01763_y
crossref_primary_10_1016_j_biopsych_2013_12_004
crossref_primary_10_1002_bies_201500097
crossref_primary_10_1007_s00441_017_2728_3
crossref_primary_10_1016_j_gde_2014_06_004
crossref_primary_10_1186_s13073_021_00889_9
crossref_primary_10_1016_j_ajhg_2015_04_011
crossref_primary_10_1038_nrg_2016_159
crossref_primary_10_1016_j_conb_2017_10_013
crossref_primary_10_1038_s41591_025_03530_z
crossref_primary_10_1038_s41467_020_19394_5
crossref_primary_10_1016_j_canlet_2023_216281
crossref_primary_10_1016_j_csbj_2023_02_034
crossref_primary_10_1038_nrg3785
crossref_primary_10_1093_bfgp_elv014
crossref_primary_10_1039_C6MB00388E
crossref_primary_10_1016_j_stem_2019_12_013
crossref_primary_10_1016_j_mcn_2017_05_007
crossref_primary_10_1126_science_1246942
crossref_primary_10_1002_bies_201670915
crossref_primary_10_1007_s12038_015_9508_6
crossref_primary_10_1038_nrg_2015_16
crossref_primary_10_1371_journal_pgen_1004646
crossref_primary_10_1016_j_ajhg_2023_06_013
crossref_primary_10_1002_cyto_a_23783
crossref_primary_10_1016_j_gde_2014_04_002
crossref_primary_10_1038_srep25928
crossref_primary_10_1038_s41576_024_00808_9
crossref_primary_10_1093_nar_gkx1195
crossref_primary_10_3389_fgene_2014_00192
crossref_primary_10_1371_journal_pcbi_1010576
crossref_primary_10_3389_fcimb_2021_614665
crossref_primary_10_1016_j_cub_2014_05_021
crossref_primary_10_1038_s41598_018_21806_y
crossref_primary_10_1073_pnas_2316271121
crossref_primary_10_1172_jci_insight_141553
crossref_primary_10_1002_mds_25883
crossref_primary_10_1074_jbc_REV120_009192
crossref_primary_10_1016_j_euroneuro_2014_01_009
crossref_primary_10_1101_gr_275453_121
crossref_primary_10_1016_j_ygeno_2019_10_004
crossref_primary_10_1016_j_alcohol_2018_05_004
crossref_primary_10_1038_s41598_019_46606_w
crossref_primary_10_3389_fgene_2020_00370
crossref_primary_10_1038_nmeth_3370
crossref_primary_10_3390_cells10113246
crossref_primary_10_1007_s12064_017_0251_4
crossref_primary_10_1016_j_tig_2018_04_003
crossref_primary_10_1089_scd_2014_0030
crossref_primary_10_1016_j_blre_2022_101001
crossref_primary_10_1038_s41423_024_01250_x
crossref_primary_10_1016_j_gde_2020_05_002
crossref_primary_10_1186_s12864_017_3674_x
crossref_primary_10_1016_j_pneurobio_2022_102386
crossref_primary_10_1038_nrg3999
crossref_primary_10_1016_j_medj_2022_09_009
crossref_primary_10_1007_s00702_014_1309_9
crossref_primary_10_1016_j_ajhg_2016_05_014
crossref_primary_10_1016_j_neuron_2014_12_028
crossref_primary_10_1016_j_neurobiolaging_2017_04_008
crossref_primary_10_1038_emm_2016_53
crossref_primary_10_1016_j_neuron_2014_06_034
crossref_primary_10_1016_j_gde_2020_12_013
crossref_primary_10_1002_evan_21831
crossref_primary_10_1016_j_neuroscience_2018_01_050
crossref_primary_10_1007_s00401_015_1465_5
crossref_primary_10_1007_s00438_015_1130_7
crossref_primary_10_1371_journal_pone_0105585
crossref_primary_10_1016_j_tig_2024_05_008
crossref_primary_10_1002_cne_23777
crossref_primary_10_1038_nn_4388
crossref_primary_10_1016_j_stem_2015_09_016
crossref_primary_10_2492_inflammregen_34_087
crossref_primary_10_3389_fgene_2022_878508
crossref_primary_10_1038_s41598_017_05436_4
crossref_primary_10_1073_pnas_1803792115
crossref_primary_10_1111_nyas_12547
crossref_primary_10_1007_s00401_018_1939_3
crossref_primary_10_1002_cne_23740
crossref_primary_10_1093_nar_gkac1044
crossref_primary_10_1038_s41580_021_00436_9
crossref_primary_10_1007_s00122_021_03965_1
crossref_primary_10_1056_NEJMoa1614814
crossref_primary_10_3390_genes11070730
crossref_primary_10_1093_bioinformatics_bty286
crossref_primary_10_1101_gr_177121_114
crossref_primary_10_4161_cc_29704
crossref_primary_10_1016_j_brainres_2014_10_009
crossref_primary_10_1016_j_gpb_2018_07_007
crossref_primary_10_1038_nm_3982
crossref_primary_10_1128_MCB_00652_15
crossref_primary_10_3389_fnmol_2018_00163
crossref_primary_10_1038_nrn4020
crossref_primary_10_1007_s12264_023_01124_8
crossref_primary_10_1038_nmeth_4140
crossref_primary_10_1038_s41467_019_10411_w
crossref_primary_10_1088_0953_8984_26_7_073102
crossref_primary_10_1515_revneuro_2016_0027
crossref_primary_10_1038_s41586_024_08129_x
crossref_primary_10_3389_fcell_2021_618113
crossref_primary_10_1002_em_22215
crossref_primary_10_3390_genes10050379
crossref_primary_10_1007_s00401_018_1850_y
crossref_primary_10_1038_s41746_019_0191_0
crossref_primary_10_1007_s40142_018_0152_y
crossref_primary_10_1080_14728222_2017_1316715
crossref_primary_10_1146_annurev_genom_121520_081242
crossref_primary_10_1007_s00204_018_2326_5
crossref_primary_10_1093_nar_gky1279
crossref_primary_10_1002_gcc_22693
crossref_primary_10_1186_s13059_016_0976_2
crossref_primary_10_3389_fcell_2016_00100
crossref_primary_10_1016_j_biopsych_2024_06_015
crossref_primary_10_1053_j_seminhematol_2021_10_004
crossref_primary_10_1007_s40473_019_00192_3
crossref_primary_10_1016_j_tcb_2014_08_004
crossref_primary_10_1016_j_stem_2018_04_014
crossref_primary_10_1016_j_jid_2022_07_001
crossref_primary_10_1016_j_mehy_2019_04_009
crossref_primary_10_1016_j_gde_2013_12_004
crossref_primary_10_1016_j_tplants_2017_08_006
crossref_primary_10_1371_journal_pone_0135007
crossref_primary_10_1002_ajmg_b_32225
crossref_primary_10_1016_j_cell_2014_02_010
crossref_primary_10_2144_000114362
crossref_primary_10_1089_scd_2019_0217
crossref_primary_10_3389_fmed_2018_00034
crossref_primary_10_1016_j_cell_2016_01_048
crossref_primary_10_1111_nan_12465
crossref_primary_10_1007_s13238_018_0540_9
crossref_primary_10_1038_s42003_019_0401_y
crossref_primary_10_1186_s13059_021_02285_3
crossref_primary_10_1038_s41598_018_30759_1
crossref_primary_10_1016_j_conbuildmat_2017_05_165
crossref_primary_10_1073_pnas_1812702115
crossref_primary_10_1038_nrm4025
crossref_primary_10_12688_f1000research_9495_1
crossref_primary_10_12688_f1000research_9495_2
crossref_primary_10_12688_f1000research_9495_3
crossref_primary_10_1146_annurev_genet_120417_031534
crossref_primary_10_1016_j_chaos_2018_08_027
crossref_primary_10_1101_gr_276451_121
crossref_primary_10_7555_JBR_35_20210026
crossref_primary_10_1016_j_tins_2015_02_003
crossref_primary_10_1093_cvr_cvv017
crossref_primary_10_1126_science_aan8690
crossref_primary_10_3390_ijms21238922
crossref_primary_10_1063_1_5002681
crossref_primary_10_1038_s41467_024_48392_0
crossref_primary_10_1016_j_tins_2019_08_004
crossref_primary_10_1111_nyas_14786
crossref_primary_10_1038_s41380_018_0207_1
crossref_primary_10_1016_j_devcel_2015_01_035
crossref_primary_10_3390_cancers16101814
crossref_primary_10_1016_j_tma_2017_09_003
crossref_primary_10_1126_science_aab1785
crossref_primary_10_1038_s41398_018_0342_0
crossref_primary_10_1038_s41583_022_00572_x
crossref_primary_10_7554_eLife_12966
crossref_primary_10_1007_s42484_020_00017_7
crossref_primary_10_1016_j_celrep_2018_02_008
crossref_primary_10_1038_nmeth_4154
crossref_primary_10_1186_s13039_022_00624_y
crossref_primary_10_1093_bioinformatics_btu730
crossref_primary_10_1101_gad_314351_118
crossref_primary_10_1016_j_brainres_2019_146345
crossref_primary_10_1186_s12864_020_07224_3
crossref_primary_10_1111_jnc_14036
crossref_primary_10_3389_fnagi_2021_747989
crossref_primary_10_1007_s42764_021_00056_9
crossref_primary_10_1007_s12551_024_01179_5
crossref_primary_10_1016_j_imu_2017_10_008
crossref_primary_10_1038_s41583_021_00433_z
crossref_primary_10_1126_science_aak9761
crossref_primary_10_1146_annurev_genet_120417_031501
crossref_primary_10_1073_pnas_1520964113
crossref_primary_10_1038_s41598_022_16516_5
crossref_primary_10_3390_genes12071071
crossref_primary_10_1083_jcb_2156pi
crossref_primary_10_1111_1755_0998_12959
crossref_primary_10_1007_s40142_018_0154_9
crossref_primary_10_1016_j_stem_2014_10_018
crossref_primary_10_1002_dneu_22626
crossref_primary_10_1101_gr_198937_115
crossref_primary_10_1002_rmb2_12221
crossref_primary_10_15252_embr_202154217
crossref_primary_10_3389_fnins_2019_00277
crossref_primary_10_1002_chem_201800305
crossref_primary_10_1016_j_stemcr_2016_05_006
crossref_primary_10_1038_s41598_017_03711_y
crossref_primary_10_1007_s13311_014_0302_1
crossref_primary_10_1038_s42255_020_0196_7
crossref_primary_10_1093_bioinformatics_btu540
crossref_primary_10_3390_genes9120580
crossref_primary_10_1101_cshperspect_a036210
crossref_primary_10_3389_fnhum_2014_00255
crossref_primary_10_1101_gr_168286_113
crossref_primary_10_1126_science_aaf1204
crossref_primary_10_1098_rstb_2013_0506
crossref_primary_10_1146_annurev_genom_111320_090436
crossref_primary_10_1101_gad_301325_117
crossref_primary_10_1002_jnr_24428
crossref_primary_10_1186_s12915_017_0409_z
crossref_primary_10_3390_ijms23126449
crossref_primary_10_1016_j_virol_2018_07_011
crossref_primary_10_1371_journal_pone_0180467
crossref_primary_10_1126_sciadv_abf3329
crossref_primary_10_1186_s12864_015_1916_3
crossref_primary_10_1016_j_cell_2015_03_026
crossref_primary_10_1016_j_celrep_2014_07_043
crossref_primary_10_1002_humu_23000
crossref_primary_10_1371_journal_pone_0128916
crossref_primary_10_1126_science_aal1641
crossref_primary_10_1007_s15005_015_1336_6
crossref_primary_10_1038_nbt_3129
crossref_primary_10_1093_hmg_ddz191
crossref_primary_10_1146_annurev_physiol_061121_040048
crossref_primary_10_1073_pnas_1719907115
crossref_primary_10_1016_j_tins_2024_09_006
crossref_primary_10_5698_1535_7511_15_5_265
crossref_primary_10_4252_wjsc_v8_i6_216
crossref_primary_10_1016_j_bbcan_2017_02_001
crossref_primary_10_1093_bib_bbac264
crossref_primary_10_3390_ijms23105847
crossref_primary_10_1111_jnc_13670
crossref_primary_10_1038_s41575_020_0284_x
crossref_primary_10_1016_j_stemcr_2015_10_011
crossref_primary_10_1186_s13008_020_0059_3
crossref_primary_10_3390_mi9080367
crossref_primary_10_1523_JNEUROSCI_0319_20_2020
crossref_primary_10_1038_s41593_020_00766_5
crossref_primary_10_1038_mp_2016_24
crossref_primary_10_1186_s12915_023_01714_y
crossref_primary_10_1016_j_jtbi_2021_110984
crossref_primary_10_1038_s41467_023_40898_3
crossref_primary_10_1038_srep40764
crossref_primary_10_1186_s12864_021_07395_7
crossref_primary_10_1016_j_automatica_2021_110075
crossref_primary_10_7554_eLife_03297
crossref_primary_10_1038_s41579_020_00444_0
crossref_primary_10_1155_2018_2406170
crossref_primary_10_3390_cells11223564
crossref_primary_10_1016_j_coisb_2016_12_004
crossref_primary_10_1016_j_devcel_2024_10_023
crossref_primary_10_1371_journal_pbio_3002723
crossref_primary_10_7554_eLife_05116
crossref_primary_10_1016_j_biosystems_2024_105361
crossref_primary_10_1111_cge_12476
crossref_primary_10_1007_s00412_016_0615_4
crossref_primary_10_1016_j_pnpbp_2017_12_013
crossref_primary_10_2217_pgs_14_131
crossref_primary_10_1016_j_trci_2017_08_009
crossref_primary_10_1016_j_ygeno_2014_08_005
crossref_primary_10_1038_s41593_018_0257_3
crossref_primary_10_1038_ncomms9897
crossref_primary_10_1111_nyas_14012
crossref_primary_10_1186_s13100_018_0128_1
crossref_primary_10_1016_j_mrfmmm_2016_10_002
crossref_primary_10_1080_23808993_2016_1176527
crossref_primary_10_3390_cells10071565
crossref_primary_10_1038_s41380_018_0129_y
crossref_primary_10_1038_s41467_022_33642_w
Cites_doi 10.1016/j.cell.2012.02.025
10.1016/j.semcdb.2013.02.003
10.1073/pnas.1213736109
10.1016/j.bbrc.2004.05.093
10.1016/j.cell.2005.04.028
10.1038/nature11629
10.1523/JNEUROSCI.4560-04.2005
10.1186/2047-217X-1-12
10.1093/bioinformatics/bts652
10.1016/j.tins.2010.04.001
10.1016/j.stem.2010.12.003
10.1101/gr.816903
10.1038/nature08248
10.1093/bioinformatics/btp324
10.1073/pnas.082089499
10.1016/S0092-8674(02)00828-0
10.1371/journal.pone.0000558
10.1093/bioinformatics/btq033
10.1093/biostatistics/kxh008
10.1093/nar/gks1048
10.1038/nature03663
10.1042/BST0370450
10.1101/gr.102970.109
10.1016/j.ajhg.2007.12.011
10.1073/pnas.231487398
10.1002/cne.22436
10.1038/nature09915
10.1038/4601087a
10.1128/MCB.25.17.7780-7795.2005
10.1016/j.stem.2011.07.018
10.1126/science.1213307
10.1038/nature10531
10.1038/nature09807
10.1186/1472-6750-7-19
10.1038/nn.3356
10.1038/nprot.2012.039
10.1038/nm.1924
10.1038/435890a
10.1093/nar/gkn378
10.1002/humu.20815
10.1016/j.jmb.2005.02.043
10.1016/j.cell.2012.09.035
10.1016/S0092-8674(02)00839-5
10.1186/gb-2010-11-12-r119
10.1101/gr.143677.112
10.1101/gr.134395.111
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1126/science.1243472
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Neurosciences Abstracts
AGRICOLA
Materials Research Database

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 637
ExternalDocumentID PMC3975283
3114780181
24179226
27975276
10_1126_science_1243472
42620011
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCCDPHP CDC HHS
  grantid: DP20D006493-01
– fundername: NICHD NIH HHS
  grantid: HHSN275200900001O
– fundername: PHS HHS
  grantid: HHSN2752009000011C
– fundername: NICHD NIH HHS
  grantid: HHSN275200900011C
– fundername: NIGMS NIH HHS
  grantid: T32 GM008136
– fundername: NIMH NIH HHS
  grantid: R01 MH095741
– fundername: NIH HHS
  grantid: DP2 OD006493
– fundername: NICHD NIH HHS
  grantid: N01-HD-9-011
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
AAYXX
ABDPE
ABJCF
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AGFXO
AJUXI
ALIPV
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CITATION
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~G0
~H1
ABTAH
GX1
IQODW
UIG
YCJ
ZKG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c605t-b41e51b2f9d9934dda5f0ce9ea4f6593dc5838965a2c59761781a72c35e86b43
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 13:35:49 EDT 2025
Fri Jul 11 15:33:14 EDT 2025
Fri Jul 11 09:23:08 EDT 2025
Sun Aug 24 03:36:50 EDT 2025
Fri Jul 25 10:55:55 EDT 2025
Mon Jul 21 05:49:47 EDT 2025
Wed Apr 02 07:25:24 EDT 2025
Tue Jul 01 04:10:03 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Sun Aug 24 12:10:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6158
Keywords Human
Cell line
Neuron
Stem cell
DNA
Central nervous system
Precursor cell
Postmortem
Frontal cortex
Fibroblast
Encephalon
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605t-b41e51b2f9d9934dda5f0ce9ea4f6593dc5838965a2c59761781a72c35e86b43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Present Address: Icahn School of Medicine at Mount Sinai, New York, NY 10029
Present Address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
OpenAccessLink http://doi.org/10.1126/science.1243472
PMID 24179226
PQID 1447576819
PQPubID 1256
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3975283
proquest_miscellaneous_2000383505
proquest_miscellaneous_1660414251
proquest_miscellaneous_1448225735
proquest_journals_1447576819
pubmed_primary_24179226
pascalfrancis_primary_27975276
crossref_primary_10_1126_science_1243472
crossref_citationtrail_10_1126_science_1243472
jstor_primary_42620011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
24179207 - Science. 2013 Nov 1;342(6158):564-5
11698687 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13361-6
16009139 - Cell. 2005 Jul 15;122(1):133-43
19396175 - Nat Med. 2009 May;15(5):577-83
15194483 - Biochem Biophys Res Commun. 2004 Jul 9;319(4):1117-23
15745943 - J Neurosci. 2005 Mar 2;25(9):2176-80
17593959 - PLoS One. 2007;2(6):e558
23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69
17430586 - BMC Biotechnol. 2007;7:19
21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18
19713921 - Nature. 2009 Aug 27;460(7259):1087-8
22403181 - Science. 2012 Apr 6;336(6077):82-6
19657334 - Nature. 2009 Aug 27;460(7259):1127-31
11959976 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6
15475419 - Biostatistics. 2004 Oct;5(4):557-72
12176320 - Cell. 2002 Aug 9;110(3):327-38
15959497 - Nature. 2005 Jun 16;435(7044):890-1
23101622 - Cell. 2012 Oct 26;151(3):483-96
21490598 - Nature. 2011 May 12;473(7346):221-5
15959507 - Nature. 2005 Jun 16;435(7044):903-10
22037309 - Nature. 2011 Nov 24;479(7374):534-7
20471112 - Trends Neurosci. 2010 Aug;33(8):345-54
23043118 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18018-23
23525040 - Nat Neurosci. 2013 May;16(5):613-21
21143862 - Genome Biol. 2010;11(12):R119
15843013 - J Mol Biol. 2005 May 13;348(4):791-800
19290880 - Biochem Soc Trans. 2009 Apr;37(Pt 2):450-3
12176319 - Cell. 2002 Aug 9;110(3):315-25
16107723 - Mol Cell Biol. 2005 Sep;25(17):7780-95
21399628 - Nature. 2011 Apr 7;472(7341):90-4
18570184 - Hum Mutat. 2008 Sep;29(9):1118-24
22555242 - Nat Protoc. 2012 Jun;7(6):1024-41
23160490 - Nature. 2012 Dec 20;492(7429):438-42
18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71
References_xml – ident: e_1_3_2_37_2
  doi: 10.1016/j.cell.2012.02.025
– ident: e_1_3_2_11_2
  doi: 10.1016/j.semcdb.2013.02.003
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.1213736109
– ident: e_1_3_2_28_2
  doi: 10.1016/j.bbrc.2004.05.093
– ident: e_1_3_2_14_2
  doi: 10.1016/j.cell.2005.04.028
– ident: e_1_3_2_23_2
  doi: 10.1038/nature11629
– ident: e_1_3_2_3_2
  doi: 10.1523/JNEUROSCI.4560-04.2005
– ident: e_1_3_2_36_2
  doi: 10.1186/2047-217X-1-12
– ident: e_1_3_2_46_2
  doi: 10.1093/bioinformatics/bts652
– ident: e_1_3_2_9_2
  doi: 10.1016/j.tins.2010.04.001
– ident: e_1_3_2_21_2
  doi: 10.1016/j.stem.2010.12.003
– ident: e_1_3_2_35_2
  doi: 10.1101/gr.816903
– ident: e_1_3_2_34_2
  doi: 10.1038/nature08248
– ident: e_1_3_2_41_2
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_3_2_15_2
  doi: 10.1073/pnas.082089499
– ident: e_1_3_2_30_2
  doi: 10.1016/S0092-8674(02)00828-0
– ident: e_1_3_2_4_2
  doi: 10.1371/journal.pone.0000558
– ident: e_1_3_2_45_2
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_3_2_19_2
  doi: 10.1093/biostatistics/kxh008
– ident: e_1_3_2_40_2
  doi: 10.1093/nar/gks1048
– ident: e_1_3_2_5_2
  doi: 10.1038/nature03663
– ident: e_1_3_2_17_2
  doi: 10.1042/BST0370450
– ident: e_1_3_2_42_2
  doi: 10.1101/gr.102970.109
– ident: e_1_3_2_24_2
  doi: 10.1016/j.ajhg.2007.12.011
– ident: e_1_3_2_2_2
  doi: 10.1073/pnas.231487398
– ident: e_1_3_2_39_2
  doi: 10.1002/cne.22436
– ident: e_1_3_2_20_2
  doi: 10.1038/nature09915
– ident: e_1_3_2_10_2
  doi: 10.1038/4601087a
– ident: e_1_3_2_32_2
  doi: 10.1128/MCB.25.17.7780-7795.2005
– ident: e_1_3_2_43_2
  doi: 10.1016/j.stem.2011.07.018
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1213307
– ident: e_1_3_2_6_2
  doi: 10.1038/nature10531
– ident: e_1_3_2_13_2
  doi: 10.1038/nature09807
– ident: e_1_3_2_18_2
  doi: 10.1186/1472-6750-7-19
– ident: e_1_3_2_27_2
  doi: 10.1038/nn.3356
– ident: e_1_3_2_22_2
  doi: 10.1038/nprot.2012.039
– ident: e_1_3_2_12_2
  doi: 10.1038/nm.1924
– ident: e_1_3_2_8_2
  doi: 10.1038/435890a
– ident: e_1_3_2_38_2
  doi: 10.1093/nar/gkn378
– ident: e_1_3_2_26_2
  doi: 10.1002/humu.20815
– ident: e_1_3_2_31_2
  doi: 10.1016/j.jmb.2005.02.043
– ident: e_1_3_2_7_2
  doi: 10.1016/j.cell.2012.09.035
– ident: e_1_3_2_33_2
  doi: 10.1016/S0092-8674(02)00839-5
– ident: e_1_3_2_16_2
  doi: 10.1186/gb-2010-11-12-r119
– ident: e_1_3_2_44_2
  doi: 10.1101/gr.143677.112
– ident: e_1_3_2_47_2
  doi: 10.1101/gr.134395.111
– reference: 21490598 - Nature. 2011 May 12;473(7346):221-5
– reference: 18304490 - Am J Hum Genet. 2008 Mar;82(3):763-71
– reference: 23466288 - Semin Cell Dev Biol. 2013 Apr;24(4):357-69
– reference: 20471112 - Trends Neurosci. 2010 Aug;33(8):345-54
– reference: 15843013 - J Mol Biol. 2005 May 13;348(4):791-800
– reference: 19290880 - Biochem Soc Trans. 2009 Apr;37(Pt 2):450-3
– reference: 22555242 - Nat Protoc. 2012 Jun;7(6):1024-41
– reference: 21143862 - Genome Biol. 2010;11(12):R119
– reference: 15959497 - Nature. 2005 Jun 16;435(7044):890-1
– reference: 19657334 - Nature. 2009 Aug 27;460(7259):1127-31
– reference: 16107723 - Mol Cell Biol. 2005 Sep;25(17):7780-95
– reference: 12176320 - Cell. 2002 Aug 9;110(3):327-38
– reference: 22403181 - Science. 2012 Apr 6;336(6077):82-6
– reference: 15745943 - J Neurosci. 2005 Mar 2;25(9):2176-80
– reference: 23160490 - Nature. 2012 Dec 20;492(7429):438-42
– reference: 23525040 - Nat Neurosci. 2013 May;16(5):613-21
– reference: 11698687 - Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13361-6
– reference: 18570184 - Hum Mutat. 2008 Sep;29(9):1118-24
– reference: 17430586 - BMC Biotechnol. 2007;7:19
– reference: 24179207 - Science. 2013 Nov 1;342(6158):564-5
– reference: 16009139 - Cell. 2005 Jul 15;122(1):133-43
– reference: 11959976 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6
– reference: 15959507 - Nature. 2005 Jun 16;435(7044):903-10
– reference: 19396175 - Nat Med. 2009 May;15(5):577-83
– reference: 23101622 - Cell. 2012 Oct 26;151(3):483-96
– reference: 12176319 - Cell. 2002 Aug 9;110(3):315-25
– reference: 19713921 - Nature. 2009 Aug 27;460(7259):1087-8
– reference: 22037309 - Nature. 2011 Nov 24;479(7374):534-7
– reference: 15194483 - Biochem Biophys Res Commun. 2004 Jul 9;319(4):1117-23
– reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72
– reference: 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18
– reference: 23043118 - Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):18018-23
– reference: 17593959 - PLoS One. 2007;2(6):e558
– reference: 21399628 - Nature. 2011 Apr 7;472(7341):90-4
SSID ssj0009593
Score 2.5955284
Snippet We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and...
As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al....
As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody diversity. McConnell et al....
Not All Neurons Are AlikeAs life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody...
Not All Neurons Are Alike As life proceeds, many cells acquire individualized mutations. In the immune system, genome rearrangements generate useful antibody...
We used single cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 632
SubjectTerms Aneuploidy
antibody diversity
Biological and medical sciences
Cell differentiation
Cell lines
Cells
Chromosomes
DNA Copy Number Variations
Fibroblasts
frontal lobe
Frontal Lobe - cytology
Fundamental and applied biological sciences. Psychology
genome
Genomes
Genomics
Humans
Immune system
Individualized Instruction
Induced Pluripotent Stem Cells - cytology
Male
Mosaicism
mutation
Neural Stem Cells - cytology
Neurogenesis
Neurons
Neurons - cytology
Sequence Analysis, DNA
Sequence Deletion
Sequencing
Single-Cell Analysis
Somatic cells
Stem cells
Vertebrates: nervous system and sense organs
Title Mosaic Copy Number Variation in Human Neurons
URI https://www.jstor.org/stable/42620011
https://www.ncbi.nlm.nih.gov/pubmed/24179226
https://www.proquest.com/docview/1447576819
https://www.proquest.com/docview/1448225735
https://www.proquest.com/docview/1660414251
https://www.proquest.com/docview/2000383505
https://pubmed.ncbi.nlm.nih.gov/PMC3975283
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBsMAmMKEg9DVarEX0keO2CakIp4KNLeKsdJRKWRRmuLNP56zvbla6wIeImq-JykvvP5fvZ9EPJW54plvASQE5ci4HnJAiUAuCZMKWWqoqQ2tmr-WV5-5Z-uxNVoVPe8lnbbbKp_3htX8j9chXvAVxMl-w-cbR8KN-A38BeuwGG4_hWP5-uNWumJXte3E1faY_IDsK9qHBhdAT6bshI35dAMbWY0mJftkU2PUa3v4cx5CDQOA9itt3sw1z1PGXTB706aDOBv_Meaxs5B8QZ0PLpVWlVTVF3PL6vayZKJ31a4lYubExHDKD27tjiFGppakDRkfY3LOO2JFthUSU-FSrff-btq7xWjLKZgljAeDyiBN_V3y2lqyqpReifFtl20m6YH5IACsKBjcjA7_3B-MUjUjCmgesFVzftM7mh8wsCQcb6sxrFWbWBula4oyn2o5a7zbc-aWTwhjxGG-DMnU4dkVFRH5KErTHp7RA6R0xv_DPOSv3tKAiduvhE334mb34qbv6p8K24-itszsrj4uHh_GWC1jUADpN0GGY8KEWW0THOwWXmeK1GGukgLxUsJg5Jrc8KeSqGoBhRqQksjFVPNRJHIjLNjMq7WVfGC-ADalJBMaplqnkiWgQkYJXkaKmnqeqUemTYjt9SYid4URLleWkRK5RJHfYmj7pGztkPtkrDsJz22rGjpbMUFWMQ8cjrgTUtA4zQWNJYeOWmYtcQ5vgFgzGODyCP46DdtM2hgc6ymqmK9szRgZYuYiT_QSBnyCNbHaD8Ntcf0DCCJR547Gek-EoXOI_FAeloCkyV-2FKtvtls8cz8vYS93PvMV-RRN3VPyHh7syteg6W9zU5xcvwC-OjSJg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+copy+number+variation+in+human+neurons&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=McConnell%2C+Michael+J&rft.au=Lindberg%2C+Michael+R&rft.au=Brennand%2C+Kristen+J&rft.au=Piper%2C+Julia+C&rft.date=2013-11-01&rft.eissn=1095-9203&rft.volume=342&rft.issue=6158&rft.spage=632&rft_id=info:doi/10.1126%2Fscience.1243472&rft_id=info%3Apmid%2F24179226&rft.externalDocID=24179226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon