Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants
DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT...
Saved in:
Published in | Cell Vol. 151; no. 1; pp. 167 - 180 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.
[Display omitted]
► CMT3 stably associates with H3K9me2-containing nucleosomes ► CMT3 has CHG MTase activity and is expressed in actively replicating cells ► Structural and ITC studies reveal that both BAH and chromo domains recognize H3K9me ► The dual-recognition model establishes mechanism targeting DNA methylation in plants
Two domains of the chromomethylase CMT3, which methylates CHG sites in Arabidopsis DNA, mediate the binding of CMT3 to dimethylated H3K9, explaining how H3K9me2 promotes DNA methylation at heterochromatic sites. |
---|---|
AbstractList | DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2 and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homologue, ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both BAH- and chromo-domains. The structures reveal an aromatic cage within both BAH- and chromo-domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes, and show a complete loss of CMT3 activity
in vivo
. Our study establishes dual recognition of H3K9me2 marks by BAH- and chromo-domains, and reveals a novel mechanism of interplay between DNA methylation and histone modification. DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. [Display omitted] ► CMT3 stably associates with H3K9me2-containing nucleosomes ► CMT3 has CHG MTase activity and is expressed in actively replicating cells ► Structural and ITC studies reveal that both BAH and chromo domains recognize H3K9me ► The dual-recognition model establishes mechanism targeting DNA methylation in plants Two domains of the chromomethylase CMT3, which methylates CHG sites in Arabidopsis DNA, mediate the binding of CMT3 to dimethylated H3K9, explaining how H3K9me2 promotes DNA methylation at heterochromatic sites. |
Author | Tu, Andy Hetzel, Jonathan Vashisht, Ajay A. Pradhan, Sriharsa Stroud, Hume Du, Jiamu Chin, Hang Gyeong Caro, Elena Wohlschlegel, James A. Zhong, Xuehua Terragni, Jolyon Jacobsen, Steven E. Patel, Dinshaw J. Feng, Suhua Bernatavichute, Yana V. |
AuthorAffiliation | 3 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA 5 Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095, USA 4 New England Biolabs, Ipswich, Massachusetts, 01938, USA 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA 2 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, USA |
AuthorAffiliation_xml | – name: 2 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, USA – name: 3 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA – name: 4 New England Biolabs, Ipswich, Massachusetts, 01938, USA – name: 5 Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095, USA – name: 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA |
Author_xml | – sequence: 1 givenname: Jiamu surname: Du fullname: Du, Jiamu organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – sequence: 2 givenname: Xuehua surname: Zhong fullname: Zhong, Xuehua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 3 givenname: Yana V. surname: Bernatavichute fullname: Bernatavichute, Yana V. organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 4 givenname: Hume surname: Stroud fullname: Stroud, Hume organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 5 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 6 givenname: Elena surname: Caro fullname: Caro, Elena organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 7 givenname: Ajay A. surname: Vashisht fullname: Vashisht, Ajay A. organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 8 givenname: Jolyon surname: Terragni fullname: Terragni, Jolyon organization: New England Biolabs, Ipswich, MA 01938, USA – sequence: 9 givenname: Hang Gyeong surname: Chin fullname: Chin, Hang Gyeong organization: New England Biolabs, Ipswich, MA 01938, USA – sequence: 10 givenname: Andy surname: Tu fullname: Tu, Andy organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 11 givenname: Jonathan surname: Hetzel fullname: Hetzel, Jonathan organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 12 givenname: James A. surname: Wohlschlegel fullname: Wohlschlegel, James A. organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA – sequence: 13 givenname: Sriharsa surname: Pradhan fullname: Pradhan, Sriharsa organization: New England Biolabs, Ipswich, MA 01938, USA – sequence: 14 givenname: Dinshaw J. surname: Patel fullname: Patel, Dinshaw J. email: pateld@mskcc.org organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA – sequence: 15 givenname: Steven E. surname: Jacobsen fullname: Jacobsen, Steven E. email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23021223$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFv1DAQhS1URLeFP8ABcuSSMHYSO5EQUtkFiigFCXq2HMfe9ZLYre1U6r_HaUoFHMppJPt7zzPzfIQOrLMKoecYCgyYvt4XUg1DQQCTAlgBZfUIrTC0LK8wIwdoBdCSvKGsOkRHIewBoKnr-gk6JCUQTEi5Qj83kxiyd8b2xm4zp7P1zrvRjSrubgYRVLZxozA2ZNFlp-XndlQkXzsb09ksOJ_koFxIfMg2xisZUz0_yb4s-miczYzNvg3CxvAUPdZiCOrZXT1GFx_e_1if5mdfP35an5zlkkIdc9a3TPegMYi675SWrahBdgproTssiVasY21PiazqqhRtp-V821W0ErppoTxGbxffy6kbVS-VjV4M_NKbUfgb7oThf99Ys-Nbd83LimHW4GTw6s7Au6tJhchHE-ZdC6vcFDhJmwRCKab_RTE0uGGkorPriz_buu_ndxgJIAsgvQvBK32PYOBz4nzPZ2s-J86B8ZR4EjX_iKSJt4tPo5nhYenLRaqF42LrTeAX3xNA5_Fo-imJeLMQKsV1bZTnQRplpepvs-a9Mw898Av4B9Gy |
CitedBy_id | crossref_primary_10_1016_j_pbi_2022_102264 crossref_primary_10_1186_s13072_016_0061_9 crossref_primary_10_1016_j_pbi_2023_102428 crossref_primary_10_1093_jxb_erz457 crossref_primary_10_1111_nph_13540 crossref_primary_10_1371_journal_pgen_1004446 crossref_primary_10_1007_s13238_013_3052_7 crossref_primary_10_1016_j_sbi_2015_09_007 crossref_primary_10_1007_s00018_014_1792_z crossref_primary_10_1101_gr_152538_112 crossref_primary_10_3390_ijms21082887 crossref_primary_10_1038_s41467_018_04836_y crossref_primary_10_1093_pcp_pcy032 crossref_primary_10_3390_biology11070954 crossref_primary_10_3389_fpls_2017_00082 crossref_primary_10_1021_acschembio_5b00864 crossref_primary_10_1093_plphys_kiab531 crossref_primary_10_1016_j_celrep_2022_111699 crossref_primary_10_1038_ncomms12464 crossref_primary_10_1186_s13059_017_1226_y crossref_primary_10_1016_j_jbc_2023_104996 crossref_primary_10_1016_j_tibs_2022_06_002 crossref_primary_10_1038_s41477_020_00843_4 crossref_primary_10_3390_plants10122766 crossref_primary_10_1093_plcell_koab098 crossref_primary_10_1146_annurev_genet_112414_055048 crossref_primary_10_1007_s11103_015_0328_8 crossref_primary_10_1016_j_pbi_2023_102436 crossref_primary_10_1111_tpj_15441 crossref_primary_10_1007_s00425_015_2451_9 crossref_primary_10_1111_ppl_14492 crossref_primary_10_1111_ppl_12071 crossref_primary_10_1016_j_cels_2023_10_007 crossref_primary_10_1073_pnas_1918776117 crossref_primary_10_1016_j_celrep_2017_12_099 crossref_primary_10_1186_s13059_022_02768_x crossref_primary_10_1016_j_molcel_2018_10_006 crossref_primary_10_1080_07352689_2014_852920 crossref_primary_10_1186_s13059_020_02216_8 crossref_primary_10_1038_nature12178 crossref_primary_10_1016_j_molcel_2014_06_009 crossref_primary_10_1007_s12298_023_01390_w crossref_primary_10_1016_j_celrep_2023_112132 crossref_primary_10_1111_jipb_13883 crossref_primary_10_1101_gr_279379_124 crossref_primary_10_1128_JVI_00656_16 crossref_primary_10_1098_rspb_2022_2197 crossref_primary_10_1016_j_cub_2020_10_098 crossref_primary_10_1266_ggs_21_00041 crossref_primary_10_1093_nar_gkw723 crossref_primary_10_1074_jbc_M114_558940 crossref_primary_10_1007_s00122_020_03549_5 crossref_primary_10_1016_j_cell_2013_02_033 crossref_primary_10_1073_pnas_1716758114 crossref_primary_10_3389_fgene_2018_00609 crossref_primary_10_1016_j_tig_2019_07_007 crossref_primary_10_1186_s13059_016_1059_0 crossref_primary_10_1186_s13059_019_1767_3 crossref_primary_10_1101_gad_274647_115 crossref_primary_10_3389_fpls_2022_1092067 crossref_primary_10_1093_nar_gkac012 crossref_primary_10_1371_journal_pgen_1005998 crossref_primary_10_1038_s41467_022_28940_2 crossref_primary_10_1002_wsbm_1411 crossref_primary_10_3390_ijms22168618 crossref_primary_10_1093_jxb_eraa560 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1111_tpj_15781 crossref_primary_10_1038_s41598_019_39239_6 crossref_primary_10_1186_s13072_020_00361_9 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_1016_j_pbi_2023_102419 crossref_primary_10_1016_j_tplants_2013_07_005 crossref_primary_10_7554_eLife_09343 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_1073_pnas_1515072113 crossref_primary_10_1111_tpj_12952 crossref_primary_10_1111_tpj_13489 crossref_primary_10_1016_j_biortech_2014_10_119 crossref_primary_10_1038_nchembio_2149 crossref_primary_10_1093_nar_gkab1218 crossref_primary_10_3390_plants13060905 crossref_primary_10_1111_jipb_13423 crossref_primary_10_3389_fpls_2017_01161 crossref_primary_10_1016_j_pbi_2022_102248 crossref_primary_10_1016_j_cell_2014_03_056 crossref_primary_10_1038_s41588_023_01454_3 crossref_primary_10_1093_nsr_nwu003 crossref_primary_10_1016_j_pbi_2016_12_007 crossref_primary_10_3390_genes13060992 crossref_primary_10_1016_j_pbi_2021_102060 crossref_primary_10_1371_journal_pgen_1008291 crossref_primary_10_1007_s10265_021_01342_z crossref_primary_10_1093_nar_gky602 crossref_primary_10_3389_fmicb_2020_616922 crossref_primary_10_1039_C2MB25328C crossref_primary_10_1007_s11427_019_1587_x crossref_primary_10_7554_eLife_69396 crossref_primary_10_3390_ijms22158285 crossref_primary_10_1016_j_pbi_2024_102598 crossref_primary_10_1038_nrg_2017_45 crossref_primary_10_1186_s12870_022_03797_1 crossref_primary_10_1111_nph_19311 crossref_primary_10_1021_acs_chemrev_8b00008 crossref_primary_10_1007_s10142_016_0502_3 crossref_primary_10_1038_s41467_024_51246_4 crossref_primary_10_1146_annurev_genet_110711_155527 crossref_primary_10_1042_EBC20190032 crossref_primary_10_1093_treephys_tpx055 crossref_primary_10_1534_g3_116_030262 crossref_primary_10_7717_peerj_4461 crossref_primary_10_1186_s12870_018_1546_4 crossref_primary_10_1073_pnas_2107320118 crossref_primary_10_1093_nar_gkad610 crossref_primary_10_1111_nph_17018 crossref_primary_10_26508_lsa_201800197 crossref_primary_10_1134_S0006297916020085 crossref_primary_10_1073_pnas_2402946121 crossref_primary_10_1016_j_tplants_2017_04_009 crossref_primary_10_1093_plphys_kiad624 crossref_primary_10_1371_journal_pgen_1003948 crossref_primary_10_1107_S2059798315019403 crossref_primary_10_1111_brv_12661 crossref_primary_10_1007_s00497_021_00422_3 crossref_primary_10_1038_cr_2015_145 crossref_primary_10_1186_s12864_021_07600_7 crossref_primary_10_1371_journal_pgen_1006092 crossref_primary_10_1016_j_jia_2023_04_045 crossref_primary_10_1073_pnas_1406611111 crossref_primary_10_4161_rna_24085 crossref_primary_10_1016_j_cell_2014_06_006 crossref_primary_10_3389_fpls_2022_899105 crossref_primary_10_1038_srep17832 crossref_primary_10_1016_j_jbc_2022_101623 crossref_primary_10_1038_s41477_020_0671_x crossref_primary_10_1111_ppl_14226 crossref_primary_10_3390_plants10020236 crossref_primary_10_1038_s41438_021_00660_6 crossref_primary_10_1007_s00344_022_10903_y crossref_primary_10_1371_journal_pgen_1006526 crossref_primary_10_1016_j_celrep_2017_11_105 crossref_primary_10_1038_s41467_019_10026_1 crossref_primary_10_1016_j_envexpbot_2021_104479 crossref_primary_10_1016_j_pbi_2022_102211 crossref_primary_10_1016_j_biosystems_2021_104566 crossref_primary_10_1038_nplants_2016_145 crossref_primary_10_1007_s12374_024_09435_7 crossref_primary_10_1126_sciadv_abg5442 crossref_primary_10_1016_j_pbi_2014_07_001 crossref_primary_10_3389_fpls_2018_01194 crossref_primary_10_1186_s12864_024_10315_0 crossref_primary_10_1073_pnas_1423603112 crossref_primary_10_7554_eLife_64593 crossref_primary_10_1016_j_jgg_2013_03_010 crossref_primary_10_3389_fpls_2020_00452 crossref_primary_10_1042_BCJ20160123 crossref_primary_10_1016_j_jbc_2021_101558 crossref_primary_10_1038_ncomms11640 crossref_primary_10_3389_fpls_2022_888102 crossref_primary_10_1111_jipb_13067 crossref_primary_10_1038_s44319_024_00304_5 crossref_primary_10_1093_pcp_pcv036 crossref_primary_10_1111_tpj_14182 crossref_primary_10_3390_plants12030437 crossref_primary_10_1111_tpj_16364 crossref_primary_10_1038_s41467_020_14995_6 crossref_primary_10_1186_s13072_019_0299_0 crossref_primary_10_1371_journal_pone_0084687 crossref_primary_10_1093_nar_gkz618 crossref_primary_10_1093_nar_gkv258 crossref_primary_10_1186_s12870_017_1070_y crossref_primary_10_1007_s10725_017_0323_y crossref_primary_10_1073_pnas_1315399110 crossref_primary_10_1073_pnas_1619074114 crossref_primary_10_3390_agronomy15010094 crossref_primary_10_1007_s00299_021_02787_1 crossref_primary_10_1073_pnas_1319985110 crossref_primary_10_1093_g3journal_jkae004 crossref_primary_10_1038_s41467_022_31627_3 crossref_primary_10_1371_journal_pgen_1010041 crossref_primary_10_31083_j_fbl2903126 crossref_primary_10_1111_nph_20225 crossref_primary_10_1534_g3_115_025668 crossref_primary_10_1111_nph_20347 crossref_primary_10_1111_1365_2435_13497 crossref_primary_10_3389_fmolb_2022_888983 crossref_primary_10_1073_pnas_1918172117 crossref_primary_10_1146_annurev_biochem_072711_165700 crossref_primary_10_3390_ijms19051414 crossref_primary_10_1038_s42003_023_04607_6 crossref_primary_10_1093_nar_gkw238 crossref_primary_10_1093_plphys_kiae072 crossref_primary_10_1186_s12870_019_1899_3 crossref_primary_10_1111_pbi_12988 crossref_primary_10_1111_tpj_13418 crossref_primary_10_1111_tpj_15848 crossref_primary_10_1371_journal_pgen_1008993 crossref_primary_10_3389_fpls_2020_595603 crossref_primary_10_1073_pnas_1300585110 crossref_primary_10_3389_fpls_2015_01161 crossref_primary_10_1016_j_ecoenv_2020_111750 crossref_primary_10_1073_pnas_1512793112 crossref_primary_10_1016_j_pbi_2021_102008 crossref_primary_10_1073_pnas_1604666113 crossref_primary_10_1371_journal_pgen_1008637 crossref_primary_10_1002_dvg_23399 crossref_primary_10_1016_j_gep_2017_04_001 crossref_primary_10_1590_1678_4685_gmb_2018_0295 crossref_primary_10_1016_j_cell_2014_01_029 crossref_primary_10_1038_s41477_025_01924_y crossref_primary_10_3389_fpls_2015_00635 crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1111_pbi_14017 crossref_primary_10_3389_fpls_2016_00007 crossref_primary_10_1038_s41467_020_20089_0 crossref_primary_10_1093_nar_gkw1330 crossref_primary_10_1111_nph_16511 crossref_primary_10_1186_s13059_021_02359_2 crossref_primary_10_18632_oncotarget_19060 crossref_primary_10_7554_eLife_89353_3 crossref_primary_10_1038_s41467_021_22993_5 crossref_primary_10_1038_nrg3685 crossref_primary_10_3390_epigenomes8030030 crossref_primary_10_1111_febs_16633 crossref_primary_10_1371_journal_pgen_1011358 crossref_primary_10_1371_journal_pgen_1009710 crossref_primary_10_1016_j_plantsci_2022_111254 crossref_primary_10_1007_s00425_022_03962_8 crossref_primary_10_1146_annurev_arplant_070122_025047 crossref_primary_10_1186_s13059_020_02190_1 crossref_primary_10_1016_j_mrfmmm_2015_06_006 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1007_s10725_024_01152_y crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1128_MCB_00432_15 crossref_primary_10_1007_s11105_013_0673_1 crossref_primary_10_1038_s41467_022_28468_5 crossref_primary_10_4161_epi_25524 crossref_primary_10_3390_ijms19103182 crossref_primary_10_1111_jipb_12733 crossref_primary_10_1038_nrm4043 crossref_primary_10_1186_s12864_018_4641_x crossref_primary_10_1371_journal_pone_0105267 crossref_primary_10_1002_ajb2_1645 crossref_primary_10_1038_s41467_020_16951_w crossref_primary_10_1038_s41467_018_06965_w crossref_primary_10_1371_journal_pgen_1009034 crossref_primary_10_1111_jipb_13384 crossref_primary_10_1073_pnas_2009316117 crossref_primary_10_1111_ppl_13467 crossref_primary_10_1371_journal_pgen_1006551 crossref_primary_10_4161_psb_25364 crossref_primary_10_1016_j_bbagrm_2016_08_009 crossref_primary_10_1111_tpj_14612 crossref_primary_10_1371_journal_pone_0279688 crossref_primary_10_1093_nar_gkab210 crossref_primary_10_1038_s41467_019_09496_0 crossref_primary_10_1016_j_bbagrm_2016_08_004 crossref_primary_10_1101_gad_299347_117 crossref_primary_10_1111_tpj_14380 crossref_primary_10_1186_s13059_022_02750_7 crossref_primary_10_1016_j_tplants_2014_01_014 crossref_primary_10_1107_S2059798315019269 crossref_primary_10_3389_fgene_2022_818727 crossref_primary_10_1007_s12282_022_01333_5 crossref_primary_10_7554_eLife_47891 crossref_primary_10_1080_19491034_2024_2328719 crossref_primary_10_1111_tpj_16446 crossref_primary_10_3389_fpls_2021_596236 crossref_primary_10_3390_plants12102057 crossref_primary_10_3389_fpls_2021_684130 crossref_primary_10_3390_ijms25147540 crossref_primary_10_1007_s12374_018_0313_2 crossref_primary_10_3389_fpls_2017_01247 crossref_primary_10_1093_plcell_koab162 crossref_primary_10_1016_j_cpb_2024_100408 crossref_primary_10_7717_peerj_8432 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1186_s12870_023_04036_x crossref_primary_10_1371_journal_pone_0149934 crossref_primary_10_1093_mp_sst165 crossref_primary_10_1016_j_celrep_2015_04_034 crossref_primary_10_1038_s41477_020_0710_7 crossref_primary_10_3390_ijms21207457 crossref_primary_10_1073_pnas_1600672113 crossref_primary_10_1093_nar_gkab706 crossref_primary_10_1111_tpj_12406 crossref_primary_10_1186_s12864_016_3326_6 crossref_primary_10_1016_j_jmb_2020_166745 crossref_primary_10_1017_qpb_2022_14 crossref_primary_10_1073_pnas_1809841115 crossref_primary_10_1038_srep16476 crossref_primary_10_1002_chem_202100644 crossref_primary_10_1093_pcp_pcz034 crossref_primary_10_1038_nsmb_2735 crossref_primary_10_1186_s12870_015_0641_z crossref_primary_10_3390_plants13192700 crossref_primary_10_1016_j_bbagrm_2014_04_011 crossref_primary_10_1038_s41580_018_0016_z crossref_primary_10_1093_jxb_erw486 crossref_primary_10_3390_ijms20123051 crossref_primary_10_1126_sciadv_adr2222 crossref_primary_10_1371_journal_pone_0088947 crossref_primary_10_1105_tpc_114_130427 crossref_primary_10_7554_eLife_17214 crossref_primary_10_1007_s11240_019_01724_1 crossref_primary_10_1038_ncomms3301 crossref_primary_10_1371_journal_pgen_1005154 crossref_primary_10_1016_j_stress_2025_100812 crossref_primary_10_1111_evo_12286 crossref_primary_10_1186_s13059_017_1195_1 crossref_primary_10_1038_nrm4085 crossref_primary_10_1186_s13059_020_02099_9 crossref_primary_10_1016_j_molcel_2014_02_019 crossref_primary_10_1073_pnas_1406923111 crossref_primary_10_1111_ppl_14620 crossref_primary_10_1073_pnas_1710683114 crossref_primary_10_1073_pnas_2211155120 crossref_primary_10_1016_j_jgg_2018_09_004 crossref_primary_10_1016_j_molp_2017_10_002 crossref_primary_10_1038_s41467_018_02976_9 crossref_primary_10_1038_s41467_022_32709_y crossref_primary_10_1093_nar_gkad306 crossref_primary_10_1093_plphys_kiac471 crossref_primary_10_3389_fpls_2016_00038 crossref_primary_10_1021_acschembio_5b00802 crossref_primary_10_7554_eLife_06671 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_1038_s41477_020_00810_z crossref_primary_10_1007_s12374_018_0176_6 crossref_primary_10_1007_s00344_024_11316_9 crossref_primary_10_1007_s11427_017_9236_x crossref_primary_10_1002_pro_3849 crossref_primary_10_1038_s41588_018_0187_8 crossref_primary_10_1111_tpj_12630 crossref_primary_10_3389_fpls_2018_01228 crossref_primary_10_1111_jipb_13103 crossref_primary_10_3389_fpls_2019_00246 crossref_primary_10_7554_eLife_89353 crossref_primary_10_1007_s11427_017_9163_4 crossref_primary_10_1111_tpj_14492 crossref_primary_10_1093_biolre_ioac142 |
Cites_doi | 10.1126/science.1147939 10.1128/MCB.00484-09 10.1007/s00412-004-0275-7 10.1126/science.1069473 10.1093/nar/29.10.2127 10.1038/emboj.2011.103 10.1126/science.1195380 10.1126/science.1214453 10.1371/journal.pone.0003156 10.1016/j.jmb.2011.11.012 10.1016/j.cub.2007.01.009 10.1016/j.molcel.2011.07.006 10.1111/j.1365-313X.2005.02617.x 10.1038/nature05987 10.1016/S0076-6879(97)76066-X 10.1073/pnas.2536758100 10.1126/science.1059745 10.1105/TPC.010064 10.1016/j.molcel.2007.12.004 10.1074/jbc.M111.234104 10.1107/S0907444910007493 10.1038/sj.emboj.7600430 10.1038/38444 10.1107/S0021889892009944 10.1074/jbc.274.46.33011 10.1038/nature09147 10.1038/nrg2719 10.1016/j.cub.2010.03.062 10.1093/emboj/cdf687 10.1038/nature10956 10.1186/gb-2009-10-3-r25 10.1073/pnas.80.18.5559 10.1038/nature731 10.1038/embor.2009.218 10.1107/S0907444909052925 10.1016/j.jmb.2011.03.018 10.1074/jbc.M409604200 10.1126/science.1063127 10.1126/science.1210915 10.1016/0092-8674(94)90342-5 10.1038/nsmb.1611 10.1016/j.jneumeth.2008.10.006 10.1038/nature06745 10.1038/nature06146 10.1101/gad.1980311 10.1111/j.1365-313X.2005.02554.x |
ContentType | Journal Article |
Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. 2012 Elsevier Inc. All rights reserved. 2012 |
Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: 2012 Elsevier Inc. All rights reserved. 2012 |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.cell.2012.07.034 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4172 |
EndPage | 180 |
ExternalDocumentID | PMC3471781 23021223 10_1016_j_cell_2012_07_034 US201600006555 S009286741201015X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: F32GM096483-01 – fundername: NIGMS NIH HHS grantid: R01 GM089778 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM060398 – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIGMS NIH HHS grantid: F32 GM096483 – fundername: NIGMS NIH HHS grantid: GM089778 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R37 GM060398 || GM – fundername: Howard Hughes Medical Institute : grantid: || HHMI_ |
GroupedDBID | --- --K -DZ -ET -~X 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 4.4 457 4G. 53G 5GY 5RE 5VS 62- 6I. 6J9 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AAKUH AAQFI AAUCE AAVLU AAXJY AAXUO AAYJJ ABCQX ABJNI ABMAC ABMWF ABOCM ABTAH ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFDAS AFTJW AGHFR AGHSJ AGKMS AHHHB AIDAL AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VQA WH7 WQ6 YYQ YZZ ZA5 ZCA ZY4 .-4 .55 .GJ .HR 1CY 1VV 2KS 3O- 6TJ AALRI AAQXK ABEFU ABPTK ADMUD AEQTP AETEA AI. FBQ FEDTE FGOYB G-2 G8K HVGLF H~9 MVM OHT OMK OZT PUQ R2- UBW UHB VH1 X7M XFK YYP ZGI ZHY ZKB AAHBH AAMRU AAYWO AAYXX ABDGV ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c605t-7d97fd0f10a5dbefc9a50cbe1fafb1c2fe7b79d62c4543a9bfccbe1b464af8903 |
IEDL.DBID | IXB |
ISSN | 0092-8674 1097-4172 |
IngestDate | Thu Aug 21 18:07:15 EDT 2025 Fri Jul 11 05:22:09 EDT 2025 Mon Jul 21 11:22:04 EDT 2025 Mon Jul 21 06:07:39 EDT 2025 Tue Jul 01 03:52:04 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Wed Dec 27 19:02:29 EST 2023 Fri Feb 23 02:28:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-7d97fd0f10a5dbefc9a50cbe1fafb1c2fe7b79d62c4543a9bfccbe1b464af8903 |
Notes | http://dx.doi.org/10.1016/j.cell.2012.07.034 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work and their names were listed alphabetically. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S009286741201015X |
PMID | 23021223 |
PQID | 1081872461 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3471781 proquest_miscellaneous_2000026616 proquest_miscellaneous_1081872461 pubmed_primary_23021223 crossref_primary_10_1016_j_cell_2012_07_034 crossref_citationtrail_10_1016_j_cell_2012_07_034 fao_agris_US201600006555 elsevier_sciencedirect_doi_10_1016_j_cell_2012_07_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-28 |
PublicationDateYYYYMMDD | 2012-09-28 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2012 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Jackson, Johnson, Jasencakova, Zhang, PerezBurgos, Singh, Cheng, Schubert, Jenuwein, Jacobsen (bib13) 2004; 112 Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib4) 2008; 3 Chehrehasa, Meedeniya, Dwyer, Abrahamsen, Mackay-Sim (bib8) 2009; 177 Chang, Horton, Bedford, Zhang, Cheng (bib7) 2011; 408 Malagnac, Bartee, Bender (bib29) 2002; 21 Song, Rechkoblit, Bestor, Patel (bib41) 2011; 331 Song, Teplova, Ishibe-Murakami, Patel (bib42) 2012; 335 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66 Okada, Endo, Singh, Bhalla (bib31) 2005; 44 Law, Ausin, Johnson, Vashisht, Zhu, Wohlschlegel, Jacobsen (bib25) 2010; 20 Cokus, Feng, Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, Pellegrini, Jacobsen (bib10) 2008; 452 Chodavarapu, Feng, Bernatavichute, Chen, Stroud, Yu, Hetzel, Kuo, Kim, Cokus (bib9) 2010; 466 Klimasauskas, Kumar, Roberts, Cheng (bib20) 1994; 76 Ooi, Qiu, Bernstein, Li, Jia, Yang, Erdjument-Bromage, Tempst, Lin, Allis (bib33) 2007; 448 Papa, Springer, Muszynski, Meeley, Kaeppler (bib36) 2001; 13 Roudier, Ahmed, Bérard, Sarazin, Mary-Huard, Cortijo, Bouyer, Caillieux, Duvernois-Berthet, Al-Shikhley (bib40) 2011; 30 Jacobs, Khorasanizadeh (bib15) 2002; 295 Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib26) 2001; 292 Jackson, Lindroth, Cao, Jacobsen (bib12) 2002; 416 Armache, Garlick, Canzio, Narlikar, Kingston (bib2) 2011; 334 Bartee, Bender (bib3) 2001; 29 Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib38) 2011; 25 Otani, Nankumo, Arita, Inamoto, Ariyoshi, Shirakawa (bib34) 2009; 10 Laird, Pleasant, Clark, Sneeden, Hassan, Manley, Vary, Morgan, Hansen, Stöger (bib22) 2004; 101 Rajakumara, Wang, Ma, Hu, Chen, Lin, Guo, Wu, Li, Lan (bib39) 2011; 43 Patnaik, Chin, Estève, Benner, Jacobsen, Pradhan (bib37) 2004; 279 Kuo, Song, Cheung, Ishibe-Murakami, Yamazoe, Chen, Patel, Gozani (bib21) 2012; 484 Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib14) 2009; 16 Jenuwein, Allis (bib16) 2001; 293 Lindroth, Shultis, Jasencakova, Fuchs, Johnson, Schubert, Patnaik, Pradhan, Goodrich, Schubert (bib27) 2004; 23 Bostick, Kim, Estève, Clark, Pradhan, Jacobsen (bib6) 2007; 317 Bestor, Ingram (bib5) 1983; 80 Langmead, Trapnell, Pop, Salzberg (bib23) 2009; 10 Jeong, Liang, Sharma, Lin, Choi, Han, Yoo, Egger, Yang, Jones (bib17) 2009; 29 Luger, Mäder, Richmond, Sargent, Richmond (bib28) 1997; 389 Onishi, Liou, Buchberger, Walz, Moazed (bib32) 2007; 28 Law, Jacobsen (bib24) 2010; 11 Jia, Jurkowska, Zhang, Jeltsch, Cheng (bib18) 2007; 449 Nady, Lemak, Walker, Avvakumov, Kareta, Achour, Xue, Duan, Allali-Hassani, Zuo (bib30) 2011; 286 Otwinowski, Minor (bib35) 1997; 276 Xie, Jakoncic, Qian (bib43) 2012; 415 Johnson, Bostick, Zhang, Kraft, Henderson, Callis, Jacobsen (bib19) 2007; 17 Emsley, Lohkamp, Scott, Cowtan (bib11) 2010; 66 Kuo (10.1016/j.cell.2012.07.034_bib21) 2012; 484 Bostick (10.1016/j.cell.2012.07.034_bib6) 2007; 317 10.1016/j.cell.2012.07.034_bib51 10.1016/j.cell.2012.07.034_bib50 Jacob (10.1016/j.cell.2012.07.034_bib14) 2009; 16 Bartee (10.1016/j.cell.2012.07.034_bib3) 2001; 29 Armache (10.1016/j.cell.2012.07.034_bib2) 2011; 334 Jenuwein (10.1016/j.cell.2012.07.034_bib16) 2001; 293 Chang (10.1016/j.cell.2012.07.034_bib7) 2011; 408 Otwinowski (10.1016/j.cell.2012.07.034_bib35) 1997; 276 Okada (10.1016/j.cell.2012.07.034_bib31) 2005; 44 Patnaik (10.1016/j.cell.2012.07.034_bib37) 2004; 279 Nady (10.1016/j.cell.2012.07.034_bib30) 2011; 286 Papa (10.1016/j.cell.2012.07.034_bib36) 2001; 13 Jackson (10.1016/j.cell.2012.07.034_bib13) 2004; 112 Jackson (10.1016/j.cell.2012.07.034_bib12) 2002; 416 Emsley (10.1016/j.cell.2012.07.034_bib11) 2010; 66 Klimasauskas (10.1016/j.cell.2012.07.034_bib20) 1994; 76 Lindroth (10.1016/j.cell.2012.07.034_bib27) 2004; 23 Chodavarapu (10.1016/j.cell.2012.07.034_bib9) 2010; 466 Bestor (10.1016/j.cell.2012.07.034_bib5) 1983; 80 Langmead (10.1016/j.cell.2012.07.034_bib23) 2009; 10 Malagnac (10.1016/j.cell.2012.07.034_bib29) 2002; 21 Rajakumara (10.1016/j.cell.2012.07.034_bib39) 2011; 43 Jeong (10.1016/j.cell.2012.07.034_bib17) 2009; 29 Onishi (10.1016/j.cell.2012.07.034_bib32) 2007; 28 Cokus (10.1016/j.cell.2012.07.034_bib10) 2008; 452 Chehrehasa (10.1016/j.cell.2012.07.034_bib8) 2009; 177 Rajakumara (10.1016/j.cell.2012.07.034_bib38) 2011; 25 Law (10.1016/j.cell.2012.07.034_bib25) 2010; 20 Law (10.1016/j.cell.2012.07.034_bib24) 2010; 11 Ooi (10.1016/j.cell.2012.07.034_bib33) 2007; 448 Laird (10.1016/j.cell.2012.07.034_bib22) 2004; 101 Adams (10.1016/j.cell.2012.07.034_bib1) 2010; 66 Luger (10.1016/j.cell.2012.07.034_bib28) 1997; 389 Roudier (10.1016/j.cell.2012.07.034_bib40) 2011; 30 Otani (10.1016/j.cell.2012.07.034_bib34) 2009; 10 10.1016/j.cell.2012.07.034_bib44 Lindroth (10.1016/j.cell.2012.07.034_bib26) 2001; 292 10.1016/j.cell.2012.07.034_bib46 10.1016/j.cell.2012.07.034_bib45 10.1016/j.cell.2012.07.034_bib48 10.1016/j.cell.2012.07.034_bib47 10.1016/j.cell.2012.07.034_bib49 Jacobs (10.1016/j.cell.2012.07.034_bib15) 2002; 295 Xie (10.1016/j.cell.2012.07.034_bib43) 2012; 415 Johnson (10.1016/j.cell.2012.07.034_bib19) 2007; 17 Song (10.1016/j.cell.2012.07.034_bib41) 2011; 331 Jia (10.1016/j.cell.2012.07.034_bib18) 2007; 449 Bernatavichute (10.1016/j.cell.2012.07.034_bib4) 2008; 3 Song (10.1016/j.cell.2012.07.034_bib42) 2012; 335 |
References_xml | – volume: 80 start-page: 5559 year: 1983 end-page: 5563 ident: bib5 article-title: Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 137 year: 2011 end-page: 152 ident: bib38 article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo publication-title: Genes Dev. – volume: 415 start-page: 318 year: 2012 end-page: 328 ident: bib43 article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail publication-title: J. Mol. Biol. – volume: 13 start-page: 1919 year: 2001 end-page: 1928 ident: bib36 article-title: Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation publication-title: Plant Cell – volume: 3 start-page: e3156 year: 2008 ident: bib4 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE – volume: 452 start-page: 215 year: 2008 end-page: 219 ident: bib10 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature – volume: 10 start-page: R25 year: 2009 ident: bib23 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. – volume: 292 start-page: 2077 year: 2001 end-page: 2080 ident: bib26 article-title: Requirement of publication-title: Science – volume: 20 start-page: 951 year: 2010 end-page: 956 ident: bib25 article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis publication-title: Curr. Biol. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib11 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 448 start-page: 714 year: 2007 end-page: 717 ident: bib33 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 112 start-page: 308 year: 2004 end-page: 315 ident: bib13 article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana publication-title: Chromosoma – volume: 484 start-page: 115 year: 2012 end-page: 119 ident: bib21 article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome publication-title: Nature – volume: 21 start-page: 6842 year: 2002 end-page: 6852 ident: bib29 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. – volume: 29 start-page: 2127 year: 2001 end-page: 2134 ident: bib3 article-title: Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family publication-title: Nucleic Acids Res. – volume: 293 start-page: 1074 year: 2001 end-page: 1080 ident: bib16 article-title: Translating the histone code publication-title: Science – volume: 28 start-page: 1015 year: 2007 end-page: 1028 ident: bib32 article-title: Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly publication-title: Mol. Cell – volume: 335 start-page: 709 year: 2012 end-page: 712 ident: bib42 article-title: Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation publication-title: Science – volume: 334 start-page: 977 year: 2011 end-page: 982 ident: bib2 article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution publication-title: Science – volume: 177 start-page: 122 year: 2009 end-page: 130 ident: bib8 article-title: EdU, a new thymidine analogue for labelling proliferating cells in the nervous system publication-title: J. Neurosci. Methods – volume: 408 start-page: 807 year: 2011 end-page: 814 ident: bib7 article-title: Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding publication-title: J. Mol. Biol. – volume: 449 start-page: 248 year: 2007 end-page: 251 ident: bib18 article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation publication-title: Nature – volume: 11 start-page: 204 year: 2010 end-page: 220 ident: bib24 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. – volume: 10 start-page: 1235 year: 2009 end-page: 1241 ident: bib34 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. – volume: 16 start-page: 763 year: 2009 end-page: 768 ident: bib14 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. – volume: 295 start-page: 2080 year: 2002 end-page: 2083 ident: bib15 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science – volume: 29 start-page: 5366 year: 2009 end-page: 5376 ident: bib17 article-title: Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA publication-title: Mol. Cell. Biol. – volume: 286 start-page: 24300 year: 2011 end-page: 24311 ident: bib30 article-title: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein publication-title: J. Biol. Chem. – volume: 331 start-page: 1036 year: 2011 end-page: 1040 ident: bib41 article-title: Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation publication-title: Science – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bib28 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature – volume: 17 start-page: 379 year: 2007 end-page: 384 ident: bib19 article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation publication-title: Curr. Biol. – volume: 279 start-page: 53248 year: 2004 end-page: 53258 ident: bib37 article-title: Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase publication-title: J. Biol. Chem. – volume: 30 start-page: 1928 year: 2011 end-page: 1938 ident: bib40 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J. – volume: 101 start-page: 204 year: 2004 end-page: 209 ident: bib22 article-title: Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules publication-title: Proc. Natl. Acad. Sci. USA – volume: 317 start-page: 1760 year: 2007 end-page: 1764 ident: bib6 article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells publication-title: Science – volume: 416 start-page: 556 year: 2002 end-page: 560 ident: bib12 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature – volume: 23 start-page: 4286 year: 2004 end-page: 4296 ident: bib27 article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3 publication-title: EMBO J. – volume: 466 start-page: 388 year: 2010 end-page: 392 ident: bib9 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature – volume: 43 start-page: 275 year: 2011 end-page: 284 ident: bib39 article-title: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression publication-title: Mol. Cell – volume: 76 start-page: 357 year: 1994 end-page: 369 ident: bib20 article-title: HhaI methyltransferase flips its target base out of the DNA helix publication-title: Cell – volume: 44 start-page: 557 year: 2005 end-page: 568 ident: bib31 article-title: Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3 publication-title: Plant J. – volume: 276 start-page: 307 year: 1997 end-page: 326 ident: bib35 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. – volume: 317 start-page: 1760 year: 2007 ident: 10.1016/j.cell.2012.07.034_bib6 article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells publication-title: Science doi: 10.1126/science.1147939 – volume: 29 start-page: 5366 year: 2009 ident: 10.1016/j.cell.2012.07.034_bib17 article-title: Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00484-09 – volume: 112 start-page: 308 year: 2004 ident: 10.1016/j.cell.2012.07.034_bib13 article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana publication-title: Chromosoma doi: 10.1007/s00412-004-0275-7 – volume: 295 start-page: 2080 year: 2002 ident: 10.1016/j.cell.2012.07.034_bib15 article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail publication-title: Science doi: 10.1126/science.1069473 – volume: 29 start-page: 2127 year: 2001 ident: 10.1016/j.cell.2012.07.034_bib3 article-title: Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.10.2127 – volume: 30 start-page: 1928 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib40 article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis publication-title: EMBO J. doi: 10.1038/emboj.2011.103 – volume: 331 start-page: 1036 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib41 article-title: Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation publication-title: Science doi: 10.1126/science.1195380 – volume: 335 start-page: 709 year: 2012 ident: 10.1016/j.cell.2012.07.034_bib42 article-title: Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation publication-title: Science doi: 10.1126/science.1214453 – volume: 3 start-page: e3156 year: 2008 ident: 10.1016/j.cell.2012.07.034_bib4 article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0003156 – volume: 415 start-page: 318 year: 2012 ident: 10.1016/j.cell.2012.07.034_bib43 article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.11.012 – volume: 17 start-page: 379 year: 2007 ident: 10.1016/j.cell.2012.07.034_bib19 article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.01.009 – volume: 43 start-page: 275 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib39 article-title: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.07.006 – ident: 10.1016/j.cell.2012.07.034_bib46 doi: 10.1111/j.1365-313X.2005.02617.x – volume: 448 start-page: 714 year: 2007 ident: 10.1016/j.cell.2012.07.034_bib33 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature doi: 10.1038/nature05987 – volume: 276 start-page: 307 year: 1997 ident: 10.1016/j.cell.2012.07.034_bib35 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(97)76066-X – volume: 101 start-page: 204 year: 2004 ident: 10.1016/j.cell.2012.07.034_bib22 article-title: Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2536758100 – volume: 292 start-page: 2077 year: 2001 ident: 10.1016/j.cell.2012.07.034_bib26 article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation publication-title: Science doi: 10.1126/science.1059745 – volume: 13 start-page: 1919 year: 2001 ident: 10.1016/j.cell.2012.07.034_bib36 article-title: Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation publication-title: Plant Cell doi: 10.1105/TPC.010064 – volume: 28 start-page: 1015 year: 2007 ident: 10.1016/j.cell.2012.07.034_bib32 article-title: Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.12.004 – volume: 286 start-page: 24300 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib30 article-title: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.234104 – ident: 10.1016/j.cell.2012.07.034_bib47 doi: 10.1107/S0907444910007493 – volume: 23 start-page: 4286 year: 2004 ident: 10.1016/j.cell.2012.07.034_bib27 article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600430 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.cell.2012.07.034_bib28 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – ident: 10.1016/j.cell.2012.07.034_bib48 doi: 10.1107/S0021889892009944 – ident: 10.1016/j.cell.2012.07.034_bib45 doi: 10.1074/jbc.274.46.33011 – volume: 466 start-page: 388 year: 2010 ident: 10.1016/j.cell.2012.07.034_bib9 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature doi: 10.1038/nature09147 – volume: 11 start-page: 204 year: 2010 ident: 10.1016/j.cell.2012.07.034_bib24 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.cell.2012.07.034_bib11 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 20 start-page: 951 year: 2010 ident: 10.1016/j.cell.2012.07.034_bib25 article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.03.062 – volume: 21 start-page: 6842 year: 2002 ident: 10.1016/j.cell.2012.07.034_bib29 article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation publication-title: EMBO J. doi: 10.1093/emboj/cdf687 – volume: 484 start-page: 115 year: 2012 ident: 10.1016/j.cell.2012.07.034_bib21 article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome publication-title: Nature doi: 10.1038/nature10956 – volume: 10 start-page: R25 year: 2009 ident: 10.1016/j.cell.2012.07.034_bib23 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 80 start-page: 5559 year: 1983 ident: 10.1016/j.cell.2012.07.034_bib5 article-title: Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.80.18.5559 – ident: 10.1016/j.cell.2012.07.034_bib50 doi: 10.1016/S0076-6879(97)76066-X – volume: 416 start-page: 556 year: 2002 ident: 10.1016/j.cell.2012.07.034_bib12 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature doi: 10.1038/nature731 – volume: 10 start-page: 1235 year: 2009 ident: 10.1016/j.cell.2012.07.034_bib34 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – ident: 10.1016/j.cell.2012.07.034_bib44 doi: 10.1107/S0907444909052925 – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.cell.2012.07.034_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 408 start-page: 807 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib7 article-title: Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.03.018 – volume: 279 start-page: 53248 year: 2004 ident: 10.1016/j.cell.2012.07.034_bib37 article-title: Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409604200 – volume: 293 start-page: 1074 year: 2001 ident: 10.1016/j.cell.2012.07.034_bib16 article-title: Translating the histone code publication-title: Science doi: 10.1126/science.1063127 – volume: 334 start-page: 977 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib2 article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution publication-title: Science doi: 10.1126/science.1210915 – volume: 76 start-page: 357 year: 1994 ident: 10.1016/j.cell.2012.07.034_bib20 article-title: HhaI methyltransferase flips its target base out of the DNA helix publication-title: Cell doi: 10.1016/0092-8674(94)90342-5 – volume: 16 start-page: 763 year: 2009 ident: 10.1016/j.cell.2012.07.034_bib14 article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1611 – volume: 177 start-page: 122 year: 2009 ident: 10.1016/j.cell.2012.07.034_bib8 article-title: EdU, a new thymidine analogue for labelling proliferating cells in the nervous system publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.10.006 – volume: 452 start-page: 215 year: 2008 ident: 10.1016/j.cell.2012.07.034_bib10 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 449 start-page: 248 year: 2007 ident: 10.1016/j.cell.2012.07.034_bib18 article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation publication-title: Nature doi: 10.1038/nature06146 – volume: 25 start-page: 137 year: 2011 ident: 10.1016/j.cell.2012.07.034_bib38 article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo publication-title: Genes Dev. doi: 10.1101/gad.1980311 – ident: 10.1016/j.cell.2012.07.034_bib49 doi: 10.1016/j.cub.2010.03.062 – volume: 44 start-page: 557 year: 2005 ident: 10.1016/j.cell.2012.07.034_bib31 article-title: Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3 publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02554.x – ident: 10.1016/j.cell.2012.07.034_bib51 doi: 10.1074/jbc.M409604200 |
SSID | ssj0008555 |
Score | 2.5639997 |
Snippet | DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Amino Acid Sequence Arabidopsis - genetics Arabidopsis - metabolism corn crystal structure Crystallography, X-Ray DNA (Cytosine-5-)-Methyltransferases - chemistry DNA (Cytosine-5-)-Methyltransferases - metabolism DNA Methylation DNA, Plant - metabolism epigenetics gene expression genome Heterochromatin - metabolism histones Histones - metabolism methylation Models, Molecular Molecular Sequence Data mutation nucleosomes Nucleosomes - metabolism peptides Sequence Alignment Zea mays - genetics Zea mays - metabolism |
Title | Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants |
URI | https://dx.doi.org/10.1016/j.cell.2012.07.034 https://www.ncbi.nlm.nih.gov/pubmed/23021223 https://www.proquest.com/docview/1081872461 https://www.proquest.com/docview/2000026616 https://pubmed.ncbi.nlm.nih.gov/PMC3471781 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKJSQuCMqjy6NyJW4oqpPYcXzsg2pF1b3ASnuzbMeGUDapSPbQf89MnKxYRHvgFCWekWKPPf6czHxDyIe8EI5liiWiAjPwogyJsUYlyishnZDGDHlr14tivuSfV2K1R86nXBgMqxx9f_Tpg7cen5yMo3lyW9eY46uysoAdEX_opmIFfjjn5ZDEtzrbeuNSiFjFQMHKB-kxcSbGeOHHcQzvygYCz5zftzk9Cqb9FwT9O5Lyj63p8hl5OmJKehpf-znZ880BeRyrTN69IDcXG2g9q4f8FdoGioS46xZrR98Bdvb0ol2buulo39J5fqXWPkuQtCrWjqALZDxuO5DvaHSQcF2c0uuoj4aldUOx-lHfvSTLy09fz-fJWGMhcXCQ6RNZKRkqFlJmRGV9cMoI5qxPgwk2dVnw0kpVFZnjgudG2eCw1fKCm1Aqlr8i-03b-ENChTU8VL7w1la8ZE6lwhXWR36bkBYzkk6Dq91IQI51MH7qKdLsh0aDaDSIZlKDQWbk41bnNtJvPCgtJpvpnUmkYX94UO8QDKzNN_CrevklQ9a9AZwJMSPHk9U1LDzUNI1vNx0yq6alRDq--2UwD4ohBILOv44zZdsNOPsBbMjyGZE7c2grgMTfuy1N_X0gAM8BUcgyffOf3X1LnuAdRr1k5Tuy3__a-PcArXp7NKyd324dIYI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQviM-t48tI8ISiJU4cxw88bJSppWtfWKW-GduxIUCTaWmF-nfxD3KXpBVFbA9Ie4oU-6LYdz7_nNz9jpDXccptyGQY8BzUkKSZD7TRMpBOcmG50LrJWxtP0sE0-Tjjsx3ya50Lg2GVne9vfXrjrbs7R91sHl0UBeb4SpalsCPiD92Iz7rIypFb_YRzW_1u2Aclv2Hs9MP5-0HQlRYILOD3RSByKXwe-ijUPDfOW6l5aI2LvPYmssw7YYTMU2YTnsRaGm-x1SRpon0mwxieu0tuAfoQ6A2Gs5ON-884b8smSHA18Hpdpk4bVIZf4zGejDWMoXFy1W6463X1L8z7d-jmH3vh6X1yrwOx9Lidpwdkx5UPye22rOXqEfneX0LrSdEkzNDKU2TgnVdYrHoFYN3RfjXXRVnTRUUH8UjOHQuQJastVkEnSLFc1dC_pq1HhuvkmI5bebQkWpQUyy0t6sdkeiMz_4TslVXpDgjlRic-d6kzJk-y0MqI29S4llDHR2mPROvJVbZjPMfCGz_UOrTtm0KFKFSICoUChfTI243MRcv3cW1vvtaZ2rJaBRvStXIHoGClv4AjV9NPDGn-GjTIeY-8WmtdwUpHSV26alkjlWuUCeT_u7oPJl6FiLlg8PutpWyGAYdNwCks7hGxZUObDsg0vt1SFl8bxvEYIIzIosP_HO5LcmdwPj5TZ8PJ6Cm5iy0YcsOyZ2Rvcbl0zwHXLcyLZh1R8vmmF-5vy8liLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+binding+of+chromomethylase+domains+to+H3K9me2-containing+nucleosomes+directs+DNA+methylation+in+plants&rft.jtitle=Cell&rft.au=Du%2C+Jiamu&rft.au=Zhong%2C+Xuehua&rft.au=Bernatavichute%2C+Yana+V&rft.au=Stroud%2C+Hume&rft.date=2012-09-28&rft.eissn=1097-4172&rft.volume=151&rft.issue=1&rft.spage=167&rft_id=info:doi/10.1016%2Fj.cell.2012.07.034&rft_id=info%3Apmid%2F23021223&rft.externalDocID=23021223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |