Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 151; no. 1; pp. 167 - 180
Main Authors Du, Jiamu, Zhong, Xuehua, Bernatavichute, Yana V., Stroud, Hume, Feng, Suhua, Caro, Elena, Vashisht, Ajay A., Terragni, Jolyon, Chin, Hang Gyeong, Tu, Andy, Hetzel, Jonathan, Wohlschlegel, James A., Pradhan, Sriharsa, Patel, Dinshaw J., Jacobsen, Steven E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. [Display omitted] ► CMT3 stably associates with H3K9me2-containing nucleosomes ► CMT3 has CHG MTase activity and is expressed in actively replicating cells ► Structural and ITC studies reveal that both BAH and chromo domains recognize H3K9me ► The dual-recognition model establishes mechanism targeting DNA methylation in plants Two domains of the chromomethylase CMT3, which methylates CHG sites in Arabidopsis DNA, mediate the binding of CMT3 to dimethylated H3K9, explaining how H3K9me2 promotes DNA methylation at heterochromatic sites.
AbstractList DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2 and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homologue, ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both BAH- and chromo-domains. The structures reveal an aromatic cage within both BAH- and chromo-domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes, and show a complete loss of CMT3 activity in vivo . Our study establishes dual recognition of H3K9me2 marks by BAH- and chromo-domains, and reveals a novel mechanism of interplay between DNA methylation and histone modification.
DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.
DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.
DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.
DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification. [Display omitted] ► CMT3 stably associates with H3K9me2-containing nucleosomes ► CMT3 has CHG MTase activity and is expressed in actively replicating cells ► Structural and ITC studies reveal that both BAH and chromo domains recognize H3K9me ► The dual-recognition model establishes mechanism targeting DNA methylation in plants Two domains of the chromomethylase CMT3, which methylates CHG sites in Arabidopsis DNA, mediate the binding of CMT3 to dimethylated H3K9, explaining how H3K9me2 promotes DNA methylation at heterochromatic sites.
Author Tu, Andy
Hetzel, Jonathan
Vashisht, Ajay A.
Pradhan, Sriharsa
Stroud, Hume
Du, Jiamu
Chin, Hang Gyeong
Caro, Elena
Wohlschlegel, James A.
Zhong, Xuehua
Terragni, Jolyon
Jacobsen, Steven E.
Patel, Dinshaw J.
Feng, Suhua
Bernatavichute, Yana V.
AuthorAffiliation 3 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA
5 Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095, USA
4 New England Biolabs, Ipswich, Massachusetts, 01938, USA
1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
2 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, USA
AuthorAffiliation_xml – name: 2 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095, USA
– name: 3 Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095, USA
– name: 4 New England Biolabs, Ipswich, Massachusetts, 01938, USA
– name: 5 Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095, USA
– name: 1 Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
Author_xml – sequence: 1
  givenname: Jiamu
  surname: Du
  fullname: Du, Jiamu
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– sequence: 2
  givenname: Xuehua
  surname: Zhong
  fullname: Zhong, Xuehua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Yana V.
  surname: Bernatavichute
  fullname: Bernatavichute, Yana V.
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: Hume
  surname: Stroud
  fullname: Stroud, Hume
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 6
  givenname: Elena
  surname: Caro
  fullname: Caro, Elena
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 7
  givenname: Ajay A.
  surname: Vashisht
  fullname: Vashisht, Ajay A.
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 8
  givenname: Jolyon
  surname: Terragni
  fullname: Terragni, Jolyon
  organization: New England Biolabs, Ipswich, MA 01938, USA
– sequence: 9
  givenname: Hang Gyeong
  surname: Chin
  fullname: Chin, Hang Gyeong
  organization: New England Biolabs, Ipswich, MA 01938, USA
– sequence: 10
  givenname: Andy
  surname: Tu
  fullname: Tu, Andy
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 11
  givenname: Jonathan
  surname: Hetzel
  fullname: Hetzel, Jonathan
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 12
  givenname: James A.
  surname: Wohlschlegel
  fullname: Wohlschlegel, James A.
  organization: Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
– sequence: 13
  givenname: Sriharsa
  surname: Pradhan
  fullname: Pradhan, Sriharsa
  organization: New England Biolabs, Ipswich, MA 01938, USA
– sequence: 14
  givenname: Dinshaw J.
  surname: Patel
  fullname: Patel, Dinshaw J.
  email: pateld@mskcc.org
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
– sequence: 15
  givenname: Steven E.
  surname: Jacobsen
  fullname: Jacobsen, Steven E.
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23021223$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFv1DAQhS1URLeFP8ABcuSSMHYSO5EQUtkFiigFCXq2HMfe9ZLYre1U6r_HaUoFHMppJPt7zzPzfIQOrLMKoecYCgyYvt4XUg1DQQCTAlgBZfUIrTC0LK8wIwdoBdCSvKGsOkRHIewBoKnr-gk6JCUQTEi5Qj83kxiyd8b2xm4zp7P1zrvRjSrubgYRVLZxozA2ZNFlp-XndlQkXzsb09ksOJ_koFxIfMg2xisZUz0_yb4s-miczYzNvg3CxvAUPdZiCOrZXT1GFx_e_1if5mdfP35an5zlkkIdc9a3TPegMYi675SWrahBdgproTssiVasY21PiazqqhRtp-V821W0ErppoTxGbxffy6kbVS-VjV4M_NKbUfgb7oThf99Ys-Nbd83LimHW4GTw6s7Au6tJhchHE-ZdC6vcFDhJmwRCKab_RTE0uGGkorPriz_buu_ndxgJIAsgvQvBK32PYOBz4nzPZ2s-J86B8ZR4EjX_iKSJt4tPo5nhYenLRaqF42LrTeAX3xNA5_Fo-imJeLMQKsV1bZTnQRplpepvs-a9Mw898Av4B9Gy
CitedBy_id crossref_primary_10_1016_j_pbi_2022_102264
crossref_primary_10_1186_s13072_016_0061_9
crossref_primary_10_1016_j_pbi_2023_102428
crossref_primary_10_1093_jxb_erz457
crossref_primary_10_1111_nph_13540
crossref_primary_10_1371_journal_pgen_1004446
crossref_primary_10_1007_s13238_013_3052_7
crossref_primary_10_1016_j_sbi_2015_09_007
crossref_primary_10_1007_s00018_014_1792_z
crossref_primary_10_1101_gr_152538_112
crossref_primary_10_3390_ijms21082887
crossref_primary_10_1038_s41467_018_04836_y
crossref_primary_10_1093_pcp_pcy032
crossref_primary_10_3390_biology11070954
crossref_primary_10_3389_fpls_2017_00082
crossref_primary_10_1021_acschembio_5b00864
crossref_primary_10_1093_plphys_kiab531
crossref_primary_10_1016_j_celrep_2022_111699
crossref_primary_10_1038_ncomms12464
crossref_primary_10_1186_s13059_017_1226_y
crossref_primary_10_1016_j_jbc_2023_104996
crossref_primary_10_1016_j_tibs_2022_06_002
crossref_primary_10_1038_s41477_020_00843_4
crossref_primary_10_3390_plants10122766
crossref_primary_10_1093_plcell_koab098
crossref_primary_10_1146_annurev_genet_112414_055048
crossref_primary_10_1007_s11103_015_0328_8
crossref_primary_10_1016_j_pbi_2023_102436
crossref_primary_10_1111_tpj_15441
crossref_primary_10_1007_s00425_015_2451_9
crossref_primary_10_1111_ppl_14492
crossref_primary_10_1111_ppl_12071
crossref_primary_10_1016_j_cels_2023_10_007
crossref_primary_10_1073_pnas_1918776117
crossref_primary_10_1016_j_celrep_2017_12_099
crossref_primary_10_1186_s13059_022_02768_x
crossref_primary_10_1016_j_molcel_2018_10_006
crossref_primary_10_1080_07352689_2014_852920
crossref_primary_10_1186_s13059_020_02216_8
crossref_primary_10_1038_nature12178
crossref_primary_10_1016_j_molcel_2014_06_009
crossref_primary_10_1007_s12298_023_01390_w
crossref_primary_10_1016_j_celrep_2023_112132
crossref_primary_10_1111_jipb_13883
crossref_primary_10_1101_gr_279379_124
crossref_primary_10_1128_JVI_00656_16
crossref_primary_10_1098_rspb_2022_2197
crossref_primary_10_1016_j_cub_2020_10_098
crossref_primary_10_1266_ggs_21_00041
crossref_primary_10_1093_nar_gkw723
crossref_primary_10_1074_jbc_M114_558940
crossref_primary_10_1007_s00122_020_03549_5
crossref_primary_10_1016_j_cell_2013_02_033
crossref_primary_10_1073_pnas_1716758114
crossref_primary_10_3389_fgene_2018_00609
crossref_primary_10_1016_j_tig_2019_07_007
crossref_primary_10_1186_s13059_016_1059_0
crossref_primary_10_1186_s13059_019_1767_3
crossref_primary_10_1101_gad_274647_115
crossref_primary_10_3389_fpls_2022_1092067
crossref_primary_10_1093_nar_gkac012
crossref_primary_10_1371_journal_pgen_1005998
crossref_primary_10_1038_s41467_022_28940_2
crossref_primary_10_1002_wsbm_1411
crossref_primary_10_3390_ijms22168618
crossref_primary_10_1093_jxb_eraa560
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1111_tpj_15781
crossref_primary_10_1038_s41598_019_39239_6
crossref_primary_10_1186_s13072_020_00361_9
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_1016_j_pbi_2023_102419
crossref_primary_10_1016_j_tplants_2013_07_005
crossref_primary_10_7554_eLife_09343
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_1073_pnas_1515072113
crossref_primary_10_1111_tpj_12952
crossref_primary_10_1111_tpj_13489
crossref_primary_10_1016_j_biortech_2014_10_119
crossref_primary_10_1038_nchembio_2149
crossref_primary_10_1093_nar_gkab1218
crossref_primary_10_3390_plants13060905
crossref_primary_10_1111_jipb_13423
crossref_primary_10_3389_fpls_2017_01161
crossref_primary_10_1016_j_pbi_2022_102248
crossref_primary_10_1016_j_cell_2014_03_056
crossref_primary_10_1038_s41588_023_01454_3
crossref_primary_10_1093_nsr_nwu003
crossref_primary_10_1016_j_pbi_2016_12_007
crossref_primary_10_3390_genes13060992
crossref_primary_10_1016_j_pbi_2021_102060
crossref_primary_10_1371_journal_pgen_1008291
crossref_primary_10_1007_s10265_021_01342_z
crossref_primary_10_1093_nar_gky602
crossref_primary_10_3389_fmicb_2020_616922
crossref_primary_10_1039_C2MB25328C
crossref_primary_10_1007_s11427_019_1587_x
crossref_primary_10_7554_eLife_69396
crossref_primary_10_3390_ijms22158285
crossref_primary_10_1016_j_pbi_2024_102598
crossref_primary_10_1038_nrg_2017_45
crossref_primary_10_1186_s12870_022_03797_1
crossref_primary_10_1111_nph_19311
crossref_primary_10_1021_acs_chemrev_8b00008
crossref_primary_10_1007_s10142_016_0502_3
crossref_primary_10_1038_s41467_024_51246_4
crossref_primary_10_1146_annurev_genet_110711_155527
crossref_primary_10_1042_EBC20190032
crossref_primary_10_1093_treephys_tpx055
crossref_primary_10_1534_g3_116_030262
crossref_primary_10_7717_peerj_4461
crossref_primary_10_1186_s12870_018_1546_4
crossref_primary_10_1073_pnas_2107320118
crossref_primary_10_1093_nar_gkad610
crossref_primary_10_1111_nph_17018
crossref_primary_10_26508_lsa_201800197
crossref_primary_10_1134_S0006297916020085
crossref_primary_10_1073_pnas_2402946121
crossref_primary_10_1016_j_tplants_2017_04_009
crossref_primary_10_1093_plphys_kiad624
crossref_primary_10_1371_journal_pgen_1003948
crossref_primary_10_1107_S2059798315019403
crossref_primary_10_1111_brv_12661
crossref_primary_10_1007_s00497_021_00422_3
crossref_primary_10_1038_cr_2015_145
crossref_primary_10_1186_s12864_021_07600_7
crossref_primary_10_1371_journal_pgen_1006092
crossref_primary_10_1016_j_jia_2023_04_045
crossref_primary_10_1073_pnas_1406611111
crossref_primary_10_4161_rna_24085
crossref_primary_10_1016_j_cell_2014_06_006
crossref_primary_10_3389_fpls_2022_899105
crossref_primary_10_1038_srep17832
crossref_primary_10_1016_j_jbc_2022_101623
crossref_primary_10_1038_s41477_020_0671_x
crossref_primary_10_1111_ppl_14226
crossref_primary_10_3390_plants10020236
crossref_primary_10_1038_s41438_021_00660_6
crossref_primary_10_1007_s00344_022_10903_y
crossref_primary_10_1371_journal_pgen_1006526
crossref_primary_10_1016_j_celrep_2017_11_105
crossref_primary_10_1038_s41467_019_10026_1
crossref_primary_10_1016_j_envexpbot_2021_104479
crossref_primary_10_1016_j_pbi_2022_102211
crossref_primary_10_1016_j_biosystems_2021_104566
crossref_primary_10_1038_nplants_2016_145
crossref_primary_10_1007_s12374_024_09435_7
crossref_primary_10_1126_sciadv_abg5442
crossref_primary_10_1016_j_pbi_2014_07_001
crossref_primary_10_3389_fpls_2018_01194
crossref_primary_10_1186_s12864_024_10315_0
crossref_primary_10_1073_pnas_1423603112
crossref_primary_10_7554_eLife_64593
crossref_primary_10_1016_j_jgg_2013_03_010
crossref_primary_10_3389_fpls_2020_00452
crossref_primary_10_1042_BCJ20160123
crossref_primary_10_1016_j_jbc_2021_101558
crossref_primary_10_1038_ncomms11640
crossref_primary_10_3389_fpls_2022_888102
crossref_primary_10_1111_jipb_13067
crossref_primary_10_1038_s44319_024_00304_5
crossref_primary_10_1093_pcp_pcv036
crossref_primary_10_1111_tpj_14182
crossref_primary_10_3390_plants12030437
crossref_primary_10_1111_tpj_16364
crossref_primary_10_1038_s41467_020_14995_6
crossref_primary_10_1186_s13072_019_0299_0
crossref_primary_10_1371_journal_pone_0084687
crossref_primary_10_1093_nar_gkz618
crossref_primary_10_1093_nar_gkv258
crossref_primary_10_1186_s12870_017_1070_y
crossref_primary_10_1007_s10725_017_0323_y
crossref_primary_10_1073_pnas_1315399110
crossref_primary_10_1073_pnas_1619074114
crossref_primary_10_3390_agronomy15010094
crossref_primary_10_1007_s00299_021_02787_1
crossref_primary_10_1073_pnas_1319985110
crossref_primary_10_1093_g3journal_jkae004
crossref_primary_10_1038_s41467_022_31627_3
crossref_primary_10_1371_journal_pgen_1010041
crossref_primary_10_31083_j_fbl2903126
crossref_primary_10_1111_nph_20225
crossref_primary_10_1534_g3_115_025668
crossref_primary_10_1111_nph_20347
crossref_primary_10_1111_1365_2435_13497
crossref_primary_10_3389_fmolb_2022_888983
crossref_primary_10_1073_pnas_1918172117
crossref_primary_10_1146_annurev_biochem_072711_165700
crossref_primary_10_3390_ijms19051414
crossref_primary_10_1038_s42003_023_04607_6
crossref_primary_10_1093_nar_gkw238
crossref_primary_10_1093_plphys_kiae072
crossref_primary_10_1186_s12870_019_1899_3
crossref_primary_10_1111_pbi_12988
crossref_primary_10_1111_tpj_13418
crossref_primary_10_1111_tpj_15848
crossref_primary_10_1371_journal_pgen_1008993
crossref_primary_10_3389_fpls_2020_595603
crossref_primary_10_1073_pnas_1300585110
crossref_primary_10_3389_fpls_2015_01161
crossref_primary_10_1016_j_ecoenv_2020_111750
crossref_primary_10_1073_pnas_1512793112
crossref_primary_10_1016_j_pbi_2021_102008
crossref_primary_10_1073_pnas_1604666113
crossref_primary_10_1371_journal_pgen_1008637
crossref_primary_10_1002_dvg_23399
crossref_primary_10_1016_j_gep_2017_04_001
crossref_primary_10_1590_1678_4685_gmb_2018_0295
crossref_primary_10_1016_j_cell_2014_01_029
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_3389_fpls_2015_00635
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1111_pbi_14017
crossref_primary_10_3389_fpls_2016_00007
crossref_primary_10_1038_s41467_020_20089_0
crossref_primary_10_1093_nar_gkw1330
crossref_primary_10_1111_nph_16511
crossref_primary_10_1186_s13059_021_02359_2
crossref_primary_10_18632_oncotarget_19060
crossref_primary_10_7554_eLife_89353_3
crossref_primary_10_1038_s41467_021_22993_5
crossref_primary_10_1038_nrg3685
crossref_primary_10_3390_epigenomes8030030
crossref_primary_10_1111_febs_16633
crossref_primary_10_1371_journal_pgen_1011358
crossref_primary_10_1371_journal_pgen_1009710
crossref_primary_10_1016_j_plantsci_2022_111254
crossref_primary_10_1007_s00425_022_03962_8
crossref_primary_10_1146_annurev_arplant_070122_025047
crossref_primary_10_1186_s13059_020_02190_1
crossref_primary_10_1016_j_mrfmmm_2015_06_006
crossref_primary_10_7554_eLife_72676
crossref_primary_10_1007_s10725_024_01152_y
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1128_MCB_00432_15
crossref_primary_10_1007_s11105_013_0673_1
crossref_primary_10_1038_s41467_022_28468_5
crossref_primary_10_4161_epi_25524
crossref_primary_10_3390_ijms19103182
crossref_primary_10_1111_jipb_12733
crossref_primary_10_1038_nrm4043
crossref_primary_10_1186_s12864_018_4641_x
crossref_primary_10_1371_journal_pone_0105267
crossref_primary_10_1002_ajb2_1645
crossref_primary_10_1038_s41467_020_16951_w
crossref_primary_10_1038_s41467_018_06965_w
crossref_primary_10_1371_journal_pgen_1009034
crossref_primary_10_1111_jipb_13384
crossref_primary_10_1073_pnas_2009316117
crossref_primary_10_1111_ppl_13467
crossref_primary_10_1371_journal_pgen_1006551
crossref_primary_10_4161_psb_25364
crossref_primary_10_1016_j_bbagrm_2016_08_009
crossref_primary_10_1111_tpj_14612
crossref_primary_10_1371_journal_pone_0279688
crossref_primary_10_1093_nar_gkab210
crossref_primary_10_1038_s41467_019_09496_0
crossref_primary_10_1016_j_bbagrm_2016_08_004
crossref_primary_10_1101_gad_299347_117
crossref_primary_10_1111_tpj_14380
crossref_primary_10_1186_s13059_022_02750_7
crossref_primary_10_1016_j_tplants_2014_01_014
crossref_primary_10_1107_S2059798315019269
crossref_primary_10_3389_fgene_2022_818727
crossref_primary_10_1007_s12282_022_01333_5
crossref_primary_10_7554_eLife_47891
crossref_primary_10_1080_19491034_2024_2328719
crossref_primary_10_1111_tpj_16446
crossref_primary_10_3389_fpls_2021_596236
crossref_primary_10_3390_plants12102057
crossref_primary_10_3389_fpls_2021_684130
crossref_primary_10_3390_ijms25147540
crossref_primary_10_1007_s12374_018_0313_2
crossref_primary_10_3389_fpls_2017_01247
crossref_primary_10_1093_plcell_koab162
crossref_primary_10_1016_j_cpb_2024_100408
crossref_primary_10_7717_peerj_8432
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1186_s12870_023_04036_x
crossref_primary_10_1371_journal_pone_0149934
crossref_primary_10_1093_mp_sst165
crossref_primary_10_1016_j_celrep_2015_04_034
crossref_primary_10_1038_s41477_020_0710_7
crossref_primary_10_3390_ijms21207457
crossref_primary_10_1073_pnas_1600672113
crossref_primary_10_1093_nar_gkab706
crossref_primary_10_1111_tpj_12406
crossref_primary_10_1186_s12864_016_3326_6
crossref_primary_10_1016_j_jmb_2020_166745
crossref_primary_10_1017_qpb_2022_14
crossref_primary_10_1073_pnas_1809841115
crossref_primary_10_1038_srep16476
crossref_primary_10_1002_chem_202100644
crossref_primary_10_1093_pcp_pcz034
crossref_primary_10_1038_nsmb_2735
crossref_primary_10_1186_s12870_015_0641_z
crossref_primary_10_3390_plants13192700
crossref_primary_10_1016_j_bbagrm_2014_04_011
crossref_primary_10_1038_s41580_018_0016_z
crossref_primary_10_1093_jxb_erw486
crossref_primary_10_3390_ijms20123051
crossref_primary_10_1126_sciadv_adr2222
crossref_primary_10_1371_journal_pone_0088947
crossref_primary_10_1105_tpc_114_130427
crossref_primary_10_7554_eLife_17214
crossref_primary_10_1007_s11240_019_01724_1
crossref_primary_10_1038_ncomms3301
crossref_primary_10_1371_journal_pgen_1005154
crossref_primary_10_1016_j_stress_2025_100812
crossref_primary_10_1111_evo_12286
crossref_primary_10_1186_s13059_017_1195_1
crossref_primary_10_1038_nrm4085
crossref_primary_10_1186_s13059_020_02099_9
crossref_primary_10_1016_j_molcel_2014_02_019
crossref_primary_10_1073_pnas_1406923111
crossref_primary_10_1111_ppl_14620
crossref_primary_10_1073_pnas_1710683114
crossref_primary_10_1073_pnas_2211155120
crossref_primary_10_1016_j_jgg_2018_09_004
crossref_primary_10_1016_j_molp_2017_10_002
crossref_primary_10_1038_s41467_018_02976_9
crossref_primary_10_1038_s41467_022_32709_y
crossref_primary_10_1093_nar_gkad306
crossref_primary_10_1093_plphys_kiac471
crossref_primary_10_3389_fpls_2016_00038
crossref_primary_10_1021_acschembio_5b00802
crossref_primary_10_7554_eLife_06671
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_1038_s41477_020_00810_z
crossref_primary_10_1007_s12374_018_0176_6
crossref_primary_10_1007_s00344_024_11316_9
crossref_primary_10_1007_s11427_017_9236_x
crossref_primary_10_1002_pro_3849
crossref_primary_10_1038_s41588_018_0187_8
crossref_primary_10_1111_tpj_12630
crossref_primary_10_3389_fpls_2018_01228
crossref_primary_10_1111_jipb_13103
crossref_primary_10_3389_fpls_2019_00246
crossref_primary_10_7554_eLife_89353
crossref_primary_10_1007_s11427_017_9163_4
crossref_primary_10_1111_tpj_14492
crossref_primary_10_1093_biolre_ioac142
Cites_doi 10.1126/science.1147939
10.1128/MCB.00484-09
10.1007/s00412-004-0275-7
10.1126/science.1069473
10.1093/nar/29.10.2127
10.1038/emboj.2011.103
10.1126/science.1195380
10.1126/science.1214453
10.1371/journal.pone.0003156
10.1016/j.jmb.2011.11.012
10.1016/j.cub.2007.01.009
10.1016/j.molcel.2011.07.006
10.1111/j.1365-313X.2005.02617.x
10.1038/nature05987
10.1016/S0076-6879(97)76066-X
10.1073/pnas.2536758100
10.1126/science.1059745
10.1105/TPC.010064
10.1016/j.molcel.2007.12.004
10.1074/jbc.M111.234104
10.1107/S0907444910007493
10.1038/sj.emboj.7600430
10.1038/38444
10.1107/S0021889892009944
10.1074/jbc.274.46.33011
10.1038/nature09147
10.1038/nrg2719
10.1016/j.cub.2010.03.062
10.1093/emboj/cdf687
10.1038/nature10956
10.1186/gb-2009-10-3-r25
10.1073/pnas.80.18.5559
10.1038/nature731
10.1038/embor.2009.218
10.1107/S0907444909052925
10.1016/j.jmb.2011.03.018
10.1074/jbc.M409604200
10.1126/science.1063127
10.1126/science.1210915
10.1016/0092-8674(94)90342-5
10.1038/nsmb.1611
10.1016/j.jneumeth.2008.10.006
10.1038/nature06745
10.1038/nature06146
10.1101/gad.1980311
10.1111/j.1365-313X.2005.02554.x
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.cell.2012.07.034
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 180
ExternalDocumentID PMC3471781
23021223
10_1016_j_cell_2012_07_034
US201600006555
S009286741201015X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F32GM096483-01
– fundername: NIGMS NIH HHS
  grantid: R01 GM089778
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM060398
– fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIGMS NIH HHS
  grantid: F32 GM096483
– fundername: NIGMS NIH HHS
  grantid: GM089778
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R37 GM060398 || GM
– fundername: Howard Hughes Medical Institute :
  grantid: || HHMI_
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
ZY4
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
AALRI
AAQXK
ABEFU
ABPTK
ADMUD
AEQTP
AETEA
AI.
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
XFK
YYP
ZGI
ZHY
ZKB
AAHBH
AAMRU
AAYWO
AAYXX
ABDGV
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c605t-7d97fd0f10a5dbefc9a50cbe1fafb1c2fe7b79d62c4543a9bfccbe1b464af8903
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 18:07:15 EDT 2025
Fri Jul 11 05:22:09 EDT 2025
Mon Jul 21 11:22:04 EDT 2025
Mon Jul 21 06:07:39 EDT 2025
Tue Jul 01 03:52:04 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Wed Dec 27 19:02:29 EST 2023
Fri Feb 23 02:28:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-7d97fd0f10a5dbefc9a50cbe1fafb1c2fe7b79d62c4543a9bfccbe1b464af8903
Notes http://dx.doi.org/10.1016/j.cell.2012.07.034
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work and their names were listed alphabetically.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S009286741201015X
PMID 23021223
PQID 1081872461
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3471781
proquest_miscellaneous_2000026616
proquest_miscellaneous_1081872461
pubmed_primary_23021223
crossref_primary_10_1016_j_cell_2012_07_034
crossref_citationtrail_10_1016_j_cell_2012_07_034
fao_agris_US201600006555
elsevier_sciencedirect_doi_10_1016_j_cell_2012_07_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-28
PublicationDateYYYYMMDD 2012-09-28
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jackson, Johnson, Jasencakova, Zhang, PerezBurgos, Singh, Cheng, Schubert, Jenuwein, Jacobsen (bib13) 2004; 112
Bernatavichute, Zhang, Cokus, Pellegrini, Jacobsen (bib4) 2008; 3
Chehrehasa, Meedeniya, Dwyer, Abrahamsen, Mackay-Sim (bib8) 2009; 177
Chang, Horton, Bedford, Zhang, Cheng (bib7) 2011; 408
Malagnac, Bartee, Bender (bib29) 2002; 21
Song, Rechkoblit, Bestor, Patel (bib41) 2011; 331
Song, Teplova, Ishibe-Murakami, Patel (bib42) 2012; 335
Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66
Okada, Endo, Singh, Bhalla (bib31) 2005; 44
Law, Ausin, Johnson, Vashisht, Zhu, Wohlschlegel, Jacobsen (bib25) 2010; 20
Cokus, Feng, Zhang, Chen, Merriman, Haudenschild, Pradhan, Nelson, Pellegrini, Jacobsen (bib10) 2008; 452
Chodavarapu, Feng, Bernatavichute, Chen, Stroud, Yu, Hetzel, Kuo, Kim, Cokus (bib9) 2010; 466
Klimasauskas, Kumar, Roberts, Cheng (bib20) 1994; 76
Ooi, Qiu, Bernstein, Li, Jia, Yang, Erdjument-Bromage, Tempst, Lin, Allis (bib33) 2007; 448
Papa, Springer, Muszynski, Meeley, Kaeppler (bib36) 2001; 13
Roudier, Ahmed, Bérard, Sarazin, Mary-Huard, Cortijo, Bouyer, Caillieux, Duvernois-Berthet, Al-Shikhley (bib40) 2011; 30
Jacobs, Khorasanizadeh (bib15) 2002; 295
Lindroth, Cao, Jackson, Zilberman, McCallum, Henikoff, Jacobsen (bib26) 2001; 292
Jackson, Lindroth, Cao, Jacobsen (bib12) 2002; 416
Armache, Garlick, Canzio, Narlikar, Kingston (bib2) 2011; 334
Bartee, Bender (bib3) 2001; 29
Rajakumara, Law, Simanshu, Voigt, Johnson, Reinberg, Patel, Jacobsen (bib38) 2011; 25
Otani, Nankumo, Arita, Inamoto, Ariyoshi, Shirakawa (bib34) 2009; 10
Laird, Pleasant, Clark, Sneeden, Hassan, Manley, Vary, Morgan, Hansen, Stöger (bib22) 2004; 101
Rajakumara, Wang, Ma, Hu, Chen, Lin, Guo, Wu, Li, Lan (bib39) 2011; 43
Patnaik, Chin, Estève, Benner, Jacobsen, Pradhan (bib37) 2004; 279
Kuo, Song, Cheung, Ishibe-Murakami, Yamazoe, Chen, Patel, Gozani (bib21) 2012; 484
Jacob, Feng, LeBlanc, Bernatavichute, Stroud, Cokus, Johnson, Pellegrini, Jacobsen, Michaels (bib14) 2009; 16
Jenuwein, Allis (bib16) 2001; 293
Lindroth, Shultis, Jasencakova, Fuchs, Johnson, Schubert, Patnaik, Pradhan, Goodrich, Schubert (bib27) 2004; 23
Bostick, Kim, Estève, Clark, Pradhan, Jacobsen (bib6) 2007; 317
Bestor, Ingram (bib5) 1983; 80
Langmead, Trapnell, Pop, Salzberg (bib23) 2009; 10
Jeong, Liang, Sharma, Lin, Choi, Han, Yoo, Egger, Yang, Jones (bib17) 2009; 29
Luger, Mäder, Richmond, Sargent, Richmond (bib28) 1997; 389
Onishi, Liou, Buchberger, Walz, Moazed (bib32) 2007; 28
Law, Jacobsen (bib24) 2010; 11
Jia, Jurkowska, Zhang, Jeltsch, Cheng (bib18) 2007; 449
Nady, Lemak, Walker, Avvakumov, Kareta, Achour, Xue, Duan, Allali-Hassani, Zuo (bib30) 2011; 286
Otwinowski, Minor (bib35) 1997; 276
Xie, Jakoncic, Qian (bib43) 2012; 415
Johnson, Bostick, Zhang, Kraft, Henderson, Callis, Jacobsen (bib19) 2007; 17
Emsley, Lohkamp, Scott, Cowtan (bib11) 2010; 66
Kuo (10.1016/j.cell.2012.07.034_bib21) 2012; 484
Bostick (10.1016/j.cell.2012.07.034_bib6) 2007; 317
10.1016/j.cell.2012.07.034_bib51
10.1016/j.cell.2012.07.034_bib50
Jacob (10.1016/j.cell.2012.07.034_bib14) 2009; 16
Bartee (10.1016/j.cell.2012.07.034_bib3) 2001; 29
Armache (10.1016/j.cell.2012.07.034_bib2) 2011; 334
Jenuwein (10.1016/j.cell.2012.07.034_bib16) 2001; 293
Chang (10.1016/j.cell.2012.07.034_bib7) 2011; 408
Otwinowski (10.1016/j.cell.2012.07.034_bib35) 1997; 276
Okada (10.1016/j.cell.2012.07.034_bib31) 2005; 44
Patnaik (10.1016/j.cell.2012.07.034_bib37) 2004; 279
Nady (10.1016/j.cell.2012.07.034_bib30) 2011; 286
Papa (10.1016/j.cell.2012.07.034_bib36) 2001; 13
Jackson (10.1016/j.cell.2012.07.034_bib13) 2004; 112
Jackson (10.1016/j.cell.2012.07.034_bib12) 2002; 416
Emsley (10.1016/j.cell.2012.07.034_bib11) 2010; 66
Klimasauskas (10.1016/j.cell.2012.07.034_bib20) 1994; 76
Lindroth (10.1016/j.cell.2012.07.034_bib27) 2004; 23
Chodavarapu (10.1016/j.cell.2012.07.034_bib9) 2010; 466
Bestor (10.1016/j.cell.2012.07.034_bib5) 1983; 80
Langmead (10.1016/j.cell.2012.07.034_bib23) 2009; 10
Malagnac (10.1016/j.cell.2012.07.034_bib29) 2002; 21
Rajakumara (10.1016/j.cell.2012.07.034_bib39) 2011; 43
Jeong (10.1016/j.cell.2012.07.034_bib17) 2009; 29
Onishi (10.1016/j.cell.2012.07.034_bib32) 2007; 28
Cokus (10.1016/j.cell.2012.07.034_bib10) 2008; 452
Chehrehasa (10.1016/j.cell.2012.07.034_bib8) 2009; 177
Rajakumara (10.1016/j.cell.2012.07.034_bib38) 2011; 25
Law (10.1016/j.cell.2012.07.034_bib25) 2010; 20
Law (10.1016/j.cell.2012.07.034_bib24) 2010; 11
Ooi (10.1016/j.cell.2012.07.034_bib33) 2007; 448
Laird (10.1016/j.cell.2012.07.034_bib22) 2004; 101
Adams (10.1016/j.cell.2012.07.034_bib1) 2010; 66
Luger (10.1016/j.cell.2012.07.034_bib28) 1997; 389
Roudier (10.1016/j.cell.2012.07.034_bib40) 2011; 30
Otani (10.1016/j.cell.2012.07.034_bib34) 2009; 10
10.1016/j.cell.2012.07.034_bib44
Lindroth (10.1016/j.cell.2012.07.034_bib26) 2001; 292
10.1016/j.cell.2012.07.034_bib46
10.1016/j.cell.2012.07.034_bib45
10.1016/j.cell.2012.07.034_bib48
10.1016/j.cell.2012.07.034_bib47
10.1016/j.cell.2012.07.034_bib49
Jacobs (10.1016/j.cell.2012.07.034_bib15) 2002; 295
Xie (10.1016/j.cell.2012.07.034_bib43) 2012; 415
Johnson (10.1016/j.cell.2012.07.034_bib19) 2007; 17
Song (10.1016/j.cell.2012.07.034_bib41) 2011; 331
Jia (10.1016/j.cell.2012.07.034_bib18) 2007; 449
Bernatavichute (10.1016/j.cell.2012.07.034_bib4) 2008; 3
Song (10.1016/j.cell.2012.07.034_bib42) 2012; 335
References_xml – volume: 80
  start-page: 5559
  year: 1983
  end-page: 5563
  ident: bib5
  article-title: Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 137
  year: 2011
  end-page: 152
  ident: bib38
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
– volume: 415
  start-page: 318
  year: 2012
  end-page: 328
  ident: bib43
  article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail
  publication-title: J. Mol. Biol.
– volume: 13
  start-page: 1919
  year: 2001
  end-page: 1928
  ident: bib36
  article-title: Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation
  publication-title: Plant Cell
– volume: 3
  start-page: e3156
  year: 2008
  ident: bib4
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
– volume: 452
  start-page: 215
  year: 2008
  end-page: 219
  ident: bib10
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
– volume: 10
  start-page: R25
  year: 2009
  ident: bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
– volume: 292
  start-page: 2077
  year: 2001
  end-page: 2080
  ident: bib26
  article-title: Requirement of
  publication-title: Science
– volume: 20
  start-page: 951
  year: 2010
  end-page: 956
  ident: bib25
  article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis
  publication-title: Curr. Biol.
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib11
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 448
  start-page: 714
  year: 2007
  end-page: 717
  ident: bib33
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 112
  start-page: 308
  year: 2004
  end-page: 315
  ident: bib13
  article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana
  publication-title: Chromosoma
– volume: 484
  start-page: 115
  year: 2012
  end-page: 119
  ident: bib21
  article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome
  publication-title: Nature
– volume: 21
  start-page: 6842
  year: 2002
  end-page: 6852
  ident: bib29
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
– volume: 29
  start-page: 2127
  year: 2001
  end-page: 2134
  ident: bib3
  article-title: Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family
  publication-title: Nucleic Acids Res.
– volume: 293
  start-page: 1074
  year: 2001
  end-page: 1080
  ident: bib16
  article-title: Translating the histone code
  publication-title: Science
– volume: 28
  start-page: 1015
  year: 2007
  end-page: 1028
  ident: bib32
  article-title: Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly
  publication-title: Mol. Cell
– volume: 335
  start-page: 709
  year: 2012
  end-page: 712
  ident: bib42
  article-title: Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation
  publication-title: Science
– volume: 334
  start-page: 977
  year: 2011
  end-page: 982
  ident: bib2
  article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution
  publication-title: Science
– volume: 177
  start-page: 122
  year: 2009
  end-page: 130
  ident: bib8
  article-title: EdU, a new thymidine analogue for labelling proliferating cells in the nervous system
  publication-title: J. Neurosci. Methods
– volume: 408
  start-page: 807
  year: 2011
  end-page: 814
  ident: bib7
  article-title: Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding
  publication-title: J. Mol. Biol.
– volume: 449
  start-page: 248
  year: 2007
  end-page: 251
  ident: bib18
  article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation
  publication-title: Nature
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: bib24
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
– volume: 10
  start-page: 1235
  year: 2009
  end-page: 1241
  ident: bib34
  article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain
  publication-title: EMBO Rep.
– volume: 16
  start-page: 763
  year: 2009
  end-page: 768
  ident: bib14
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
– volume: 295
  start-page: 2080
  year: 2002
  end-page: 2083
  ident: bib15
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
– volume: 29
  start-page: 5366
  year: 2009
  end-page: 5376
  ident: bib17
  article-title: Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA
  publication-title: Mol. Cell. Biol.
– volume: 286
  start-page: 24300
  year: 2011
  end-page: 24311
  ident: bib30
  article-title: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein
  publication-title: J. Biol. Chem.
– volume: 331
  start-page: 1036
  year: 2011
  end-page: 1040
  ident: bib41
  article-title: Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation
  publication-title: Science
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib28
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 17
  start-page: 379
  year: 2007
  end-page: 384
  ident: bib19
  article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation
  publication-title: Curr. Biol.
– volume: 279
  start-page: 53248
  year: 2004
  end-page: 53258
  ident: bib37
  article-title: Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 1928
  year: 2011
  end-page: 1938
  ident: bib40
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J.
– volume: 101
  start-page: 204
  year: 2004
  end-page: 209
  ident: bib22
  article-title: Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 317
  start-page: 1760
  year: 2007
  end-page: 1764
  ident: bib6
  article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells
  publication-title: Science
– volume: 416
  start-page: 556
  year: 2002
  end-page: 560
  ident: bib12
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
– volume: 23
  start-page: 4286
  year: 2004
  end-page: 4296
  ident: bib27
  article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3
  publication-title: EMBO J.
– volume: 466
  start-page: 388
  year: 2010
  end-page: 392
  ident: bib9
  article-title: Relationship between nucleosome positioning and DNA methylation
  publication-title: Nature
– volume: 43
  start-page: 275
  year: 2011
  end-page: 284
  ident: bib39
  article-title: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression
  publication-title: Mol. Cell
– volume: 76
  start-page: 357
  year: 1994
  end-page: 369
  ident: bib20
  article-title: HhaI methyltransferase flips its target base out of the DNA helix
  publication-title: Cell
– volume: 44
  start-page: 557
  year: 2005
  end-page: 568
  ident: bib31
  article-title: Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3
  publication-title: Plant J.
– volume: 276
  start-page: 307
  year: 1997
  end-page: 326
  ident: bib35
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
– volume: 317
  start-page: 1760
  year: 2007
  ident: 10.1016/j.cell.2012.07.034_bib6
  article-title: UHRF1 plays a role in maintaining DNA methylation in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1147939
– volume: 29
  start-page: 5366
  year: 2009
  ident: 10.1016/j.cell.2012.07.034_bib17
  article-title: Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00484-09
– volume: 112
  start-page: 308
  year: 2004
  ident: 10.1016/j.cell.2012.07.034_bib13
  article-title: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana
  publication-title: Chromosoma
  doi: 10.1007/s00412-004-0275-7
– volume: 295
  start-page: 2080
  year: 2002
  ident: 10.1016/j.cell.2012.07.034_bib15
  article-title: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail
  publication-title: Science
  doi: 10.1126/science.1069473
– volume: 29
  start-page: 2127
  year: 2001
  ident: 10.1016/j.cell.2012.07.034_bib3
  article-title: Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.10.2127
– volume: 30
  start-page: 1928
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib40
  article-title: Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.103
– volume: 331
  start-page: 1036
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib41
  article-title: Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation
  publication-title: Science
  doi: 10.1126/science.1195380
– volume: 335
  start-page: 709
  year: 2012
  ident: 10.1016/j.cell.2012.07.034_bib42
  article-title: Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation
  publication-title: Science
  doi: 10.1126/science.1214453
– volume: 3
  start-page: e3156
  year: 2008
  ident: 10.1016/j.cell.2012.07.034_bib4
  article-title: Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003156
– volume: 415
  start-page: 318
  year: 2012
  ident: 10.1016/j.cell.2012.07.034_bib43
  article-title: UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.11.012
– volume: 17
  start-page: 379
  year: 2007
  ident: 10.1016/j.cell.2012.07.034_bib19
  article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.01.009
– volume: 43
  start-page: 275
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib39
  article-title: PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.07.006
– ident: 10.1016/j.cell.2012.07.034_bib46
  doi: 10.1111/j.1365-313X.2005.02617.x
– volume: 448
  start-page: 714
  year: 2007
  ident: 10.1016/j.cell.2012.07.034_bib33
  article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA
  publication-title: Nature
  doi: 10.1038/nature05987
– volume: 276
  start-page: 307
  year: 1997
  ident: 10.1016/j.cell.2012.07.034_bib35
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 101
  start-page: 204
  year: 2004
  ident: 10.1016/j.cell.2012.07.034_bib22
  article-title: Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2536758100
– volume: 292
  start-page: 2077
  year: 2001
  ident: 10.1016/j.cell.2012.07.034_bib26
  article-title: Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation
  publication-title: Science
  doi: 10.1126/science.1059745
– volume: 13
  start-page: 1919
  year: 2001
  ident: 10.1016/j.cell.2012.07.034_bib36
  article-title: Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation
  publication-title: Plant Cell
  doi: 10.1105/TPC.010064
– volume: 28
  start-page: 1015
  year: 2007
  ident: 10.1016/j.cell.2012.07.034_bib32
  article-title: Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.12.004
– volume: 286
  start-page: 24300
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib30
  article-title: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.234104
– ident: 10.1016/j.cell.2012.07.034_bib47
  doi: 10.1107/S0907444910007493
– volume: 23
  start-page: 4286
  year: 2004
  ident: 10.1016/j.cell.2012.07.034_bib27
  article-title: Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600430
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.cell.2012.07.034_bib28
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– ident: 10.1016/j.cell.2012.07.034_bib48
  doi: 10.1107/S0021889892009944
– ident: 10.1016/j.cell.2012.07.034_bib45
  doi: 10.1074/jbc.274.46.33011
– volume: 466
  start-page: 388
  year: 2010
  ident: 10.1016/j.cell.2012.07.034_bib9
  article-title: Relationship between nucleosome positioning and DNA methylation
  publication-title: Nature
  doi: 10.1038/nature09147
– volume: 11
  start-page: 204
  year: 2010
  ident: 10.1016/j.cell.2012.07.034_bib24
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1016/j.cell.2012.07.034_bib11
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 20
  start-page: 951
  year: 2010
  ident: 10.1016/j.cell.2012.07.034_bib25
  article-title: A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2010.03.062
– volume: 21
  start-page: 6842
  year: 2002
  ident: 10.1016/j.cell.2012.07.034_bib29
  article-title: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf687
– volume: 484
  start-page: 115
  year: 2012
  ident: 10.1016/j.cell.2012.07.034_bib21
  article-title: The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome
  publication-title: Nature
  doi: 10.1038/nature10956
– volume: 10
  start-page: R25
  year: 2009
  ident: 10.1016/j.cell.2012.07.034_bib23
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 80
  start-page: 5559
  year: 1983
  ident: 10.1016/j.cell.2012.07.034_bib5
  article-title: Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.80.18.5559
– ident: 10.1016/j.cell.2012.07.034_bib50
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 416
  start-page: 556
  year: 2002
  ident: 10.1016/j.cell.2012.07.034_bib12
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 10
  start-page: 1235
  year: 2009
  ident: 10.1016/j.cell.2012.07.034_bib34
  article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.218
– ident: 10.1016/j.cell.2012.07.034_bib44
  doi: 10.1107/S0907444909052925
– volume: 66
  start-page: 213
  year: 2010
  ident: 10.1016/j.cell.2012.07.034_bib1
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444909052925
– volume: 408
  start-page: 807
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib7
  article-title: Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.03.018
– volume: 279
  start-page: 53248
  year: 2004
  ident: 10.1016/j.cell.2012.07.034_bib37
  article-title: Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409604200
– volume: 293
  start-page: 1074
  year: 2001
  ident: 10.1016/j.cell.2012.07.034_bib16
  article-title: Translating the histone code
  publication-title: Science
  doi: 10.1126/science.1063127
– volume: 334
  start-page: 977
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib2
  article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution
  publication-title: Science
  doi: 10.1126/science.1210915
– volume: 76
  start-page: 357
  year: 1994
  ident: 10.1016/j.cell.2012.07.034_bib20
  article-title: HhaI methyltransferase flips its target base out of the DNA helix
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90342-5
– volume: 16
  start-page: 763
  year: 2009
  ident: 10.1016/j.cell.2012.07.034_bib14
  article-title: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1611
– volume: 177
  start-page: 122
  year: 2009
  ident: 10.1016/j.cell.2012.07.034_bib8
  article-title: EdU, a new thymidine analogue for labelling proliferating cells in the nervous system
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.10.006
– volume: 452
  start-page: 215
  year: 2008
  ident: 10.1016/j.cell.2012.07.034_bib10
  article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
  publication-title: Nature
  doi: 10.1038/nature06745
– volume: 449
  start-page: 248
  year: 2007
  ident: 10.1016/j.cell.2012.07.034_bib18
  article-title: Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation
  publication-title: Nature
  doi: 10.1038/nature06146
– volume: 25
  start-page: 137
  year: 2011
  ident: 10.1016/j.cell.2012.07.034_bib38
  article-title: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
  publication-title: Genes Dev.
  doi: 10.1101/gad.1980311
– ident: 10.1016/j.cell.2012.07.034_bib49
  doi: 10.1016/j.cub.2010.03.062
– volume: 44
  start-page: 557
  year: 2005
  ident: 10.1016/j.cell.2012.07.034_bib31
  article-title: Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02554.x
– ident: 10.1016/j.cell.2012.07.034_bib51
  doi: 10.1074/jbc.M409604200
SSID ssj0008555
Score 2.5639997
Snippet DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Amino Acid Sequence
Arabidopsis - genetics
Arabidopsis - metabolism
corn
crystal structure
Crystallography, X-Ray
DNA (Cytosine-5-)-Methyltransferases - chemistry
DNA (Cytosine-5-)-Methyltransferases - metabolism
DNA Methylation
DNA, Plant - metabolism
epigenetics
gene expression
genome
Heterochromatin - metabolism
histones
Histones - metabolism
methylation
Models, Molecular
Molecular Sequence Data
mutation
nucleosomes
Nucleosomes - metabolism
peptides
Sequence Alignment
Zea mays - genetics
Zea mays - metabolism
Title Dual Binding of Chromomethylase Domains to H3K9me2-Containing Nucleosomes Directs DNA Methylation in Plants
URI https://dx.doi.org/10.1016/j.cell.2012.07.034
https://www.ncbi.nlm.nih.gov/pubmed/23021223
https://www.proquest.com/docview/1081872461
https://www.proquest.com/docview/2000026616
https://pubmed.ncbi.nlm.nih.gov/PMC3471781
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKJSQuCMqjy6NyJW4oqpPYcXzsg2pF1b3ASnuzbMeGUDapSPbQf89MnKxYRHvgFCWekWKPPf6czHxDyIe8EI5liiWiAjPwogyJsUYlyishnZDGDHlr14tivuSfV2K1R86nXBgMqxx9f_Tpg7cen5yMo3lyW9eY46uysoAdEX_opmIFfjjn5ZDEtzrbeuNSiFjFQMHKB-kxcSbGeOHHcQzvygYCz5zftzk9Cqb9FwT9O5Lyj63p8hl5OmJKehpf-znZ880BeRyrTN69IDcXG2g9q4f8FdoGioS46xZrR98Bdvb0ol2buulo39J5fqXWPkuQtCrWjqALZDxuO5DvaHSQcF2c0uuoj4aldUOx-lHfvSTLy09fz-fJWGMhcXCQ6RNZKRkqFlJmRGV9cMoI5qxPgwk2dVnw0kpVFZnjgudG2eCw1fKCm1Aqlr8i-03b-ENChTU8VL7w1la8ZE6lwhXWR36bkBYzkk6Dq91IQI51MH7qKdLsh0aDaDSIZlKDQWbk41bnNtJvPCgtJpvpnUmkYX94UO8QDKzNN_CrevklQ9a9AZwJMSPHk9U1LDzUNI1vNx0yq6alRDq--2UwD4ohBILOv44zZdsNOPsBbMjyGZE7c2grgMTfuy1N_X0gAM8BUcgyffOf3X1LnuAdRr1k5Tuy3__a-PcArXp7NKyd324dIYI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IQQviM-t48tI8ISiJU4cxw88bJSppWtfWKW-GduxIUCTaWmF-nfxD3KXpBVFbA9Ie4oU-6LYdz7_nNz9jpDXccptyGQY8BzUkKSZD7TRMpBOcmG50LrJWxtP0sE0-Tjjsx3ya50Lg2GVne9vfXrjrbs7R91sHl0UBeb4SpalsCPiD92Iz7rIypFb_YRzW_1u2Aclv2Hs9MP5-0HQlRYILOD3RSByKXwe-ijUPDfOW6l5aI2LvPYmssw7YYTMU2YTnsRaGm-x1SRpon0mwxieu0tuAfoQ6A2Gs5ON-884b8smSHA18Hpdpk4bVIZf4zGejDWMoXFy1W6463X1L8z7d-jmH3vh6X1yrwOx9Lidpwdkx5UPye22rOXqEfneX0LrSdEkzNDKU2TgnVdYrHoFYN3RfjXXRVnTRUUH8UjOHQuQJastVkEnSLFc1dC_pq1HhuvkmI5bebQkWpQUyy0t6sdkeiMz_4TslVXpDgjlRic-d6kzJk-y0MqI29S4llDHR2mPROvJVbZjPMfCGz_UOrTtm0KFKFSICoUChfTI243MRcv3cW1vvtaZ2rJaBRvStXIHoGClv4AjV9NPDGn-GjTIeY-8WmtdwUpHSV26alkjlWuUCeT_u7oPJl6FiLlg8PutpWyGAYdNwCks7hGxZUObDsg0vt1SFl8bxvEYIIzIosP_HO5LcmdwPj5TZ8PJ6Cm5iy0YcsOyZ2Rvcbl0zwHXLcyLZh1R8vmmF-5vy8liLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+binding+of+chromomethylase+domains+to+H3K9me2-containing+nucleosomes+directs+DNA+methylation+in+plants&rft.jtitle=Cell&rft.au=Du%2C+Jiamu&rft.au=Zhong%2C+Xuehua&rft.au=Bernatavichute%2C+Yana+V&rft.au=Stroud%2C+Hume&rft.date=2012-09-28&rft.eissn=1097-4172&rft.volume=151&rft.issue=1&rft.spage=167&rft_id=info:doi/10.1016%2Fj.cell.2012.07.034&rft_id=info%3Apmid%2F23021223&rft.externalDocID=23021223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon