Future trends in measuring physiology in free-living animals

Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, withou...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 376; no. 1831; p. 20200230
Main Authors Williams, H. J., Shipley, J. Ryan, Rutz, C., Wikelski, M., Wilkes, M., Hawkes, L. A.
Format Journal Article
LanguageEnglish
Published England The Royal Society 16.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of ‘physiologging’ in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’.
AbstractList Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of ‘physiologging’ in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’.
Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Author Shipley, J. Ryan
Wikelski, M.
Williams, H. J.
Wilkes, M.
Rutz, C.
Hawkes, L. A.
Author_xml – sequence: 1
  givenname: H. J.
  orcidid: 0000-0002-6338-529X
  surname: Williams
  fullname: Williams, H. J.
  organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
– sequence: 2
  givenname: J. Ryan
  orcidid: 0000-0001-9864-2498
  surname: Shipley
  fullname: Shipley, J. Ryan
  organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
– sequence: 3
  givenname: C.
  orcidid: 0000-0001-5187-7417
  surname: Rutz
  fullname: Rutz, C.
  organization: Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
– sequence: 4
  givenname: M.
  orcidid: 0000-0002-9790-7025
  surname: Wikelski
  fullname: Wikelski, M.
  organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany, Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
– sequence: 5
  givenname: M.
  orcidid: 0000-0002-9166-7913
  surname: Wilkes
  fullname: Wilkes, M.
  organization: Extreme Environments Research Group, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO1 2EF, UK
– sequence: 6
  givenname: L. A.
  orcidid: 0000-0002-6696-1862
  surname: Hawkes
  fullname: Hawkes, L. A.
  organization: Hatherly Laboratories, University of Exeter, College of Life and Environmental Sciences, Exeter EX4 4PS, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34176330$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1LxDAQDaLounr1KD166ZqvJi2IIOKqsOBFzyGbTtZIm6xJK-y_t2VXUcHTg5n3Mcw7Rvs-eEDojOAZwVV5GVO3nFFM8QxThvfQhHBJclpJvI8muBI0LzkTR-g4pTeMcVVIfoiOGCdSMIYn6Gred32ErIvg65Q5n7WgUx-dX2Xr101yoQmrzTi3ESBv3Me40d61ukkn6MAOAKc7nKKX-d3z7UO-eLp_vL1Z5EbgostFWYMuMV9yVhNRgDA100aCoUZaKURBGOWSGw0gS0GExZWtZGFZwS3T1LIput76rvtlC7UB30XdqHUcrogbFbRTvzfevapV-FAlZXJIHAwudgYxvPeQOtW6ZKBptIfQJ0ULXlRlySs2UM9_Zn2HfL1sIPAtwcSQUgSrjOt058IY7RpFsBqbUWMzamxGjc0Mstkf2ZfzP4JPEMWR1A
CitedBy_id crossref_primary_10_1002_jbio_202300073
crossref_primary_10_1242_jeb_248112
crossref_primary_10_7554_eLife_77349
crossref_primary_10_1016_j_ecoinf_2024_102893
crossref_primary_10_1038_s41558_022_01457_8
crossref_primary_10_1093_icb_icad040
crossref_primary_10_1098_rstb_2021_0028
crossref_primary_10_1016_j_tree_2022_11_008
crossref_primary_10_1016_j_jtherbio_2022_103323
crossref_primary_10_1098_rsos_211869
crossref_primary_10_1098_rspb_2023_1396
crossref_primary_10_1111_jofo_12392
crossref_primary_10_1002_ps_8607
crossref_primary_10_1098_rstb_2020_0479
crossref_primary_10_1109_TBME_2024_3482983
crossref_primary_10_1016_j_cois_2023_101111
crossref_primary_10_1242_jeb_246921
crossref_primary_10_1186_s40317_023_00329_y
crossref_primary_10_3389_fphys_2021_721381
crossref_primary_10_1111_2041_210X_14441
crossref_primary_10_3389_fphys_2021_754719
crossref_primary_10_1098_rstb_2020_0210
crossref_primary_10_1098_rstb_2020_0230
crossref_primary_10_1111_brv_13181
crossref_primary_10_1093_biolinnean_blac001
crossref_primary_10_1186_s40317_024_00375_0
crossref_primary_10_1016_j_tree_2024_09_008
crossref_primary_10_1111_gcb_17063
crossref_primary_10_1098_rstb_2020_0227
crossref_primary_10_3389_fphys_2021_816701
crossref_primary_10_3389_fphys_2023_1079008
crossref_primary_10_1186_s40317_023_00339_w
crossref_primary_10_1111_brv_13009
crossref_primary_10_1016_j_soh_2024_100096
crossref_primary_10_1242_jeb_247986
Cites_doi 10.1098/rsif.2019.0217
10.1038/nmeth.3173
10.1371/journal.pone.0013956
10.1152/jn.00879.2005
10.1073/pnas.1909850116
10.1007/s11481-020-09944-5
10.1002/aqc.1247
10.1152/physiol.00051.2014
10.1016/j.jembe.2013.10.031
10.1152/physrev.00061.2017
10.1098/rstb.2020.0211
10.5455/2349-2902.isj20150506
10.1111/jav.01363
10.1007/s13246-019-00813-x
10.1021/ac504300n
10.1016/j.cbpa.2020.110849
10.1021/acssensors.8b00538
10.1371/journal.pone.0036728
10.7554/eLife.44986
10.1111/1365-2656.13094
10.1242/jeb.01679
10.1007/s00360-020-01290-5
10.1098/rstb.2020.0228
10.1080/10888705.2014.856241
10.3390/en13112769
10.1890/14-1401.1
10.1186/s40317-017-0128-9
10.1098/rstb.2015.0386
10.1016/j.scitotenv.2020.142372
10.1071/WR10177
10.1038/416389a
10.1016/j.cub.2015.07.024
10.1126/science.1258732
10.1111/j.1474-919X.1963.tb02497.x
10.1016/j.cbpa.2007.06.078
10.1242/jeb.187708
10.1242/jeb.205.21.3347
10.1111/2041-210X.12934
10.1098/rstb.2020.0225
10.1016/j.tree.2004.04.003
10.1242/jeb.212936
10.1098/rstb.2020.0349
10.1016/j.biosystemseng.2017.10.014
10.1097/CCM.0b013e31826a44f6
10.1016/j.arr.2009.07.006
10.1080/00028487.2014.965343
10.7589/52.2S.S65
10.1109/MC.2018.2889637
10.1371/journal.pbio.3000306
10.1038/ncomms12468
10.1086/605336
10.1242/jeb.01884
10.1371/journal.pone.0180269
10.1038/ncomms8197
10.1098/rstb.2012.0005
10.1242/jeb.165753
10.1109/MC.2007.443
10.1111/j.2041-210X.2010.00013.x
10.1152/japplphysiol.00818.2019
10.1177/0310057X1304100605
10.1016/j.cbpb.2008.05.007
10.1126/science.aam9712
10.1016/j.cbpa.2016.07.004
10.7326/M15-1150
10.1038/srep10402
10.1152/ajpregu.00211.2016
10.1063/1.4916171
10.1002/ece3.6197
10.1186/s12983-016-0140-6
10.1098/rstb.2008.0304
10.1016/j.cub.2016.05.033
10.1038/s41598-019-49689-7
10.1117/12.2084279
10.1056/NEJMoa2001017
10.1126/science.1255642
10.1073/pnas.1216244110
10.1088/1361-6579/ab299e
10.1016/j.cbpa.2020.110841
10.1098/rstb.2020.0229
10.1136/thoraxjnl-2018-212136
10.1038/s41578-019-0150-z
10.1242/jeb.147058
10.1017/S003224740005484X
10.1093/sleep/zsz311
10.1098/rstb.2020.0218
10.1111/j.1557-9263.2010.00302.x
10.1111/1749-4877.12364
10.1038/s41558-019-0666-7
10.1186/1471-2288-10-98
10.1038/s41598-018-23891-5
10.1098/rstb.2020.0230
10.1242/jeb.230219
10.1016/j.cub.2020.10.015
10.1038/s41746-020-0226-6
10.1136/bmj.320.7237.759
10.1186/s40317-019-0182-6
10.47536/jcrm.v20i1.237
10.1016/j.cub.2020.06.085
10.1093/tas/txx006
10.1152/physrev.1991.71.4.1135
10.1098/rsbl.2005.0356
10.1038/s41559-020-1237-z
10.2307/3545707
10.1186/s40317-015-0045-8
10.1038/s41551-021-00685-1
10.3354/esr00064
10.1093/conphys/coaa126
10.1098/rsbl.2009.0089
10.1038/s41586-020-2903-7
10.1577/1548-8446(2004)29[10:TEAOOR]2.0.CO;2
10.1038/s41586-020-2126-y
10.1098/rstb.2020.0222
10.1152/physiol.00046.2018
10.1111/j.1863-2378.2012.01528.x
10.1038/s41598-019-45657-3
10.1016/j.tim.2014.12.004
10.1146/annurev.ecolsys.37.091305.110100
10.1186/s40462-017-0097-x
10.1111/2041-210X.13216
10.1111/2041-210X.12172
10.1038/s41598-019-51572-4
10.1038/s41528-018-0025-1
10.1038/s41746-019-0150-9
10.1088/0964-1726/24/2/025031
10.1074/jbc.M306839200
10.3354/meps296183
10.1098/rstb.2021.0028
10.1093/icb/icw094
10.1126/science.1146788
10.1016/j.jneumeth.2016.11.010
10.1098/rsos.171359
10.1016/j.reach.2019.100025
10.1111/2041-210X.13013
10.1126/science.aaa2478
10.1002/ange.201904416
10.3390/bios10060056
10.1038/s41591-018-0196-2
10.1097/00003246-198510000-00009
ContentType Journal Article
Copyright 2021 The Author(s) 2021
Copyright_xml – notice: 2021 The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1098/rstb.2020.0230
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
DocumentTitleAlternate Future trends in physio-logging
EISSN 1471-2970
ExternalDocumentID PMC8237165
34176330
10_1098_rstb_2020_0230
Genre Journal Article
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABPLY
ABTLG
ACPRK
ACSFO
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
DIK
E3Z
EBS
F5P
GX1
H13
HYE
HZ~
JLS
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
TN5
V1E
W8F
YNT
~02
AEUPB
CGR
CUY
CVF
ECM
EIF
NPM
OP1
7X8
5PM
ABBHK
AEXZC
DCCCD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
SA0
ID FETCH-LOGICAL-c605t-68dea804b43d165e6cd3ac7ec2c7f7665132474caee78616f09f975f354f3a2f3
ISSN 0962-8436
1471-2970
IngestDate Thu Aug 21 18:36:50 EDT 2025
Fri Jul 11 00:12:23 EDT 2025
Wed Feb 19 02:06:28 EST 2025
Thu Apr 24 23:06:45 EDT 2025
Tue Jul 01 03:25:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1831
Keywords wearable devices
photoplethysmography
sensing technology
artificial intelligence
health management
Language English
License Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605t-68dea804b43d165e6cd3ac7ec2c7f7665132474caee78616f09f975f354f3a2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 10 to a theme issue ‘Measuring physiology in free-living animals (Part II)’.
ORCID 0000-0002-9790-7025
0000-0001-5187-7417
0000-0002-6696-1862
0000-0001-9864-2498
0000-0002-9166-7913
0000-0002-6338-529X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8237165
PMID 34176330
PQID 2545988493
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237165
proquest_miscellaneous_2545988493
pubmed_primary_34176330
crossref_citationtrail_10_1098_rstb_2020_0230
crossref_primary_10_1098_rstb_2020_0230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-16
PublicationDateYYYYMMDD 2021-08-16
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2021
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_117_2
e_1_3_6_30_2
e_1_3_6_76_2
e_1_3_6_95_2
e_1_3_6_113_2
e_1_3_6_136_2
e_1_3_6_72_2
e_1_3_6_91_2
e_1_3_6_132_2
Castaneda D (e_1_3_6_68_2) 2018; 4
e_1_3_6_19_2
e_1_3_6_38_2
Admela J (e_1_3_6_118_2) 2017; 50
e_1_3_6_34_2
e_1_3_6_57_2
e_1_3_6_99_2
e_1_3_6_105_2
e_1_3_6_128_2
e_1_3_6_65_2
e_1_3_6_42_2
e_1_3_6_84_2
e_1_3_6_101_2
e_1_3_6_124_2
e_1_3_6_147_2
e_1_3_6_61_2
e_1_3_6_80_2
e_1_3_6_120_2
e_1_3_6_143_2
e_1_3_6_2_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_109_2
e_1_3_6_23_2
e_1_3_6_69_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_75_2
e_1_3_6_98_2
e_1_3_6_10_2
e_1_3_6_71_2
e_1_3_6_94_2
e_1_3_6_137_2
e_1_3_6_114_2
e_1_3_6_90_2
e_1_3_6_133_2
e_1_3_6_110_2
Ditmer MA (e_1_3_6_53_2) 2020; 7
e_1_3_6_37_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_79_2
e_1_3_6_41_2
e_1_3_6_64_2
White CR (e_1_3_6_78_2) 2013; 216
e_1_3_6_87_2
e_1_3_6_106_2
e_1_3_6_129_2
e_1_3_6_60_2
e_1_3_6_83_2
e_1_3_6_102_2
e_1_3_6_148_2
e_1_3_6_125_2
e_1_3_6_144_2
e_1_3_6_3_2
e_1_3_6_121_2
Barske J (e_1_3_6_11_2) 2011; 51
e_1_3_6_140_2
e_1_3_6_7_2
Bowlin MS (e_1_3_6_15_2) 2006; 147
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_51_2
e_1_3_6_97_2
e_1_3_6_119_2
e_1_3_6_138_2
e_1_3_6_32_2
e_1_3_6_74_2
e_1_3_6_93_2
e_1_3_6_115_2
e_1_3_6_134_2
e_1_3_6_70_2
Bowlin MS (e_1_3_6_16_2) 2004; 44
Scholander PF (e_1_3_6_88_2) 1940; 22
e_1_3_6_111_2
e_1_3_6_130_2
e_1_3_6_13_2
e_1_3_6_59_2
e_1_3_6_17_2
e_1_3_6_55_2
e_1_3_6_36_2
e_1_3_6_40_2
e_1_3_6_86_2
e_1_3_6_107_2
e_1_3_6_149_2
e_1_3_6_21_2
e_1_3_6_63_2
e_1_3_6_82_2
e_1_3_6_103_2
e_1_3_6_126_2
e_1_3_6_145_2
e_1_3_6_4_2
e_1_3_6_122_2
e_1_3_6_141_2
e_1_3_6_8_2
Bowlin MS (e_1_3_6_14_2) 2006; 46
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_67_2
e_1_3_6_116_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_73_2
e_1_3_6_96_2
e_1_3_6_139_2
e_1_3_6_112_2
e_1_3_6_50_2
e_1_3_6_92_2
e_1_3_6_135_2
e_1_3_6_131_2
e_1_3_6_150_2
e_1_3_6_39_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_77_2
e_1_3_6_127_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_62_2
e_1_3_6_85_2
e_1_3_6_108_2
e_1_3_6_123_2
e_1_3_6_81_2
e_1_3_6_104_2
e_1_3_6_146_2
e_1_3_6_5_2
e_1_3_6_100_2
e_1_3_6_142_2
e_1_3_6_9_2
Cornelius JM (e_1_3_6_12_2) 2010; 50
e_1_3_6_28_2
e_1_3_6_24_2
e_1_3_6_47_2
e_1_3_6_66_2
e_1_3_6_89_2
References_xml – ident: e_1_3_6_71_2
  doi: 10.1098/rsif.2019.0217
– ident: e_1_3_6_100_2
  doi: 10.1038/nmeth.3173
– ident: e_1_3_6_17_2
  doi: 10.1371/journal.pone.0013956
– ident: e_1_3_6_47_2
  doi: 10.1152/jn.00879.2005
– ident: e_1_3_6_63_2
  doi: 10.1073/pnas.1909850116
– ident: e_1_3_6_130_2
  doi: 10.1007/s11481-020-09944-5
– ident: e_1_3_6_147_2
  doi: 10.1002/aqc.1247
– ident: e_1_3_6_139_2
  doi: 10.1152/physiol.00051.2014
– ident: e_1_3_6_38_2
  doi: 10.1016/j.jembe.2013.10.031
– ident: e_1_3_6_124_2
  doi: 10.1152/physrev.00061.2017
– ident: e_1_3_6_30_2
  doi: 10.1098/rstb.2020.0211
– volume: 50
  start-page: E218
  year: 2010
  ident: e_1_3_6_12_2
  article-title: Energetic expenditure in free-living red crossbills, Loxia curvirostra, using heart rate telemetry
  publication-title: Integr. Comp. Biol.
– ident: e_1_3_6_110_2
  doi: 10.5455/2349-2902.isj20150506
– ident: e_1_3_6_21_2
  doi: 10.1111/jav.01363
– ident: e_1_3_6_75_2
  doi: 10.1007/s13246-019-00813-x
– ident: e_1_3_6_66_2
  doi: 10.1021/ac504300n
– volume: 22
  start-page: 1
  year: 1940
  ident: e_1_3_6_88_2
  article-title: Experimental investigations on the respiratory function in diving mammals and birds
  publication-title: Hvalrådets Skr.
– ident: e_1_3_6_26_2
  doi: 10.1016/j.cbpa.2020.110849
– ident: e_1_3_6_97_2
  doi: 10.1021/acssensors.8b00538
– ident: e_1_3_6_123_2
  doi: 10.1371/journal.pone.0036728
– ident: e_1_3_6_5_2
  doi: 10.7554/eLife.44986
– ident: e_1_3_6_34_2
  doi: 10.1111/1365-2656.13094
– ident: e_1_3_6_56_2
  doi: 10.1242/jeb.01679
– ident: e_1_3_6_23_2
  doi: 10.1007/s00360-020-01290-5
– ident: e_1_3_6_28_2
  doi: 10.1098/rstb.2020.0228
– ident: e_1_3_6_117_2
  doi: 10.1080/10888705.2014.856241
– ident: e_1_3_6_87_2
  doi: 10.3390/en13112769
– volume: 4
  start-page: 195
  year: 2018
  ident: e_1_3_6_68_2
  article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care
  publication-title: Int. J. Biosens. Bioelectron.
– ident: e_1_3_6_6_2
  doi: 10.1890/14-1401.1
– ident: e_1_3_6_104_2
  doi: 10.1186/s40317-017-0128-9
– ident: e_1_3_6_51_2
  doi: 10.1098/rstb.2015.0386
– ident: e_1_3_6_131_2
  doi: 10.1016/j.scitotenv.2020.142372
– ident: e_1_3_6_77_2
  doi: 10.1071/WR10177
– volume: 44
  start-page: 529
  year: 2004
  ident: e_1_3_6_16_2
  article-title: The relationship between individual morphology, atmospheric conditions, and inter-individual variation in heart rate and wingbeat frequency during natural migration in the Swainsons thrush (Catharus ustulatus)
  publication-title: Integr. Comp. Biol.
– volume: 7
  start-page: coy067
  year: 2020
  ident: e_1_3_6_53_2
  article-title: Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems
  publication-title: Conserv. Physiol.
– ident: e_1_3_6_144_2
  doi: 10.1038/416389a
– ident: e_1_3_6_145_2
  doi: 10.1016/j.cub.2015.07.024
– ident: e_1_3_6_2_2
  doi: 10.1126/science.1258732
– ident: e_1_3_6_8_2
  doi: 10.1111/j.1474-919X.1963.tb02497.x
– ident: e_1_3_6_9_2
  doi: 10.1016/j.cbpa.2007.06.078
– ident: e_1_3_6_4_2
  doi: 10.1242/jeb.187708
– ident: e_1_3_6_24_2
  doi: 10.1242/jeb.205.21.3347
– ident: e_1_3_6_79_2
  doi: 10.1111/2041-210X.12934
– ident: e_1_3_6_99_2
  doi: 10.1098/rstb.2020.0225
– ident: e_1_3_6_142_2
  doi: 10.1016/j.tree.2004.04.003
– ident: e_1_3_6_43_2
  doi: 10.1242/jeb.212936
– ident: e_1_3_6_46_2
  doi: 10.1098/rstb.2020.0349
– ident: e_1_3_6_113_2
  doi: 10.1016/j.biosystemseng.2017.10.014
– ident: e_1_3_6_121_2
  doi: 10.1097/CCM.0b013e31826a44f6
– ident: e_1_3_6_135_2
  doi: 10.1016/j.arr.2009.07.006
– ident: e_1_3_6_103_2
  doi: 10.1080/00028487.2014.965343
– ident: e_1_3_6_102_2
  doi: 10.7589/52.2S.S65
– ident: e_1_3_6_116_2
  doi: 10.1109/MC.2018.2889637
– ident: e_1_3_6_55_2
  doi: 10.1371/journal.pbio.3000306
– ident: e_1_3_6_49_2
  doi: 10.1038/ncomms12468
– ident: e_1_3_6_10_2
  doi: 10.1086/605336
– ident: e_1_3_6_59_2
  doi: 10.1242/jeb.01884
– volume: 51
  start-page: e1
  issue: 1
  year: 2011
  ident: e_1_3_6_11_2
  article-title: Heart rate as an index of increased metabolic output in a bird with a complex courtship display
  publication-title: Integr. Comp. Biol.
– ident: e_1_3_6_61_2
  doi: 10.1371/journal.pone.0180269
– ident: e_1_3_6_65_2
  doi: 10.1038/ncomms8197
– ident: e_1_3_6_137_2
  doi: 10.1098/rstb.2012.0005
– ident: e_1_3_6_3_2
  doi: 10.1242/jeb.165753
– ident: e_1_3_6_82_2
  doi: 10.1109/MC.2007.443
– ident: e_1_3_6_76_2
  doi: 10.1111/j.2041-210X.2010.00013.x
– ident: e_1_3_6_122_2
  doi: 10.1152/japplphysiol.00818.2019
– ident: e_1_3_6_108_2
  doi: 10.1177/0310057X1304100605
– ident: e_1_3_6_120_2
  doi: 10.1016/j.cbpb.2008.05.007
– ident: e_1_3_6_149_2
  doi: 10.1126/science.aam9712
– ident: e_1_3_6_7_2
  doi: 10.1016/j.cbpa.2016.07.004
– ident: e_1_3_6_74_2
  doi: 10.7326/M15-1150
– ident: e_1_3_6_93_2
  doi: 10.1038/srep10402
– ident: e_1_3_6_95_2
  doi: 10.1152/ajpregu.00211.2016
– ident: e_1_3_6_83_2
  doi: 10.1063/1.4916171
– ident: e_1_3_6_39_2
  doi: 10.1002/ece3.6197
– ident: e_1_3_6_60_2
  doi: 10.1186/s12983-016-0140-6
– ident: e_1_3_6_89_2
  doi: 10.1098/rstb.2008.0304
– ident: e_1_3_6_112_2
  doi: 10.1016/j.cub.2016.05.033
– ident: e_1_3_6_20_2
  doi: 10.1038/s41598-019-49689-7
– ident: e_1_3_6_86_2
  doi: 10.1117/12.2084279
– ident: e_1_3_6_129_2
  doi: 10.1056/NEJMoa2001017
– ident: e_1_3_6_36_2
  doi: 10.1126/science.1255642
– ident: e_1_3_6_41_2
  doi: 10.1073/pnas.1216244110
– ident: e_1_3_6_73_2
  doi: 10.1088/1361-6579/ab299e
– volume: 50
  start-page: 1
  year: 2017
  ident: e_1_3_6_118_2
  article-title: Smart computing and sensing technologies for animal welfare: a systematic review
  publication-title: Assoc. Comput. Mach.
– ident: e_1_3_6_31_2
  doi: 10.1016/j.cbpa.2020.110841
– ident: e_1_3_6_84_2
  doi: 10.1098/rstb.2020.0229
– ident: e_1_3_6_25_2
  doi: 10.1136/thoraxjnl-2018-212136
– ident: e_1_3_6_91_2
  doi: 10.1038/s41578-019-0150-z
– ident: e_1_3_6_101_2
  doi: 10.1242/jeb.147058
– ident: e_1_3_6_32_2
  doi: 10.1017/S003224740005484X
– ident: e_1_3_6_50_2
  doi: 10.1093/sleep/zsz311
– ident: e_1_3_6_54_2
  doi: 10.1098/rstb.2020.0218
– ident: e_1_3_6_64_2
  doi: 10.1111/j.1557-9263.2010.00302.x
– ident: e_1_3_6_62_2
  doi: 10.1111/1749-4877.12364
– ident: e_1_3_6_141_2
  doi: 10.1038/s41558-019-0666-7
– ident: e_1_3_6_18_2
  doi: 10.1186/1471-2288-10-98
– ident: e_1_3_6_127_2
  doi: 10.1038/s41598-018-23891-5
– volume: 46
  start-page: E14
  year: 2006
  ident: e_1_3_6_14_2
  article-title: Calibration of heart rate and energy expenditure during flight and at rest in a passerine
  publication-title: Integr. Comp. Biol.
– ident: e_1_3_6_27_2
  doi: 10.1098/rstb.2020.0230
– ident: e_1_3_6_45_2
  doi: 10.1242/jeb.230219
– ident: e_1_3_6_133_2
  doi: 10.1016/j.cub.2020.10.015
– ident: e_1_3_6_72_2
  doi: 10.1038/s41746-020-0226-6
– volume: 216
  start-page: 537
  year: 2013
  ident: e_1_3_6_78_2
  article-title: Implantation reduces the negative effects of bio-logging devices on birds
  publication-title: J. Exp. Biol.
– ident: e_1_3_6_109_2
  doi: 10.1136/bmj.320.7237.759
– ident: e_1_3_6_105_2
  doi: 10.1186/s40317-019-0182-6
– ident: e_1_3_6_107_2
  doi: 10.47536/jcrm.v20i1.237
– ident: e_1_3_6_48_2
  doi: 10.1016/j.cub.2020.06.085
– ident: e_1_3_6_115_2
  doi: 10.1093/tas/txx006
– ident: e_1_3_6_138_2
  doi: 10.1152/physrev.1991.71.4.1135
– ident: e_1_3_6_58_2
  doi: 10.1098/rsbl.2005.0356
– ident: e_1_3_6_150_2
  doi: 10.1038/s41559-020-1237-z
– ident: e_1_3_6_81_2
  doi: 10.2307/3545707
– ident: e_1_3_6_114_2
  doi: 10.1186/s40317-015-0045-8
– ident: e_1_3_6_19_2
  doi: 10.1038/s41551-021-00685-1
– ident: e_1_3_6_37_2
  doi: 10.3354/esr00064
– ident: e_1_3_6_22_2
  doi: 10.1093/conphys/coaa126
– ident: e_1_3_6_33_2
  doi: 10.1098/rsbl.2009.0089
– ident: e_1_3_6_146_2
  doi: 10.1038/s41586-020-2903-7
– ident: e_1_3_6_94_2
  doi: 10.1577/1548-8446(2004)29[10:TEAOOR]2.0.CO;2
– ident: e_1_3_6_148_2
  doi: 10.1038/s41586-020-2126-y
– volume: 147
  start-page: 142
  year: 2006
  ident: e_1_3_6_15_2
  article-title: Heart rate and wingbeat frequency in naturally-migrating Swainson's thrushes
  publication-title: J. Ornithol.
– ident: e_1_3_6_98_2
  doi: 10.1098/rstb.2020.0222
– ident: e_1_3_6_119_2
– ident: e_1_3_6_126_2
  doi: 10.1152/physiol.00046.2018
– ident: e_1_3_6_132_2
  doi: 10.1111/j.1863-2378.2012.01528.x
– ident: e_1_3_6_44_2
  doi: 10.1038/s41598-019-45657-3
– ident: e_1_3_6_134_2
  doi: 10.1016/j.tim.2014.12.004
– ident: e_1_3_6_143_2
  doi: 10.1146/annurev.ecolsys.37.091305.110100
– ident: e_1_3_6_40_2
  doi: 10.1186/s40462-017-0097-x
– ident: e_1_3_6_90_2
  doi: 10.1111/2041-210X.13216
– ident: e_1_3_6_106_2
  doi: 10.1111/2041-210X.12172
– ident: e_1_3_6_136_2
  doi: 10.1038/s41598-019-51572-4
– ident: e_1_3_6_96_2
  doi: 10.1038/s41528-018-0025-1
– ident: e_1_3_6_70_2
  doi: 10.1038/s41746-019-0150-9
– ident: e_1_3_6_85_2
  doi: 10.1088/0964-1726/24/2/025031
– ident: e_1_3_6_128_2
  doi: 10.1074/jbc.M306839200
– ident: e_1_3_6_57_2
  doi: 10.3354/meps296183
– ident: e_1_3_6_29_2
  doi: 10.1098/rstb.2021.0028
– ident: e_1_3_6_140_2
  doi: 10.1093/icb/icw094
– ident: e_1_3_6_42_2
  doi: 10.1126/science.1146788
– ident: e_1_3_6_52_2
  doi: 10.1016/j.jneumeth.2016.11.010
– ident: e_1_3_6_13_2
  doi: 10.1098/rsos.171359
– ident: e_1_3_6_125_2
  doi: 10.1016/j.reach.2019.100025
– ident: e_1_3_6_80_2
  doi: 10.1111/2041-210X.13013
– ident: e_1_3_6_35_2
  doi: 10.1126/science.aaa2478
– ident: e_1_3_6_67_2
  doi: 10.1002/ange.201904416
– ident: e_1_3_6_69_2
  doi: 10.3390/bios10060056
– ident: e_1_3_6_92_2
  doi: 10.1038/s41591-018-0196-2
– ident: e_1_3_6_111_2
  doi: 10.1097/00003246-198510000-00009
SSID ssj0009574
Score 2.504202
SecondaryResourceType review_article
Snippet Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20200230
SubjectTerms Animals
Animals, Wild
Heart Rate - physiology
Opinion Piece
Physiology - instrumentation
Physiology - trends
Vertebrates - physiology
Title Future trends in measuring physiology in free-living animals
URI https://www.ncbi.nlm.nih.gov/pubmed/34176330
https://www.proquest.com/docview/2545988493
https://pubmed.ncbi.nlm.nih.gov/PMC8237165
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfKEIgviJVXeSlISICmhDR2bEfiC6BVFawDplb0W5SHrUXrsmlNEeOv5_zIC4o0-BJFrpNWvuv57nz3-yH0glMZSMZyl4DpcwkEym4qaer6aehjxhImNH_K7JBOF-TjMlwOBj86VUubKvWyn1v7Sv5HqjAGclVdsv8g2ealMAD3IF-4goTheiUZTzQgiCoWt3WtpzrjpxvM1fobfCUYlxdCuKviu-lILE6T1brrlX6p-Qy0xKqWQnxdlxCYLENd4qnOFTQNiKdsDcTae-89y2rZdllmbXViN6kz7RxEHassv6FM3ju6bPX0aKNZZtsM7rfiBPZww7A96yYqAp15NX2U1rbCPugGkeEJ8cSWMWuQMaNdzeN2m7AW1g903LTV_PuRamkAtzn11DyvntjH2T78HE8WBwfxfH85v4auBxBgKO6LT195B65Z43c3P6-B--Rv-m_vuzN_xCi_l9p2fJf5HXTbBh3OO6NBu2ggyiG6YQR2OUQ3Z7bAYoh2ra1fO68sIPnru-it0TPH6JlTlE6jZ06rZ2q8o2eO1bN7aDHZn3-YupZ1w80gtK1cynORcJ-kBOdjGgqa5TjJmMiCjElGaTgGH5yRLBGCcTqm0o9kxEKJQyJxEkh8H-2UZ6V4iBxK83EaJIJIIUmegK8bYniQw53g2Ccj5NaLF2cWkl4xo6xiUxrBY7XYsVrsWC32CL1s5p8bMJa_znxeyyIGe6kOwZJSnG3WcQAhQ8Q5ifAIPTCyad4FHh1st-pp1pNaM0Fhsfc_KYtjjcmuMJ9gtR5d4Xsfo1vt3-MJ2qkuNuIpeLZV-kwr4S8ZDKX_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+trends+in+measuring+physiology+in+free-living+animals&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Williams%2C+H+J&rft.au=Shipley%2C+J+Ryan&rft.au=Rutz%2C+C&rft.au=Wikelski%2C+M&rft.date=2021-08-16&rft.issn=1471-2970&rft.eissn=1471-2970&rft.volume=376&rft.issue=1831&rft.spage=20200230&rft_id=info:doi/10.1098%2Frstb.2020.0230&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon