Future trends in measuring physiology in free-living animals
Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, withou...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 376; no. 1831; p. 20200230 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
16.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of ‘physiologging’ in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields.
This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’. |
---|---|
AbstractList | Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of ‘physiologging’ in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields.
This article is part of the theme issue ‘Measuring physiology in free-living animals (Part II)’. Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'. Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording technologies available for physiological monitoring in wild animals and the suite of behaviours and environments they need to withstand, without unduly affecting subjects. While it is possible to record some physiological variables for free-living animals using animal-attached logging devices, including inertial-measurement, heart-rate and temperature loggers, the field is still in its infancy. In this opinion piece, we review the most important future research directions for advancing the field of 'physiologging' in wild animals, including the technological development that we anticipate will be required, and the fiscal and ethical challenges that must be overcome. Non-invasive, multi-sensor miniature devices are ubiquitous in the world of human health and fitness monitoring, creating invaluable opportunities for animal and human physiologging to drive synergistic advances. We argue that by capitalizing on the research efforts and advancements made in the development of human wearables, it will be possible to design the non-invasive loggers needed by ecophysiologists to collect accurate physiological data from free-ranging animals ethically and with an absolute minimum of impact. In turn, findings have the capacity to foster transformative advances in human health monitoring. Thus, we invite biomedical engineers and researchers to collaborate with the animal-tagging community to drive forward the advancements necessary to realize the full potential of both fields. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'. |
Author | Shipley, J. Ryan Wikelski, M. Williams, H. J. Wilkes, M. Rutz, C. Hawkes, L. A. |
Author_xml | – sequence: 1 givenname: H. J. orcidid: 0000-0002-6338-529X surname: Williams fullname: Williams, H. J. organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany – sequence: 2 givenname: J. Ryan orcidid: 0000-0001-9864-2498 surname: Shipley fullname: Shipley, J. Ryan organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany – sequence: 3 givenname: C. orcidid: 0000-0001-5187-7417 surname: Rutz fullname: Rutz, C. organization: Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK – sequence: 4 givenname: M. orcidid: 0000-0002-9790-7025 surname: Wikelski fullname: Wikelski, M. organization: Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany, Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany – sequence: 5 givenname: M. orcidid: 0000-0002-9166-7913 surname: Wilkes fullname: Wilkes, M. organization: Extreme Environments Research Group, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth PO1 2EF, UK – sequence: 6 givenname: L. A. orcidid: 0000-0002-6696-1862 surname: Hawkes fullname: Hawkes, L. A. organization: Hatherly Laboratories, University of Exeter, College of Life and Environmental Sciences, Exeter EX4 4PS, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34176330$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1LxDAQDaLounr1KD166ZqvJi2IIOKqsOBFzyGbTtZIm6xJK-y_t2VXUcHTg5n3Mcw7Rvs-eEDojOAZwVV5GVO3nFFM8QxThvfQhHBJclpJvI8muBI0LzkTR-g4pTeMcVVIfoiOGCdSMIYn6Gred32ErIvg65Q5n7WgUx-dX2Xr101yoQmrzTi3ESBv3Me40d61ukkn6MAOAKc7nKKX-d3z7UO-eLp_vL1Z5EbgostFWYMuMV9yVhNRgDA100aCoUZaKURBGOWSGw0gS0GExZWtZGFZwS3T1LIput76rvtlC7UB30XdqHUcrogbFbRTvzfevapV-FAlZXJIHAwudgYxvPeQOtW6ZKBptIfQJ0ULXlRlySs2UM9_Zn2HfL1sIPAtwcSQUgSrjOt058IY7RpFsBqbUWMzamxGjc0Mstkf2ZfzP4JPEMWR1A |
CitedBy_id | crossref_primary_10_1002_jbio_202300073 crossref_primary_10_1242_jeb_248112 crossref_primary_10_7554_eLife_77349 crossref_primary_10_1016_j_ecoinf_2024_102893 crossref_primary_10_1038_s41558_022_01457_8 crossref_primary_10_1093_icb_icad040 crossref_primary_10_1098_rstb_2021_0028 crossref_primary_10_1016_j_tree_2022_11_008 crossref_primary_10_1016_j_jtherbio_2022_103323 crossref_primary_10_1098_rsos_211869 crossref_primary_10_1098_rspb_2023_1396 crossref_primary_10_1111_jofo_12392 crossref_primary_10_1002_ps_8607 crossref_primary_10_1098_rstb_2020_0479 crossref_primary_10_1109_TBME_2024_3482983 crossref_primary_10_1016_j_cois_2023_101111 crossref_primary_10_1242_jeb_246921 crossref_primary_10_1186_s40317_023_00329_y crossref_primary_10_3389_fphys_2021_721381 crossref_primary_10_1111_2041_210X_14441 crossref_primary_10_3389_fphys_2021_754719 crossref_primary_10_1098_rstb_2020_0210 crossref_primary_10_1098_rstb_2020_0230 crossref_primary_10_1111_brv_13181 crossref_primary_10_1093_biolinnean_blac001 crossref_primary_10_1186_s40317_024_00375_0 crossref_primary_10_1016_j_tree_2024_09_008 crossref_primary_10_1111_gcb_17063 crossref_primary_10_1098_rstb_2020_0227 crossref_primary_10_3389_fphys_2021_816701 crossref_primary_10_3389_fphys_2023_1079008 crossref_primary_10_1186_s40317_023_00339_w crossref_primary_10_1111_brv_13009 crossref_primary_10_1016_j_soh_2024_100096 crossref_primary_10_1242_jeb_247986 |
Cites_doi | 10.1098/rsif.2019.0217 10.1038/nmeth.3173 10.1371/journal.pone.0013956 10.1152/jn.00879.2005 10.1073/pnas.1909850116 10.1007/s11481-020-09944-5 10.1002/aqc.1247 10.1152/physiol.00051.2014 10.1016/j.jembe.2013.10.031 10.1152/physrev.00061.2017 10.1098/rstb.2020.0211 10.5455/2349-2902.isj20150506 10.1111/jav.01363 10.1007/s13246-019-00813-x 10.1021/ac504300n 10.1016/j.cbpa.2020.110849 10.1021/acssensors.8b00538 10.1371/journal.pone.0036728 10.7554/eLife.44986 10.1111/1365-2656.13094 10.1242/jeb.01679 10.1007/s00360-020-01290-5 10.1098/rstb.2020.0228 10.1080/10888705.2014.856241 10.3390/en13112769 10.1890/14-1401.1 10.1186/s40317-017-0128-9 10.1098/rstb.2015.0386 10.1016/j.scitotenv.2020.142372 10.1071/WR10177 10.1038/416389a 10.1016/j.cub.2015.07.024 10.1126/science.1258732 10.1111/j.1474-919X.1963.tb02497.x 10.1016/j.cbpa.2007.06.078 10.1242/jeb.187708 10.1242/jeb.205.21.3347 10.1111/2041-210X.12934 10.1098/rstb.2020.0225 10.1016/j.tree.2004.04.003 10.1242/jeb.212936 10.1098/rstb.2020.0349 10.1016/j.biosystemseng.2017.10.014 10.1097/CCM.0b013e31826a44f6 10.1016/j.arr.2009.07.006 10.1080/00028487.2014.965343 10.7589/52.2S.S65 10.1109/MC.2018.2889637 10.1371/journal.pbio.3000306 10.1038/ncomms12468 10.1086/605336 10.1242/jeb.01884 10.1371/journal.pone.0180269 10.1038/ncomms8197 10.1098/rstb.2012.0005 10.1242/jeb.165753 10.1109/MC.2007.443 10.1111/j.2041-210X.2010.00013.x 10.1152/japplphysiol.00818.2019 10.1177/0310057X1304100605 10.1016/j.cbpb.2008.05.007 10.1126/science.aam9712 10.1016/j.cbpa.2016.07.004 10.7326/M15-1150 10.1038/srep10402 10.1152/ajpregu.00211.2016 10.1063/1.4916171 10.1002/ece3.6197 10.1186/s12983-016-0140-6 10.1098/rstb.2008.0304 10.1016/j.cub.2016.05.033 10.1038/s41598-019-49689-7 10.1117/12.2084279 10.1056/NEJMoa2001017 10.1126/science.1255642 10.1073/pnas.1216244110 10.1088/1361-6579/ab299e 10.1016/j.cbpa.2020.110841 10.1098/rstb.2020.0229 10.1136/thoraxjnl-2018-212136 10.1038/s41578-019-0150-z 10.1242/jeb.147058 10.1017/S003224740005484X 10.1093/sleep/zsz311 10.1098/rstb.2020.0218 10.1111/j.1557-9263.2010.00302.x 10.1111/1749-4877.12364 10.1038/s41558-019-0666-7 10.1186/1471-2288-10-98 10.1038/s41598-018-23891-5 10.1098/rstb.2020.0230 10.1242/jeb.230219 10.1016/j.cub.2020.10.015 10.1038/s41746-020-0226-6 10.1136/bmj.320.7237.759 10.1186/s40317-019-0182-6 10.47536/jcrm.v20i1.237 10.1016/j.cub.2020.06.085 10.1093/tas/txx006 10.1152/physrev.1991.71.4.1135 10.1098/rsbl.2005.0356 10.1038/s41559-020-1237-z 10.2307/3545707 10.1186/s40317-015-0045-8 10.1038/s41551-021-00685-1 10.3354/esr00064 10.1093/conphys/coaa126 10.1098/rsbl.2009.0089 10.1038/s41586-020-2903-7 10.1577/1548-8446(2004)29[10:TEAOOR]2.0.CO;2 10.1038/s41586-020-2126-y 10.1098/rstb.2020.0222 10.1152/physiol.00046.2018 10.1111/j.1863-2378.2012.01528.x 10.1038/s41598-019-45657-3 10.1016/j.tim.2014.12.004 10.1146/annurev.ecolsys.37.091305.110100 10.1186/s40462-017-0097-x 10.1111/2041-210X.13216 10.1111/2041-210X.12172 10.1038/s41598-019-51572-4 10.1038/s41528-018-0025-1 10.1038/s41746-019-0150-9 10.1088/0964-1726/24/2/025031 10.1074/jbc.M306839200 10.3354/meps296183 10.1098/rstb.2021.0028 10.1093/icb/icw094 10.1126/science.1146788 10.1016/j.jneumeth.2016.11.010 10.1098/rsos.171359 10.1016/j.reach.2019.100025 10.1111/2041-210X.13013 10.1126/science.aaa2478 10.1002/ange.201904416 10.3390/bios10060056 10.1038/s41591-018-0196-2 10.1097/00003246-198510000-00009 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) 2021 |
Copyright_xml | – notice: 2021 The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1098/rstb.2020.0230 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Biology |
DocumentTitleAlternate | Future trends in physio-logging |
EISSN | 1471-2970 |
ExternalDocumentID | PMC8237165 34176330 10_1098_rstb_2020_0230 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE AAYXX ABPLY ABTLG ACPRK ACSFO ADBBV AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION DIK E3Z EBS F5P GX1 H13 HYE HZ~ JLS JSG JST KQ8 MRS MV1 NSAHA O9- OK1 RPM RRY TN5 V1E W8F YNT ~02 AEUPB CGR CUY CVF ECM EIF NPM OP1 7X8 5PM ABBHK AEXZC DCCCD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM SA0 |
ID | FETCH-LOGICAL-c605t-68dea804b43d165e6cd3ac7ec2c7f7665132474caee78616f09f975f354f3a2f3 |
ISSN | 0962-8436 1471-2970 |
IngestDate | Thu Aug 21 18:36:50 EDT 2025 Fri Jul 11 00:12:23 EDT 2025 Wed Feb 19 02:06:28 EST 2025 Thu Apr 24 23:06:45 EDT 2025 Tue Jul 01 03:25:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1831 |
Keywords | wearable devices photoplethysmography sensing technology artificial intelligence health management |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c605t-68dea804b43d165e6cd3ac7ec2c7f7665132474caee78616f09f975f354f3a2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 One contribution of 10 to a theme issue ‘Measuring physiology in free-living animals (Part II)’. |
ORCID | 0000-0002-9790-7025 0000-0001-5187-7417 0000-0002-6696-1862 0000-0001-9864-2498 0000-0002-9166-7913 0000-0002-6338-529X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8237165 |
PMID | 34176330 |
PQID | 2545988493 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8237165 proquest_miscellaneous_2545988493 pubmed_primary_34176330 crossref_citationtrail_10_1098_rstb_2020_0230 crossref_primary_10_1098_rstb_2020_0230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-16 |
PublicationDateYYYYMMDD | 2021-08-16 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
PublicationYear | 2021 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_6_117_2 e_1_3_6_30_2 e_1_3_6_76_2 e_1_3_6_95_2 e_1_3_6_113_2 e_1_3_6_136_2 e_1_3_6_72_2 e_1_3_6_91_2 e_1_3_6_132_2 Castaneda D (e_1_3_6_68_2) 2018; 4 e_1_3_6_19_2 e_1_3_6_38_2 Admela J (e_1_3_6_118_2) 2017; 50 e_1_3_6_34_2 e_1_3_6_57_2 e_1_3_6_99_2 e_1_3_6_105_2 e_1_3_6_128_2 e_1_3_6_65_2 e_1_3_6_42_2 e_1_3_6_84_2 e_1_3_6_101_2 e_1_3_6_124_2 e_1_3_6_147_2 e_1_3_6_61_2 e_1_3_6_80_2 e_1_3_6_120_2 e_1_3_6_143_2 e_1_3_6_2_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_109_2 e_1_3_6_23_2 e_1_3_6_69_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_75_2 e_1_3_6_98_2 e_1_3_6_10_2 e_1_3_6_71_2 e_1_3_6_94_2 e_1_3_6_137_2 e_1_3_6_114_2 e_1_3_6_90_2 e_1_3_6_133_2 e_1_3_6_110_2 Ditmer MA (e_1_3_6_53_2) 2020; 7 e_1_3_6_37_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_79_2 e_1_3_6_41_2 e_1_3_6_64_2 White CR (e_1_3_6_78_2) 2013; 216 e_1_3_6_87_2 e_1_3_6_106_2 e_1_3_6_129_2 e_1_3_6_60_2 e_1_3_6_83_2 e_1_3_6_102_2 e_1_3_6_148_2 e_1_3_6_125_2 e_1_3_6_144_2 e_1_3_6_3_2 e_1_3_6_121_2 Barske J (e_1_3_6_11_2) 2011; 51 e_1_3_6_140_2 e_1_3_6_7_2 Bowlin MS (e_1_3_6_15_2) 2006; 147 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_51_2 e_1_3_6_97_2 e_1_3_6_119_2 e_1_3_6_138_2 e_1_3_6_32_2 e_1_3_6_74_2 e_1_3_6_93_2 e_1_3_6_115_2 e_1_3_6_134_2 e_1_3_6_70_2 Bowlin MS (e_1_3_6_16_2) 2004; 44 Scholander PF (e_1_3_6_88_2) 1940; 22 e_1_3_6_111_2 e_1_3_6_130_2 e_1_3_6_13_2 e_1_3_6_59_2 e_1_3_6_17_2 e_1_3_6_55_2 e_1_3_6_36_2 e_1_3_6_40_2 e_1_3_6_86_2 e_1_3_6_107_2 e_1_3_6_149_2 e_1_3_6_21_2 e_1_3_6_63_2 e_1_3_6_82_2 e_1_3_6_103_2 e_1_3_6_126_2 e_1_3_6_145_2 e_1_3_6_4_2 e_1_3_6_122_2 e_1_3_6_141_2 e_1_3_6_8_2 Bowlin MS (e_1_3_6_14_2) 2006; 46 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_67_2 e_1_3_6_116_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_73_2 e_1_3_6_96_2 e_1_3_6_139_2 e_1_3_6_112_2 e_1_3_6_50_2 e_1_3_6_92_2 e_1_3_6_135_2 e_1_3_6_131_2 e_1_3_6_150_2 e_1_3_6_39_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_77_2 e_1_3_6_127_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_62_2 e_1_3_6_85_2 e_1_3_6_108_2 e_1_3_6_123_2 e_1_3_6_81_2 e_1_3_6_104_2 e_1_3_6_146_2 e_1_3_6_5_2 e_1_3_6_100_2 e_1_3_6_142_2 e_1_3_6_9_2 Cornelius JM (e_1_3_6_12_2) 2010; 50 e_1_3_6_28_2 e_1_3_6_24_2 e_1_3_6_47_2 e_1_3_6_66_2 e_1_3_6_89_2 |
References_xml | – ident: e_1_3_6_71_2 doi: 10.1098/rsif.2019.0217 – ident: e_1_3_6_100_2 doi: 10.1038/nmeth.3173 – ident: e_1_3_6_17_2 doi: 10.1371/journal.pone.0013956 – ident: e_1_3_6_47_2 doi: 10.1152/jn.00879.2005 – ident: e_1_3_6_63_2 doi: 10.1073/pnas.1909850116 – ident: e_1_3_6_130_2 doi: 10.1007/s11481-020-09944-5 – ident: e_1_3_6_147_2 doi: 10.1002/aqc.1247 – ident: e_1_3_6_139_2 doi: 10.1152/physiol.00051.2014 – ident: e_1_3_6_38_2 doi: 10.1016/j.jembe.2013.10.031 – ident: e_1_3_6_124_2 doi: 10.1152/physrev.00061.2017 – ident: e_1_3_6_30_2 doi: 10.1098/rstb.2020.0211 – volume: 50 start-page: E218 year: 2010 ident: e_1_3_6_12_2 article-title: Energetic expenditure in free-living red crossbills, Loxia curvirostra, using heart rate telemetry publication-title: Integr. Comp. Biol. – ident: e_1_3_6_110_2 doi: 10.5455/2349-2902.isj20150506 – ident: e_1_3_6_21_2 doi: 10.1111/jav.01363 – ident: e_1_3_6_75_2 doi: 10.1007/s13246-019-00813-x – ident: e_1_3_6_66_2 doi: 10.1021/ac504300n – volume: 22 start-page: 1 year: 1940 ident: e_1_3_6_88_2 article-title: Experimental investigations on the respiratory function in diving mammals and birds publication-title: Hvalrådets Skr. – ident: e_1_3_6_26_2 doi: 10.1016/j.cbpa.2020.110849 – ident: e_1_3_6_97_2 doi: 10.1021/acssensors.8b00538 – ident: e_1_3_6_123_2 doi: 10.1371/journal.pone.0036728 – ident: e_1_3_6_5_2 doi: 10.7554/eLife.44986 – ident: e_1_3_6_34_2 doi: 10.1111/1365-2656.13094 – ident: e_1_3_6_56_2 doi: 10.1242/jeb.01679 – ident: e_1_3_6_23_2 doi: 10.1007/s00360-020-01290-5 – ident: e_1_3_6_28_2 doi: 10.1098/rstb.2020.0228 – ident: e_1_3_6_117_2 doi: 10.1080/10888705.2014.856241 – ident: e_1_3_6_87_2 doi: 10.3390/en13112769 – volume: 4 start-page: 195 year: 2018 ident: e_1_3_6_68_2 article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care publication-title: Int. J. Biosens. Bioelectron. – ident: e_1_3_6_6_2 doi: 10.1890/14-1401.1 – ident: e_1_3_6_104_2 doi: 10.1186/s40317-017-0128-9 – ident: e_1_3_6_51_2 doi: 10.1098/rstb.2015.0386 – ident: e_1_3_6_131_2 doi: 10.1016/j.scitotenv.2020.142372 – ident: e_1_3_6_77_2 doi: 10.1071/WR10177 – volume: 44 start-page: 529 year: 2004 ident: e_1_3_6_16_2 article-title: The relationship between individual morphology, atmospheric conditions, and inter-individual variation in heart rate and wingbeat frequency during natural migration in the Swainsons thrush (Catharus ustulatus) publication-title: Integr. Comp. Biol. – volume: 7 start-page: coy067 year: 2020 ident: e_1_3_6_53_2 article-title: Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems publication-title: Conserv. Physiol. – ident: e_1_3_6_144_2 doi: 10.1038/416389a – ident: e_1_3_6_145_2 doi: 10.1016/j.cub.2015.07.024 – ident: e_1_3_6_2_2 doi: 10.1126/science.1258732 – ident: e_1_3_6_8_2 doi: 10.1111/j.1474-919X.1963.tb02497.x – ident: e_1_3_6_9_2 doi: 10.1016/j.cbpa.2007.06.078 – ident: e_1_3_6_4_2 doi: 10.1242/jeb.187708 – ident: e_1_3_6_24_2 doi: 10.1242/jeb.205.21.3347 – ident: e_1_3_6_79_2 doi: 10.1111/2041-210X.12934 – ident: e_1_3_6_99_2 doi: 10.1098/rstb.2020.0225 – ident: e_1_3_6_142_2 doi: 10.1016/j.tree.2004.04.003 – ident: e_1_3_6_43_2 doi: 10.1242/jeb.212936 – ident: e_1_3_6_46_2 doi: 10.1098/rstb.2020.0349 – ident: e_1_3_6_113_2 doi: 10.1016/j.biosystemseng.2017.10.014 – ident: e_1_3_6_121_2 doi: 10.1097/CCM.0b013e31826a44f6 – ident: e_1_3_6_135_2 doi: 10.1016/j.arr.2009.07.006 – ident: e_1_3_6_103_2 doi: 10.1080/00028487.2014.965343 – ident: e_1_3_6_102_2 doi: 10.7589/52.2S.S65 – ident: e_1_3_6_116_2 doi: 10.1109/MC.2018.2889637 – ident: e_1_3_6_55_2 doi: 10.1371/journal.pbio.3000306 – ident: e_1_3_6_49_2 doi: 10.1038/ncomms12468 – ident: e_1_3_6_10_2 doi: 10.1086/605336 – ident: e_1_3_6_59_2 doi: 10.1242/jeb.01884 – volume: 51 start-page: e1 issue: 1 year: 2011 ident: e_1_3_6_11_2 article-title: Heart rate as an index of increased metabolic output in a bird with a complex courtship display publication-title: Integr. Comp. Biol. – ident: e_1_3_6_61_2 doi: 10.1371/journal.pone.0180269 – ident: e_1_3_6_65_2 doi: 10.1038/ncomms8197 – ident: e_1_3_6_137_2 doi: 10.1098/rstb.2012.0005 – ident: e_1_3_6_3_2 doi: 10.1242/jeb.165753 – ident: e_1_3_6_82_2 doi: 10.1109/MC.2007.443 – ident: e_1_3_6_76_2 doi: 10.1111/j.2041-210X.2010.00013.x – ident: e_1_3_6_122_2 doi: 10.1152/japplphysiol.00818.2019 – ident: e_1_3_6_108_2 doi: 10.1177/0310057X1304100605 – ident: e_1_3_6_120_2 doi: 10.1016/j.cbpb.2008.05.007 – ident: e_1_3_6_149_2 doi: 10.1126/science.aam9712 – ident: e_1_3_6_7_2 doi: 10.1016/j.cbpa.2016.07.004 – ident: e_1_3_6_74_2 doi: 10.7326/M15-1150 – ident: e_1_3_6_93_2 doi: 10.1038/srep10402 – ident: e_1_3_6_95_2 doi: 10.1152/ajpregu.00211.2016 – ident: e_1_3_6_83_2 doi: 10.1063/1.4916171 – ident: e_1_3_6_39_2 doi: 10.1002/ece3.6197 – ident: e_1_3_6_60_2 doi: 10.1186/s12983-016-0140-6 – ident: e_1_3_6_89_2 doi: 10.1098/rstb.2008.0304 – ident: e_1_3_6_112_2 doi: 10.1016/j.cub.2016.05.033 – ident: e_1_3_6_20_2 doi: 10.1038/s41598-019-49689-7 – ident: e_1_3_6_86_2 doi: 10.1117/12.2084279 – ident: e_1_3_6_129_2 doi: 10.1056/NEJMoa2001017 – ident: e_1_3_6_36_2 doi: 10.1126/science.1255642 – ident: e_1_3_6_41_2 doi: 10.1073/pnas.1216244110 – ident: e_1_3_6_73_2 doi: 10.1088/1361-6579/ab299e – volume: 50 start-page: 1 year: 2017 ident: e_1_3_6_118_2 article-title: Smart computing and sensing technologies for animal welfare: a systematic review publication-title: Assoc. Comput. Mach. – ident: e_1_3_6_31_2 doi: 10.1016/j.cbpa.2020.110841 – ident: e_1_3_6_84_2 doi: 10.1098/rstb.2020.0229 – ident: e_1_3_6_25_2 doi: 10.1136/thoraxjnl-2018-212136 – ident: e_1_3_6_91_2 doi: 10.1038/s41578-019-0150-z – ident: e_1_3_6_101_2 doi: 10.1242/jeb.147058 – ident: e_1_3_6_32_2 doi: 10.1017/S003224740005484X – ident: e_1_3_6_50_2 doi: 10.1093/sleep/zsz311 – ident: e_1_3_6_54_2 doi: 10.1098/rstb.2020.0218 – ident: e_1_3_6_64_2 doi: 10.1111/j.1557-9263.2010.00302.x – ident: e_1_3_6_62_2 doi: 10.1111/1749-4877.12364 – ident: e_1_3_6_141_2 doi: 10.1038/s41558-019-0666-7 – ident: e_1_3_6_18_2 doi: 10.1186/1471-2288-10-98 – ident: e_1_3_6_127_2 doi: 10.1038/s41598-018-23891-5 – volume: 46 start-page: E14 year: 2006 ident: e_1_3_6_14_2 article-title: Calibration of heart rate and energy expenditure during flight and at rest in a passerine publication-title: Integr. Comp. Biol. – ident: e_1_3_6_27_2 doi: 10.1098/rstb.2020.0230 – ident: e_1_3_6_45_2 doi: 10.1242/jeb.230219 – ident: e_1_3_6_133_2 doi: 10.1016/j.cub.2020.10.015 – ident: e_1_3_6_72_2 doi: 10.1038/s41746-020-0226-6 – volume: 216 start-page: 537 year: 2013 ident: e_1_3_6_78_2 article-title: Implantation reduces the negative effects of bio-logging devices on birds publication-title: J. Exp. Biol. – ident: e_1_3_6_109_2 doi: 10.1136/bmj.320.7237.759 – ident: e_1_3_6_105_2 doi: 10.1186/s40317-019-0182-6 – ident: e_1_3_6_107_2 doi: 10.47536/jcrm.v20i1.237 – ident: e_1_3_6_48_2 doi: 10.1016/j.cub.2020.06.085 – ident: e_1_3_6_115_2 doi: 10.1093/tas/txx006 – ident: e_1_3_6_138_2 doi: 10.1152/physrev.1991.71.4.1135 – ident: e_1_3_6_58_2 doi: 10.1098/rsbl.2005.0356 – ident: e_1_3_6_150_2 doi: 10.1038/s41559-020-1237-z – ident: e_1_3_6_81_2 doi: 10.2307/3545707 – ident: e_1_3_6_114_2 doi: 10.1186/s40317-015-0045-8 – ident: e_1_3_6_19_2 doi: 10.1038/s41551-021-00685-1 – ident: e_1_3_6_37_2 doi: 10.3354/esr00064 – ident: e_1_3_6_22_2 doi: 10.1093/conphys/coaa126 – ident: e_1_3_6_33_2 doi: 10.1098/rsbl.2009.0089 – ident: e_1_3_6_146_2 doi: 10.1038/s41586-020-2903-7 – ident: e_1_3_6_94_2 doi: 10.1577/1548-8446(2004)29[10:TEAOOR]2.0.CO;2 – ident: e_1_3_6_148_2 doi: 10.1038/s41586-020-2126-y – volume: 147 start-page: 142 year: 2006 ident: e_1_3_6_15_2 article-title: Heart rate and wingbeat frequency in naturally-migrating Swainson's thrushes publication-title: J. Ornithol. – ident: e_1_3_6_98_2 doi: 10.1098/rstb.2020.0222 – ident: e_1_3_6_119_2 – ident: e_1_3_6_126_2 doi: 10.1152/physiol.00046.2018 – ident: e_1_3_6_132_2 doi: 10.1111/j.1863-2378.2012.01528.x – ident: e_1_3_6_44_2 doi: 10.1038/s41598-019-45657-3 – ident: e_1_3_6_134_2 doi: 10.1016/j.tim.2014.12.004 – ident: e_1_3_6_143_2 doi: 10.1146/annurev.ecolsys.37.091305.110100 – ident: e_1_3_6_40_2 doi: 10.1186/s40462-017-0097-x – ident: e_1_3_6_90_2 doi: 10.1111/2041-210X.13216 – ident: e_1_3_6_106_2 doi: 10.1111/2041-210X.12172 – ident: e_1_3_6_136_2 doi: 10.1038/s41598-019-51572-4 – ident: e_1_3_6_96_2 doi: 10.1038/s41528-018-0025-1 – ident: e_1_3_6_70_2 doi: 10.1038/s41746-019-0150-9 – ident: e_1_3_6_85_2 doi: 10.1088/0964-1726/24/2/025031 – ident: e_1_3_6_128_2 doi: 10.1074/jbc.M306839200 – ident: e_1_3_6_57_2 doi: 10.3354/meps296183 – ident: e_1_3_6_29_2 doi: 10.1098/rstb.2021.0028 – ident: e_1_3_6_140_2 doi: 10.1093/icb/icw094 – ident: e_1_3_6_42_2 doi: 10.1126/science.1146788 – ident: e_1_3_6_52_2 doi: 10.1016/j.jneumeth.2016.11.010 – ident: e_1_3_6_13_2 doi: 10.1098/rsos.171359 – ident: e_1_3_6_125_2 doi: 10.1016/j.reach.2019.100025 – ident: e_1_3_6_80_2 doi: 10.1111/2041-210X.13013 – ident: e_1_3_6_35_2 doi: 10.1126/science.aaa2478 – ident: e_1_3_6_67_2 doi: 10.1002/ange.201904416 – ident: e_1_3_6_69_2 doi: 10.3390/bios10060056 – ident: e_1_3_6_92_2 doi: 10.1038/s41591-018-0196-2 – ident: e_1_3_6_111_2 doi: 10.1097/00003246-198510000-00009 |
SSID | ssj0009574 |
Score | 2.504202 |
SecondaryResourceType | review_article |
Snippet | Thus far, ecophysiology research has predominantly been conducted within controlled laboratory-based environments, owing to a mismatch between the recording... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20200230 |
SubjectTerms | Animals Animals, Wild Heart Rate - physiology Opinion Piece Physiology - instrumentation Physiology - trends Vertebrates - physiology |
Title | Future trends in measuring physiology in free-living animals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34176330 https://www.proquest.com/docview/2545988493 https://pubmed.ncbi.nlm.nih.gov/PMC8237165 |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfKEIgviJVXeSlISICmhDR2bEfiC6BVFawDplb0W5SHrUXrsmlNEeOv5_zIC4o0-BJFrpNWvuv57nz3-yH0glMZSMZyl4DpcwkEym4qaer6aehjxhImNH_K7JBOF-TjMlwOBj86VUubKvWyn1v7Sv5HqjAGclVdsv8g2ealMAD3IF-4goTheiUZTzQgiCoWt3WtpzrjpxvM1fobfCUYlxdCuKviu-lILE6T1brrlX6p-Qy0xKqWQnxdlxCYLENd4qnOFTQNiKdsDcTae-89y2rZdllmbXViN6kz7RxEHassv6FM3ju6bPX0aKNZZtsM7rfiBPZww7A96yYqAp15NX2U1rbCPugGkeEJ8cSWMWuQMaNdzeN2m7AW1g903LTV_PuRamkAtzn11DyvntjH2T78HE8WBwfxfH85v4auBxBgKO6LT195B65Z43c3P6-B--Rv-m_vuzN_xCi_l9p2fJf5HXTbBh3OO6NBu2ggyiG6YQR2OUQ3Z7bAYoh2ra1fO68sIPnru-it0TPH6JlTlE6jZ06rZ2q8o2eO1bN7aDHZn3-YupZ1w80gtK1cynORcJ-kBOdjGgqa5TjJmMiCjElGaTgGH5yRLBGCcTqm0o9kxEKJQyJxEkh8H-2UZ6V4iBxK83EaJIJIIUmegK8bYniQw53g2Ccj5NaLF2cWkl4xo6xiUxrBY7XYsVrsWC32CL1s5p8bMJa_znxeyyIGe6kOwZJSnG3WcQAhQ8Q5ifAIPTCyad4FHh1st-pp1pNaM0Fhsfc_KYtjjcmuMJ9gtR5d4Xsfo1vt3-MJ2qkuNuIpeLZV-kwr4S8ZDKX_ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+trends+in+measuring+physiology+in+free-living+animals&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Williams%2C+H+J&rft.au=Shipley%2C+J+Ryan&rft.au=Rutz%2C+C&rft.au=Wikelski%2C+M&rft.date=2021-08-16&rft.issn=1471-2970&rft.eissn=1471-2970&rft.volume=376&rft.issue=1831&rft.spage=20200230&rft_id=info:doi/10.1098%2Frstb.2020.0230&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |