Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency a...
Saved in:
Published in | PLoS computational biology Vol. 10; no. 9; p. e1003848 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.09.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. |
---|---|
AbstractList |
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed mini Himar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the mini Himar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential , and that genes that contain insertions are not always nonessential . The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis , but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. Metabolic modeling techniques play a central role in rational design of industrial strains, personalized medicine, and automated network reconstruction. However, due to the large size of models, very few have been comprehensively tested using single gene knockout mutants for every gene in the model. Such a genetic test could evaluate whether genes that for a given condition are predicted to be essential by a model, are indeed essential in reality (and vice versa). We developed a new probability-based technology that identifies the essentiality of genes from observed transposon insertion data. This data was acquired by pooling tens of thousands of transposon mutants, and localizing the insertion locations all at once by using massive parallel sequencing. We utilized this gene essentiality data for the genome-scale genetic validation of a metabolic model. For instance: our work identified nonessential genes that were predicted to be essential for growth by an existing metabolic model of Shewanella oneidensis , highlighting incomplete areas within this metabolic model. |
Audience | Academic |
Author | Palani, Nagendra P. Yang, Hong Libourel, Igor G. L. Krumholz, Elias W. Sadowsky, Michael J. Odlyzko, Andrew M. Brutinel, Evan D. Gralnick, Jeffrey A. |
AuthorAffiliation | The Pennsylvania State University, United States of America 4 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, United States of America 1 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America 5 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America 2 BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America |
AuthorAffiliation_xml | – name: 2 BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America – name: 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America – name: 5 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America – name: 1 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America – name: 4 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, United States of America – name: The Pennsylvania State University, United States of America |
Author_xml | – sequence: 1 givenname: Hong surname: Yang fullname: Yang, Hong – sequence: 2 givenname: Elias W. surname: Krumholz fullname: Krumholz, Elias W. – sequence: 3 givenname: Evan D. surname: Brutinel fullname: Brutinel, Evan D. – sequence: 4 givenname: Nagendra P. surname: Palani fullname: Palani, Nagendra P. – sequence: 5 givenname: Michael J. surname: Sadowsky fullname: Sadowsky, Michael J. – sequence: 6 givenname: Andrew M. surname: Odlyzko fullname: Odlyzko, Andrew M. – sequence: 7 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. – sequence: 8 givenname: Igor G. L. surname: Libourel fullname: Libourel, Igor G. L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25233219$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkk1v1DAQhiNURD_gHyDIEQ672JvYjjkgVRUtK5UisS1Xa-JMtl6y9mJnKfvvmf1CXQ5IKIdEzvO-8854TrMjHzxm2UvOhrxQ_N0sLKOHbriwtRtyxoqqrJ5kJ1yIYqAKUR09-j7OTlOaESMqLZ9lxyMxKooR1yfZ4gp9mONgYqHD_DP2UIfO2fwG-4cQv-ffoHMN9C74PLT55B4fwGPXQU5hXIM-uZTfJeen-W0EnxYhETn2CeNGcxnxxxK9XeXnlHVF9PPsaQtdwhe791l2d_nx9uLT4PrL1fji_HpgJRP9oOSWMWl1U1aFqhFQQm0FGwFTshlxAaxFaliVNeMKpJZSqEoLUKq20HBZnGWvt76LLiSzG1YyXFaCFUwrQcR4SzQBZmYR3RziygRwZnMQ4tQAdWE7NExR9ZJpsC0roRVVowVaKam2bMsGyevDrtqynmNj0fcRugPTwz_e3Ztp-GlKCqTVOu6bnUEMNLHUm7lLdj1pj2FJuYUstGYjrQgdbtEpXZlxvg3kaOlpcO4s3Uvr6Py8oHFwVomSBG8PBMT0-KufwjIlM558_Q_25pB99bjpP93ut4uA91vAxpBSxNZY12-WiRK7znBm1qu8vx2zXmWzW2USl3-J9_7_lP0GS4L7fA |
CitedBy_id | crossref_primary_10_1021_acssynbio_9b00188 crossref_primary_10_1038_s41598_021_92534_z crossref_primary_10_1016_j_bpj_2017_06_018 crossref_primary_10_1016_j_cels_2017_01_010 crossref_primary_10_1038_ncomms13270 crossref_primary_10_1039_D3CS00537B crossref_primary_10_1038_s42003_019_0567_3 crossref_primary_10_3389_fmicb_2016_01873 crossref_primary_10_1016_j_celrep_2020_107722 crossref_primary_10_3389_fbioe_2022_913077 crossref_primary_10_1111_1751_7915_14469 crossref_primary_10_1021_acssynbio_2c00323 crossref_primary_10_1099_mgen_0_000140 crossref_primary_10_1128_JB_00340_17 crossref_primary_10_1371_journal_pgen_1007357 crossref_primary_10_1186_s12918_017_0426_0 crossref_primary_10_1111_omi_12256 crossref_primary_10_1021_acssynbio_8b00432 crossref_primary_10_1074_jbc_M114_634121 crossref_primary_10_1073_pnas_1419677112 |
Cites_doi | 10.1186/1752-0509-8-31 10.1128/JB.00740-06 10.1186/1471-2105-14-303 10.1073/pnas.0803281105 10.1073/pnas.2036282100 10.1371/journal.pone.0043012 10.1186/1752-0509-6-30 10.1093/genetics/149.1.179 10.1093/nar/gkt444 10.1128/AEM.71.8.4935-4937.2005 10.1093/nar/gkq368 10.1016/j.copbio.2011.10.007 10.4161/rna.24765 10.1093/bioinformatics/bts634 10.1186/1471-2164-13-578 10.1371/journal.ppat.1002946 10.1038/msb.2009.56 10.1093/nar/gkt654 10.1038/nmeth.1377 10.1371/journal.pgen.1002385 10.1073/pnas.1222783110 10.1016/j.chom.2009.08.003 10.1038/nrmicro3033 10.1093/nar/gkr1020 10.1101/gr.097097.109 10.1093/jxb/err407 10.1038/nbt.1672 10.1146/annurev.biochem.71.110601.135414 10.1016/j.biosystems.2011.10.003 10.1093/nar/gkr1065 10.1038/nprot.2011.308 10.1128/JB.187.10.3293-3301.2005 10.1101/gr.093955.109 10.1038/msb.2011.65 10.1038/msb.2011.58 10.1038/nbt.1568 10.1038/msb.2013.52 10.1038/sj.emboj.7601871 10.1111/j.1365-2958.2012.08196.x 10.1021/cb300477w 10.1371/journal.ppat.1002828 10.1111/j.1365-2958.2010.07353.x 10.1371/journal.pcbi.1000822 10.1128/JB.186.23.8096-8104.2004 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2014 Public Library of Science 2014 Yang et al 2014 Yang et al 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Using Transposon Insertion Frequency Analysis. PLoS Comput Biol 10(9): e1003848. doi:10.1371/journal.pcbi.1003848 |
Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Yang et al 2014 Yang et al – notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Using Transposon Insertion Frequency Analysis. PLoS Comput Biol 10(9): e1003848. doi:10.1371/journal.pcbi.1003848 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1003848 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Transposon Insertion Frequency Analysis |
EISSN | 1553-7358 |
ExternalDocumentID | 1685030975 oai_doaj_org_article_07abc409acf04af58d95ec660176f4de PMC4168976 A389510854 25233219 10_1371_journal_pcbi_1003848 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB PV9 RIG RZL WOQ PMFND 7X8 5PM PUEGO - 3V. AAPBV ABPTK ADACO BBAFP M0N M~E PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c605t-41c006c9d4837beae6abc502a076d215a0fe84874b017a696657895a77bcad163 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Fri Nov 26 17:13:21 EST 2021 Wed Aug 27 01:28:21 EDT 2025 Thu Aug 21 14:03:42 EDT 2025 Tue Aug 05 10:06:41 EDT 2025 Tue Jun 10 20:29:33 EDT 2025 Fri Jun 27 04:36:00 EDT 2025 Fri Jun 27 05:05:58 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Tue Jul 01 01:15:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-41c006c9d4837beae6abc502a076d215a0fe84874b017a696657895a77bcad163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: HY AMO JAG IGLL. Performed the experiments: HY EWK EDB NPP JAG IGLL. Analyzed the data: HY EWK EDB NPP JAG IGLL. Contributed to the writing of the manuscript: HY NPP MJS JAG AMO IGLL. The authors have declared that no competing interests exist. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1003848 |
PMID | 25233219 |
PQID | 1563990297 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685030975 doaj_primary_oai_doaj_org_article_07abc409acf04af58d95ec660176f4de pubmedcentral_primary_oai_pubmedcentral_nih_gov_4168976 proquest_miscellaneous_1563990297 gale_infotracacademiconefile_A389510854 gale_incontextgauss_ISR_A389510854 gale_incontextgauss_ISN_A389510854 pubmed_primary_25233219 crossref_citationtrail_10_1371_journal_pcbi_1003848 crossref_primary_10_1371_journal_pcbi_1003848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-01 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2014 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | L Barquist (ref7) 2013; 10 YJ Zhang (ref14) 2012; 8 AM Smith (ref6) 2010; 38 JD Orth (ref41) 2012; 6 T van Opijnen (ref4) 2009; 6 J Schellenberger (ref43) 2011; 6 KM Thormann (ref17) 2004; 186 CR Raetz (ref34) 2002; 71 TG Dong (ref9) 2013; 110 JD Orth (ref37) 2011; 7 CS Henry (ref22) 2010; 28 DE Cameron (ref1) 2008; 105 BA Klein (ref11) 2012; 13 R Bouhenni (ref15) 2005; 71 ED Brutinel (ref28) 2012; 86 WK Ong (ref21) 2014; 8 PF Suthers (ref40) 2009; 5 TY Kim (ref23) 2012; 23 R Baran (ref19) 2013; 8 L Wang (ref20) 2013; 29 R McClure (ref38) 2013; 41 MA Jacobs (ref2) 2003; 100 B Christen (ref13) 2011; 7 MA Dejesus (ref26) 2013; 14 HM Salis (ref33) 2009; 27 EW Krumholz (ref24) 2012; 63 AL Goodman (ref10) 2009; 6 A Deutschbauer (ref18) 2011; 7 EJ O'Brien (ref42) 2013; 9 B Taboada (ref44) 2012; 40 MC Chao (ref27) 2013; 41 S Fossum (ref31) 2007; 26 M Punta (ref32) 2012; 40 GE Pinchuk (ref29) 2010; 6 DJ Lampe (ref30) 1998; 149 T van Opijnen (ref3) 2013; 11 W Carpentier (ref16) 2005; 187 A Zomer (ref25) 2012; 7 GT Crimmins (ref8) 2012; 8 GC Langridge (ref12) 2009; 19 CM Flynn (ref36) 2012; 107 AM Smith (ref5) 2009; 19 AR Joyce (ref35) 2006; 188 ED Covington (ref39) 2010; 78 23114059 - BMC Genomics. 2012;13:578 19690570 - Mol Syst Biol. 2009;5:301 23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140 22024451 - Biosystems. 2012 Feb;107(2):120-8 19801975 - Nat Biotechnol. 2009 Oct;27(10):946-50 21988831 - Mol Syst Biol. 2011;7:535 21878915 - Mol Syst Biol. 2011;7:528 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83 23082955 - ACS Chem Biol. 2013 Jan 18;8(1):189-99 19748469 - Cell Host Microbe. 2009 Sep 17;6(3):279-89 21886097 - Nat Protoc. 2011 Sep;6(9):1290-307 17914458 - EMBO J. 2007 Oct 31;26(21):4514-22 19826075 - Genome Res. 2009 Dec;19(12):2308-16 20589080 - PLoS Comput Biol. 2010 Jun;6(6):e1000822 12045108 - Annu Rev Biochem. 2002;71:635-700 17012394 - J Bacteriol. 2006 Dec;188(23):8259-71 19767758 - Nat Methods. 2009 Oct;6(10):767-72 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 22207618 - J Exp Bot. 2012 Mar;63(6):2353-62 23028335 - PLoS Pathog. 2012 Sep;8(9):e1002946 22125499 - PLoS Genet. 2011 Nov;7(11):e1002385 22096236 - Nucleic Acids Res. 2012 Jan;40(Database issue):D627-31 24103077 - BMC Bioinformatics. 2013;14:303 20802497 - Nat Biotechnol. 2010 Sep;28(9):977-82 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32 22876175 - PLoS Pathog. 2012;8(8):e1002828 23712350 - Nat Rev Microbiol. 2013 Jul;11(7):435-42 23635712 - RNA Biol. 2013 Jul;10(7):1161-9 9584095 - Genetics. 1998 May;149(1):179-87 20460461 - Nucleic Acids Res. 2010 Jul;38(13):e142 22548736 - BMC Syst Biol. 2012;6:30 16085900 - Appl Environ Microbiol. 2005 Aug;71(8):4935-7 23271269 - Bioinformatics. 2013 Feb 1;29(3):338-46 14617778 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44 15547283 - J Bacteriol. 2004 Dec;186(23):8096-104 19622793 - Genome Res. 2009 Oct;19(10):1836-42 22900082 - PLoS One. 2012;7(8):e43012 24621294 - BMC Syst Biol. 2014;8:31 15866913 - J Bacteriol. 2005 May;187(10):3293-301 22054827 - Curr Opin Biotechnol. 2012 Aug;23(4):617-23 23362380 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2623-8 24084808 - Mol Syst Biol. 2013;9:693 23901011 - Nucleic Acids Res. 2013 Oct;41(19):9033-48 |
References_xml | – volume: 8 start-page: 31 year: 2014 ident: ref21 article-title: Comparisons of Shewanella strains based on genome annotations, modeling, and experiments publication-title: BMC Syst Biol doi: 10.1186/1752-0509-8-31 – volume: 188 start-page: 8259 year: 2006 ident: ref35 article-title: Experimental and computational assessment of conditionally essential genes in Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.00740-06 – volume: 14 start-page: 303 year: 2013 ident: ref26 article-title: A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-303 – volume: 105 start-page: 8736 year: 2008 ident: ref1 article-title: A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0803281105 – volume: 100 start-page: 14339 year: 2003 ident: ref2 article-title: Comprehensive transposon mutant library of Pseudomonas aeruginosa publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.2036282100 – volume: 7 start-page: e43012 year: 2012 ident: ref25 article-title: ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data publication-title: PLoS One doi: 10.1371/journal.pone.0043012 – volume: 6 start-page: 30 year: 2012 ident: ref41 article-title: Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-30 – volume: 149 start-page: 179 year: 1998 ident: ref30 article-title: Factors affecting transposition of the Himar1 mariner transposon in vitro publication-title: Genetics doi: 10.1093/genetics/149.1.179 – volume: 41 start-page: e140 year: 2013 ident: ref38 article-title: Computational analysis of bacterial RNA-Seq data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt444 – volume: 71 start-page: 4935 year: 2005 ident: ref15 article-title: Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon publication-title: Applied and environmental microbiology doi: 10.1128/AEM.71.8.4935-4937.2005 – volume: 38 start-page: e142 year: 2010 ident: ref6 article-title: Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples publication-title: Nucleic acids research doi: 10.1093/nar/gkq368 – volume: 23 start-page: 617 year: 2012 ident: ref23 article-title: Recent advances in reconstruction and applications of genome-scale metabolic models publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2011.10.007 – volume: 10 start-page: 1161 year: 2013 ident: ref7 article-title: Approaches to querying bacterial genomes with transposon-insertion sequencing publication-title: RNA biology doi: 10.4161/rna.24765 – volume: 29 start-page: 338 year: 2013 ident: ref20 article-title: Inference of gene regulatory networks from genome-wide knockout fitness data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts634 – volume: 13 start-page: 578 year: 2012 ident: ref11 article-title: Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis publication-title: BMC genomics doi: 10.1186/1471-2164-13-578 – volume: 8 start-page: e1002946 year: 2012 ident: ref14 article-title: Global assessment of genomic regions required for growth in Mycobacterium tuberculosis publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1002946 – volume: 5 start-page: 301 year: 2009 ident: ref40 article-title: Genome-scale gene/reaction essentiality and synthetic lethality analysis publication-title: Mol Syst Biol doi: 10.1038/msb.2009.56 – volume: 41 start-page: 9033 year: 2013 ident: ref27 article-title: High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt654 – volume: 6 start-page: 767 year: 2009 ident: ref4 article-title: Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms publication-title: Nat Methods doi: 10.1038/nmeth.1377 – volume: 7 start-page: e1002385 year: 2011 ident: ref18 article-title: Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002385 – volume: 110 start-page: 2623 year: 2013 ident: ref9 article-title: Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1222783110 – volume: 6 start-page: 279 year: 2009 ident: ref10 article-title: Identifying genetic determinants needed to establish a human gut symbiont in its habitat publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2009.08.003 – volume: 11 start-page: 435 year: 2013 ident: ref3 article-title: Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3033 – volume: 40 start-page: D627 year: 2012 ident: ref44 article-title: ProOpDB: Prokaryotic Operon DataBase publication-title: NuclAcids Res doi: 10.1093/nar/gkr1020 – volume: 19 start-page: 2308 year: 2009 ident: ref12 article-title: Simultaneous assay of every Salmonella typhi gene using one million transposon mutants publication-title: Genome Res doi: 10.1101/gr.097097.109 – volume: 63 start-page: 2353 year: 2012 ident: ref24 article-title: Genome-wide metabolic network reconstruction of the picoalga Ostreococcus publication-title: J Exp Bot doi: 10.1093/jxb/err407 – volume: 28 start-page: 977 year: 2010 ident: ref22 article-title: High-throughput generation, optimization and analysis of genome-scale metabolic models publication-title: Nat Biotechnol doi: 10.1038/nbt.1672 – volume: 71 start-page: 635 year: 2002 ident: ref34 article-title: Lipopolysaccharide endotoxins publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.71.110601.135414 – volume: 107 start-page: 120 year: 2012 ident: ref36 article-title: Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1 publication-title: Biosystems doi: 10.1016/j.biosystems.2011.10.003 – volume: 40 start-page: D290 year: 2012 ident: ref32 article-title: The Pfam protein families database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1065 – volume: 6 start-page: 1290 year: 2011 ident: ref43 article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 publication-title: Nature Protocols doi: 10.1038/nprot.2011.308 – volume: 187 start-page: 3293 year: 2005 ident: ref16 article-title: Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor publication-title: Journal of bacteriology doi: 10.1128/JB.187.10.3293-3301.2005 – volume: 19 start-page: 1836 year: 2009 ident: ref5 article-title: Quantitative phenotyping via deep barcode sequencing publication-title: Genome research doi: 10.1101/gr.093955.109 – volume: 7 start-page: 535 year: 2011 ident: ref37 article-title: A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011 publication-title: Mol Syst Biol doi: 10.1038/msb.2011.65 – volume: 7 start-page: 528 year: 2011 ident: ref13 article-title: The essential genome of a bacterium publication-title: Molecular systems biology doi: 10.1038/msb.2011.58 – volume: 27 start-page: 946 year: 2009 ident: ref33 article-title: Automated design of synthetic ribosome binding sites to control protein expression publication-title: Nat Biotechnol doi: 10.1038/nbt.1568 – volume: 9 start-page: 693 year: 2013 ident: ref42 article-title: Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction publication-title: Mol Syst Biol doi: 10.1038/msb.2013.52 – volume: 26 start-page: 4514 year: 2007 ident: ref31 article-title: Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli publication-title: Embo Journal doi: 10.1038/sj.emboj.7601871 – volume: 86 start-page: 273 year: 2012 ident: ref28 article-title: Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.08196.x – volume: 8 start-page: 189 year: 2013 ident: ref19 article-title: Metabolic footprinting of mutant libraries to map metabolite utilization to genotype publication-title: ACS Chem Biol doi: 10.1021/cb300477w – volume: 8 start-page: e1002828 year: 2012 ident: ref8 article-title: Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1002828 – volume: 78 start-page: 519 year: 2010 ident: ref39 article-title: An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2010.07353.x – volume: 6 start-page: e1000822 year: 2010 ident: ref29 article-title: Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000822 – volume: 186 start-page: 8096 year: 2004 ident: ref17 article-title: Initial Phases of biofilm formation in Shewanella oneidensis MR-1 publication-title: Journal of bacteriology doi: 10.1128/JB.186.23.8096-8104.2004 – reference: 22054827 - Curr Opin Biotechnol. 2012 Aug;23(4):617-23 – reference: 23114059 - BMC Genomics. 2012;13:578 – reference: 21878915 - Mol Syst Biol. 2011;7:528 – reference: 23082955 - ACS Chem Biol. 2013 Jan 18;8(1):189-99 – reference: 23271269 - Bioinformatics. 2013 Feb 1;29(3):338-46 – reference: 19826075 - Genome Res. 2009 Dec;19(12):2308-16 – reference: 20589080 - PLoS Comput Biol. 2010 Jun;6(6):e1000822 – reference: 22876175 - PLoS Pathog. 2012;8(8):e1002828 – reference: 23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140 – reference: 9584095 - Genetics. 1998 May;149(1):179-87 – reference: 20460461 - Nucleic Acids Res. 2010 Jul;38(13):e142 – reference: 23635712 - RNA Biol. 2013 Jul;10(7):1161-9 – reference: 23028335 - PLoS Pathog. 2012 Sep;8(9):e1002946 – reference: 12045108 - Annu Rev Biochem. 2002;71:635-700 – reference: 17914458 - EMBO J. 2007 Oct 31;26(21):4514-22 – reference: 21988831 - Mol Syst Biol. 2011;7:535 – reference: 22548736 - BMC Syst Biol. 2012;6:30 – reference: 19767758 - Nat Methods. 2009 Oct;6(10):767-72 – reference: 16085900 - Appl Environ Microbiol. 2005 Aug;71(8):4935-7 – reference: 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41 – reference: 22024451 - Biosystems. 2012 Feb;107(2):120-8 – reference: 19748469 - Cell Host Microbe. 2009 Sep 17;6(3):279-89 – reference: 23901011 - Nucleic Acids Res. 2013 Oct;41(19):9033-48 – reference: 19622793 - Genome Res. 2009 Oct;19(10):1836-42 – reference: 21886097 - Nat Protoc. 2011 Sep;6(9):1290-307 – reference: 24103077 - BMC Bioinformatics. 2013;14:303 – reference: 15866913 - J Bacteriol. 2005 May;187(10):3293-301 – reference: 22900082 - PLoS One. 2012;7(8):e43012 – reference: 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32 – reference: 24621294 - BMC Syst Biol. 2014;8:31 – reference: 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83 – reference: 23712350 - Nat Rev Microbiol. 2013 Jul;11(7):435-42 – reference: 15547283 - J Bacteriol. 2004 Dec;186(23):8096-104 – reference: 24084808 - Mol Syst Biol. 2013;9:693 – reference: 19690570 - Mol Syst Biol. 2009;5:301 – reference: 22125499 - PLoS Genet. 2011 Nov;7(11):e1002385 – reference: 17012394 - J Bacteriol. 2006 Dec;188(23):8259-71 – reference: 22096236 - Nucleic Acids Res. 2012 Jan;40(Database issue):D627-31 – reference: 14617778 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44 – reference: 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 – reference: 23362380 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2623-8 – reference: 19801975 - Nat Biotechnol. 2009 Oct;27(10):946-50 – reference: 20802497 - Nat Biotechnol. 2010 Sep;28(9):977-82 – reference: 22207618 - J Exp Bot. 2012 Mar;63(6):2353-62 |
SSID | ssj0035896 |
Score | 2.2376914 |
Snippet | Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function... Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function... Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1003848 |
SubjectTerms | Agreements Automation Binding sites Biology and Life Sciences Deoxyribonucleic acid DNA DNA Transposable Elements - genetics DNA, Bacterial - analysis DNA, Bacterial - genetics Gene mutations Gene Regulatory Networks - genetics Genes Genetic aspects Genetic testing Genome, Bacterial - genetics Genomes Genomics High-Throughput Nucleotide Sequencing - methods Metabolic Networks and Pathways - genetics Metabolism Metabolites Methods Mutagenesis Mutagenesis, Site-Directed Mutation Physiological aspects Proteins Shewanella Shewanella - genetics Shewanella - metabolism Transposons |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6TvuC7UUelLjtSXLPqalaVpoDk0DexPyWEoMG3uJdyn5952xtMu6tOTS6-4IrJmR5htm9A1j7zJlNUDtBCjfCOmbTFQgQSAYxejbZE5Lepz8_bQ4OZffFmqxN-qLesICPXBQ3GGqbQ2YhFjwqbRelU2lHBSYR-jCy8bR7Ysxb5tMhTs4V-U4mYuG4gidy0V8NJfr-WG00YcV1C31COQlzf7ZC0ojd__uhp6tlv3wN_j5ZxflXlg6fsDuRzzJj8I-HrI7rnvE7oYJkzeP2eqL6_orJwY0heNXbo02X7bAu9D9zdHP2jBVifeen126X5b6XizvOyLA6oZ24NQaf8HXgQUd4TlvOyrh0xp_HTqxb7iN5CZP2Pnx55-fTkQcsiAAM5m1kHPAgwdVQ9TytbOuQH2rNLOpLhrEAzb1DjWkZY0at0VFlZqyQgvrGmyDaO4pm3X4TQeMQ5VaqR3owlaytGVdziWuVQA-dz7LEpZvtWwgMpDTIIylGctqGjORoDRDtjHRNgkTu1WrwMBxi_xHMuBOlvizxx_Qq0z0KnObVyXsLZnfEENGRy04F3YzDObr2ak5Qoin6M2G_KfQj4nQ-yjke9ws2PjsAVVGzFsTyQPyte2mBjMvSkUVMK0S9mbrfwaPP9V00Bv6Dcoogpg0gSxhz4I_7naeqSzPMSIlTE88daKa6T9dezlSjCNMLxGoPv8funzB7iHKlKEx7yWbra837hUiuXX9ejy0vwEuhEp1 priority: 102 providerName: Directory of Open Access Journals |
Title | Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25233219 https://www.proquest.com/docview/1563990297 https://pubmed.ncbi.nlm.nih.gov/PMC4168976 https://doaj.org/article/07abc409acf04af58d95ec660176f4de http://dx.doi.org/10.1371/journal.pcbi.1003848 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdtymAvZd_1PoI2BntycWzJkh_GSLa67SBhNMvIm5BluQ1kdhYnbPnvd-ePMI-WsZeYxKcQ3Z18P-VO9yPkrc-1MCaxruFZ6rIs9d3IMOMCGIXom_pWMDycPJ6EFzP2ec7nB6TlbG0UWN66tUM-qdl6efrrx-4DLPj3FWuDGLSDTlcmWWDWP5BMHpIjiE0COQ3GbJ9XCLisGLuQLMcV8K45THfXt3SCVdXTf__k7q2WRXkbLP27uvKPcBU_IMcNzqTD2jEekgObPyL3aubJ3WOyOrd58d26UzCRpWO7AV9YLgyd1FXh9BvA85ptiRYZnd7YnxrrYTQtcmyMlZeLklbVBrTpjg6wnV7mmNrHMfG6rtDe0bbpyRMyi8--frxwG_IF18AOZ-OygYEFaaIUW84nVttQJ4Z7vvZEmAJO0F5mQUOCJbCmdRhhBkdGYHmRGJ0CyntKejn8phNCTeRpJqwRoY6Y1DKRAwZjuTFZYDPfd0jQalmZpjM5EmQsVZVuE7BDqZWm0DaqsY1D3P2oVd2Z4x_yIzTgXhb7alcfFOtr1SxT5QmYJWx5tck8pjMu04hbE8KuVYQZS61D3qD5FXbOyLE051pvy1JdTidqCNCP41kOdqfQVUfoXSOUFTBZo5vjEKAy7MjVkTxBX2snVapBKDlmxgR3yOvW_xQ8FjDXA95QbEGGI_REZjKHPKv9cT9zn_tBAJHKIaLjqR3VdO_ki5uq9TjAdwkA9vl_6v4FuQ9Ak9W1eS9Jb7Pe2lcA5jZJnxyKuYBXGZ_3ydFw9GkUw3V0Nvly1a_-IOlXK_g3MgxRlA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Scale+Metabolic+Network+Validation+of+Shewanella+oneidensis+Using+Transposon+Insertion+Frequency+Analysis&rft.jtitle=PLoS+computational+biology&rft.au=Yang%2C+Hong&rft.au=Krumholz%2C+Elias+W.&rft.au=Brutinel%2C+Evan+D.&rft.au=Palani%2C+Nagendra+P.&rft.date=2014-09-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=10&rft.issue=9&rft.spage=e1003848&rft_id=info:doi/10.1371%2Fjournal.pcbi.1003848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1003848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |