Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis

Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency a...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 10; no. 9; p. e1003848
Main Authors Yang, Hong, Krumholz, Elias W., Brutinel, Evan D., Palani, Nagendra P., Sadowsky, Michael J., Odlyzko, Andrew M., Gralnick, Jeffrey A., Libourel, Igor G. L.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.
AbstractList   Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed mini Himar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the mini Himar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential , and that genes that contain insertions are not always nonessential . The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis , but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions. Metabolic modeling techniques play a central role in rational design of industrial strains, personalized medicine, and automated network reconstruction. However, due to the large size of models, very few have been comprehensively tested using single gene knockout mutants for every gene in the model. Such a genetic test could evaluate whether genes that for a given condition are predicted to be essential by a model, are indeed essential in reality (and vice versa). We developed a new probability-based technology that identifies the essentiality of genes from observed transposon insertion data. This data was acquired by pooling tens of thousands of transposon mutants, and localizing the insertion locations all at once by using massive parallel sequencing. We utilized this gene essentiality data for the genome-scale genetic validation of a metabolic model. For instance: our work identified nonessential genes that were predicted to be essential for growth by an existing metabolic model of Shewanella oneidensis , highlighting incomplete areas within this metabolic model.
Audience Academic
Author Palani, Nagendra P.
Yang, Hong
Libourel, Igor G. L.
Krumholz, Elias W.
Sadowsky, Michael J.
Odlyzko, Andrew M.
Brutinel, Evan D.
Gralnick, Jeffrey A.
AuthorAffiliation The Pennsylvania State University, United States of America
4 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, United States of America
1 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
5 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
2 BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
AuthorAffiliation_xml – name: 2 BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
– name: 3 Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
– name: 5 School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
– name: 1 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
– name: 4 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, United States of America
– name: The Pennsylvania State University, United States of America
Author_xml – sequence: 1
  givenname: Hong
  surname: Yang
  fullname: Yang, Hong
– sequence: 2
  givenname: Elias W.
  surname: Krumholz
  fullname: Krumholz, Elias W.
– sequence: 3
  givenname: Evan D.
  surname: Brutinel
  fullname: Brutinel, Evan D.
– sequence: 4
  givenname: Nagendra P.
  surname: Palani
  fullname: Palani, Nagendra P.
– sequence: 5
  givenname: Michael J.
  surname: Sadowsky
  fullname: Sadowsky, Michael J.
– sequence: 6
  givenname: Andrew M.
  surname: Odlyzko
  fullname: Odlyzko, Andrew M.
– sequence: 7
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
– sequence: 8
  givenname: Igor G. L.
  surname: Libourel
  fullname: Libourel, Igor G. L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25233219$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhiNURD_gHyDIEQ672JvYjjkgVRUtK5UisS1Xa-JMtl6y9mJnKfvvmf1CXQ5IKIdEzvO-8854TrMjHzxm2UvOhrxQ_N0sLKOHbriwtRtyxoqqrJ5kJ1yIYqAKUR09-j7OTlOaESMqLZ9lxyMxKooR1yfZ4gp9mONgYqHD_DP2UIfO2fwG-4cQv-ffoHMN9C74PLT55B4fwGPXQU5hXIM-uZTfJeen-W0EnxYhETn2CeNGcxnxxxK9XeXnlHVF9PPsaQtdwhe791l2d_nx9uLT4PrL1fji_HpgJRP9oOSWMWl1U1aFqhFQQm0FGwFTshlxAaxFaliVNeMKpJZSqEoLUKq20HBZnGWvt76LLiSzG1YyXFaCFUwrQcR4SzQBZmYR3RziygRwZnMQ4tQAdWE7NExR9ZJpsC0roRVVowVaKam2bMsGyevDrtqynmNj0fcRugPTwz_e3Ztp-GlKCqTVOu6bnUEMNLHUm7lLdj1pj2FJuYUstGYjrQgdbtEpXZlxvg3kaOlpcO4s3Uvr6Py8oHFwVomSBG8PBMT0-KufwjIlM558_Q_25pB99bjpP93ut4uA91vAxpBSxNZY12-WiRK7znBm1qu8vx2zXmWzW2USl3-J9_7_lP0GS4L7fA
CitedBy_id crossref_primary_10_1021_acssynbio_9b00188
crossref_primary_10_1038_s41598_021_92534_z
crossref_primary_10_1016_j_bpj_2017_06_018
crossref_primary_10_1016_j_cels_2017_01_010
crossref_primary_10_1038_ncomms13270
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1038_s42003_019_0567_3
crossref_primary_10_3389_fmicb_2016_01873
crossref_primary_10_1016_j_celrep_2020_107722
crossref_primary_10_3389_fbioe_2022_913077
crossref_primary_10_1111_1751_7915_14469
crossref_primary_10_1021_acssynbio_2c00323
crossref_primary_10_1099_mgen_0_000140
crossref_primary_10_1128_JB_00340_17
crossref_primary_10_1371_journal_pgen_1007357
crossref_primary_10_1186_s12918_017_0426_0
crossref_primary_10_1111_omi_12256
crossref_primary_10_1021_acssynbio_8b00432
crossref_primary_10_1074_jbc_M114_634121
crossref_primary_10_1073_pnas_1419677112
Cites_doi 10.1186/1752-0509-8-31
10.1128/JB.00740-06
10.1186/1471-2105-14-303
10.1073/pnas.0803281105
10.1073/pnas.2036282100
10.1371/journal.pone.0043012
10.1186/1752-0509-6-30
10.1093/genetics/149.1.179
10.1093/nar/gkt444
10.1128/AEM.71.8.4935-4937.2005
10.1093/nar/gkq368
10.1016/j.copbio.2011.10.007
10.4161/rna.24765
10.1093/bioinformatics/bts634
10.1186/1471-2164-13-578
10.1371/journal.ppat.1002946
10.1038/msb.2009.56
10.1093/nar/gkt654
10.1038/nmeth.1377
10.1371/journal.pgen.1002385
10.1073/pnas.1222783110
10.1016/j.chom.2009.08.003
10.1038/nrmicro3033
10.1093/nar/gkr1020
10.1101/gr.097097.109
10.1093/jxb/err407
10.1038/nbt.1672
10.1146/annurev.biochem.71.110601.135414
10.1016/j.biosystems.2011.10.003
10.1093/nar/gkr1065
10.1038/nprot.2011.308
10.1128/JB.187.10.3293-3301.2005
10.1101/gr.093955.109
10.1038/msb.2011.65
10.1038/msb.2011.58
10.1038/nbt.1568
10.1038/msb.2013.52
10.1038/sj.emboj.7601871
10.1111/j.1365-2958.2012.08196.x
10.1021/cb300477w
10.1371/journal.ppat.1002828
10.1111/j.1365-2958.2010.07353.x
10.1371/journal.pcbi.1000822
10.1128/JB.186.23.8096-8104.2004
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Yang et al 2014 Yang et al
2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Using Transposon Insertion Frequency Analysis. PLoS Comput Biol 10(9): e1003848. doi:10.1371/journal.pcbi.1003848
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Yang et al 2014 Yang et al
– notice: 2014 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Using Transposon Insertion Frequency Analysis. PLoS Comput Biol 10(9): e1003848. doi:10.1371/journal.pcbi.1003848
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1003848
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Transposon Insertion Frequency Analysis
EISSN 1553-7358
ExternalDocumentID 1685030975
oai_doaj_org_article_07abc409acf04af58d95ec660176f4de
PMC4168976
A389510854
25233219
10_1371_journal_pcbi_1003848
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
PV9
RIG
RZL
WOQ
PMFND
7X8
5PM
PUEGO
-
3V.
AAPBV
ABPTK
ADACO
BBAFP
M0N
M~E
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c605t-41c006c9d4837beae6abc502a076d215a0fe84874b017a696657895a77bcad163
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Nov 26 17:13:21 EST 2021
Wed Aug 27 01:28:21 EDT 2025
Thu Aug 21 14:03:42 EDT 2025
Tue Aug 05 10:06:41 EDT 2025
Tue Jun 10 20:29:33 EDT 2025
Fri Jun 27 04:36:00 EDT 2025
Fri Jun 27 05:05:58 EDT 2025
Mon Jul 21 06:04:40 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Tue Jul 01 01:15:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c605t-41c006c9d4837beae6abc502a076d215a0fe84874b017a696657895a77bcad163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: HY AMO JAG IGLL. Performed the experiments: HY EWK EDB NPP JAG IGLL. Analyzed the data: HY EWK EDB NPP JAG IGLL. Contributed to the writing of the manuscript: HY NPP MJS JAG AMO IGLL.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1003848
PMID 25233219
PQID 1563990297
PQPubID 23479
ParticipantIDs plos_journals_1685030975
doaj_primary_oai_doaj_org_article_07abc409acf04af58d95ec660176f4de
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4168976
proquest_miscellaneous_1563990297
gale_infotracacademiconefile_A389510854
gale_incontextgauss_ISR_A389510854
gale_incontextgauss_ISN_A389510854
pubmed_primary_25233219
crossref_citationtrail_10_1371_journal_pcbi_1003848
crossref_primary_10_1371_journal_pcbi_1003848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References L Barquist (ref7) 2013; 10
YJ Zhang (ref14) 2012; 8
AM Smith (ref6) 2010; 38
JD Orth (ref41) 2012; 6
T van Opijnen (ref4) 2009; 6
J Schellenberger (ref43) 2011; 6
KM Thormann (ref17) 2004; 186
CR Raetz (ref34) 2002; 71
TG Dong (ref9) 2013; 110
JD Orth (ref37) 2011; 7
CS Henry (ref22) 2010; 28
DE Cameron (ref1) 2008; 105
BA Klein (ref11) 2012; 13
R Bouhenni (ref15) 2005; 71
ED Brutinel (ref28) 2012; 86
WK Ong (ref21) 2014; 8
PF Suthers (ref40) 2009; 5
TY Kim (ref23) 2012; 23
R Baran (ref19) 2013; 8
L Wang (ref20) 2013; 29
R McClure (ref38) 2013; 41
MA Jacobs (ref2) 2003; 100
B Christen (ref13) 2011; 7
MA Dejesus (ref26) 2013; 14
HM Salis (ref33) 2009; 27
EW Krumholz (ref24) 2012; 63
AL Goodman (ref10) 2009; 6
A Deutschbauer (ref18) 2011; 7
EJ O'Brien (ref42) 2013; 9
B Taboada (ref44) 2012; 40
MC Chao (ref27) 2013; 41
S Fossum (ref31) 2007; 26
M Punta (ref32) 2012; 40
GE Pinchuk (ref29) 2010; 6
DJ Lampe (ref30) 1998; 149
T van Opijnen (ref3) 2013; 11
W Carpentier (ref16) 2005; 187
A Zomer (ref25) 2012; 7
GT Crimmins (ref8) 2012; 8
GC Langridge (ref12) 2009; 19
CM Flynn (ref36) 2012; 107
AM Smith (ref5) 2009; 19
AR Joyce (ref35) 2006; 188
ED Covington (ref39) 2010; 78
23114059 - BMC Genomics. 2012;13:578
19690570 - Mol Syst Biol. 2009;5:301
23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140
22024451 - Biosystems. 2012 Feb;107(2):120-8
19801975 - Nat Biotechnol. 2009 Oct;27(10):946-50
21988831 - Mol Syst Biol. 2011;7:535
21878915 - Mol Syst Biol. 2011;7:528
22925268 - Mol Microbiol. 2012 Oct;86(2):273-83
23082955 - ACS Chem Biol. 2013 Jan 18;8(1):189-99
19748469 - Cell Host Microbe. 2009 Sep 17;6(3):279-89
21886097 - Nat Protoc. 2011 Sep;6(9):1290-307
17914458 - EMBO J. 2007 Oct 31;26(21):4514-22
19826075 - Genome Res. 2009 Dec;19(12):2308-16
20589080 - PLoS Comput Biol. 2010 Jun;6(6):e1000822
12045108 - Annu Rev Biochem. 2002;71:635-700
17012394 - J Bacteriol. 2006 Dec;188(23):8259-71
19767758 - Nat Methods. 2009 Oct;6(10):767-72
22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
22207618 - J Exp Bot. 2012 Mar;63(6):2353-62
23028335 - PLoS Pathog. 2012 Sep;8(9):e1002946
22125499 - PLoS Genet. 2011 Nov;7(11):e1002385
22096236 - Nucleic Acids Res. 2012 Jan;40(Database issue):D627-31
24103077 - BMC Bioinformatics. 2013;14:303
20802497 - Nat Biotechnol. 2010 Sep;28(9):977-82
18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41
20807196 - Mol Microbiol. 2010 Oct;78(2):519-32
22876175 - PLoS Pathog. 2012;8(8):e1002828
23712350 - Nat Rev Microbiol. 2013 Jul;11(7):435-42
23635712 - RNA Biol. 2013 Jul;10(7):1161-9
9584095 - Genetics. 1998 May;149(1):179-87
20460461 - Nucleic Acids Res. 2010 Jul;38(13):e142
22548736 - BMC Syst Biol. 2012;6:30
16085900 - Appl Environ Microbiol. 2005 Aug;71(8):4935-7
23271269 - Bioinformatics. 2013 Feb 1;29(3):338-46
14617778 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44
15547283 - J Bacteriol. 2004 Dec;186(23):8096-104
19622793 - Genome Res. 2009 Oct;19(10):1836-42
22900082 - PLoS One. 2012;7(8):e43012
24621294 - BMC Syst Biol. 2014;8:31
15866913 - J Bacteriol. 2005 May;187(10):3293-301
22054827 - Curr Opin Biotechnol. 2012 Aug;23(4):617-23
23362380 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2623-8
24084808 - Mol Syst Biol. 2013;9:693
23901011 - Nucleic Acids Res. 2013 Oct;41(19):9033-48
References_xml – volume: 8
  start-page: 31
  year: 2014
  ident: ref21
  article-title: Comparisons of Shewanella strains based on genome annotations, modeling, and experiments
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-8-31
– volume: 188
  start-page: 8259
  year: 2006
  ident: ref35
  article-title: Experimental and computational assessment of conditionally essential genes in Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.00740-06
– volume: 14
  start-page: 303
  year: 2013
  ident: ref26
  article-title: A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-303
– volume: 105
  start-page: 8736
  year: 2008
  ident: ref1
  article-title: A defined transposon mutant library and its use in identifying motility genes in Vibrio cholerae
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0803281105
– volume: 100
  start-page: 14339
  year: 2003
  ident: ref2
  article-title: Comprehensive transposon mutant library of Pseudomonas aeruginosa
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.2036282100
– volume: 7
  start-page: e43012
  year: 2012
  ident: ref25
  article-title: ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043012
– volume: 6
  start-page: 30
  year: 2012
  ident: ref41
  article-title: Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-30
– volume: 149
  start-page: 179
  year: 1998
  ident: ref30
  article-title: Factors affecting transposition of the Himar1 mariner transposon in vitro
  publication-title: Genetics
  doi: 10.1093/genetics/149.1.179
– volume: 41
  start-page: e140
  year: 2013
  ident: ref38
  article-title: Computational analysis of bacterial RNA-Seq data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt444
– volume: 71
  start-page: 4935
  year: 2005
  ident: ref15
  article-title: Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon
  publication-title: Applied and environmental microbiology
  doi: 10.1128/AEM.71.8.4935-4937.2005
– volume: 38
  start-page: e142
  year: 2010
  ident: ref6
  article-title: Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkq368
– volume: 23
  start-page: 617
  year: 2012
  ident: ref23
  article-title: Recent advances in reconstruction and applications of genome-scale metabolic models
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2011.10.007
– volume: 10
  start-page: 1161
  year: 2013
  ident: ref7
  article-title: Approaches to querying bacterial genomes with transposon-insertion sequencing
  publication-title: RNA biology
  doi: 10.4161/rna.24765
– volume: 29
  start-page: 338
  year: 2013
  ident: ref20
  article-title: Inference of gene regulatory networks from genome-wide knockout fitness data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts634
– volume: 13
  start-page: 578
  year: 2012
  ident: ref11
  article-title: Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis
  publication-title: BMC genomics
  doi: 10.1186/1471-2164-13-578
– volume: 8
  start-page: e1002946
  year: 2012
  ident: ref14
  article-title: Global assessment of genomic regions required for growth in Mycobacterium tuberculosis
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1002946
– volume: 5
  start-page: 301
  year: 2009
  ident: ref40
  article-title: Genome-scale gene/reaction essentiality and synthetic lethality analysis
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.56
– volume: 41
  start-page: 9033
  year: 2013
  ident: ref27
  article-title: High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt654
– volume: 6
  start-page: 767
  year: 2009
  ident: ref4
  article-title: Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1377
– volume: 7
  start-page: e1002385
  year: 2011
  ident: ref18
  article-title: Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002385
– volume: 110
  start-page: 2623
  year: 2013
  ident: ref9
  article-title: Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1222783110
– volume: 6
  start-page: 279
  year: 2009
  ident: ref10
  article-title: Identifying genetic determinants needed to establish a human gut symbiont in its habitat
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2009.08.003
– volume: 11
  start-page: 435
  year: 2013
  ident: ref3
  article-title: Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3033
– volume: 40
  start-page: D627
  year: 2012
  ident: ref44
  article-title: ProOpDB: Prokaryotic Operon DataBase
  publication-title: NuclAcids Res
  doi: 10.1093/nar/gkr1020
– volume: 19
  start-page: 2308
  year: 2009
  ident: ref12
  article-title: Simultaneous assay of every Salmonella typhi gene using one million transposon mutants
  publication-title: Genome Res
  doi: 10.1101/gr.097097.109
– volume: 63
  start-page: 2353
  year: 2012
  ident: ref24
  article-title: Genome-wide metabolic network reconstruction of the picoalga Ostreococcus
  publication-title: J Exp Bot
  doi: 10.1093/jxb/err407
– volume: 28
  start-page: 977
  year: 2010
  ident: ref22
  article-title: High-throughput generation, optimization and analysis of genome-scale metabolic models
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1672
– volume: 71
  start-page: 635
  year: 2002
  ident: ref34
  article-title: Lipopolysaccharide endotoxins
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.71.110601.135414
– volume: 107
  start-page: 120
  year: 2012
  ident: ref36
  article-title: Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2011.10.003
– volume: 40
  start-page: D290
  year: 2012
  ident: ref32
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1065
– volume: 6
  start-page: 1290
  year: 2011
  ident: ref43
  article-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2011.308
– volume: 187
  start-page: 3293
  year: 2005
  ident: ref16
  article-title: Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor
  publication-title: Journal of bacteriology
  doi: 10.1128/JB.187.10.3293-3301.2005
– volume: 19
  start-page: 1836
  year: 2009
  ident: ref5
  article-title: Quantitative phenotyping via deep barcode sequencing
  publication-title: Genome research
  doi: 10.1101/gr.093955.109
– volume: 7
  start-page: 535
  year: 2011
  ident: ref37
  article-title: A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2011.65
– volume: 7
  start-page: 528
  year: 2011
  ident: ref13
  article-title: The essential genome of a bacterium
  publication-title: Molecular systems biology
  doi: 10.1038/msb.2011.58
– volume: 27
  start-page: 946
  year: 2009
  ident: ref33
  article-title: Automated design of synthetic ribosome binding sites to control protein expression
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1568
– volume: 9
  start-page: 693
  year: 2013
  ident: ref42
  article-title: Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2013.52
– volume: 26
  start-page: 4514
  year: 2007
  ident: ref31
  article-title: Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli
  publication-title: Embo Journal
  doi: 10.1038/sj.emboj.7601871
– volume: 86
  start-page: 273
  year: 2012
  ident: ref28
  article-title: Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2012.08196.x
– volume: 8
  start-page: 189
  year: 2013
  ident: ref19
  article-title: Metabolic footprinting of mutant libraries to map metabolite utilization to genotype
  publication-title: ACS Chem Biol
  doi: 10.1021/cb300477w
– volume: 8
  start-page: e1002828
  year: 2012
  ident: ref8
  article-title: Identification of MrtAB, an ABC transporter specifically required for Yersinia pseudotuberculosis to colonize the mesenteric lymph nodes
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1002828
– volume: 78
  start-page: 519
  year: 2010
  ident: ref39
  article-title: An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2010.07353.x
– volume: 6
  start-page: e1000822
  year: 2010
  ident: ref29
  article-title: Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000822
– volume: 186
  start-page: 8096
  year: 2004
  ident: ref17
  article-title: Initial Phases of biofilm formation in Shewanella oneidensis MR-1
  publication-title: Journal of bacteriology
  doi: 10.1128/JB.186.23.8096-8104.2004
– reference: 22054827 - Curr Opin Biotechnol. 2012 Aug;23(4):617-23
– reference: 23114059 - BMC Genomics. 2012;13:578
– reference: 21878915 - Mol Syst Biol. 2011;7:528
– reference: 23082955 - ACS Chem Biol. 2013 Jan 18;8(1):189-99
– reference: 23271269 - Bioinformatics. 2013 Feb 1;29(3):338-46
– reference: 19826075 - Genome Res. 2009 Dec;19(12):2308-16
– reference: 20589080 - PLoS Comput Biol. 2010 Jun;6(6):e1000822
– reference: 22876175 - PLoS Pathog. 2012;8(8):e1002828
– reference: 23716638 - Nucleic Acids Res. 2013 Aug;41(14):e140
– reference: 9584095 - Genetics. 1998 May;149(1):179-87
– reference: 20460461 - Nucleic Acids Res. 2010 Jul;38(13):e142
– reference: 23635712 - RNA Biol. 2013 Jul;10(7):1161-9
– reference: 23028335 - PLoS Pathog. 2012 Sep;8(9):e1002946
– reference: 12045108 - Annu Rev Biochem. 2002;71:635-700
– reference: 17914458 - EMBO J. 2007 Oct 31;26(21):4514-22
– reference: 21988831 - Mol Syst Biol. 2011;7:535
– reference: 22548736 - BMC Syst Biol. 2012;6:30
– reference: 19767758 - Nat Methods. 2009 Oct;6(10):767-72
– reference: 16085900 - Appl Environ Microbiol. 2005 Aug;71(8):4935-7
– reference: 18574146 - Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8736-41
– reference: 22024451 - Biosystems. 2012 Feb;107(2):120-8
– reference: 19748469 - Cell Host Microbe. 2009 Sep 17;6(3):279-89
– reference: 23901011 - Nucleic Acids Res. 2013 Oct;41(19):9033-48
– reference: 19622793 - Genome Res. 2009 Oct;19(10):1836-42
– reference: 21886097 - Nat Protoc. 2011 Sep;6(9):1290-307
– reference: 24103077 - BMC Bioinformatics. 2013;14:303
– reference: 15866913 - J Bacteriol. 2005 May;187(10):3293-301
– reference: 22900082 - PLoS One. 2012;7(8):e43012
– reference: 20807196 - Mol Microbiol. 2010 Oct;78(2):519-32
– reference: 24621294 - BMC Syst Biol. 2014;8:31
– reference: 22925268 - Mol Microbiol. 2012 Oct;86(2):273-83
– reference: 23712350 - Nat Rev Microbiol. 2013 Jul;11(7):435-42
– reference: 15547283 - J Bacteriol. 2004 Dec;186(23):8096-104
– reference: 24084808 - Mol Syst Biol. 2013;9:693
– reference: 19690570 - Mol Syst Biol. 2009;5:301
– reference: 22125499 - PLoS Genet. 2011 Nov;7(11):e1002385
– reference: 17012394 - J Bacteriol. 2006 Dec;188(23):8259-71
– reference: 22096236 - Nucleic Acids Res. 2012 Jan;40(Database issue):D627-31
– reference: 14617778 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44
– reference: 22127870 - Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
– reference: 23362380 - Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2623-8
– reference: 19801975 - Nat Biotechnol. 2009 Oct;27(10):946-50
– reference: 20802497 - Nat Biotechnol. 2010 Sep;28(9):977-82
– reference: 22207618 - J Exp Bot. 2012 Mar;63(6):2353-62
SSID ssj0035896
Score 2.2376914
Snippet Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function...
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function...
  Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1003848
SubjectTerms Agreements
Automation
Binding sites
Biology and Life Sciences
Deoxyribonucleic acid
DNA
DNA Transposable Elements - genetics
DNA, Bacterial - analysis
DNA, Bacterial - genetics
Gene mutations
Gene Regulatory Networks - genetics
Genes
Genetic aspects
Genetic testing
Genome, Bacterial - genetics
Genomes
Genomics
High-Throughput Nucleotide Sequencing - methods
Metabolic Networks and Pathways - genetics
Metabolism
Metabolites
Methods
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Physiological aspects
Proteins
Shewanella
Shewanella - genetics
Shewanella - metabolism
Transposons
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6TvuC7UUelLjtSXLPqalaVpoDk0DexPyWEoMG3uJdyn5952xtMu6tOTS6-4IrJmR5htm9A1j7zJlNUDtBCjfCOmbTFQgQSAYxejbZE5Lepz8_bQ4OZffFmqxN-qLesICPXBQ3GGqbQ2YhFjwqbRelU2lHBSYR-jCy8bR7Ysxb5tMhTs4V-U4mYuG4gidy0V8NJfr-WG00YcV1C31COQlzf7ZC0ojd__uhp6tlv3wN_j5ZxflXlg6fsDuRzzJj8I-HrI7rnvE7oYJkzeP2eqL6_orJwY0heNXbo02X7bAu9D9zdHP2jBVifeen126X5b6XizvOyLA6oZ24NQaf8HXgQUd4TlvOyrh0xp_HTqxb7iN5CZP2Pnx55-fTkQcsiAAM5m1kHPAgwdVQ9TytbOuQH2rNLOpLhrEAzb1DjWkZY0at0VFlZqyQgvrGmyDaO4pm3X4TQeMQ5VaqR3owlaytGVdziWuVQA-dz7LEpZvtWwgMpDTIIylGctqGjORoDRDtjHRNgkTu1WrwMBxi_xHMuBOlvizxx_Qq0z0KnObVyXsLZnfEENGRy04F3YzDObr2ak5Qoin6M2G_KfQj4nQ-yjke9ws2PjsAVVGzFsTyQPyte2mBjMvSkUVMK0S9mbrfwaPP9V00Bv6Dcoogpg0gSxhz4I_7naeqSzPMSIlTE88daKa6T9dezlSjCNMLxGoPv8funzB7iHKlKEx7yWbra837hUiuXX9ejy0vwEuhEp1
  priority: 102
  providerName: Directory of Open Access Journals
Title Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25233219
https://www.proquest.com/docview/1563990297
https://pubmed.ncbi.nlm.nih.gov/PMC4168976
https://doaj.org/article/07abc409acf04af58d95ec660176f4de
http://dx.doi.org/10.1371/journal.pcbi.1003848
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdtymAvZd_1PoI2BntycWzJkh_GSLa67SBhNMvIm5BluQ1kdhYnbPnvd-ePMI-WsZeYxKcQ3Z18P-VO9yPkrc-1MCaxruFZ6rIs9d3IMOMCGIXom_pWMDycPJ6EFzP2ec7nB6TlbG0UWN66tUM-qdl6efrrx-4DLPj3FWuDGLSDTlcmWWDWP5BMHpIjiE0COQ3GbJ9XCLisGLuQLMcV8K45THfXt3SCVdXTf__k7q2WRXkbLP27uvKPcBU_IMcNzqTD2jEekgObPyL3aubJ3WOyOrd58d26UzCRpWO7AV9YLgyd1FXh9BvA85ptiRYZnd7YnxrrYTQtcmyMlZeLklbVBrTpjg6wnV7mmNrHMfG6rtDe0bbpyRMyi8--frxwG_IF18AOZ-OygYEFaaIUW84nVttQJ4Z7vvZEmAJO0F5mQUOCJbCmdRhhBkdGYHmRGJ0CyntKejn8phNCTeRpJqwRoY6Y1DKRAwZjuTFZYDPfd0jQalmZpjM5EmQsVZVuE7BDqZWm0DaqsY1D3P2oVd2Z4x_yIzTgXhb7alcfFOtr1SxT5QmYJWx5tck8pjMu04hbE8KuVYQZS61D3qD5FXbOyLE051pvy1JdTidqCNCP41kOdqfQVUfoXSOUFTBZo5vjEKAy7MjVkTxBX2snVapBKDlmxgR3yOvW_xQ8FjDXA95QbEGGI_REZjKHPKv9cT9zn_tBAJHKIaLjqR3VdO_ki5uq9TjAdwkA9vl_6v4FuQ9Ak9W1eS9Jb7Pe2lcA5jZJnxyKuYBXGZ_3ydFw9GkUw3V0Nvly1a_-IOlXK_g3MgxRlA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Scale+Metabolic+Network+Validation+of+Shewanella+oneidensis+Using+Transposon+Insertion+Frequency+Analysis&rft.jtitle=PLoS+computational+biology&rft.au=Yang%2C+Hong&rft.au=Krumholz%2C+Elias+W.&rft.au=Brutinel%2C+Evan+D.&rft.au=Palani%2C+Nagendra+P.&rft.date=2014-09-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=10&rft.issue=9&rft.spage=e1003848&rft_id=info:doi/10.1371%2Fjournal.pcbi.1003848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pcbi_1003848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon