Gibberellin Modulates Anther Development in Rice via the Transcriptional Regulation of GAMYB
Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we...
Saved in:
Published in | The Plant cell Vol. 21; no. 5; pp. 1453 - 1472 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.05.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and β-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-β-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. |
---|---|
AbstractList | Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and beta-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-beta-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice ( Oryza sativa ) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and β-ketoacyl reductase , both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-β-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb -like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and β-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-β-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and β-ketoacyl reducíase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-β-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. Abstract Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB transcriptional factor GAMYB, an important component of GA signaling in cereal aleurone cells, is also important for anther development. Here, we examined the physiological functions of GA during anther development through phenotypic analyses of rice (Oryza sativa) GA-deficient, GA-insensitive, and gamyb mutants. The mutants exhibited common defects in programmed cell death (PCD) of tapetal cells and formation of exine and Ubisch bodies. Microarray analysis using anther RNAs of these mutants revealed that rice GAMYB is involved in almost all instances of GA-regulated gene expression in anthers. Among the GA-regulated genes, we focused on two lipid metabolic genes, a cytochrome P450 hydroxylase CYP703A3 and β-ketoacyl reductase, both of which might be involved in providing a substrate for exine and Ubisch body. GAMYB specifically interacted with GAMYB binding motifs in the promoter regions in vitro, and mutation of these motifs in promoter-β-glucuronidase (GUS) transformants caused reduced GUS expression in anthers. Furthermore, a knockout mutant for CYP703A3 showed gamyb-like defects in exine and Ubisch body formation. Together, these results suggest that GA regulates exine formation and the PCD of tapetal cells and that direct activation of CYP703A3 by GAMYB is key to exine formation. |
Author | Nishimura, Mikio Yano, Kentaro Aya, Koichiro Matsuoka, Makoto Hamada, Kazuki Ueguchi-Tanaka, Miyako Kondo, Maki |
AuthorAffiliation | c Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan a Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan b Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472, Japan d Faculty of Agriculture, Meiji University, Kawasaki 241-8571, Japan |
AuthorAffiliation_xml | – name: c Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan – name: a Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan – name: d Faculty of Agriculture, Meiji University, Kawasaki 241-8571, Japan – name: b Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472, Japan |
Author_xml | – sequence: 1 fullname: Aya, Koichiro – sequence: 2 fullname: Ueguchi-Tanaka, Miyako – sequence: 3 fullname: Kondo, Maki – sequence: 4 fullname: Hamada, Kazuki – sequence: 5 fullname: Yano, Kentaro – sequence: 6 fullname: Nishimura, Mikio – sequence: 7 fullname: Matsuoka, Makoto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19454733$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkd1rFDEUxYNU7Ie--qYG32fNzfe8CGu1q9Ai1BYUhJDJZLZZZifTZHbB_74ps1R9yg2_c889yT1FR0McPEKvgSwAiPgwjW4BRC-IpDUTz9AJCEYrWuufR6UmnFRcCjhGpzlvCCGgoH6BjqHmgivGTtDvVWgan3zfhwFfxXbX28lnvBymO5_wZ7_3fRy3fphw4dfBebwPFheIb5IdskthnEIcbI-v_fqxuVxw7PBqefXr00v0vLN99q8O5xm6vfhyc_61uvy--na-vKycJGKqaOt169sauFTOWSUpFUw5JrRtCVhgHQOnOtpwLkDrtmkaJTteO05qYeuGnaGPs--4a7a-dSVusr0ZU9ja9MdEG8z_ZAh3Zh33hipCBCPF4P3BIMX7nc-T2cRdKq_KhoJWUgODIlrMIpdizsl3TwOAmMdlmLKMUmszL6M0vP031l_54feL4M0s2OQppifOSyZZgy783cw7G41dp5DN7Q9KgBGQQuji8ABqE5sD |
CitedBy_id | crossref_primary_10_32604_phyton_2022_017811 crossref_primary_10_1186_s12870_017_1171_7 crossref_primary_10_1007_s10725_010_9444_2 crossref_primary_10_1104_pp_110_158865 crossref_primary_10_1111_nph_12571 crossref_primary_10_1371_journal_pone_0026162 crossref_primary_10_1016_j_plantsci_2020_110581 crossref_primary_10_1111_pce_14557 crossref_primary_10_1111_jipb_13097 crossref_primary_10_3389_fpls_2017_00641 crossref_primary_10_5511_plantbiotechnology_19_0506a crossref_primary_10_1007_s11032_017_0722_9 crossref_primary_10_1105_tpc_114_123745 crossref_primary_10_1111_pbi_12340 crossref_primary_10_3390_ijms20071550 crossref_primary_10_1111_tpj_13250 crossref_primary_10_1371_journal_pone_0061719 crossref_primary_10_1016_j_bbagrm_2011_10_010 crossref_primary_10_1093_plphys_kiac172 crossref_primary_10_1016_j_gene_2023_147936 crossref_primary_10_1111_plb_13485 crossref_primary_10_1093_jxb_erab190 crossref_primary_10_1186_s12870_021_03085_4 crossref_primary_10_1111_j_1365_313X_2010_04289_x crossref_primary_10_1007_s11738_010_0464_3 crossref_primary_10_1016_j_jplph_2014_01_005 crossref_primary_10_3390_genes10100811 crossref_primary_10_1016_j_plantsci_2022_111447 crossref_primary_10_1093_bfgp_elw041 crossref_primary_10_3390_ijms23042009 crossref_primary_10_5511_plantbiotechnology_23_1220a crossref_primary_10_1080_09168451_2014_998620 crossref_primary_10_1007_s00344_018_9790_2 crossref_primary_10_3389_fpls_2016_01991 crossref_primary_10_1371_journal_pone_0170715 crossref_primary_10_1093_pcp_pcs162 crossref_primary_10_2135_cropsci2014_08_0538 crossref_primary_10_3390_ijms242216473 crossref_primary_10_1007_s40502_019_0436_6 crossref_primary_10_3389_fpls_2016_00402 crossref_primary_10_1038_s41467_019_11476_3 crossref_primary_10_1111_j_1365_313X_2011_04864_x crossref_primary_10_3390_horticulturae10020192 crossref_primary_10_1007_s00122_020_03706_w crossref_primary_10_1038_s41438_021_00527_w crossref_primary_10_3390_agronomy13030908 crossref_primary_10_3390_plants13081130 crossref_primary_10_1111_tpj_12942 crossref_primary_10_3390_ijms20194808 crossref_primary_10_1371_journal_pone_0123083 crossref_primary_10_1016_j_gene_2018_01_058 crossref_primary_10_1016_j_rsci_2020_05_002 crossref_primary_10_1038_s41438_020_00366_1 crossref_primary_10_1016_j_cj_2023_05_009 crossref_primary_10_3390_ijms19030795 crossref_primary_10_1007_s11103_016_0496_1 crossref_primary_10_1016_j_jare_2023_08_017 crossref_primary_10_1111_nph_17314 crossref_primary_10_1186_s12870_019_2175_2 crossref_primary_10_1007_s00299_023_03003_y crossref_primary_10_1038_s41467_018_06375_y crossref_primary_10_1105_tpc_109_070326 crossref_primary_10_1371_journal_pgen_1001265 crossref_primary_10_1007_s11103_018_0811_0 crossref_primary_10_1016_j_plantsci_2021_111007 crossref_primary_10_3390_ijms19124017 crossref_primary_10_3390_horticulturae7120580 crossref_primary_10_1104_pp_114_247486 crossref_primary_10_1111_tpj_14214 crossref_primary_10_1371_journal_pone_0091804 crossref_primary_10_1007_s11427_021_2011_2 crossref_primary_10_1111_jipb_12212 crossref_primary_10_1104_pp_111_181693 crossref_primary_10_3389_fpls_2021_710383 crossref_primary_10_3390_ijms232214472 crossref_primary_10_1073_pnas_1613792113 crossref_primary_10_1111_nph_13463 crossref_primary_10_3389_fpls_2018_00091 crossref_primary_10_3390_horticulturae10020178 crossref_primary_10_1093_jxb_eru002 crossref_primary_10_1105_tpc_111_087528 crossref_primary_10_1016_S2095_3119_21_63747_4 crossref_primary_10_1038_s41598_020_71809_x crossref_primary_10_1146_annurev_arplant_042809_112312 crossref_primary_10_1093_plphys_kiac307 crossref_primary_10_1186_s12870_018_1557_1 crossref_primary_10_1105_tpc_110_082636 crossref_primary_10_3389_fpls_2021_730007 crossref_primary_10_1093_treephys_tpx164 crossref_primary_10_1186_s12870_016_0867_4 crossref_primary_10_3390_ijms20071613 crossref_primary_10_3389_fpls_2014_00457 crossref_primary_10_3389_fpls_2021_745726 crossref_primary_10_1016_j_jplph_2019_153000 crossref_primary_10_1093_pcp_pcaa079 crossref_primary_10_3390_plants8080255 crossref_primary_10_1007_s00216_012_6509_2 crossref_primary_10_1371_journal_pone_0048445 crossref_primary_10_1080_15592324_2017_1362519 crossref_primary_10_1111_tpj_16857 crossref_primary_10_1007_s12374_013_0902_z crossref_primary_10_1104_pp_113_216523 crossref_primary_10_1038_ncomms1552 crossref_primary_10_1093_mp_ssq046 crossref_primary_10_1104_pp_110_166272 crossref_primary_10_1016_j_hpj_2023_01_008 crossref_primary_10_1111_nph_17939 crossref_primary_10_3390_ijms24010030 crossref_primary_10_1111_j_1744_7909_2012_01172_x crossref_primary_10_1186_s12870_018_1376_4 crossref_primary_10_1007_s00709_019_01349_3 crossref_primary_10_1007_s00425_021_03656_7 crossref_primary_10_3390_ijms21082750 crossref_primary_10_1016_j_scienta_2023_112702 crossref_primary_10_1111_jipb_12425 crossref_primary_10_1104_pp_113_234401 crossref_primary_10_1007_s11105_019_01137_6 crossref_primary_10_1007_s11032_019_0959_6 crossref_primary_10_1016_j_jgg_2011_08_001 crossref_primary_10_1186_s12284_015_0058_1 crossref_primary_10_1093_aobpla_plv023 crossref_primary_10_1371_journal_pone_0057715 crossref_primary_10_1007_s00299_014_1666_8 crossref_primary_10_1007_s11738_019_2835_8 crossref_primary_10_1007_s00344_021_10504_1 crossref_primary_10_3390_ijms20235892 crossref_primary_10_1007_s00299_017_2196_y crossref_primary_10_3389_fpls_2017_01998 crossref_primary_10_1104_pp_18_00110 crossref_primary_10_1111_tpj_16717 crossref_primary_10_1016_j_hpj_2020_01_004 crossref_primary_10_1016_j_plantsci_2021_111167 crossref_primary_10_1104_pp_112_210948 crossref_primary_10_1105_tpc_110_074369 crossref_primary_10_1016_S1673_8527_09_60098_9 crossref_primary_10_1007_s00299_012_1365_2 crossref_primary_10_3390_ijms20051015 crossref_primary_10_1186_s12864_020_06991_3 crossref_primary_10_1038_s42003_022_03008_5 crossref_primary_10_1371_journal_pone_0098477 crossref_primary_10_1007_s00425_013_1934_9 crossref_primary_10_1111_nph_16770 crossref_primary_10_1016_j_molp_2019_01_014 crossref_primary_10_1093_pcp_pcaa025 crossref_primary_10_1371_journal_pone_0292400 crossref_primary_10_1104_pp_114_256578 crossref_primary_10_1002_pmic_201900213 crossref_primary_10_1104_pp_111_175760 crossref_primary_10_1111_tpj_12206 crossref_primary_10_1080_15592324_2019_1679015 crossref_primary_10_1016_j_ydbio_2013_05_009 crossref_primary_10_1016_j_repbre_2022_02_002 crossref_primary_10_1038_ncomms2396 crossref_primary_10_1186_s12870_023_04286_9 crossref_primary_10_1007_s10142_024_01341_y crossref_primary_10_1016_j_cj_2021_03_016 crossref_primary_10_3390_ijms25116043 crossref_primary_10_1371_journal_pone_0037463 crossref_primary_10_1016_j_cj_2022_05_009 crossref_primary_10_1093_jxb_eru176 crossref_primary_10_1186_s12284_018_0248_8 crossref_primary_10_1105_tpc_114_126292 crossref_primary_10_1111_tpj_16812 crossref_primary_10_7717_peerj_11268 crossref_primary_10_1007_s00438_019_01540_4 crossref_primary_10_1007_s00425_022_04056_1 crossref_primary_10_1111_pbr_12689 crossref_primary_10_1111_tpj_13548 crossref_primary_10_1105_tpc_110_074542 crossref_primary_10_1016_j_devcel_2012_04_011 crossref_primary_10_3389_fpls_2017_00010 crossref_primary_10_1093_pcp_pcq026 crossref_primary_10_3389_fpls_2021_629314 crossref_primary_10_1093_jxb_erw445 crossref_primary_10_1093_pcp_pcy209 crossref_primary_10_1111_jipb_12503 crossref_primary_10_1186_s12870_023_04296_7 crossref_primary_10_1007_s10528_022_10217_4 crossref_primary_10_1016_j_jgg_2021_04_013 crossref_primary_10_1111_j_1469_8137_2012_04134_x crossref_primary_10_1186_s12864_017_3526_8 crossref_primary_10_1111_tpj_13637 crossref_primary_10_1016_S1673_8527_09_60023_0 crossref_primary_10_1007_s00497_016_0282_x crossref_primary_10_1016_S2095_3119_19_62780_2 crossref_primary_10_1186_s12284_023_00646_z crossref_primary_10_1007_s11103_013_0057_9 crossref_primary_10_1080_07352689_2012_664986 crossref_primary_10_1111_pce_14250 crossref_primary_10_1016_j_tplants_2011_06_007 crossref_primary_10_3390_ijms22052229 crossref_primary_10_1093_jxb_eraa045 crossref_primary_10_1104_pp_110_160630 crossref_primary_10_1371_journal_pone_0218029 crossref_primary_10_1111_pce_12513 crossref_primary_10_7717_peerj_10275 crossref_primary_10_1007_s00425_020_03501_3 crossref_primary_10_1111_jipb_12053 crossref_primary_10_2135_cropsci2014_04_0333 crossref_primary_10_1007_s12298_023_01377_7 crossref_primary_10_1007_s00425_014_2160_9 crossref_primary_10_1007_s00122_015_2482_4 crossref_primary_10_1080_15592324_2017_1365211 crossref_primary_10_1016_j_rsci_2020_03_004 crossref_primary_10_3390_cells12121656 crossref_primary_10_1016_j_molp_2020_05_009 crossref_primary_10_1007_s00122_021_04007_6 crossref_primary_10_1007_s00299_018_2265_x crossref_primary_10_1093_plcell_koac253 crossref_primary_10_1016_j_cj_2023_02_007 crossref_primary_10_1111_jipb_12924 crossref_primary_10_1016_j_plantsci_2016_09_006 crossref_primary_10_1080_15592324_2015_1136764 crossref_primary_10_1111_j_1744_7909_2010_00959_x crossref_primary_10_1007_s11105_015_0886_6 crossref_primary_10_1093_pcp_pcaa104 crossref_primary_10_1111_pbi_13590 crossref_primary_10_3389_fpls_2020_580050 crossref_primary_10_1111_jipb_12362 crossref_primary_10_1007_s10142_023_01264_0 crossref_primary_10_1016_j_jplph_2017_04_010 crossref_primary_10_1094_MPMI_05_12_0138_R crossref_primary_10_1186_s12284_020_00451_y crossref_primary_10_1042_BJ20120245 crossref_primary_10_1111_tpj_15921 crossref_primary_10_3389_fpls_2017_01258 crossref_primary_10_3390_ijms17050794 crossref_primary_10_1186_s40529_018_0237_7 crossref_primary_10_1111_tpj_13744 crossref_primary_10_1186_s12864_019_5770_6 crossref_primary_10_3389_fpls_2023_1186904 crossref_primary_10_3390_horticulturae6040072 crossref_primary_10_1007_s10535_012_0270_4 crossref_primary_10_1093_pcp_pcaa115 crossref_primary_10_1093_pcp_pcp135 crossref_primary_10_1007_s12374_016_0407_7 crossref_primary_10_1104_pp_110_161661 crossref_primary_10_1186_s12864_017_4180_x crossref_primary_10_3389_fpls_2020_00756 crossref_primary_10_1016_j_jgg_2019_06_003 crossref_primary_10_1007_s13258_020_00954_4 crossref_primary_10_1007_s10725_020_00605_4 crossref_primary_10_1016_j_plantsci_2023_111811 crossref_primary_10_1016_j_plantsci_2013_11_006 crossref_primary_10_1093_mp_sst067 crossref_primary_10_1186_1471_2229_12_23 crossref_primary_10_3389_ffgc_2023_1110431 crossref_primary_10_1111_tpj_14365 crossref_primary_10_1093_hr_uhac058 crossref_primary_10_1093_pcp_pcz065 crossref_primary_10_1093_plphys_kiad455 crossref_primary_10_3390_ijms24021660 crossref_primary_10_1080_15538362_2024_2363628 crossref_primary_10_1111_nph_17512 crossref_primary_10_1016_j_gene_2013_08_067 crossref_primary_10_1007_s42976_024_00540_4 crossref_primary_10_2135_cropsci2013_04_0277 crossref_primary_10_1007_s13353_023_00755_x crossref_primary_10_1038_s41598_017_07064_4 crossref_primary_10_3389_fpls_2020_00172 crossref_primary_10_1016_j_tplants_2015_07_010 crossref_primary_10_1111_tpj_14811 crossref_primary_10_1007_s00122_023_04296_z crossref_primary_10_1371_journal_pone_0146534 crossref_primary_10_1016_j_jprot_2022_104557 crossref_primary_10_1093_hr_uhac286 crossref_primary_10_1007_s00709_015_0869_3 crossref_primary_10_1111_pbi_14354 crossref_primary_10_3390_ijms20246252 crossref_primary_10_1016_j_molp_2018_01_007 crossref_primary_10_1371_journal_pone_0077275 crossref_primary_10_1016_j_postharvbio_2020_111355 crossref_primary_10_1007_s11103_013_0085_5 crossref_primary_10_1093_pcp_pcz179 crossref_primary_10_4161_psb_5_9_12562 crossref_primary_10_1186_1471_2164_15_277 |
Cites_doi | 10.1016/j.phytochem.2003.09.005 10.1093/pcp/pci501 10.1105/tpc.017327 10.1105/tpc.015800 10.1034/j.1399-3054.2002.1150314.x 10.1146/annurev.pp.36.060185.002505 10.1105/tpc.13.5.999 10.1093/bioinformatics/btm404 10.1046/j.1365-313X.2003.01641.x 10.1093/molbev/msm092 10.1046/j.1365-313X.1994.6020271.x 10.1515/znc-2002-11-1214 10.1038/22307 10.1105/tpc.003046 10.1105/tpc.020958 10.1007/s004970050122 10.1111/j.1365-313X.2006.02795.x 10.1016/0005-2760(66)90001-4 10.1038/nature06448 10.1105/tpc.021386 10.1038/90135 10.1023/A:1026556928624 10.1105/tpc.104.027920 10.1038/nature06520 10.1093/bioinformatics/btl476 10.1105/tpc.108.061648 10.1186/gb-2004-5-10-r80 10.1038/nature04028 10.1016/j.pbi.2004.11.015 10.1007/s00425-003-1030-7 10.1038/180036a0 10.1105/tpc.010827 10.1242/dev.00992 10.1126/science.1081077 10.1105/tpc.106.042044 10.1105/tpc.010319 10.1105/tpc.106.044107 10.1111/j.1365-313X.2006.02748.x 10.1104/pp.97.1.409 10.1046/j.1365-313X.2003.01704.x 10.1007/BF00265176 10.1105/tpc.108.058487 10.1105/tpc.106.045948 10.1105/tpc.10.2.155 10.1146/annurev.arplant.58.032806.103830 10.1016/S0031-9422(98)00225-8 10.1104/pp.106.082289 10.1105/tpc.107.051441 10.1104/pp.100.1.403 10.1073/pnas.2231254100 10.1104/pp.103.033696 10.1016/j.febslet.2004.07.055 10.1242/dev.01206 10.1080/01621459.1979.10481038 10.1105/tpc.106.043729 10.1046/j.1365-313X.1999.00346.x 10.1007/BF02856566 10.1111/j.1365-313X.2007.03217.x 10.1146/annurev.arplant.54.031902.135029 10.1104/pp.010917 10.1002/j.1537-2197.1988.tb12160.x 10.1101/gad.11.23.3194 |
ContentType | Journal Article |
Copyright | Copyright 2009 American Society of Plant Biologists Copyright American Society of Plant Biologists May 2009 Copyright © 2009, American Society of Plant Biologists |
Copyright_xml | – notice: Copyright 2009 American Society of Plant Biologists – notice: Copyright American Society of Plant Biologists May 2009 – notice: Copyright © 2009, American Society of Plant Biologists |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 4T- 7QO 7TM 7X2 7X7 7XB 88A 88E 88I 8AF 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M2P M7P P64 PQEST PQQKQ PQUKI Q9U RC3 S0X 5PM |
DOI | 10.1105/tpc.108.062935 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Docstoc Biotechnology Research Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Genetics Abstracts SIRS Editorial PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest Central Essentials SIRS Editorial Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Genetics Abstracts Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1472 |
ExternalDocumentID | 1801458551 10_1105_tpc_108_062935 19454733 40536918 US201301655833 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2FS 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFFDN AFFNX AFFZL AFGWE AFKRA AFMIJ AFRAH AFYAG AGCDD AGUYK AHMBA AICQM AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P F8P F9R FBQ FLUFQ FOEOM FRP FYUFA GNUQQ GTFYD GX1 HCIFZ HGD HMCUK HTVGU H~9 ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 U5U UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM ABXSQ AQVQM 0R~ AAHBH AARHZ AAUAY ABMNT ABXVV ACZBC ADACV ADQBN AGMDO AHXOZ ALIPV ATGXG BEYMZ CGR CUY CVF ECM EIF H13 IPSME NPM AASNB AAYXX CITATION 4T- 7QO 7TM 7XB 8FD 8FK FR3 K9. P64 PQEST PQUKI Q9U RC3 5PM |
ID | FETCH-LOGICAL-c605t-2de8ded91467cca7622537c358ad01a13f31c7f2b445188dbbb76f49c4095a9b3 |
IEDL.DBID | 7X7 |
ISSN | 1040-4651 |
IngestDate | Tue Sep 17 21:33:52 EDT 2024 Thu Oct 10 21:02:29 EDT 2024 Fri Aug 23 02:20:51 EDT 2024 Tue Oct 15 23:36:22 EDT 2024 Fri Feb 02 08:16:23 EST 2024 Wed Dec 27 19:18:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c605t-2de8ded91467cca7622537c358ad01a13f31c7f2b445188dbbb76f49c4095a9b3 |
Notes | Address correspondence to makoto@agr.nagoya-u.ac.jp. Online version contains Web-only data. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Makoto Matsuoka (makoto@agr.nagoya-u.ac.jp). www.plantcell.org/cgi/doi/10.1105/tpc.108.062935 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700530 |
PMID | 19454733 |
PQID | 218768131 |
PQPubID | 37014 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2700530 proquest_journals_218768131 crossref_primary_10_1105_tpc_108_062935 pubmed_primary_19454733 jstor_primary_40536918 fao_agris_US201301655833 |
PublicationCentury | 2000 |
PublicationDate | 2009-05-01 |
PublicationDateYYYYMMDD | 2009-05-01 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Rockville |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2009 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | 14612572 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14487-92 12468732 - Plant Cell. 2002 Dec;14(12):3133-47 24301503 - Theor Appl Genet. 1980 Nov;58(6):257-63 17644730 - Plant Cell. 2007 Jul;19(7):2140-55 18083909 - Plant Cell. 2007 Dec;19(12):3876-88 18216857 - Nature. 2008 Jan 24;451(7177):480-4 17138695 - Plant Cell. 2006 Nov;18(11):2999-3014 17138699 - Plant Cell. 2006 Nov;18(11):3015-32 17488738 - Mol Biol Evol. 2007 Aug;24(8):1596-9 16668400 - Plant Physiol. 1991 Sep;97(1):409-14 15722475 - Plant Cell. 2005 Mar;17(3):705-21 15226253 - Development. 2004 Jul;131(14):3357-65 12662309 - Plant J. 2003 Apr;34(1):57-66 8312744 - Plant Cell. 1993 Nov;5(11):1651-9 10069063 - Plant J. 1999 Jan;17(1):1-9 14688295 - Plant Cell. 2004 Jan;16(1):33-44 12692728 - Planta. 2003 Aug;217(4):559-65 10817199 - Z Naturforsch C. 2000 Mar-Apr;55(3-4):129-36 11826299 - Plant Cell. 2002 Jan;14(1):57-70 14502993 - Annu Rev Plant Biol. 2003;54:307-28 12581306 - Plant J. 2003 Feb;33(3):481-91 15075394 - Plant Physiol. 2004 Apr;134(4):1642-53 11431702 - Nat Genet. 2001 Jul;28(3):286-9 12011349 - Plant Physiol. 2002 May;129(1):181-90 15075396 - Plant Cell. 2004;16 Suppl:S84-97 12649483 - Science. 2003 Mar 21;299(5614):1896-8 15659435 - Plant Cell Physiol. 2005 Jan;46(1):23-47 4381013 - Biochim Biophys Acta. 1966 Apr 4;116(2):189-97 16709201 - Plant J. 2006 Jun;46(5):880-9 7920717 - Plant J. 1994 Aug;6(2):271-82 18827182 - Plant Cell. 2008 Sep;20(9):2447-59 14973286 - Development. 2004 Mar;131(5):1055-64 18216856 - Nature. 2008 Jan 24;451(7177):475-9 11340177 - Plant Cell. 2001 May;13(5):999-1010 17194763 - Plant Cell. 2006 Dec;18(12):3399-414 9490740 - Plant Cell. 1998 Feb;10(2):155-69 11199397 - Plant Mol Biol. 2000 Oct;44(3):399-415 17496121 - Plant Cell. 2007 May;19(5):1473-87 16652976 - Plant Physiol. 1992 Sep;100(1):403-8 15653404 - Curr Opin Plant Biol. 2005 Feb;8(1):77-85 15155881 - Plant Cell. 2004 Jun;16(6):1392-405 14697270 - Phytochemistry. 2004 Jan;65(1):43-58 8535141 - Plant Cell. 1995 Nov;7(11):1879-91 18827181 - Plant Cell. 2008 Sep;20(9):2437-46 15461798 - Genome Biol. 2004;5(10):R80 17666023 - Plant J. 2007 Oct;52(1):14-29 9389651 - Genes Dev. 1997 Dec 1;11(23):3194-205 7994182 - Plant Cell. 1994 Oct;6(10):1509-18 17416730 - Plant Cell. 2007 Apr;19(4):1209-20 16193045 - Nature. 2005 Sep 29;437(7059):693-8 16982708 - Bioinformatics. 2006 Nov 15;22(22):2825-7 12562090 - Z Naturforsch C. 2002 Nov-Dec;57(11-12):1035-41 15327980 - FEBS Lett. 2004 Aug 27;573(1-3):83-92 16792694 - Plant J. 2006 Aug;47(3):427-44 10421366 - Nature. 1999 Jul 15;400(6741):256-61 16920880 - Plant Physiol. 2006 Oct;142(2):509-25 15161962 - Plant Cell. 2004 Jun;16(6):1406-18 17472566 - Annu Rev Plant Biol. 2007;58:183-98 12724538 - Plant Cell. 2003 May;15(5):1120-30 12081537 - Physiol Plant. 2002 Jul;115(3):442-447 17846036 - Bioinformatics. 2007 Nov 1;23(21):2947-8 (2021040621000623400_b38) 1980; 58 (2021040621000623400_b7) 2000; 44 (2021040621000623400_b13) 2007; 19 (2021040621000623400_b44) 2005; 17 (2021040621000623400_b15) 2008; 451 (2021040621000623400_b69) 2007; 19 (2021040621000623400_b37) 2003; 54 (2021040621000623400_b53) 2004; 134 (2021040621000623400_b48) 1988; 75 (2021040621000623400_b30) 2001; 13 (2021040621000623400_b32) 2005; 46 (2021040621000623400_b41) 2007; 23 (2021040621000623400_b24) 1995; 7 (2021040621000623400_b28) 2006; 22 (2021040621000623400_b35) 2006; 18 (2021040621000623400_b70) 1992; 100 (2021040621000623400_b34) 1991; 97 (2021040621000623400_b63) 2008; 20 (2021040621000623400_b19) 2005; 8 (2021040621000623400_b60) 1966; 116 (2021040621000623400_b10) 2006; 142 (2021040621000623400_b22) 1999; 77 (2021040621000623400_b66) 1990; 286 (2021040621000623400_b51) 1985; 36 (2021040621000623400_b61) 2006; 47 (2021040621000623400_b14) 1979; 74 (2021040621000623400_b26) 1993; 5 (2021040621000623400_b39) 2003; 217 (2021040621000623400_b59) 2001; 28 (2021040621000623400_b3) 1999; 50 (2021040621000623400_b11) 2002; 129 (2021040621000623400_b62) 2005; 437 (2021040621000623400_b17) 2004; 16 (2021040621000623400_b18) 2008; 451 (2021040621000623400_b33) 2002; 115 (2021040621000623400_b36) 2004; 16 (2021040621000623400_b56) 2002; 14 (2021040621000623400_b67) 2003; 100 (2021040621000623400_b45) 2007; 19 (2021040621000623400_b40) 1957; 180 (2021040621000623400_b54) 2003; 299 (2021040621000623400_b9) 2002; 57 (2021040621000623400_b43) 2003; 15 (2021040621000623400_b5) 1992; 19 (2021040621000623400_b20) 2004; 16 (2021040621000623400_b21) 2004; 5 (2021040621000623400_b57) 1994; 6 (2021040621000623400_b71) 2003; 34 (2021040621000623400_b64) 2007; 58 (2021040621000623400_b52) 1998; 11 (2021040621000623400_b42) 2006; 18 (2021040621000623400_b25) 1999; 17 (2021040621000623400_b16) 2004; 16 (2021040621000623400_b23) 2006; 18 (2021040621000623400_b50) 1999; 400 (2021040621000623400_b1) 2004; 131 (2021040621000623400_b68) 2007; 52 (2021040621000623400_b4) 2008; 20 (2021040621000623400_b31) 2002; 14 (2021040621000623400_b58) 2007; 24 (2021040621000623400_b8) 2004; 573 (2021040621000623400_b47) 2006; 46 (2021040621000623400_b6) 2004; 65 (2021040621000623400_b12) 2004; 131 (2021040621000623400_b29) 1998; 64 (2021040621000623400_b46) 2003; 33 (2021040621000623400_b27) 1994; 6 (2021040621000623400_b65) 2007; 19 (2021040621000623400_b49) 1997; 11 (2021040621000623400_b55) 1998; 10 (2021040621000623400_b2) 2000; 55 |
References_xml | – volume: 65 start-page: 43 year: 2004 ident: 2021040621000623400_b6 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2003.09.005 – volume: 46 start-page: 23 year: 2005 ident: 2021040621000623400_b32 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci501 – volume: 16 start-page: 33 year: 2004 ident: 2021040621000623400_b36 publication-title: Plant Cell doi: 10.1105/tpc.017327 – volume: 16 start-page: S84 year: 2004 ident: 2021040621000623400_b17 publication-title: Plant Cell doi: 10.1105/tpc.015800 – volume: 115 start-page: 442 year: 2002 ident: 2021040621000623400_b33 publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.2002.1150314.x – volume: 36 start-page: 517 year: 1985 ident: 2021040621000623400_b51 publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.36.060185.002505 – volume: 13 start-page: 999 year: 2001 ident: 2021040621000623400_b30 publication-title: Plant Cell doi: 10.1105/tpc.13.5.999 – volume: 23 start-page: 2947 year: 2007 ident: 2021040621000623400_b41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 33 start-page: 481 year: 2003 ident: 2021040621000623400_b46 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01641.x – volume: 24 start-page: 1596 year: 2007 ident: 2021040621000623400_b58 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm092 – volume: 6 start-page: 271 year: 1994 ident: 2021040621000623400_b27 publication-title: Plant J. doi: 10.1046/j.1365-313X.1994.6020271.x – volume: 57 start-page: 1035 year: 2002 ident: 2021040621000623400_b9 publication-title: Z. Naturforsch. [C] doi: 10.1515/znc-2002-11-1214 – volume: 400 start-page: 256 year: 1999 ident: 2021040621000623400_b50 publication-title: Nature doi: 10.1038/22307 – volume: 14 start-page: 3133 year: 2002 ident: 2021040621000623400_b56 publication-title: Plant Cell doi: 10.1105/tpc.003046 – volume: 16 start-page: 1392 year: 2004 ident: 2021040621000623400_b16 publication-title: Plant Cell doi: 10.1105/tpc.020958 – volume: 11 start-page: 65 year: 1998 ident: 2021040621000623400_b52 publication-title: Sex. Plant Reprod. doi: 10.1007/s004970050122 – volume: 47 start-page: 427 year: 2006 ident: 2021040621000623400_b61 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02795.x – volume: 116 start-page: 189 year: 1966 ident: 2021040621000623400_b60 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(66)90001-4 – volume: 6 start-page: 1509 year: 1994 ident: 2021040621000623400_b57 publication-title: Plant Cell – volume: 451 start-page: 475 year: 2008 ident: 2021040621000623400_b18 publication-title: Nature doi: 10.1038/nature06448 – volume: 16 start-page: 1406 year: 2004 ident: 2021040621000623400_b20 publication-title: Plant Cell doi: 10.1105/tpc.021386 – volume: 28 start-page: 286 year: 2001 ident: 2021040621000623400_b59 publication-title: Nat. Genet. doi: 10.1038/90135 – volume: 44 start-page: 399 year: 2000 ident: 2021040621000623400_b7 publication-title: Plant Mol. Biol. doi: 10.1023/A:1026556928624 – volume: 17 start-page: 705 year: 2005 ident: 2021040621000623400_b44 publication-title: Plant Cell doi: 10.1105/tpc.104.027920 – volume: 451 start-page: 480 year: 2008 ident: 2021040621000623400_b15 publication-title: Nature doi: 10.1038/nature06520 – volume: 7 start-page: 1879 year: 1995 ident: 2021040621000623400_b24 publication-title: Plant Cell – volume: 22 start-page: 2825 year: 2006 ident: 2021040621000623400_b28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl476 – volume: 20 start-page: 2437 year: 2008 ident: 2021040621000623400_b63 publication-title: Plant Cell doi: 10.1105/tpc.108.061648 – volume: 5 start-page: R80 year: 2004 ident: 2021040621000623400_b21 publication-title: Genome Biol. doi: 10.1186/gb-2004-5-10-r80 – volume: 437 start-page: 693 year: 2005 ident: 2021040621000623400_b62 publication-title: Nature doi: 10.1038/nature04028 – volume: 19 start-page: 3876 year: 2007 ident: 2021040621000623400_b13 publication-title: Plant Cell – volume: 8 start-page: 77 year: 2005 ident: 2021040621000623400_b19 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.11.015 – volume: 217 start-page: 559 year: 2003 ident: 2021040621000623400_b39 publication-title: Planta doi: 10.1007/s00425-003-1030-7 – volume: 180 start-page: 36 year: 1957 ident: 2021040621000623400_b40 publication-title: Nature doi: 10.1038/180036a0 – volume: 15 start-page: 1120 year: 2003 ident: 2021040621000623400_b43 publication-title: Plant Cell doi: 10.1105/tpc.010827 – volume: 131 start-page: 1055 year: 2004 ident: 2021040621000623400_b12 publication-title: Development doi: 10.1242/dev.00992 – volume: 299 start-page: 1896 year: 2003 ident: 2021040621000623400_b54 publication-title: Science doi: 10.1126/science.1081077 – volume: 18 start-page: 3015 year: 2006 ident: 2021040621000623400_b35 publication-title: Plant Cell doi: 10.1105/tpc.106.042044 – volume: 14 start-page: 57 year: 2002 ident: 2021040621000623400_b31 publication-title: Plant Cell doi: 10.1105/tpc.010319 – volume: 18 start-page: 2999 year: 2006 ident: 2021040621000623400_b42 publication-title: Plant Cell doi: 10.1105/tpc.106.044107 – volume: 46 start-page: 880 year: 2006 ident: 2021040621000623400_b47 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02748.x – volume: 97 start-page: 409 year: 1991 ident: 2021040621000623400_b34 publication-title: Plant Physiol. doi: 10.1104/pp.97.1.409 – volume: 34 start-page: 57 year: 2003 ident: 2021040621000623400_b71 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01704.x – volume: 58 start-page: 257 year: 1980 ident: 2021040621000623400_b38 publication-title: Theor. Appl. Genet. doi: 10.1007/BF00265176 – volume: 20 start-page: 2447 year: 2008 ident: 2021040621000623400_b4 publication-title: Plant Cell doi: 10.1105/tpc.108.058487 – volume: 19 start-page: 1473 year: 2007 ident: 2021040621000623400_b45 publication-title: Plant Cell doi: 10.1105/tpc.106.045948 – volume: 10 start-page: 155 year: 1998 ident: 2021040621000623400_b55 publication-title: Plant Cell doi: 10.1105/tpc.10.2.155 – volume: 58 start-page: 183 year: 2007 ident: 2021040621000623400_b64 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.58.032806.103830 – volume: 50 start-page: 1095 year: 1999 ident: 2021040621000623400_b3 publication-title: Phytochemistry doi: 10.1016/S0031-9422(98)00225-8 – volume: 18 start-page: 3399 year: 2006 ident: 2021040621000623400_b23 publication-title: Plant Cell – volume: 142 start-page: 509 year: 2006 ident: 2021040621000623400_b10 publication-title: Plant Physiol. doi: 10.1104/pp.106.082289 – volume: 19 start-page: 1209 year: 2007 ident: 2021040621000623400_b69 publication-title: Plant Cell doi: 10.1105/tpc.107.051441 – volume: 5 start-page: 1651 year: 1993 ident: 2021040621000623400_b26 publication-title: Plant Cell – volume: 286 start-page: 227 year: 1990 ident: 2021040621000623400_b66 publication-title: Acta Hortic. – volume: 100 start-page: 403 year: 1992 ident: 2021040621000623400_b70 publication-title: Plant Physiol. doi: 10.1104/pp.100.1.403 – volume: 19 start-page: 401 year: 1992 ident: 2021040621000623400_b5 publication-title: Aust. J. Plant Physiol. – volume: 77 start-page: 944 year: 1999 ident: 2021040621000623400_b22 publication-title: Can. J. Bot. – volume: 100 start-page: 14487 year: 2003 ident: 2021040621000623400_b67 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2231254100 – volume: 134 start-page: 1642 year: 2004 ident: 2021040621000623400_b53 publication-title: Plant Physiol. doi: 10.1104/pp.103.033696 – volume: 573 start-page: 83 year: 2004 ident: 2021040621000623400_b8 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.07.055 – volume: 131 start-page: 3357 year: 2004 ident: 2021040621000623400_b1 publication-title: Development doi: 10.1242/dev.01206 – volume: 74 start-page: 829 year: 1979 ident: 2021040621000623400_b14 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1979.10481038 – volume: 19 start-page: 2140 year: 2007 ident: 2021040621000623400_b65 publication-title: Plant Cell doi: 10.1105/tpc.106.043729 – volume: 17 start-page: 1 year: 1999 ident: 2021040621000623400_b25 publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00346.x – volume: 64 start-page: 240 year: 1998 ident: 2021040621000623400_b29 publication-title: Bot. Rev. doi: 10.1007/BF02856566 – volume: 52 start-page: 14 year: 2007 ident: 2021040621000623400_b68 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03217.x – volume: 55 start-page: 129 year: 2000 ident: 2021040621000623400_b2 publication-title: Z. Naturforsch. [C] – volume: 54 start-page: 307 year: 2003 ident: 2021040621000623400_b37 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.54.031902.135029 – volume: 129 start-page: 181 year: 2002 ident: 2021040621000623400_b11 publication-title: Plant Physiol. doi: 10.1104/pp.010917 – volume: 75 start-page: 45 year: 1988 ident: 2021040621000623400_b48 publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1988.tb12160.x – volume: 11 start-page: 3194 year: 1997 ident: 2021040621000623400_b49 publication-title: Genes Dev. doi: 10.1101/gad.11.23.3194 |
SSID | ssj0001719 |
Score | 2.4967349 |
Snippet | Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the MYB... Abstract Gibberellins (GAs) play important roles in regulating reproductive development, especially anther development. Our previous studies revealed that the... |
SourceID | pubmedcentral proquest crossref pubmed jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1453 |
SubjectTerms | 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase Alcohol Oxidoreductases - genetics Alcohol Oxidoreductases - metabolism Anthers Binding Sites Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Developmental biology Flowers - growth & development Flowers - metabolism Gene Expression Profiling Gene expression regulation Gene Expression Regulation, Plant - drug effects Genes Gibberellins Gibberellins - pharmacology Gibberellins - physiology Microspores Mutagenesis, Site-Directed Mutants Mutation Oligonucleotide Array Sequence Analysis Oryza - drug effects Oryza - genetics Oryza - growth & development Oryza - metabolism Phenotype Plant cells Plant Proteins - genetics Plant Proteins - metabolism Plant Proteins - physiology Plants Pollen Promoter Regions, Genetic Protein Interaction Mapping Rice Signal Transduction Transcription Factors - genetics Transcription Factors - metabolism Transcription Factors - physiology Transcription, Genetic |
Title | Gibberellin Modulates Anther Development in Rice via the Transcriptional Regulation of GAMYB |
URI | https://www.jstor.org/stable/40536918 https://www.ncbi.nlm.nih.gov/pubmed/19454733 https://www.proquest.com/docview/218768131 https://pubmed.ncbi.nlm.nih.gov/PMC2700530 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RFgkuCAqloVD5gAQcQpM4tuMT6lZ9CLQVLKxYTlb8COwlWXYXJP49M3ksXYQ4Wo5syZ8z8409_gbgeeKVtfQ4hiufxXkeqljjxomlk14pTS6KDvTH1_Jqmr-diVmfm7Pq0yoHm9gaat84OiM_QVeEzDjl6ZvF95iKRtHlal9BYwf20iyRlNGlZpt4i5RgdCdGkMRU8rvXbERGcbJeOMque51IdHdiyyftVGUzJCf-i3b-nT15wx1d3Id7PY9kpx3wD-BWqPfh9qhBrvdrH-6cDXXcHoK5nFsbliS8WbNx46leV1gxUg0IS3YjaYhh_wTtBvs5Lxl2staPDVYFJ5t0deuxwZqKXZ6Ov4xefn71CKYX55_OruK-rELsMHZZx5kPhQ9ek41E_NAaZoIrx0VR-iQtU17x1Kkqs6RdVhTeWqtklWuHoaAoteUHsFs3dTgEllUWl11LjMhz5F1aO5E7X_rCSl_mwkbwYlhYs-jUM0wbdSTCIASkTmo6CCI4xHU35Vc0bWb6MaML1VQKehMWwUELxmYE5Jhc6rSI4GhAx_R_3sps9kkEjzuc_sysSb2MBlRbCG4-IKnt7Z56_q2V3KbrecGTJ_-d8QjudndNlA75FHbXyx_hGVKWtT1uN-Yx7I3Or99PsPXuQ_EbJyvphg |
link.rule.ids | 230,315,783,787,888,12068,21400,27936,27937,31731,33756,43322,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3RFqlcEBRKQ_nwAQk4hCZxbMcn1K3aLtBdoaUrysmKY4fuJdnuLkj8e2bysXQR4hg5siWP82YmM34P4FXklLV0OYYrl4Rp6stQ48EJZSGdUppcFP3QH43lcJp-vBJXXW_Osmur7DGxAWpXF_SP_AhdEUbGMY_fz29CEo2i4mqnoLEFO8RUhbnXzuB0_HmyhuJYNcoeMbXNkeh3x9qIMcXRal5Qf927SKLDExteaavM67498V-B59_9k7cc0tkDuN9Fkuy4Nf1DuOOrPbg7qDHa-7UHuye9ktsjMOcza_2CqDcrNqodKXb5JSPeAL9gt9qGGI5PEDnYz1nOcJA1nqzHFVxs0irX4wOrS3Z-PPo2ePP17WOYnp1engzDTlghLDB7WYWJ85nzThNKogURDxPBVcFFlrsozmNe8rhQZWKJvSzLnLVWyTLVBSaDIteW78N2VVf-AFhS2khmWmJOnmLkpXUh0sLlLrPS5amwAbzuN9bMW_4M0-QdkTBoAuInNa0JAjjAfTf5dwQ3M_2SUEk1loJuhQWw3xhjPQNGmVzqOAvgsLeO6b69pVmflACetHb6s7Im_jKaUG1YcP0CkW1vjlSz64Z0mwr0gkdP_7viS9gdXo4uzMWH8adDuNdWnqg58hlsrxY__HMMYFb2RXdMfwNynetN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gibberellin+modulates+anther+development+in+rice+via+the+transcriptional+regulation+of+GAMYB&rft.jtitle=The+Plant+cell&rft.au=Aya%2C+Koichiro&rft.au=Ueguchi-Tanaka%2C+Miyako&rft.au=Kondo%2C+Maki&rft.au=Hamada%2C+Kazuki&rft.date=2009-05-01&rft.issn=1040-4651&rft.volume=21&rft.issue=5&rft.spage=1453&rft_id=info:doi/10.1105%2Ftpc.108.062935&rft_id=info%3Apmid%2F19454733&rft.externalDocID=19454733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |