Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy

A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 3; pp. 566 - 575
Main Authors Ansari, Celina, Tikhomirov, Grigory A., Hong, Su Hyun, Falconer, Robert A., Loadman, Paul M., Gill, Jason H., Castaneda, Rosalinda, Hazard, Florette K., Tong, Ling, Lenkov, Olga D., Felsher, Dean W., Rao, Jianghong, Daldrup-Link, Heike E.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.02.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. The design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP‐14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non‐toxic unless activated.
AbstractList A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, we describe the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs were synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death was observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro , but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrated significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induced a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death was observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. Our findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.
A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. The design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP-14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non-toxic unless activated.
A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.
A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. [PUBLICATION ABSTRACT]
A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. The design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP‐14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non‐toxic unless activated.
A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.
Author Rao, Jianghong
Daldrup-Link, Heike E.
Felsher, Dean W.
Castaneda, Rosalinda
Lenkov, Olga D.
Ansari, Celina
Falconer, Robert A.
Tikhomirov, Grigory A.
Loadman, Paul M.
Hong, Su Hyun
Hazard, Florette K.
Tong, Ling
Gill, Jason H.
Author_xml – sequence: 1
  givenname: Celina
  surname: Ansari
  fullname: Ansari, Celina
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA
– sequence: 2
  givenname: Grigory A.
  surname: Tikhomirov
  fullname: Tikhomirov, Grigory A.
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA
– sequence: 3
  givenname: Su Hyun
  surname: Hong
  fullname: Hong, Su Hyun
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA
– sequence: 4
  givenname: Robert A.
  surname: Falconer
  fullname: Falconer, Robert A.
  organization: Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
– sequence: 5
  givenname: Paul M.
  surname: Loadman
  fullname: Loadman, Paul M.
  organization: Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK
– sequence: 6
  givenname: Jason H.
  surname: Gill
  fullname: Gill, Jason H.
  organization: School of Medicine, Pharmacy and Health, Durham University Queens Campus, TS17 6BH, Stockton-on-Tees, UK
– sequence: 7
  givenname: Rosalinda
  surname: Castaneda
  fullname: Castaneda, Rosalinda
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA
– sequence: 8
  givenname: Florette K.
  surname: Hazard
  fullname: Hazard, Florette K.
  organization: Department of Pathology, Stanford University, 300 Pasteur Drive, CA, 94305, Stanford, USA
– sequence: 9
  givenname: Ling
  surname: Tong
  fullname: Tong, Ling
  organization: Division of Oncology, Department of Medicine, Stanford University, 269 Campus Drive, CCSR 1105, CA, 94305, Stanford, USA
– sequence: 10
  givenname: Olga D.
  surname: Lenkov
  fullname: Lenkov, Olga D.
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA
– sequence: 11
  givenname: Dean W.
  surname: Felsher
  fullname: Felsher, Dean W.
  organization: Department of Pathology, Stanford University, 300 Pasteur Drive, 94305, Stanford, CA, USA
– sequence: 12
  givenname: Jianghong
  surname: Rao
  fullname: Rao, Jianghong
  email: jrao@stanford.edu
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, 94305-5614, Stanford, CA, USA
– sequence: 13
  givenname: Heike E.
  surname: Daldrup-Link
  fullname: Daldrup-Link, Heike E.
  email: jrao@stanford.edu
  organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, 94305-5614, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24038954$$D View this record in MEDLINE/PubMed
BookMark eNqFks9v0zAUgCM0xLbClSOKxIVLin_FiS9IW6Fjoi0SRIKb5bovnUdiBzst6x_F_4ijlmpMQjvl5eX7nl-e33lyYp2FJHmJ0RgjRN6GtmnGBGGKMMv5k-QMc0wzXhJxcowxOk3OQ7hFiGLCimfJKWGIliJnZ8nv97CFxnUt2D51dbpw8TWtNq3zWaX8GnpYpdUNeGVd6I1OFzHolI9hAyG90L3ZqoFZ7tI5tMvIQVbtOkjnqvfmLiZ71cQDvOvBWBWiVDufTly7NDZ6E2U1-EivLQz1v0Bwdsil161aG7tOlT100O2eJ09r1QR4cXiOkmr6oZp8zGafr64nF7NMc5TzjAsgjIilQnkOVBOuKBdII1bUmhHN8AqrktRlzJWo0IVe5ZRoiNPSPBc1HSXv9mW7zbKFlY6z8aqRnTet8jvplJH_frHmRq7dVlLBOKV5LPDmUMC7nxsIvWxN0NA0cTpuEyTOMWW8EBQ_jjIhMOaoKCP6-gF66zbexkEMFEOC5vGKR8mr-80fu_575xEY7wHtXQge6iOCkRyWSg5LJY9LFQX2QNCmV71xw8-b5v-a2Gu_TAO7Rw6RX-ez2X0327sm9HB3dJX_IXlBi1x-W1zJalpVU_LpUn6nfwA-2_P9
CitedBy_id crossref_primary_10_1016_j_apsb_2021_01_017
crossref_primary_10_1016_j_ijpharm_2020_119712
crossref_primary_10_1021_acs_iecr_7b00990
crossref_primary_10_1002_adfm_201700371
crossref_primary_10_1039_D2BM00220E
crossref_primary_10_2174_1567201819666220426085450
crossref_primary_10_3109_10520295_2015_1072770
crossref_primary_10_1021_cm504313c
crossref_primary_10_1038_s41419_018_1285_3
crossref_primary_10_2217_nnm_2017_0320
crossref_primary_10_1002_ange_201902476
crossref_primary_10_2217_nnm_2018_0443
crossref_primary_10_3390_cells8090984
crossref_primary_10_1021_acs_bioconjchem_6b00591
crossref_primary_10_1021_mp400760b
crossref_primary_10_1039_D0QM00323A
crossref_primary_10_1186_1556_276X_9_461
crossref_primary_10_1039_D5NR00447K
crossref_primary_10_1039_C5RA26172D
crossref_primary_10_1002_ange_201402305
crossref_primary_10_1021_acsami_3c00179
crossref_primary_10_1016_j_coph_2014_08_002
crossref_primary_10_3390_nano11071727
crossref_primary_10_1371_journal_pone_0142665
crossref_primary_10_1016_j_bioactmat_2022_04_024
crossref_primary_10_3390_molecules30010162
crossref_primary_10_1021_acs_langmuir_1c02298
crossref_primary_10_1007_s11051_017_3753_6
crossref_primary_10_1016_j_addr_2022_114138
crossref_primary_10_1016_j_jddst_2024_105938
crossref_primary_10_1016_j_drudis_2017_04_008
crossref_primary_10_1007_s12668_024_01752_y
crossref_primary_10_1016_j_jconrel_2019_07_004
crossref_primary_10_1002_bit_25454
crossref_primary_10_1016_j_ccr_2024_215842
crossref_primary_10_37549_AR2484
crossref_primary_10_3390_nano12213873
crossref_primary_10_1039_D1BM00508A
crossref_primary_10_1016_j_nantod_2022_101524
crossref_primary_10_1007_s11426_016_0246_9
crossref_primary_10_1002_adfm_202100605
crossref_primary_10_1039_C6CS00592F
crossref_primary_10_1021_acs_bioconjchem_0c00082
crossref_primary_10_1021_mp500443x
crossref_primary_10_1016_j_jtice_2019_08_010
crossref_primary_10_1038_nnano_2016_168
crossref_primary_10_2217_nnm_2016_0027
crossref_primary_10_1007_s11307_014_0746_z
crossref_primary_10_1016_j_jacr_2015_10_028
crossref_primary_10_1016_j_biochi_2019_03_002
crossref_primary_10_3390_cryst13040652
crossref_primary_10_1016_j_ijpharm_2019_01_048
crossref_primary_10_1186_s11671_024_03979_w
crossref_primary_10_1007_s00259_019_04607_x
crossref_primary_10_1016_j_jconrel_2017_04_028
crossref_primary_10_3390_biomedicines11020562
crossref_primary_10_2174_2211738510666220210105113
crossref_primary_10_1007_s10989_017_9583_7
crossref_primary_10_3390_ijms22105147
crossref_primary_10_1021_acs_chemrev_5b00589
crossref_primary_10_1016_j_jclepro_2021_126270
crossref_primary_10_1021_acs_molpharmaceut_7b01103
crossref_primary_10_1007_s10555_014_9530_4
crossref_primary_10_1016_j_addr_2015_12_020
crossref_primary_10_1016_j_ijpharm_2017_02_012
crossref_primary_10_1016_j_drudis_2020_09_031
crossref_primary_10_1177_17588359221076194
crossref_primary_10_1016_j_bcp_2022_115095
crossref_primary_10_1021_acs_chemrev_5b00112
crossref_primary_10_1016_j_colsurfb_2020_111022
crossref_primary_10_1186_s40824_018_0132_z
crossref_primary_10_1016_j_ccr_2024_215732
crossref_primary_10_1016_j_drudis_2019_09_020
crossref_primary_10_1016_j_apmt_2019_100510
crossref_primary_10_1016_j_molliq_2022_121140
crossref_primary_10_1177_1536012117730950
crossref_primary_10_1021_acsami_7b07091
crossref_primary_10_1016_j_mtbio_2025_101680
crossref_primary_10_3390_cancers14102456
crossref_primary_10_1155_2019_9394715
crossref_primary_10_1016_j_mtbio_2021_100197
crossref_primary_10_1146_annurev_control_042920_013605
crossref_primary_10_1016_j_jconrel_2021_03_021
crossref_primary_10_3390_pharmaceutics12090837
crossref_primary_10_1007_s11307_018_1203_1
crossref_primary_10_1039_C9RA02636C
crossref_primary_10_1051_e3sconf_202125102051
crossref_primary_10_1016_j_jtice_2020_11_037
crossref_primary_10_1002_anie_201402305
crossref_primary_10_1038_srep33560
crossref_primary_10_1016_j_apsadv_2022_100284
crossref_primary_10_3762_bjnano_9_92
crossref_primary_10_1039_C7TB00093F
crossref_primary_10_1039_D1BM00721A
crossref_primary_10_1016_j_jpha_2021_11_002
crossref_primary_10_1016_j_biomaterials_2019_05_018
crossref_primary_10_1186_s40644_018_0172_6
crossref_primary_10_1002_anie_201902476
crossref_primary_10_1016_j_ejpb_2019_02_009
crossref_primary_10_1016_j_jobaz_2015_03_003
crossref_primary_10_1158_1535_7163_MCT_17_0022
crossref_primary_10_1016_j_ccr_2018_12_015
crossref_primary_10_1016_j_apsusc_2019_03_326
crossref_primary_10_3390_ijms18020336
crossref_primary_10_3389_fbioe_2021_707319
crossref_primary_10_1021_acs_jmedchem_6b01472
crossref_primary_10_1016_j_biomaterials_2017_06_002
crossref_primary_10_1016_j_jconrel_2017_01_034
Cites_doi 10.1021/ar200106e
10.1158/0008-5472.CAN-10-1440
10.1002/anie.201106758
10.1158/1078-0432.CCR-07-1441
10.1038/sj.onc.1206962
10.1111/j.1365-2613.2009.00651.x
10.1038/sj.bjp.0707657
10.1073/pnas.0910261107
10.1021/bc980125h
10.1021/ar200085c
10.1021/ar200094a
10.1083/jcb.200408028
10.1002/ajh.21656
10.1016/S1359-6446(03)02988-X
10.1021/ar200019c
10.1038/sj.bjc.6603694
10.1016/j.biomaterials.2012.02.019
10.1038/nrc1628
10.1200/JCO.2005.04.8801
10.1016/j.jconrel.2011.09.063
10.1111/j.1365-2362.2009.02130.x
10.1158/0008-5472.CAN-08-3255
10.1002/jmri.20235
10.1007/978-1-60761-609-2_3
10.1073/pnas.0910283107
10.1158/1078-0432.CCR-06-0918
10.1002/ijc.20945
10.1126/science.257.5067.219
10.1021/cr900232t
10.3233/CBM-2008-4602
10.1002/smll.201000523
10.1016/j.ejca.2003.11.021
10.1158/1078-0432.CCR-12-1414
10.1021/ar1000633
10.1016/j.addr.2012.06.006
10.1039/c2cc31448g
10.1128/MCB.12.3.954
10.1021/ar2000056
10.1080/10739680701436350
10.1021/bc000079x
10.1038/nrclinonc.2010.139
10.1016/S0002-9440(10)63568-7
10.1021/ar2000277
10.1159/000087212
10.1227/01.NEU.0000255350.71700.37
10.1021/ar2001777
10.1126/science.1067100
10.1007/s12010-011-9383-z
10.1021/ar200105p
10.1016/j.jconrel.2012.05.028
ContentType Journal Article
Copyright 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
5PM
DOI 10.1002/smll.201301456
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database
CrossRef
Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 575
ExternalDocumentID PMC3946335
3203260091
24038954
10_1002_smll_201301456
SMLL201301456
ark_67375_WNG_TFTTF2KB_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/NCI
  funderid: R21CA156124; R01CA140943; R01CA135294; R21CA138353A2
– fundername: NCI NIH HHS
  grantid: R01CA140943
– fundername: NCI NIH HHS
  grantid: U54CA151459
– fundername: NCI NIH HHS
  grantid: R01 CA140943
– fundername: NCI NIH HHS
  grantid: P30CA124435-02
– fundername: NCI NIH HHS
  grantid: U54 CA151459
– fundername: NCI NIH HHS
  grantid: R01CA135294
– fundername: NCI NIH HHS
  grantid: R01 CA135294
– fundername: NCI NIH HHS
  grantid: P50CA114747
– fundername: NCI NIH HHS
  grantid: R21 CA138353
– fundername: NCI NIH HHS
  grantid: R21 CA156124
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
F28
FR3
5PM
ID FETCH-LOGICAL-c6056-69e2429ba055e3c26a3690c047fc42c41d1a82f890c807c7cd532ce613c659f3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Aug 21 18:42:19 EDT 2025
Thu Jul 10 20:42:16 EDT 2025
Fri Jul 11 09:14:19 EDT 2025
Fri Jul 25 12:19:17 EDT 2025
Mon Jul 21 05:56:37 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 02:10:10 EDT 2025
Wed Jan 22 17:08:26 EST 2025
Wed Oct 30 09:56:38 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cancer therapy
iron oxide
MR imaging
nanoparticles
theranostic
MMP-14
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6056-69e2429ba055e3c26a3690c047fc42c41d1a82f890c807c7cd532ce613c659f3
Notes NIH/NCI - No. R21CA156124; No. R01CA140943; No. R01CA135294; No. R21CA138353A2
ark:/67375/WNG-TFTTF2KB-X
istex:EF880557C905BDDD432709742A98E132CE45D45D
ArticleID:SMLL201301456
These authors contributed equally to this study
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Both authors contributed equally to this study
Authors are co-last authors
OpenAccessLink https://durham-repository.worktribe.com/output/1488109
PMID 24038954
PQID 1494093500
PQPubID 1046358
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946335
proquest_miscellaneous_1513467931
proquest_miscellaneous_1499116078
proquest_journals_1494093500
pubmed_primary_24038954
crossref_primary_10_1002_smll_201301456
crossref_citationtrail_10_1002_smll_201301456
wiley_primary_10_1002_smll_201301456_SMLL201301456
istex_primary_ark_67375_WNG_TFTTF2KB_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References a) V. S. Balakrishnan, M. Rao, A. T. Kausz, L. Brenner, B. J. G. Pereira, T. B. Frigo, J. M. Lewis, Eur. J. Clin. Invest. 2009, 39, 489-496; b
C. C. Reyes-Aldasoro, I. Wilson, V. E. Prise, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, V. J. Cunningham, G. M. Tozer, Microcirculation 2008, 15, 65-79.
T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029-1038.
L. M. Coussens, B. Fingleton, L. M. Matrisian, Science 2002, 295, 2387-2392.
e) J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050-1060
a) S. Mura, P. Couvreur, Adv. Drug Delivery Rev. 2012, 64, 1394-1416
H. Kobayashi, P. L. Choyke, Acc. Chem. Res. 2011, 44, 83-90; c
A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921-2959.
R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell, D. R. Huffman, Science 1992, 257, 219-223.
b) M. Y. Liao, P. S. Lai, H. P. Yu, H. P. Lin, C. C. Huang, Chem. Commun. 2012, 48, 5319-5321.
c) F. M. Kievit, M. Q. Zhang, Acc. Chem. Res. 2011, 44, 853-862
C. Minelli, S. B. Lowe, M. M. Stevens, Small 2010, 6, 2336-2357.
a) M. J. Ernsting, W. D. Foltz, E. Undzys, T. Tagami, S. D. Li, Biomaterials 2012, 33, 3931-3941
a) J. Ueda, M. Kajita, N. Suenaga, K. Fujii, M. Seiki, Oncogene 2003, 22, 8716-8722
J. M. Atkinson, C. S. Siller, J. H. Gill, Brit. J. Pharmacol. 2008, 153, 1344-1352.
C. Kanthou, G. M. Tozer, Int. J. Exp. Path. 2009, 90, 284-294.
M. C. Bibby, Eur. J. Cancer 2004, 40, 852-857; c
a) D. R. Elias, D. L. J. Thorek, A. K. Chen, J. Czupryna, A. Tsourkas, Cancer Biomarkers 2008, 4, 287-305; b
b) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653-664
d) M. M. Handsley, D. R. Edwards, Int. J. Cancer 2005, 115, 849-860.
J. Park, J. Yang, E.-K. Lim, E. Kim, J. Choi, J. K. Ryu, N. H. Kim, J.-S. Suh, J. I. Yook, Y.-M. Huh, S. Haam, Angew. Chem. Int. Ed. 2012, 51, 945-948.
a) P. Hinnen, F. Eskens, Brit. J. Cancer 2007, 96, 1159-1165
c) L. Devy, L. L. Huang, L. Naa, N. Yanamandra, H. Pieters, N. Frans, E. Chang, Q. F. Tao, M. Vanhove, A. Lejeune, R. van Gool, D. J. Sexton, G. Kuang, D. Rank, S. Hogan, C. Pazmany, Y. L. Ma, S. Schoonbroodt, A. E. Nixon, R. C. Ladner, R. Hoet, P. Henderikx, C. TenHoor, S. A. Rabbani, M. L. Valentino, C. R. Wood, D. T. Dransfield, Cancer Res. 2009, 69, 1517-1526
T. H. Kuo, T. Kubota, M. Watanabe, T. Furukawa, S. Kase, H. Tanino, Y. Saikawa, K. Ishibiki, M. Kitajima, R. M. Hoffman, Anticancer Res. 1993, 13, 627-630.
M. Lu, M. H. Cohen, D. Rieves, R. Pazdur, Am. J. Hematol. 2010, 85, 315-319.
b) F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-Hansen, P. Soloway, M. Balbin, C. Lopez-Otin, S. Shapiro, M. Inada, S. Krane, E. Allen, D. Chung, S. J. Weiss, J. Cell Biol. 2004, 167, 769-781
J. M. Atkinson, R. A. Falconer, D. R. Edwards, C. J. Pennington, C. S. Siller, S. D. Shnyder, M. C. Bibby, L. H. Patterson, P. M. Loadman, J. H. Gill, Cancer Res. 2010, 70, 6902-6912.
D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 2011, 44, 863-874
D. Högemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 2000, 11, 941-946.
g) M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas, Acc. Chem. Res. 2011, 44, 1061-1070
b) Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4317-4322.
b) X. W. Ma, Y. L. Zhao, X. J. Liang, Accounts Chem. Res. 2011, 44, 1114-1122
h) W. T. Al-Jamal, K. Kostarelos, Acc. Chem. Res. 2011, 44, 1094-1104.
E. A. Neuwelt, C. G. Varallyay, S. Manninger, D. Solymosi, M. Haluska, M. A. Hunt, G. Nesbit, A. Stevens, M. Jerosch-Herold, P. M. Jacobs, J. M. Hoffman, Neurosurgery 2007, 60, 601-611; c
a) G. M. Tozer, V. E. Prise, J. Wilson, M. Cemazar, S. Q. Shan, M. W. Dewhirst, P. R. Barber, B. Vojnovic, D. J. Chaplin, Cancer Res. 2001, 61, 6413-6422
E. Y. Lin, J. G. Jones, P. Li, U. Y. Zhu, K. D. Whitney, W. J. Muller, J. W. Pollard, Am. J. Pathol. 2003, 163, 2113-2126.
d) E. Terreno, F. Uggeri, S. Aime, J. Controlled Release 2012, 161, 328-337.
f) A. Fernandez-Fernandez, R. Manchanda, A. J. McGoron, Appl. Biochem. Biotechnol. 2011, 165, 1628-1651
W. Li, S. Tutton, A. T. Vu, L. Pierchala, B. S. Y. Li, J. M. Lewis, P. V. Prasad, R. R. Edelman, J. Mag. Reson. Im. 2005, 21, 46-52.
a) L. Varticovski, M. G. Hollingshead, A. I. Robles, X. L. Wu, J. Cherry, D. J. Munroe, L. Lukes, M. R. Anver, J. P. Carter, S. D. Borgel, H. Stotler, C. A. Bonomi, N. P. Nunez, S. D. Hursting, W. H. Qiao, C. X. X. Deng, J. E. Green, K. W. Hunter, G. Merlino, P. S. Steeg, L. M. Wakefield, J. C. Barrett, Clin. Cancer Res. 2007, 13, 2168-2177; b
F. Marcucci, F. Lefoulon, Drug Discov. Today 2004, 9, 219-228.
b) G. M. Tozer, C. Kanthou, B. C. Baguley, Nat. Rev. Cancer 2005, 5, 423-435.
b) W. J. van Heeckeren, S. Bhakta, J. Ortiz, J. Duerk, M. M. Cooney, A. Dowlati, K. McCrae, S. C. Remick, J. Clin. Onc. 2006, 24, 1485-1488.
K. Greish, in Cancer Nanotechnology: Methods and Protocols, Vol. 624 (Ed.: M. Grobmyer), 2010, pp. 25-37.
L. Josephson, C. H. Tung, A. Moore, R. Weissleder, Bioconjugate Chem. 1999, 10, 186-191; b
K. J. Cho, X. Wang, S. M. Nie, Z. Chen, D. M. Shin, Clin. Cancer Res. 2008, 14, 1310-1316.
R. Landry, P. M. Jacobs, R. Davis, M. Shenouda, W. K. Bolton, Am. J. Nephrol. 2005, 25, 400-410.
a) E. S. Olson, T. Jiang, T. A. Aguilera, Q. T. Nguyen, L. G. Ellies, M. Scadeng, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4311-4316
c) T. Lammers, F. Kiessling, W. E. Hennink, G. Storm, J. Controlled Release 2012, 161, 175-187
d) H. Cabral, N. Nishiyama, K. Kataoka, Accounts Chem. Res. 2011, 44, 999-1008
a) C. T. Guy, R. D. Cardiff, W. J. Muller, Mol. Cell. Biol. 1992, 12, 954-961; b
T. Lammers, L. Y. Rizzo, G. Storm, F. Kiessling, Clin. Cancer Res. 2012, 18, 4889-4894.
2003 2004 2009 2005; 22 167 69 115
2010; 624
2002; 295
2004; 9
2008; 14
2008; 15
2009 2007 2010; 39 60 85
2005; 21
2012; 18
2007 2006; 96 24
2012 2010 2012 2012; 64 7 161 161
2007 2004 1993; 13 40 13
2005; 25
2011 2011 2011 2011 2011 2011 2011 2011; 44 44 44 44 44 165 44 44
2010 2010; 107 107
2008 2011 2012; 4 44 51
2012 2012; 33 48
2001 2005; 61 5
1992 2003; 12 163
2009; 90
1992; 257
2010; 110
2011; 44
2010; 70
2008; 153
1999 2000; 10 11
2010; 6
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
Tozer G. M. (e_1_2_7_4_1) 2001; 61
e_1_2_7_23_3
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_2
Kuo T. H. (e_1_2_7_26_3) 1993; 13
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_20_8
e_1_2_7_20_7
e_1_2_7_20_6
e_1_2_7_24_2
e_1_2_7_20_5
e_1_2_7_24_1
e_1_2_7_20_4
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
14647466 - Oncogene. 2003 Nov 27;22(54):8716-22
16574996 - J Clin Oncol. 2006 Apr 1;24(10):1485-8
22626940 - J Control Release. 2012 Jul 20;161(2):328-37
20160097 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22
20067234 - Chem Rev. 2010 May 12;110(5):2921-59
11923519 - Science. 2002 Mar 29;295(5564):2387-92
21947761 - Appl Biochem Biotechnol. 2011 Dec;165(7-8):1628-51
10077466 - Bioconjug Chem. 1999 Mar-Apr;10(2):186-91
22162331 - Angew Chem Int Ed Engl. 2012 Jan 23;51(4):945-8
17375046 - Br J Cancer. 2007 Apr 23;96(8):1159-65
20201089 - Am J Hematol. 2010 May;85(5):315-9
17415196 - Neurosurgery. 2007 Apr;60(4):601-11; discussion 611-2
21812415 - Acc Chem Res. 2011 Oct 18;44(10):1094-104
20878632 - Small. 2010 Nov 5;6(21):2336-57
21945285 - J Control Release. 2012 Jul 20;161(2):175-87
18204490 - Br J Pharmacol. 2008 Apr;153(7):1344-52
21919457 - Acc Chem Res. 2011 Oct 18;44(10):1050-60
20160077 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6
15611942 - J Magn Reson Imaging. 2005 Jan;21(1):46-52
19208838 - Cancer Res. 2009 Feb 15;69(4):1517-26
21932809 - Acc Chem Res. 2011 Oct 18;44(10):1061-70
8391244 - Anticancer Res. 1993 May-Jun;13(3):627-30
21823593 - Acc Chem Res. 2011 Oct 18;44(10):863-74
17952797 - Microcirculation. 2008 Jan;15(1):65-79
21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62
21732606 - Acc Chem Res. 2011 Oct 18;44(10):1114-22
20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
11522635 - Cancer Res. 2001 Sep 1;61(17):6413-22
19563611 - Int J Exp Pathol. 2009 Jun;90(3):284-94
16088081 - Am J Nephrol. 2005 Jul-Aug;25(4):400-10
22728642 - Adv Drug Deliv Rev. 2012 Oct;64(13):1394-416
21545096 - Acc Chem Res. 2011 Oct 18;44(10):1029-38
19126958 - Cancer Biomark. 2008;4(6):287-305
14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28
17404101 - Clin Cancer Res. 2007 Apr 1;13(7):2168-77
19397688 - Eur J Clin Invest. 2009 Jun;39(6):489-96
20663911 - Cancer Res. 2010 Sep 1;70(17):6902-12
21062101 - Acc Chem Res. 2011 Feb 15;44(2):83-90
1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61
17794752 - Science. 1992 Jul 10;257(5067):219-23
14578209 - Am J Pathol. 2003 Nov;163(5):2113-26
15557125 - J Cell Biol. 2004 Nov 22;167(4):769-81
22523747 - Chem Commun (Camb). 2012 May 28;48(43):5319-21
15120041 - Eur J Cancer. 2004 Apr;40(6):852-7
21755933 - Acc Chem Res. 2011 Oct 18;44(10):999-1008
11087345 - Bioconjug Chem. 2000 Nov-Dec;11(6):941-6
22369962 - Biomaterials. 2012 May;33(15):3931-41
22829203 - Clin Cancer Res. 2012 Sep 15;18(18):4889-94
15729716 - Int J Cancer. 2005 Jul 20;115(6):849-60
15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35
18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6
References_xml – reference: c) T. Lammers, F. Kiessling, W. E. Hennink, G. Storm, J. Controlled Release 2012, 161, 175-187;
– reference: d) E. Terreno, F. Uggeri, S. Aime, J. Controlled Release 2012, 161, 328-337.
– reference: a) P. Hinnen, F. Eskens, Brit. J. Cancer 2007, 96, 1159-1165;
– reference: J. M. Atkinson, R. A. Falconer, D. R. Edwards, C. J. Pennington, C. S. Siller, S. D. Shnyder, M. C. Bibby, L. H. Patterson, P. M. Loadman, J. H. Gill, Cancer Res. 2010, 70, 6902-6912.
– reference: d) H. Cabral, N. Nishiyama, K. Kataoka, Accounts Chem. Res. 2011, 44, 999-1008;
– reference: J. Park, J. Yang, E.-K. Lim, E. Kim, J. Choi, J. K. Ryu, N. H. Kim, J.-S. Suh, J. I. Yook, Y.-M. Huh, S. Haam, Angew. Chem. Int. Ed. 2012, 51, 945-948.
– reference: J. M. Atkinson, C. S. Siller, J. H. Gill, Brit. J. Pharmacol. 2008, 153, 1344-1352.
– reference: b) G. M. Tozer, C. Kanthou, B. C. Baguley, Nat. Rev. Cancer 2005, 5, 423-435.
– reference: a) D. R. Elias, D. L. J. Thorek, A. K. Chen, J. Czupryna, A. Tsourkas, Cancer Biomarkers 2008, 4, 287-305; b)
– reference: a) M. J. Ernsting, W. D. Foltz, E. Undzys, T. Tagami, S. D. Li, Biomaterials 2012, 33, 3931-3941;
– reference: L. M. Coussens, B. Fingleton, L. M. Matrisian, Science 2002, 295, 2387-2392.
– reference: C. Kanthou, G. M. Tozer, Int. J. Exp. Path. 2009, 90, 284-294.
– reference: a) V. S. Balakrishnan, M. Rao, A. T. Kausz, L. Brenner, B. J. G. Pereira, T. B. Frigo, J. M. Lewis, Eur. J. Clin. Invest. 2009, 39, 489-496; b)
– reference: E. Y. Lin, J. G. Jones, P. Li, U. Y. Zhu, K. D. Whitney, W. J. Muller, J. W. Pollard, Am. J. Pathol. 2003, 163, 2113-2126.
– reference: H. Kobayashi, P. L. Choyke, Acc. Chem. Res. 2011, 44, 83-90; c)
– reference: f) A. Fernandez-Fernandez, R. Manchanda, A. J. McGoron, Appl. Biochem. Biotechnol. 2011, 165, 1628-1651;
– reference: d) M. M. Handsley, D. R. Edwards, Int. J. Cancer 2005, 115, 849-860.
– reference: K. J. Cho, X. Wang, S. M. Nie, Z. Chen, D. M. Shin, Clin. Cancer Res. 2008, 14, 1310-1316.
– reference: C. Minelli, S. B. Lowe, M. M. Stevens, Small 2010, 6, 2336-2357.
– reference: A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921-2959.
– reference: g) M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas, Acc. Chem. Res. 2011, 44, 1061-1070;
– reference: h) W. T. Al-Jamal, K. Kostarelos, Acc. Chem. Res. 2011, 44, 1094-1104.
– reference: c) L. Devy, L. L. Huang, L. Naa, N. Yanamandra, H. Pieters, N. Frans, E. Chang, Q. F. Tao, M. Vanhove, A. Lejeune, R. van Gool, D. J. Sexton, G. Kuang, D. Rank, S. Hogan, C. Pazmany, Y. L. Ma, S. Schoonbroodt, A. E. Nixon, R. C. Ladner, R. Hoet, P. Henderikx, C. TenHoor, S. A. Rabbani, M. L. Valentino, C. R. Wood, D. T. Dransfield, Cancer Res. 2009, 69, 1517-1526;
– reference: L. Josephson, C. H. Tung, A. Moore, R. Weissleder, Bioconjugate Chem. 1999, 10, 186-191; b)
– reference: R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell, D. R. Huffman, Science 1992, 257, 219-223.
– reference: M. C. Bibby, Eur. J. Cancer 2004, 40, 852-857; c)
– reference: b) M. Y. Liao, P. S. Lai, H. P. Yu, H. P. Lin, C. C. Huang, Chem. Commun. 2012, 48, 5319-5321.
– reference: D. Högemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 2000, 11, 941-946.
– reference: a) G. M. Tozer, V. E. Prise, J. Wilson, M. Cemazar, S. Q. Shan, M. W. Dewhirst, P. R. Barber, B. Vojnovic, D. J. Chaplin, Cancer Res. 2001, 61, 6413-6422;
– reference: e) J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050-1060;
– reference: a) S. Mura, P. Couvreur, Adv. Drug Delivery Rev. 2012, 64, 1394-1416;
– reference: b) X. W. Ma, Y. L. Zhao, X. J. Liang, Accounts Chem. Res. 2011, 44, 1114-1122;
– reference: b) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653-664;
– reference: R. Landry, P. M. Jacobs, R. Davis, M. Shenouda, W. K. Bolton, Am. J. Nephrol. 2005, 25, 400-410.
– reference: D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 2011, 44, 863-874;
– reference: b) F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-Hansen, P. Soloway, M. Balbin, C. Lopez-Otin, S. Shapiro, M. Inada, S. Krane, E. Allen, D. Chung, S. J. Weiss, J. Cell Biol. 2004, 167, 769-781;
– reference: W. Li, S. Tutton, A. T. Vu, L. Pierchala, B. S. Y. Li, J. M. Lewis, P. V. Prasad, R. R. Edelman, J. Mag. Reson. Im. 2005, 21, 46-52.
– reference: M. Lu, M. H. Cohen, D. Rieves, R. Pazdur, Am. J. Hematol. 2010, 85, 315-319.
– reference: T. H. Kuo, T. Kubota, M. Watanabe, T. Furukawa, S. Kase, H. Tanino, Y. Saikawa, K. Ishibiki, M. Kitajima, R. M. Hoffman, Anticancer Res. 1993, 13, 627-630.
– reference: T. Lammers, L. Y. Rizzo, G. Storm, F. Kiessling, Clin. Cancer Res. 2012, 18, 4889-4894.
– reference: a) L. Varticovski, M. G. Hollingshead, A. I. Robles, X. L. Wu, J. Cherry, D. J. Munroe, L. Lukes, M. R. Anver, J. P. Carter, S. D. Borgel, H. Stotler, C. A. Bonomi, N. P. Nunez, S. D. Hursting, W. H. Qiao, C. X. X. Deng, J. E. Green, K. W. Hunter, G. Merlino, P. S. Steeg, L. M. Wakefield, J. C. Barrett, Clin. Cancer Res. 2007, 13, 2168-2177; b)
– reference: a) C. T. Guy, R. D. Cardiff, W. J. Muller, Mol. Cell. Biol. 1992, 12, 954-961; b)
– reference: F. Marcucci, F. Lefoulon, Drug Discov. Today 2004, 9, 219-228.
– reference: C. C. Reyes-Aldasoro, I. Wilson, V. E. Prise, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, V. J. Cunningham, G. M. Tozer, Microcirculation 2008, 15, 65-79.
– reference: a) J. Ueda, M. Kajita, N. Suenaga, K. Fujii, M. Seiki, Oncogene 2003, 22, 8716-8722;
– reference: K. Greish, in Cancer Nanotechnology: Methods and Protocols, Vol. 624 (Ed.: M. Grobmyer), 2010, pp. 25-37.
– reference: a) E. S. Olson, T. Jiang, T. A. Aguilera, Q. T. Nguyen, L. G. Ellies, M. Scadeng, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4311-4316;
– reference: c) F. M. Kievit, M. Q. Zhang, Acc. Chem. Res. 2011, 44, 853-862;
– reference: E. A. Neuwelt, C. G. Varallyay, S. Manninger, D. Solymosi, M. Haluska, M. A. Hunt, G. Nesbit, A. Stevens, M. Jerosch-Herold, P. M. Jacobs, J. M. Hoffman, Neurosurgery 2007, 60, 601-611; c)
– reference: b) W. J. van Heeckeren, S. Bhakta, J. Ortiz, J. Duerk, M. M. Cooney, A. Dowlati, K. McCrae, S. C. Remick, J. Clin. Onc. 2006, 24, 1485-1488.
– reference: b) Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4317-4322.
– reference: T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029-1038.
– volume: 44
  start-page: 1029
  year: 2011
  end-page: 1038
  publication-title: Acc. Chem. Res.
– volume: 110
  start-page: 2921
  year: 2010
  end-page: 2959
  publication-title: Chem. Rev.
– volume: 257
  start-page: 219
  year: 1992
  end-page: 223
  publication-title: Science
– volume: 4 44 51
  start-page: 287 83 945
  year: 2008 2011 2012
  end-page: 305 90 948
  publication-title: Cancer Biomarkers Acc. Chem. Res. Angew. Chem. Int. Ed.
– volume: 22 167 69 115
  start-page: 8716 769 1517 849
  year: 2003 2004 2009 2005
  end-page: 8722 781 1526 860
  publication-title: Oncogene J. Cell Biol. Cancer Res. Int. J. Cancer
– volume: 96 24
  start-page: 1159 1485
  year: 2007 2006
  end-page: 1165 1488
  publication-title: Brit. J. Cancer J. Clin. Onc.
– volume: 107 107
  start-page: 4311 4317
  year: 2010 2010
  end-page: 4316 4322
  publication-title: Proc. Natl. Acad. Sci. USA Proc. Natl. Acad. Sci. USA
– volume: 13 40 13
  start-page: 2168 852 627
  year: 2007 2004 1993
  end-page: 2177 857 630
  publication-title: Clin. Cancer Res. Eur. J. Cancer Anticancer Res.
– volume: 624
  start-page: 25
  year: 2010
  end-page: 37
– volume: 39 60 85
  start-page: 489 601 315
  year: 2009 2007 2010
  end-page: 496 611 319
  publication-title: Eur. J. Clin. Invest. Neurosurgery Am. J. Hematol.
– volume: 25
  start-page: 400
  year: 2005
  end-page: 410
  publication-title: Am. J. Nephrol.
– volume: 15
  start-page: 65
  year: 2008
  end-page: 79
  publication-title: Microcirculation
– volume: 33 48
  start-page: 3931 5319
  year: 2012 2012
  end-page: 3941 5321
  publication-title: Biomaterials Chem. Commun.
– volume: 10 11
  start-page: 186 941
  year: 1999 2000
  end-page: 191 946
  publication-title: Bioconjugate Chem. Bioconjugate Chem.
– volume: 61 5
  start-page: 6413 423
  year: 2001 2005
  end-page: 6422 435
  publication-title: Cancer Res. Nat. Rev. Cancer
– volume: 44 44 44 44 44 165 44 44
  start-page: 863 1114 853 999 1050 1628 1061 1094
  year: 2011 2011 2011 2011 2011 2011 2011 2011
  end-page: 874 1122 862 1008 1060 1651 1070 1104
  publication-title: Acc. Chem. Res. Accounts Chem. Res. Acc. Chem. Res. Accounts Chem. Res. Acc. Chem. Res. Appl. Biochem. Biotechnol. Acc. Chem. Res. Acc. Chem. Res.
– volume: 64 7 161 161
  start-page: 1394 653 175 328
  year: 2012 2010 2012 2012
  end-page: 1416 664 187 337
  publication-title: Adv. Drug Delivery Rev. Nat. Rev. Clin. Oncol. J. Controlled Release J. Controlled Release
– volume: 12 163
  start-page: 954 2113
  year: 1992 2003
  end-page: 961 2126
  publication-title: Mol. Cell. Biol. Am. J. Pathol.
– volume: 295
  start-page: 2387
  year: 2002
  end-page: 2392
  publication-title: Science
– volume: 6
  start-page: 2336
  year: 2010
  end-page: 2357
  publication-title: Small
– volume: 9
  start-page: 219
  year: 2004
  end-page: 228
  publication-title: Drug Discov. Today
– volume: 14
  start-page: 1310
  year: 2008
  end-page: 1316
  publication-title: Clin. Cancer Res.
– volume: 153
  start-page: 1344
  year: 2008
  end-page: 1352
  publication-title: Brit. J. Pharmacol.
– volume: 18
  start-page: 4889
  year: 2012
  end-page: 4894
  publication-title: Clin. Cancer Res.
– volume: 70
  start-page: 6902
  year: 2010
  end-page: 6912
  publication-title: Cancer Res.
– volume: 90
  start-page: 284
  year: 2009
  end-page: 294
  publication-title: Int. J. Exp. Path.
– volume: 21
  start-page: 46
  year: 2005
  end-page: 52
  publication-title: J. Mag. Reson. Im.
– ident: e_1_2_7_20_5
  doi: 10.1021/ar200106e
– ident: e_1_2_7_12_1
  doi: 10.1158/0008-5472.CAN-10-1440
– ident: e_1_2_7_13_3
  doi: 10.1002/anie.201106758
– ident: e_1_2_7_18_1
  doi: 10.1158/1078-0432.CCR-07-1441
– ident: e_1_2_7_10_1
  doi: 10.1038/sj.onc.1206962
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1365-2613.2009.00651.x
– ident: e_1_2_7_8_1
  doi: 10.1038/sj.bjp.0707657
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.0910261107
– ident: e_1_2_7_24_1
  doi: 10.1021/bc980125h
– ident: e_1_2_7_20_1
  doi: 10.1021/ar200085c
– ident: e_1_2_7_20_4
  doi: 10.1021/ar200094a
– ident: e_1_2_7_10_2
  doi: 10.1083/jcb.200408028
– ident: e_1_2_7_23_3
  doi: 10.1002/ajh.21656
– ident: e_1_2_7_3_1
  doi: 10.1016/S1359-6446(03)02988-X
– ident: e_1_2_7_14_1
  doi: 10.1021/ar200019c
– ident: e_1_2_7_7_1
  doi: 10.1038/sj.bjc.6603694
– ident: e_1_2_7_21_1
  doi: 10.1016/j.biomaterials.2012.02.019
– ident: e_1_2_7_4_2
  doi: 10.1038/nrc1628
– ident: e_1_2_7_7_2
  doi: 10.1200/JCO.2005.04.8801
– ident: e_1_2_7_1_3
  doi: 10.1016/j.jconrel.2011.09.063
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2362.2009.02130.x
– ident: e_1_2_7_10_3
  doi: 10.1158/0008-5472.CAN-08-3255
– ident: e_1_2_7_16_1
  doi: 10.1002/jmri.20235
– ident: e_1_2_7_2_1
  doi: 10.1007/978-1-60761-609-2_3
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.0910283107
– ident: e_1_2_7_26_1
  doi: 10.1158/1078-0432.CCR-06-0918
– volume: 61
  start-page: 6413
  year: 2001
  ident: e_1_2_7_4_1
  publication-title: Cancer Res.
– ident: e_1_2_7_10_4
  doi: 10.1002/ijc.20945
– ident: e_1_2_7_25_1
  doi: 10.1126/science.257.5067.219
– ident: e_1_2_7_15_1
  doi: 10.1021/cr900232t
– ident: e_1_2_7_13_1
  doi: 10.3233/CBM-2008-4602
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.201000523
– ident: e_1_2_7_26_2
  doi: 10.1016/j.ejca.2003.11.021
– ident: e_1_2_7_17_1
  doi: 10.1158/1078-0432.CCR-12-1414
– volume: 13
  start-page: 627
  year: 1993
  ident: e_1_2_7_26_3
  publication-title: Anticancer Res.
– ident: e_1_2_7_13_2
  doi: 10.1021/ar1000633
– ident: e_1_2_7_1_1
  doi: 10.1016/j.addr.2012.06.006
– ident: e_1_2_7_21_2
  doi: 10.1039/c2cc31448g
– ident: e_1_2_7_27_1
  doi: 10.1128/MCB.12.3.954
– ident: e_1_2_7_20_2
  doi: 10.1021/ar2000056
– ident: e_1_2_7_5_1
  doi: 10.1080/10739680701436350
– ident: e_1_2_7_24_2
  doi: 10.1021/bc000079x
– ident: e_1_2_7_1_2
  doi: 10.1038/nrclinonc.2010.139
– ident: e_1_2_7_27_2
  doi: 10.1016/S0002-9440(10)63568-7
– ident: e_1_2_7_20_3
  doi: 10.1021/ar2000277
– ident: e_1_2_7_11_1
  doi: 10.1159/000087212
– ident: e_1_2_7_23_2
  doi: 10.1227/01.NEU.0000255350.71700.37
– ident: e_1_2_7_20_7
  doi: 10.1021/ar2001777
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1067100
– ident: e_1_2_7_20_6
  doi: 10.1007/s12010-011-9383-z
– ident: e_1_2_7_20_8
  doi: 10.1021/ar200105p
– ident: e_1_2_7_1_4
  doi: 10.1016/j.jconrel.2012.05.028
– reference: 21919457 - Acc Chem Res. 2011 Oct 18;44(10):1050-60
– reference: 22728642 - Adv Drug Deliv Rev. 2012 Oct;64(13):1394-416
– reference: 11522635 - Cancer Res. 2001 Sep 1;61(17):6413-22
– reference: 19126958 - Cancer Biomark. 2008;4(6):287-305
– reference: 8391244 - Anticancer Res. 1993 May-Jun;13(3):627-30
– reference: 17375046 - Br J Cancer. 2007 Apr 23;96(8):1159-65
– reference: 21812415 - Acc Chem Res. 2011 Oct 18;44(10):1094-104
– reference: 21545096 - Acc Chem Res. 2011 Oct 18;44(10):1029-38
– reference: 17415196 - Neurosurgery. 2007 Apr;60(4):601-11; discussion 611-2
– reference: 22162331 - Angew Chem Int Ed Engl. 2012 Jan 23;51(4):945-8
– reference: 22369962 - Biomaterials. 2012 May;33(15):3931-41
– reference: 20878632 - Small. 2010 Nov 5;6(21):2336-57
– reference: 22829203 - Clin Cancer Res. 2012 Sep 15;18(18):4889-94
– reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64
– reference: 17404101 - Clin Cancer Res. 2007 Apr 1;13(7):2168-77
– reference: 20067234 - Chem Rev. 2010 May 12;110(5):2921-59
– reference: 15120041 - Eur J Cancer. 2004 Apr;40(6):852-7
– reference: 19208838 - Cancer Res. 2009 Feb 15;69(4):1517-26
– reference: 1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61
– reference: 20663911 - Cancer Res. 2010 Sep 1;70(17):6902-12
– reference: 17952797 - Microcirculation. 2008 Jan;15(1):65-79
– reference: 14647466 - Oncogene. 2003 Nov 27;22(54):8716-22
– reference: 15729716 - Int J Cancer. 2005 Jul 20;115(6):849-60
– reference: 20201089 - Am J Hematol. 2010 May;85(5):315-9
– reference: 21823593 - Acc Chem Res. 2011 Oct 18;44(10):863-74
– reference: 19397688 - Eur J Clin Invest. 2009 Jun;39(6):489-96
– reference: 21062101 - Acc Chem Res. 2011 Feb 15;44(2):83-90
– reference: 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6
– reference: 15557125 - J Cell Biol. 2004 Nov 22;167(4):769-81
– reference: 21932809 - Acc Chem Res. 2011 Oct 18;44(10):1061-70
– reference: 11923519 - Science. 2002 Mar 29;295(5564):2387-92
– reference: 22626940 - J Control Release. 2012 Jul 20;161(2):328-37
– reference: 16088081 - Am J Nephrol. 2005 Jul-Aug;25(4):400-10
– reference: 21755933 - Acc Chem Res. 2011 Oct 18;44(10):999-1008
– reference: 21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62
– reference: 15611942 - J Magn Reson Imaging. 2005 Jan;21(1):46-52
– reference: 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35
– reference: 20160097 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22
– reference: 21947761 - Appl Biochem Biotechnol. 2011 Dec;165(7-8):1628-51
– reference: 22523747 - Chem Commun (Camb). 2012 May 28;48(43):5319-21
– reference: 11087345 - Bioconjug Chem. 2000 Nov-Dec;11(6):941-6
– reference: 14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28
– reference: 16574996 - J Clin Oncol. 2006 Apr 1;24(10):1485-8
– reference: 10077466 - Bioconjug Chem. 1999 Mar-Apr;10(2):186-91
– reference: 21945285 - J Control Release. 2012 Jul 20;161(2):175-87
– reference: 18204490 - Br J Pharmacol. 2008 Apr;153(7):1344-52
– reference: 21732606 - Acc Chem Res. 2011 Oct 18;44(10):1114-22
– reference: 20160077 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6
– reference: 19563611 - Int J Exp Pathol. 2009 Jun;90(3):284-94
– reference: 14578209 - Am J Pathol. 2003 Nov;163(5):2113-26
– reference: 17794752 - Science. 1992 Jul 10;257(5067):219-23
SSID ssj0031247
Score 2.4767177
Snippet A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further...
A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 566
SubjectTerms Animals
Antineoplastic Agents - pharmacology
Apoptosis
Biocompatibility
Breast cancer
Cancer
cancer therapy
Caspases - metabolism
Chemical Phenomena - drug effects
Drug delivery systems
Drugs
Enzymes
Female
Fibroblasts - drug effects
Fibroblasts - enzymology
Fibroblasts - pathology
Humans
iron oxide
Magnetic Resonance Imaging
Matrix Metalloproteinases, Membrane-Associated - metabolism
Mice
MMP-14
MR imaging
Nanoparticles
Nanotechnology
Neoplasms - diagnosis
Neoplasms - therapy
NMR
Nuclear magnetic resonance
theranostic
Therapy
Tumors
Title Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy
URI https://api.istex.fr/ark:/67375/WNG-TFTTF2KB-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301456
https://www.ncbi.nlm.nih.gov/pubmed/24038954
https://www.proquest.com/docview/1494093500
https://www.proquest.com/docview/1499116078
https://www.proquest.com/docview/1513467931
https://pubmed.ncbi.nlm.nih.gov/PMC3946335
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoEDlHdoQUZCcEqb-JXkWCqWAt09QBB7ixLHKVW7SbUPqeXET-Cv8Jf4Jcw42bDLU4Jb4owlJ_48j3j8DcBjHpogLo3yS5FoX9qc-0VhSr_SSV6VJg6FprPDw5E-eCdfjdV45RR_yw_R_3CjleH0NS3wvJjtficNnU1OaesgpJhAEec2JWyRV_Sm548SaLxcdRW0WT4Rby1ZGwO-u959zSpdpg98_iuX8-fMyVWP1pmkwXXIly_TZqKc7CzmxY75-APP4_-87SZc6_xVttcC7AZcsvVNuLrCYngLvqwkHrGmYqMGb1m6mDTTr58-py7V3JYspZNedUO80Ax1OgbrXU4e2zOuxhrKFBdsaCc4ztpSV4yR2ZBqCJxj85xSBBytxHGNpnfG0N1mqM4wtMee-4TeKUof1XQsk9G2BHGJWPZy4goxsbzuxnB2cRvSwfN0_8DvKkH4BsMt7evEoiuRFHmglBWG61xgVG8CGVVGciPDMsxjXsXYFgeRiUypBDcWp91olVTiDmzUTW3vAeOqQlTYWHJpiZy_EJEMDMZsgpei5NoDfwmEzHQs6VSs4zRr-Z15RjOR9TPhwdNe_qzlB_mt5BOHq14sn55QVl2ksvejF1k6SNMBf_0sG3uwvQRe1imUGUZoiaQ96yDw4FH_GFUB7e_gpDQLJ4OmS6PT9wcZFQq0jYkIPbjbYrkfEFEzxomSHkRrKO8FiIp8_Ul9_MFRkotEaiGUB9yB-C-fIns7PDzs7-7_S6ctuILXss2f34aN-XRhH6B7OC8eOhXwDRXdYnU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgXQAL3tBAASMhWKVN_EqyLIVhSiezgCC6ixLHoVU7STUPqWXFJ_Ar_BJfwr3OgxmeEizjXEt2fH0f8fG5hDxhvvbCQku34JFyhcmYm-e6cEsVZWWhQ58rvDscj9XwnXh9IDs0Id6Fafgh-h9uuDOsvcYNjj-kt7-zhs4mJ3h24GNSINVFso5lvZE-_8WbnkGKg_uy9VXAa7lIvdXxNnpse7X_il9ax0989qug82fs5HJMa53S4BrJu-k0WJTjrcU839Iff2B6_K_5XidX25CV7jQ6doNcMNVNcmWJyPAW-bKEPaJ1Scc1PNJkMamnXz99Tiza3BQ0wcteVY3U0BTMOuTrLSyP7mhbZg1k8nMamwkMtDLYFdJkGmMZgTNoniNKwDJLHFXgfWcUIm4KFg2ye-i5iwo8BekPFd7MpHgygXQihu5NbC0mmlXtGE7Pb5Nk8DLZHbptMQhXQ8alXBUZiCaiPPOkNFwzlXFI7LUnglILpoVf-FnIyhDaQi_QgS4kZ9rAumslo5LfIWtVXZkNQpksQS1MKJgwyM-f80B4GtI2zgpeMOUQt9OEVLdE6Viv4yRtKJ5ZiiuR9ivhkGe9_GlDEfJbyadWsXqxbHqMwLpApu_Hr9JkkCQDtv88PXDIZqd5aWtTZpCkRQKPrT3PIY_712AN8IgHFqVeWBnwXgrivj_ISJ-De4y475C7jTL3A0J2xjCSwiHBipr3AshGvvqmOjq0rOQ8Eopz6RBmtfgvnyJ9G49G_dO9f-n0iFwaJvEoHe2N9--Ty9AuGjj9JlmbTxfmAUSL8_yhtQffAAGAZpE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWglRAseEMDBYyEYJU28SvJsrSEls6MEAQxuyhxHFq1k4zmIbWs-AR-hV_iS7jXyYQZnhIs7VxLdnxyH_H1uYQ8Yb72wkJLt-CRcoXJmJvnunBLFWVloUOfK7w73B-o_Xfi1VAOl27xN_wQ3Q83_DKsvsYPfFyU299JQ6ejUzw68DEmkOoiWRfKi7B4w96bjkCKg_Wy5VXAaLnIvLWgbfTY9ur4FbO0jm_47Fc-58-pk8surbVJ8TWSLVbTpKKcbM1n-Zb--APR4_8s9zq52jqsdKdB2A1ywVQ3yZUlGsNb5MtS5hGtSzqooUmT-aiefP30ObG55qagCV71qmokhqag1CFab5Py6I62RdZAJj-nfTOCeVYGh0KQTPtYROAMumeYI2B5JY4rsL1TCv42BX0GsT2M3EX4TkD6Q4X3MimeSyCZiKEHI1uJiWZVO4fx-W2SxC-S3X23LQXhaoi3lKsiA75ElGeelIZrpjIOYb32RFBqwbTwCz8LWRlCX-gFOtCF5Ewb2HatZFTyO2StqiuzQSiTJaDChIIJg-z8OQ-EpyFo46zgBVMOcRdASHVLk47VOk7ThuCZpbgTabcTDnnWyY8bgpDfSj61uOrEsskJptUFMn0_eJkmcZLE7PB5OnTI5gJ4aatRphCiRQIPrT3PIY-7x6AL8IAHNqWeWxmwXQq8vj_ISJ-DcYy475C7DZa7CSE3YxhJ4ZBgBeWdAHKRrz6pjo8sJzmPhOJcOoRZEP_lVaRv-71e17r3L4MekUuv9-K0dzA4vE8uQ7docuk3ydpsMjcPwFWc5Q-tNvgGhEdlQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Novel+Tumor%E2%80%90Targeted+Theranostic+Nanoparticles+Activated+by+Membrane%E2%80%90Type+Matrix+Metalloproteinases+for+Combined+Cancer+Magnetic+Resonance+Imaging+and+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ansari%2C+Celina&rft.au=Tikhomirov%2C+Grigory+A.&rft.au=Hong%2C+Su+Hyun&rft.au=Falconer%2C+Robert+A.&rft.date=2014-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=3&rft.spage=566&rft.epage=575&rft_id=info:doi/10.1002%2Fsmll.201301456&rft.externalDBID=10.1002%252Fsmll.201301456&rft.externalDocID=SMLL201301456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon