Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy
A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 10; no. 3; pp. 566 - 575 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.02.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.
The design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP‐14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non‐toxic unless activated. |
---|---|
AbstractList | A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, we describe the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) for enzyme-specific drug activation at tumor sites and simultaneous
in vivo
magnetic resonance imaging (MRI) of drug delivery.
TNPs were synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death was observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells
in vitro
, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrated significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induced a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death was observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol.
Our findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and
in vivo
imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. The design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP-14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non-toxic unless activated. A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. [PUBLICATION ABSTRACT] A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA‐approved iron oxide nanoparticles ferumoxytol to an MMP‐activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO‐ICTs (TNPs). Significant cell death is observed in TNP‐treated MMP‐14 positive MMTV‐PyMT breast cancer cells in vitro, but not MMP‐14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV‐PyMT tumor‐bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO‐ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO‐ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme‐activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. The design and characterization of novel multifunctional “theranostic” nanoparticles (TNPs) is described for enzyme‐specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs consist of iron oxide core for MR imaging, MMP‐14 cleavable peptide linker for specific activation in tumors, and a prodrug that is non‐toxic unless activated. A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens.A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further compounded by a limited ability to rapidly and easily monitor drug delivery, pharmacodynamics and therapeutic response. In this report, the design and characterization of novel multifunctional "theranostic" nanoparticles (TNPs) is described for enzyme-specific drug activation at tumor sites and simultaneous in vivo magnetic resonance imaging (MRI) of drug delivery. TNPs are synthesized by conjugation of FDA-approved iron oxide nanoparticles ferumoxytol to an MMP-activatable peptide conjugate of azademethylcolchicine (ICT), creating CLIO-ICTs (TNPs). Significant cell death is observed in TNP-treated MMP-14 positive MMTV-PyMT breast cancer cells in vitro, but not MMP-14 negative fibroblasts or cells treated with ferumoxytol alone. Intravenous administration of TNPs to MMTV-PyMT tumor-bearing mice and subsequent MRI demonstrates significant tumor selective accumulation of the TNP, an observation confirmed by histopathology. Treatment with CLIO-ICTs induces a significant antitumor effect and tumor necrosis, a response not observed with ferumoxytol. Furthermore, no toxicity or cell death is observed in normal tissues following treatment with CLIO-ICTs, ICT, or ferumoxytol. These findings demonstrate proof of concept for a new nanotemplate that integrates tumor specificity, drug delivery and in vivo imaging into a single TNP entity through attachment of enzyme-activated prodrugs onto magnetic nanoparticles. This novel approach holds the potential to significantly improve targeted cancer therapies, and ultimately enable personalized therapy regimens. |
Author | Rao, Jianghong Daldrup-Link, Heike E. Felsher, Dean W. Castaneda, Rosalinda Lenkov, Olga D. Ansari, Celina Falconer, Robert A. Tikhomirov, Grigory A. Loadman, Paul M. Hong, Su Hyun Hazard, Florette K. Tong, Ling Gill, Jason H. |
Author_xml | – sequence: 1 givenname: Celina surname: Ansari fullname: Ansari, Celina organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA – sequence: 2 givenname: Grigory A. surname: Tikhomirov fullname: Tikhomirov, Grigory A. organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA – sequence: 3 givenname: Su Hyun surname: Hong fullname: Hong, Su Hyun organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA – sequence: 4 givenname: Robert A. surname: Falconer fullname: Falconer, Robert A. organization: Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK – sequence: 5 givenname: Paul M. surname: Loadman fullname: Loadman, Paul M. organization: Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Richmond Road, BD7 1DP, Bradford, UK – sequence: 6 givenname: Jason H. surname: Gill fullname: Gill, Jason H. organization: School of Medicine, Pharmacy and Health, Durham University Queens Campus, TS17 6BH, Stockton-on-Tees, UK – sequence: 7 givenname: Rosalinda surname: Castaneda fullname: Castaneda, Rosalinda organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA – sequence: 8 givenname: Florette K. surname: Hazard fullname: Hazard, Florette K. organization: Department of Pathology, Stanford University, 300 Pasteur Drive, CA, 94305, Stanford, USA – sequence: 9 givenname: Ling surname: Tong fullname: Tong, Ling organization: Division of Oncology, Department of Medicine, Stanford University, 269 Campus Drive, CCSR 1105, CA, 94305, Stanford, USA – sequence: 10 givenname: Olga D. surname: Lenkov fullname: Lenkov, Olga D. organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, CA, 94305-5614, Stanford, USA – sequence: 11 givenname: Dean W. surname: Felsher fullname: Felsher, Dean W. organization: Department of Pathology, Stanford University, 300 Pasteur Drive, 94305, Stanford, CA, USA – sequence: 12 givenname: Jianghong surname: Rao fullname: Rao, Jianghong email: jrao@stanford.edu organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, 94305-5614, Stanford, CA, USA – sequence: 13 givenname: Heike E. surname: Daldrup-Link fullname: Daldrup-Link, Heike E. email: jrao@stanford.edu organization: Molecular Imaging Program at Stanford and Department of Radiology, Stanford University, 725 Welch Road, Rm 1665, 94305-5614, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24038954$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9v0zAUgCM0xLbClSOKxIVLin_FiS9IW6Fjoi0SRIKb5bovnUdiBzst6x_F_4ijlmpMQjvl5eX7nl-e33lyYp2FJHmJ0RgjRN6GtmnGBGGKMMv5k-QMc0wzXhJxcowxOk3OQ7hFiGLCimfJKWGIliJnZ8nv97CFxnUt2D51dbpw8TWtNq3zWaX8GnpYpdUNeGVd6I1OFzHolI9hAyG90L3ZqoFZ7tI5tMvIQVbtOkjnqvfmLiZ71cQDvOvBWBWiVDufTly7NDZ6E2U1-EivLQz1v0Bwdsil161aG7tOlT100O2eJ09r1QR4cXiOkmr6oZp8zGafr64nF7NMc5TzjAsgjIilQnkOVBOuKBdII1bUmhHN8AqrktRlzJWo0IVe5ZRoiNPSPBc1HSXv9mW7zbKFlY6z8aqRnTet8jvplJH_frHmRq7dVlLBOKV5LPDmUMC7nxsIvWxN0NA0cTpuEyTOMWW8EBQ_jjIhMOaoKCP6-gF66zbexkEMFEOC5vGKR8mr-80fu_575xEY7wHtXQge6iOCkRyWSg5LJY9LFQX2QNCmV71xw8-b5v-a2Gu_TAO7Rw6RX-ez2X0327sm9HB3dJX_IXlBi1x-W1zJalpVU_LpUn6nfwA-2_P9 |
CitedBy_id | crossref_primary_10_1016_j_apsb_2021_01_017 crossref_primary_10_1016_j_ijpharm_2020_119712 crossref_primary_10_1021_acs_iecr_7b00990 crossref_primary_10_1002_adfm_201700371 crossref_primary_10_1039_D2BM00220E crossref_primary_10_2174_1567201819666220426085450 crossref_primary_10_3109_10520295_2015_1072770 crossref_primary_10_1021_cm504313c crossref_primary_10_1038_s41419_018_1285_3 crossref_primary_10_2217_nnm_2017_0320 crossref_primary_10_1002_ange_201902476 crossref_primary_10_2217_nnm_2018_0443 crossref_primary_10_3390_cells8090984 crossref_primary_10_1021_acs_bioconjchem_6b00591 crossref_primary_10_1021_mp400760b crossref_primary_10_1039_D0QM00323A crossref_primary_10_1186_1556_276X_9_461 crossref_primary_10_1039_D5NR00447K crossref_primary_10_1039_C5RA26172D crossref_primary_10_1002_ange_201402305 crossref_primary_10_1021_acsami_3c00179 crossref_primary_10_1016_j_coph_2014_08_002 crossref_primary_10_3390_nano11071727 crossref_primary_10_1371_journal_pone_0142665 crossref_primary_10_1016_j_bioactmat_2022_04_024 crossref_primary_10_3390_molecules30010162 crossref_primary_10_1021_acs_langmuir_1c02298 crossref_primary_10_1007_s11051_017_3753_6 crossref_primary_10_1016_j_addr_2022_114138 crossref_primary_10_1016_j_jddst_2024_105938 crossref_primary_10_1016_j_drudis_2017_04_008 crossref_primary_10_1007_s12668_024_01752_y crossref_primary_10_1016_j_jconrel_2019_07_004 crossref_primary_10_1002_bit_25454 crossref_primary_10_1016_j_ccr_2024_215842 crossref_primary_10_37549_AR2484 crossref_primary_10_3390_nano12213873 crossref_primary_10_1039_D1BM00508A crossref_primary_10_1016_j_nantod_2022_101524 crossref_primary_10_1007_s11426_016_0246_9 crossref_primary_10_1002_adfm_202100605 crossref_primary_10_1039_C6CS00592F crossref_primary_10_1021_acs_bioconjchem_0c00082 crossref_primary_10_1021_mp500443x crossref_primary_10_1016_j_jtice_2019_08_010 crossref_primary_10_1038_nnano_2016_168 crossref_primary_10_2217_nnm_2016_0027 crossref_primary_10_1007_s11307_014_0746_z crossref_primary_10_1016_j_jacr_2015_10_028 crossref_primary_10_1016_j_biochi_2019_03_002 crossref_primary_10_3390_cryst13040652 crossref_primary_10_1016_j_ijpharm_2019_01_048 crossref_primary_10_1186_s11671_024_03979_w crossref_primary_10_1007_s00259_019_04607_x crossref_primary_10_1016_j_jconrel_2017_04_028 crossref_primary_10_3390_biomedicines11020562 crossref_primary_10_2174_2211738510666220210105113 crossref_primary_10_1007_s10989_017_9583_7 crossref_primary_10_3390_ijms22105147 crossref_primary_10_1021_acs_chemrev_5b00589 crossref_primary_10_1016_j_jclepro_2021_126270 crossref_primary_10_1021_acs_molpharmaceut_7b01103 crossref_primary_10_1007_s10555_014_9530_4 crossref_primary_10_1016_j_addr_2015_12_020 crossref_primary_10_1016_j_ijpharm_2017_02_012 crossref_primary_10_1016_j_drudis_2020_09_031 crossref_primary_10_1177_17588359221076194 crossref_primary_10_1016_j_bcp_2022_115095 crossref_primary_10_1021_acs_chemrev_5b00112 crossref_primary_10_1016_j_colsurfb_2020_111022 crossref_primary_10_1186_s40824_018_0132_z crossref_primary_10_1016_j_ccr_2024_215732 crossref_primary_10_1016_j_drudis_2019_09_020 crossref_primary_10_1016_j_apmt_2019_100510 crossref_primary_10_1016_j_molliq_2022_121140 crossref_primary_10_1177_1536012117730950 crossref_primary_10_1021_acsami_7b07091 crossref_primary_10_1016_j_mtbio_2025_101680 crossref_primary_10_3390_cancers14102456 crossref_primary_10_1155_2019_9394715 crossref_primary_10_1016_j_mtbio_2021_100197 crossref_primary_10_1146_annurev_control_042920_013605 crossref_primary_10_1016_j_jconrel_2021_03_021 crossref_primary_10_3390_pharmaceutics12090837 crossref_primary_10_1007_s11307_018_1203_1 crossref_primary_10_1039_C9RA02636C crossref_primary_10_1051_e3sconf_202125102051 crossref_primary_10_1016_j_jtice_2020_11_037 crossref_primary_10_1002_anie_201402305 crossref_primary_10_1038_srep33560 crossref_primary_10_1016_j_apsadv_2022_100284 crossref_primary_10_3762_bjnano_9_92 crossref_primary_10_1039_C7TB00093F crossref_primary_10_1039_D1BM00721A crossref_primary_10_1016_j_jpha_2021_11_002 crossref_primary_10_1016_j_biomaterials_2019_05_018 crossref_primary_10_1186_s40644_018_0172_6 crossref_primary_10_1002_anie_201902476 crossref_primary_10_1016_j_ejpb_2019_02_009 crossref_primary_10_1016_j_jobaz_2015_03_003 crossref_primary_10_1158_1535_7163_MCT_17_0022 crossref_primary_10_1016_j_ccr_2018_12_015 crossref_primary_10_1016_j_apsusc_2019_03_326 crossref_primary_10_3390_ijms18020336 crossref_primary_10_3389_fbioe_2021_707319 crossref_primary_10_1021_acs_jmedchem_6b01472 crossref_primary_10_1016_j_biomaterials_2017_06_002 crossref_primary_10_1016_j_jconrel_2017_01_034 |
Cites_doi | 10.1021/ar200106e 10.1158/0008-5472.CAN-10-1440 10.1002/anie.201106758 10.1158/1078-0432.CCR-07-1441 10.1038/sj.onc.1206962 10.1111/j.1365-2613.2009.00651.x 10.1038/sj.bjp.0707657 10.1073/pnas.0910261107 10.1021/bc980125h 10.1021/ar200085c 10.1021/ar200094a 10.1083/jcb.200408028 10.1002/ajh.21656 10.1016/S1359-6446(03)02988-X 10.1021/ar200019c 10.1038/sj.bjc.6603694 10.1016/j.biomaterials.2012.02.019 10.1038/nrc1628 10.1200/JCO.2005.04.8801 10.1016/j.jconrel.2011.09.063 10.1111/j.1365-2362.2009.02130.x 10.1158/0008-5472.CAN-08-3255 10.1002/jmri.20235 10.1007/978-1-60761-609-2_3 10.1073/pnas.0910283107 10.1158/1078-0432.CCR-06-0918 10.1002/ijc.20945 10.1126/science.257.5067.219 10.1021/cr900232t 10.3233/CBM-2008-4602 10.1002/smll.201000523 10.1016/j.ejca.2003.11.021 10.1158/1078-0432.CCR-12-1414 10.1021/ar1000633 10.1016/j.addr.2012.06.006 10.1039/c2cc31448g 10.1128/MCB.12.3.954 10.1021/ar2000056 10.1080/10739680701436350 10.1021/bc000079x 10.1038/nrclinonc.2010.139 10.1016/S0002-9440(10)63568-7 10.1021/ar2000277 10.1159/000087212 10.1227/01.NEU.0000255350.71700.37 10.1021/ar2001777 10.1126/science.1067100 10.1007/s12010-011-9383-z 10.1021/ar200105p 10.1016/j.jconrel.2012.05.028 |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 5PM |
DOI | 10.1002/smll.201301456 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 575 |
ExternalDocumentID | PMC3946335 3203260091 24038954 10_1002_smll_201301456 SMLL201301456 ark_67375_WNG_TFTTF2KB_X |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH/NCI funderid: R21CA156124; R01CA140943; R01CA135294; R21CA138353A2 – fundername: NCI NIH HHS grantid: R01CA140943 – fundername: NCI NIH HHS grantid: U54CA151459 – fundername: NCI NIH HHS grantid: R01 CA140943 – fundername: NCI NIH HHS grantid: P30CA124435-02 – fundername: NCI NIH HHS grantid: U54 CA151459 – fundername: NCI NIH HHS grantid: R01CA135294 – fundername: NCI NIH HHS grantid: R01 CA135294 – fundername: NCI NIH HHS grantid: P50CA114747 – fundername: NCI NIH HHS grantid: R21 CA138353 – fundername: NCI NIH HHS grantid: R21 CA156124 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 F28 FR3 5PM |
ID | FETCH-LOGICAL-c6056-69e2429ba055e3c26a3690c047fc42c41d1a82f890c807c7cd532ce613c659f3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Aug 21 18:42:19 EDT 2025 Thu Jul 10 20:42:16 EDT 2025 Fri Jul 11 09:14:19 EDT 2025 Fri Jul 25 12:19:17 EDT 2025 Mon Jul 21 05:56:37 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 02:10:10 EDT 2025 Wed Jan 22 17:08:26 EST 2025 Wed Oct 30 09:56:38 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cancer therapy iron oxide MR imaging nanoparticles theranostic MMP-14 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6056-69e2429ba055e3c26a3690c047fc42c41d1a82f890c807c7cd532ce613c659f3 |
Notes | NIH/NCI - No. R21CA156124; No. R01CA140943; No. R01CA135294; No. R21CA138353A2 ark:/67375/WNG-TFTTF2KB-X istex:EF880557C905BDDD432709742A98E132CE45D45D ArticleID:SMLL201301456 These authors contributed equally to this study ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Both authors contributed equally to this study Authors are co-last authors |
OpenAccessLink | https://durham-repository.worktribe.com/output/1488109 |
PMID | 24038954 |
PQID | 1494093500 |
PQPubID | 1046358 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3946335 proquest_miscellaneous_1513467931 proquest_miscellaneous_1499116078 proquest_journals_1494093500 pubmed_primary_24038954 crossref_primary_10_1002_smll_201301456 crossref_citationtrail_10_1002_smll_201301456 wiley_primary_10_1002_smll_201301456_SMLL201301456 istex_primary_ark_67375_WNG_TFTTF2KB_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | a) V. S. Balakrishnan, M. Rao, A. T. Kausz, L. Brenner, B. J. G. Pereira, T. B. Frigo, J. M. Lewis, Eur. J. Clin. Invest. 2009, 39, 489-496; b C. C. Reyes-Aldasoro, I. Wilson, V. E. Prise, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, V. J. Cunningham, G. M. Tozer, Microcirculation 2008, 15, 65-79. T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029-1038. L. M. Coussens, B. Fingleton, L. M. Matrisian, Science 2002, 295, 2387-2392. e) J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050-1060 a) S. Mura, P. Couvreur, Adv. Drug Delivery Rev. 2012, 64, 1394-1416 H. Kobayashi, P. L. Choyke, Acc. Chem. Res. 2011, 44, 83-90; c A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921-2959. R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell, D. R. Huffman, Science 1992, 257, 219-223. b) M. Y. Liao, P. S. Lai, H. P. Yu, H. P. Lin, C. C. Huang, Chem. Commun. 2012, 48, 5319-5321. c) F. M. Kievit, M. Q. Zhang, Acc. Chem. Res. 2011, 44, 853-862 C. Minelli, S. B. Lowe, M. M. Stevens, Small 2010, 6, 2336-2357. a) M. J. Ernsting, W. D. Foltz, E. Undzys, T. Tagami, S. D. Li, Biomaterials 2012, 33, 3931-3941 a) J. Ueda, M. Kajita, N. Suenaga, K. Fujii, M. Seiki, Oncogene 2003, 22, 8716-8722 J. M. Atkinson, C. S. Siller, J. H. Gill, Brit. J. Pharmacol. 2008, 153, 1344-1352. C. Kanthou, G. M. Tozer, Int. J. Exp. Path. 2009, 90, 284-294. M. C. Bibby, Eur. J. Cancer 2004, 40, 852-857; c a) D. R. Elias, D. L. J. Thorek, A. K. Chen, J. Czupryna, A. Tsourkas, Cancer Biomarkers 2008, 4, 287-305; b b) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653-664 d) M. M. Handsley, D. R. Edwards, Int. J. Cancer 2005, 115, 849-860. J. Park, J. Yang, E.-K. Lim, E. Kim, J. Choi, J. K. Ryu, N. H. Kim, J.-S. Suh, J. I. Yook, Y.-M. Huh, S. Haam, Angew. Chem. Int. Ed. 2012, 51, 945-948. a) P. Hinnen, F. Eskens, Brit. J. Cancer 2007, 96, 1159-1165 c) L. Devy, L. L. Huang, L. Naa, N. Yanamandra, H. Pieters, N. Frans, E. Chang, Q. F. Tao, M. Vanhove, A. Lejeune, R. van Gool, D. J. Sexton, G. Kuang, D. Rank, S. Hogan, C. Pazmany, Y. L. Ma, S. Schoonbroodt, A. E. Nixon, R. C. Ladner, R. Hoet, P. Henderikx, C. TenHoor, S. A. Rabbani, M. L. Valentino, C. R. Wood, D. T. Dransfield, Cancer Res. 2009, 69, 1517-1526 T. H. Kuo, T. Kubota, M. Watanabe, T. Furukawa, S. Kase, H. Tanino, Y. Saikawa, K. Ishibiki, M. Kitajima, R. M. Hoffman, Anticancer Res. 1993, 13, 627-630. M. Lu, M. H. Cohen, D. Rieves, R. Pazdur, Am. J. Hematol. 2010, 85, 315-319. b) F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-Hansen, P. Soloway, M. Balbin, C. Lopez-Otin, S. Shapiro, M. Inada, S. Krane, E. Allen, D. Chung, S. J. Weiss, J. Cell Biol. 2004, 167, 769-781 J. M. Atkinson, R. A. Falconer, D. R. Edwards, C. J. Pennington, C. S. Siller, S. D. Shnyder, M. C. Bibby, L. H. Patterson, P. M. Loadman, J. H. Gill, Cancer Res. 2010, 70, 6902-6912. D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 2011, 44, 863-874 D. Högemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 2000, 11, 941-946. g) M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas, Acc. Chem. Res. 2011, 44, 1061-1070 b) Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4317-4322. b) X. W. Ma, Y. L. Zhao, X. J. Liang, Accounts Chem. Res. 2011, 44, 1114-1122 h) W. T. Al-Jamal, K. Kostarelos, Acc. Chem. Res. 2011, 44, 1094-1104. E. A. Neuwelt, C. G. Varallyay, S. Manninger, D. Solymosi, M. Haluska, M. A. Hunt, G. Nesbit, A. Stevens, M. Jerosch-Herold, P. M. Jacobs, J. M. Hoffman, Neurosurgery 2007, 60, 601-611; c a) G. M. Tozer, V. E. Prise, J. Wilson, M. Cemazar, S. Q. Shan, M. W. Dewhirst, P. R. Barber, B. Vojnovic, D. J. Chaplin, Cancer Res. 2001, 61, 6413-6422 E. Y. Lin, J. G. Jones, P. Li, U. Y. Zhu, K. D. Whitney, W. J. Muller, J. W. Pollard, Am. J. Pathol. 2003, 163, 2113-2126. d) E. Terreno, F. Uggeri, S. Aime, J. Controlled Release 2012, 161, 328-337. f) A. Fernandez-Fernandez, R. Manchanda, A. J. McGoron, Appl. Biochem. Biotechnol. 2011, 165, 1628-1651 W. Li, S. Tutton, A. T. Vu, L. Pierchala, B. S. Y. Li, J. M. Lewis, P. V. Prasad, R. R. Edelman, J. Mag. Reson. Im. 2005, 21, 46-52. a) L. Varticovski, M. G. Hollingshead, A. I. Robles, X. L. Wu, J. Cherry, D. J. Munroe, L. Lukes, M. R. Anver, J. P. Carter, S. D. Borgel, H. Stotler, C. A. Bonomi, N. P. Nunez, S. D. Hursting, W. H. Qiao, C. X. X. Deng, J. E. Green, K. W. Hunter, G. Merlino, P. S. Steeg, L. M. Wakefield, J. C. Barrett, Clin. Cancer Res. 2007, 13, 2168-2177; b F. Marcucci, F. Lefoulon, Drug Discov. Today 2004, 9, 219-228. b) G. M. Tozer, C. Kanthou, B. C. Baguley, Nat. Rev. Cancer 2005, 5, 423-435. b) W. J. van Heeckeren, S. Bhakta, J. Ortiz, J. Duerk, M. M. Cooney, A. Dowlati, K. McCrae, S. C. Remick, J. Clin. Onc. 2006, 24, 1485-1488. K. Greish, in Cancer Nanotechnology: Methods and Protocols, Vol. 624 (Ed.: M. Grobmyer), 2010, pp. 25-37. L. Josephson, C. H. Tung, A. Moore, R. Weissleder, Bioconjugate Chem. 1999, 10, 186-191; b K. J. Cho, X. Wang, S. M. Nie, Z. Chen, D. M. Shin, Clin. Cancer Res. 2008, 14, 1310-1316. R. Landry, P. M. Jacobs, R. Davis, M. Shenouda, W. K. Bolton, Am. J. Nephrol. 2005, 25, 400-410. a) E. S. Olson, T. Jiang, T. A. Aguilera, Q. T. Nguyen, L. G. Ellies, M. Scadeng, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4311-4316 c) T. Lammers, F. Kiessling, W. E. Hennink, G. Storm, J. Controlled Release 2012, 161, 175-187 d) H. Cabral, N. Nishiyama, K. Kataoka, Accounts Chem. Res. 2011, 44, 999-1008 a) C. T. Guy, R. D. Cardiff, W. J. Muller, Mol. Cell. Biol. 1992, 12, 954-961; b T. Lammers, L. Y. Rizzo, G. Storm, F. Kiessling, Clin. Cancer Res. 2012, 18, 4889-4894. 2003 2004 2009 2005; 22 167 69 115 2010; 624 2002; 295 2004; 9 2008; 14 2008; 15 2009 2007 2010; 39 60 85 2005; 21 2012; 18 2007 2006; 96 24 2012 2010 2012 2012; 64 7 161 161 2007 2004 1993; 13 40 13 2005; 25 2011 2011 2011 2011 2011 2011 2011 2011; 44 44 44 44 44 165 44 44 2010 2010; 107 107 2008 2011 2012; 4 44 51 2012 2012; 33 48 2001 2005; 61 5 1992 2003; 12 163 2009; 90 1992; 257 2010; 110 2011; 44 2010; 70 2008; 153 1999 2000; 10 11 2010; 6 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 Tozer G. M. (e_1_2_7_4_1) 2001; 61 e_1_2_7_23_3 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_2 Kuo T. H. (e_1_2_7_26_3) 1993; 13 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_20_8 e_1_2_7_20_7 e_1_2_7_20_6 e_1_2_7_24_2 e_1_2_7_20_5 e_1_2_7_24_1 e_1_2_7_20_4 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 14647466 - Oncogene. 2003 Nov 27;22(54):8716-22 16574996 - J Clin Oncol. 2006 Apr 1;24(10):1485-8 22626940 - J Control Release. 2012 Jul 20;161(2):328-37 20160097 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22 20067234 - Chem Rev. 2010 May 12;110(5):2921-59 11923519 - Science. 2002 Mar 29;295(5564):2387-92 21947761 - Appl Biochem Biotechnol. 2011 Dec;165(7-8):1628-51 10077466 - Bioconjug Chem. 1999 Mar-Apr;10(2):186-91 22162331 - Angew Chem Int Ed Engl. 2012 Jan 23;51(4):945-8 17375046 - Br J Cancer. 2007 Apr 23;96(8):1159-65 20201089 - Am J Hematol. 2010 May;85(5):315-9 17415196 - Neurosurgery. 2007 Apr;60(4):601-11; discussion 611-2 21812415 - Acc Chem Res. 2011 Oct 18;44(10):1094-104 20878632 - Small. 2010 Nov 5;6(21):2336-57 21945285 - J Control Release. 2012 Jul 20;161(2):175-87 18204490 - Br J Pharmacol. 2008 Apr;153(7):1344-52 21919457 - Acc Chem Res. 2011 Oct 18;44(10):1050-60 20160077 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6 15611942 - J Magn Reson Imaging. 2005 Jan;21(1):46-52 19208838 - Cancer Res. 2009 Feb 15;69(4):1517-26 21932809 - Acc Chem Res. 2011 Oct 18;44(10):1061-70 8391244 - Anticancer Res. 1993 May-Jun;13(3):627-30 21823593 - Acc Chem Res. 2011 Oct 18;44(10):863-74 17952797 - Microcirculation. 2008 Jan;15(1):65-79 21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62 21732606 - Acc Chem Res. 2011 Oct 18;44(10):1114-22 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 11522635 - Cancer Res. 2001 Sep 1;61(17):6413-22 19563611 - Int J Exp Pathol. 2009 Jun;90(3):284-94 16088081 - Am J Nephrol. 2005 Jul-Aug;25(4):400-10 22728642 - Adv Drug Deliv Rev. 2012 Oct;64(13):1394-416 21545096 - Acc Chem Res. 2011 Oct 18;44(10):1029-38 19126958 - Cancer Biomark. 2008;4(6):287-305 14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28 17404101 - Clin Cancer Res. 2007 Apr 1;13(7):2168-77 19397688 - Eur J Clin Invest. 2009 Jun;39(6):489-96 20663911 - Cancer Res. 2010 Sep 1;70(17):6902-12 21062101 - Acc Chem Res. 2011 Feb 15;44(2):83-90 1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61 17794752 - Science. 1992 Jul 10;257(5067):219-23 14578209 - Am J Pathol. 2003 Nov;163(5):2113-26 15557125 - J Cell Biol. 2004 Nov 22;167(4):769-81 22523747 - Chem Commun (Camb). 2012 May 28;48(43):5319-21 15120041 - Eur J Cancer. 2004 Apr;40(6):852-7 21755933 - Acc Chem Res. 2011 Oct 18;44(10):999-1008 11087345 - Bioconjug Chem. 2000 Nov-Dec;11(6):941-6 22369962 - Biomaterials. 2012 May;33(15):3931-41 22829203 - Clin Cancer Res. 2012 Sep 15;18(18):4889-94 15729716 - Int J Cancer. 2005 Jul 20;115(6):849-60 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6 |
References_xml | – reference: c) T. Lammers, F. Kiessling, W. E. Hennink, G. Storm, J. Controlled Release 2012, 161, 175-187; – reference: d) E. Terreno, F. Uggeri, S. Aime, J. Controlled Release 2012, 161, 328-337. – reference: a) P. Hinnen, F. Eskens, Brit. J. Cancer 2007, 96, 1159-1165; – reference: J. M. Atkinson, R. A. Falconer, D. R. Edwards, C. J. Pennington, C. S. Siller, S. D. Shnyder, M. C. Bibby, L. H. Patterson, P. M. Loadman, J. H. Gill, Cancer Res. 2010, 70, 6902-6912. – reference: d) H. Cabral, N. Nishiyama, K. Kataoka, Accounts Chem. Res. 2011, 44, 999-1008; – reference: J. Park, J. Yang, E.-K. Lim, E. Kim, J. Choi, J. K. Ryu, N. H. Kim, J.-S. Suh, J. I. Yook, Y.-M. Huh, S. Haam, Angew. Chem. Int. Ed. 2012, 51, 945-948. – reference: J. M. Atkinson, C. S. Siller, J. H. Gill, Brit. J. Pharmacol. 2008, 153, 1344-1352. – reference: b) G. M. Tozer, C. Kanthou, B. C. Baguley, Nat. Rev. Cancer 2005, 5, 423-435. – reference: a) D. R. Elias, D. L. J. Thorek, A. K. Chen, J. Czupryna, A. Tsourkas, Cancer Biomarkers 2008, 4, 287-305; b) – reference: a) M. J. Ernsting, W. D. Foltz, E. Undzys, T. Tagami, S. D. Li, Biomaterials 2012, 33, 3931-3941; – reference: L. M. Coussens, B. Fingleton, L. M. Matrisian, Science 2002, 295, 2387-2392. – reference: C. Kanthou, G. M. Tozer, Int. J. Exp. Path. 2009, 90, 284-294. – reference: a) V. S. Balakrishnan, M. Rao, A. T. Kausz, L. Brenner, B. J. G. Pereira, T. B. Frigo, J. M. Lewis, Eur. J. Clin. Invest. 2009, 39, 489-496; b) – reference: E. Y. Lin, J. G. Jones, P. Li, U. Y. Zhu, K. D. Whitney, W. J. Muller, J. W. Pollard, Am. J. Pathol. 2003, 163, 2113-2126. – reference: H. Kobayashi, P. L. Choyke, Acc. Chem. Res. 2011, 44, 83-90; c) – reference: f) A. Fernandez-Fernandez, R. Manchanda, A. J. McGoron, Appl. Biochem. Biotechnol. 2011, 165, 1628-1651; – reference: d) M. M. Handsley, D. R. Edwards, Int. J. Cancer 2005, 115, 849-860. – reference: K. J. Cho, X. Wang, S. M. Nie, Z. Chen, D. M. Shin, Clin. Cancer Res. 2008, 14, 1310-1316. – reference: C. Minelli, S. B. Lowe, M. M. Stevens, Small 2010, 6, 2336-2357. – reference: A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921-2959. – reference: g) M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas, Acc. Chem. Res. 2011, 44, 1061-1070; – reference: h) W. T. Al-Jamal, K. Kostarelos, Acc. Chem. Res. 2011, 44, 1094-1104. – reference: c) L. Devy, L. L. Huang, L. Naa, N. Yanamandra, H. Pieters, N. Frans, E. Chang, Q. F. Tao, M. Vanhove, A. Lejeune, R. van Gool, D. J. Sexton, G. Kuang, D. Rank, S. Hogan, C. Pazmany, Y. L. Ma, S. Schoonbroodt, A. E. Nixon, R. C. Ladner, R. Hoet, P. Henderikx, C. TenHoor, S. A. Rabbani, M. L. Valentino, C. R. Wood, D. T. Dransfield, Cancer Res. 2009, 69, 1517-1526; – reference: L. Josephson, C. H. Tung, A. Moore, R. Weissleder, Bioconjugate Chem. 1999, 10, 186-191; b) – reference: R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell, D. R. Huffman, Science 1992, 257, 219-223. – reference: M. C. Bibby, Eur. J. Cancer 2004, 40, 852-857; c) – reference: b) M. Y. Liao, P. S. Lai, H. P. Yu, H. P. Lin, C. C. Huang, Chem. Commun. 2012, 48, 5319-5321. – reference: D. Högemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 2000, 11, 941-946. – reference: a) G. M. Tozer, V. E. Prise, J. Wilson, M. Cemazar, S. Q. Shan, M. W. Dewhirst, P. R. Barber, B. Vojnovic, D. J. Chaplin, Cancer Res. 2001, 61, 6413-6422; – reference: e) J. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050-1060; – reference: a) S. Mura, P. Couvreur, Adv. Drug Delivery Rev. 2012, 64, 1394-1416; – reference: b) X. W. Ma, Y. L. Zhao, X. J. Liang, Accounts Chem. Res. 2011, 44, 1114-1122; – reference: b) R. K. Jain, T. Stylianopoulos, Nat. Rev. Clin. Oncol. 2010, 7, 653-664; – reference: R. Landry, P. M. Jacobs, R. Davis, M. Shenouda, W. K. Bolton, Am. J. Nephrol. 2005, 25, 400-410. – reference: D. Yoo, J. H. Lee, T. H. Shin, J. Cheon, Acc. Chem. Res. 2011, 44, 863-874; – reference: b) F. Sabeh, I. Ota, K. Holmbeck, H. Birkedal-Hansen, P. Soloway, M. Balbin, C. Lopez-Otin, S. Shapiro, M. Inada, S. Krane, E. Allen, D. Chung, S. J. Weiss, J. Cell Biol. 2004, 167, 769-781; – reference: W. Li, S. Tutton, A. T. Vu, L. Pierchala, B. S. Y. Li, J. M. Lewis, P. V. Prasad, R. R. Edelman, J. Mag. Reson. Im. 2005, 21, 46-52. – reference: M. Lu, M. H. Cohen, D. Rieves, R. Pazdur, Am. J. Hematol. 2010, 85, 315-319. – reference: T. H. Kuo, T. Kubota, M. Watanabe, T. Furukawa, S. Kase, H. Tanino, Y. Saikawa, K. Ishibiki, M. Kitajima, R. M. Hoffman, Anticancer Res. 1993, 13, 627-630. – reference: T. Lammers, L. Y. Rizzo, G. Storm, F. Kiessling, Clin. Cancer Res. 2012, 18, 4889-4894. – reference: a) L. Varticovski, M. G. Hollingshead, A. I. Robles, X. L. Wu, J. Cherry, D. J. Munroe, L. Lukes, M. R. Anver, J. P. Carter, S. D. Borgel, H. Stotler, C. A. Bonomi, N. P. Nunez, S. D. Hursting, W. H. Qiao, C. X. X. Deng, J. E. Green, K. W. Hunter, G. Merlino, P. S. Steeg, L. M. Wakefield, J. C. Barrett, Clin. Cancer Res. 2007, 13, 2168-2177; b) – reference: a) C. T. Guy, R. D. Cardiff, W. J. Muller, Mol. Cell. Biol. 1992, 12, 954-961; b) – reference: F. Marcucci, F. Lefoulon, Drug Discov. Today 2004, 9, 219-228. – reference: C. C. Reyes-Aldasoro, I. Wilson, V. E. Prise, P. R. Barber, S. M. Ameer-Beg, B. Vojnovic, V. J. Cunningham, G. M. Tozer, Microcirculation 2008, 15, 65-79. – reference: a) J. Ueda, M. Kajita, N. Suenaga, K. Fujii, M. Seiki, Oncogene 2003, 22, 8716-8722; – reference: K. Greish, in Cancer Nanotechnology: Methods and Protocols, Vol. 624 (Ed.: M. Grobmyer), 2010, pp. 25-37. – reference: a) E. S. Olson, T. Jiang, T. A. Aguilera, Q. T. Nguyen, L. G. Ellies, M. Scadeng, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4311-4316; – reference: c) F. M. Kievit, M. Q. Zhang, Acc. Chem. Res. 2011, 44, 853-862; – reference: E. A. Neuwelt, C. G. Varallyay, S. Manninger, D. Solymosi, M. Haluska, M. A. Hunt, G. Nesbit, A. Stevens, M. Jerosch-Herold, P. M. Jacobs, J. M. Hoffman, Neurosurgery 2007, 60, 601-611; c) – reference: b) W. J. van Heeckeren, S. Bhakta, J. Ortiz, J. Duerk, M. M. Cooney, A. Dowlati, K. McCrae, S. C. Remick, J. Clin. Onc. 2006, 24, 1485-1488. – reference: b) Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang, M. Scadeng, L. G. Ellies, R. Y. Tsien, Proc. Natl. Acad. Sci. USA 2010, 107, 4317-4322. – reference: T. Lammers, S. Aime, W. E. Hennink, G. Storm, F. Kiessling, Acc. Chem. Res. 2011, 44, 1029-1038. – volume: 44 start-page: 1029 year: 2011 end-page: 1038 publication-title: Acc. Chem. Res. – volume: 110 start-page: 2921 year: 2010 end-page: 2959 publication-title: Chem. Rev. – volume: 257 start-page: 219 year: 1992 end-page: 223 publication-title: Science – volume: 4 44 51 start-page: 287 83 945 year: 2008 2011 2012 end-page: 305 90 948 publication-title: Cancer Biomarkers Acc. Chem. Res. Angew. Chem. Int. Ed. – volume: 22 167 69 115 start-page: 8716 769 1517 849 year: 2003 2004 2009 2005 end-page: 8722 781 1526 860 publication-title: Oncogene J. Cell Biol. Cancer Res. Int. J. Cancer – volume: 96 24 start-page: 1159 1485 year: 2007 2006 end-page: 1165 1488 publication-title: Brit. J. Cancer J. Clin. Onc. – volume: 107 107 start-page: 4311 4317 year: 2010 2010 end-page: 4316 4322 publication-title: Proc. Natl. Acad. Sci. USA Proc. Natl. Acad. Sci. USA – volume: 13 40 13 start-page: 2168 852 627 year: 2007 2004 1993 end-page: 2177 857 630 publication-title: Clin. Cancer Res. Eur. J. Cancer Anticancer Res. – volume: 624 start-page: 25 year: 2010 end-page: 37 – volume: 39 60 85 start-page: 489 601 315 year: 2009 2007 2010 end-page: 496 611 319 publication-title: Eur. J. Clin. Invest. Neurosurgery Am. J. Hematol. – volume: 25 start-page: 400 year: 2005 end-page: 410 publication-title: Am. J. Nephrol. – volume: 15 start-page: 65 year: 2008 end-page: 79 publication-title: Microcirculation – volume: 33 48 start-page: 3931 5319 year: 2012 2012 end-page: 3941 5321 publication-title: Biomaterials Chem. Commun. – volume: 10 11 start-page: 186 941 year: 1999 2000 end-page: 191 946 publication-title: Bioconjugate Chem. Bioconjugate Chem. – volume: 61 5 start-page: 6413 423 year: 2001 2005 end-page: 6422 435 publication-title: Cancer Res. Nat. Rev. Cancer – volume: 44 44 44 44 44 165 44 44 start-page: 863 1114 853 999 1050 1628 1061 1094 year: 2011 2011 2011 2011 2011 2011 2011 2011 end-page: 874 1122 862 1008 1060 1651 1070 1104 publication-title: Acc. Chem. Res. Accounts Chem. Res. Acc. Chem. Res. Accounts Chem. Res. Acc. Chem. Res. Appl. Biochem. Biotechnol. Acc. Chem. Res. Acc. Chem. Res. – volume: 64 7 161 161 start-page: 1394 653 175 328 year: 2012 2010 2012 2012 end-page: 1416 664 187 337 publication-title: Adv. Drug Delivery Rev. Nat. Rev. Clin. Oncol. J. Controlled Release J. Controlled Release – volume: 12 163 start-page: 954 2113 year: 1992 2003 end-page: 961 2126 publication-title: Mol. Cell. Biol. Am. J. Pathol. – volume: 295 start-page: 2387 year: 2002 end-page: 2392 publication-title: Science – volume: 6 start-page: 2336 year: 2010 end-page: 2357 publication-title: Small – volume: 9 start-page: 219 year: 2004 end-page: 228 publication-title: Drug Discov. Today – volume: 14 start-page: 1310 year: 2008 end-page: 1316 publication-title: Clin. Cancer Res. – volume: 153 start-page: 1344 year: 2008 end-page: 1352 publication-title: Brit. J. Pharmacol. – volume: 18 start-page: 4889 year: 2012 end-page: 4894 publication-title: Clin. Cancer Res. – volume: 70 start-page: 6902 year: 2010 end-page: 6912 publication-title: Cancer Res. – volume: 90 start-page: 284 year: 2009 end-page: 294 publication-title: Int. J. Exp. Path. – volume: 21 start-page: 46 year: 2005 end-page: 52 publication-title: J. Mag. Reson. Im. – ident: e_1_2_7_20_5 doi: 10.1021/ar200106e – ident: e_1_2_7_12_1 doi: 10.1158/0008-5472.CAN-10-1440 – ident: e_1_2_7_13_3 doi: 10.1002/anie.201106758 – ident: e_1_2_7_18_1 doi: 10.1158/1078-0432.CCR-07-1441 – ident: e_1_2_7_10_1 doi: 10.1038/sj.onc.1206962 – ident: e_1_2_7_6_1 doi: 10.1111/j.1365-2613.2009.00651.x – ident: e_1_2_7_8_1 doi: 10.1038/sj.bjp.0707657 – ident: e_1_2_7_19_2 doi: 10.1073/pnas.0910261107 – ident: e_1_2_7_24_1 doi: 10.1021/bc980125h – ident: e_1_2_7_20_1 doi: 10.1021/ar200085c – ident: e_1_2_7_20_4 doi: 10.1021/ar200094a – ident: e_1_2_7_10_2 doi: 10.1083/jcb.200408028 – ident: e_1_2_7_23_3 doi: 10.1002/ajh.21656 – ident: e_1_2_7_3_1 doi: 10.1016/S1359-6446(03)02988-X – ident: e_1_2_7_14_1 doi: 10.1021/ar200019c – ident: e_1_2_7_7_1 doi: 10.1038/sj.bjc.6603694 – ident: e_1_2_7_21_1 doi: 10.1016/j.biomaterials.2012.02.019 – ident: e_1_2_7_4_2 doi: 10.1038/nrc1628 – ident: e_1_2_7_7_2 doi: 10.1200/JCO.2005.04.8801 – ident: e_1_2_7_1_3 doi: 10.1016/j.jconrel.2011.09.063 – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-2362.2009.02130.x – ident: e_1_2_7_10_3 doi: 10.1158/0008-5472.CAN-08-3255 – ident: e_1_2_7_16_1 doi: 10.1002/jmri.20235 – ident: e_1_2_7_2_1 doi: 10.1007/978-1-60761-609-2_3 – ident: e_1_2_7_19_1 doi: 10.1073/pnas.0910283107 – ident: e_1_2_7_26_1 doi: 10.1158/1078-0432.CCR-06-0918 – volume: 61 start-page: 6413 year: 2001 ident: e_1_2_7_4_1 publication-title: Cancer Res. – ident: e_1_2_7_10_4 doi: 10.1002/ijc.20945 – ident: e_1_2_7_25_1 doi: 10.1126/science.257.5067.219 – ident: e_1_2_7_15_1 doi: 10.1021/cr900232t – ident: e_1_2_7_13_1 doi: 10.3233/CBM-2008-4602 – ident: e_1_2_7_22_1 doi: 10.1002/smll.201000523 – ident: e_1_2_7_26_2 doi: 10.1016/j.ejca.2003.11.021 – ident: e_1_2_7_17_1 doi: 10.1158/1078-0432.CCR-12-1414 – volume: 13 start-page: 627 year: 1993 ident: e_1_2_7_26_3 publication-title: Anticancer Res. – ident: e_1_2_7_13_2 doi: 10.1021/ar1000633 – ident: e_1_2_7_1_1 doi: 10.1016/j.addr.2012.06.006 – ident: e_1_2_7_21_2 doi: 10.1039/c2cc31448g – ident: e_1_2_7_27_1 doi: 10.1128/MCB.12.3.954 – ident: e_1_2_7_20_2 doi: 10.1021/ar2000056 – ident: e_1_2_7_5_1 doi: 10.1080/10739680701436350 – ident: e_1_2_7_24_2 doi: 10.1021/bc000079x – ident: e_1_2_7_1_2 doi: 10.1038/nrclinonc.2010.139 – ident: e_1_2_7_27_2 doi: 10.1016/S0002-9440(10)63568-7 – ident: e_1_2_7_20_3 doi: 10.1021/ar2000277 – ident: e_1_2_7_11_1 doi: 10.1159/000087212 – ident: e_1_2_7_23_2 doi: 10.1227/01.NEU.0000255350.71700.37 – ident: e_1_2_7_20_7 doi: 10.1021/ar2001777 – ident: e_1_2_7_9_1 doi: 10.1126/science.1067100 – ident: e_1_2_7_20_6 doi: 10.1007/s12010-011-9383-z – ident: e_1_2_7_20_8 doi: 10.1021/ar200105p – ident: e_1_2_7_1_4 doi: 10.1016/j.jconrel.2012.05.028 – reference: 21919457 - Acc Chem Res. 2011 Oct 18;44(10):1050-60 – reference: 22728642 - Adv Drug Deliv Rev. 2012 Oct;64(13):1394-416 – reference: 11522635 - Cancer Res. 2001 Sep 1;61(17):6413-22 – reference: 19126958 - Cancer Biomark. 2008;4(6):287-305 – reference: 8391244 - Anticancer Res. 1993 May-Jun;13(3):627-30 – reference: 17375046 - Br J Cancer. 2007 Apr 23;96(8):1159-65 – reference: 21812415 - Acc Chem Res. 2011 Oct 18;44(10):1094-104 – reference: 21545096 - Acc Chem Res. 2011 Oct 18;44(10):1029-38 – reference: 17415196 - Neurosurgery. 2007 Apr;60(4):601-11; discussion 611-2 – reference: 22162331 - Angew Chem Int Ed Engl. 2012 Jan 23;51(4):945-8 – reference: 22369962 - Biomaterials. 2012 May;33(15):3931-41 – reference: 20878632 - Small. 2010 Nov 5;6(21):2336-57 – reference: 22829203 - Clin Cancer Res. 2012 Sep 15;18(18):4889-94 – reference: 20838415 - Nat Rev Clin Oncol. 2010 Nov;7(11):653-64 – reference: 17404101 - Clin Cancer Res. 2007 Apr 1;13(7):2168-77 – reference: 20067234 - Chem Rev. 2010 May 12;110(5):2921-59 – reference: 15120041 - Eur J Cancer. 2004 Apr;40(6):852-7 – reference: 19208838 - Cancer Res. 2009 Feb 15;69(4):1517-26 – reference: 1312220 - Mol Cell Biol. 1992 Mar;12(3):954-61 – reference: 20663911 - Cancer Res. 2010 Sep 1;70(17):6902-12 – reference: 17952797 - Microcirculation. 2008 Jan;15(1):65-79 – reference: 14647466 - Oncogene. 2003 Nov 27;22(54):8716-22 – reference: 15729716 - Int J Cancer. 2005 Jul 20;115(6):849-60 – reference: 20201089 - Am J Hematol. 2010 May;85(5):315-9 – reference: 21823593 - Acc Chem Res. 2011 Oct 18;44(10):863-74 – reference: 19397688 - Eur J Clin Invest. 2009 Jun;39(6):489-96 – reference: 21062101 - Acc Chem Res. 2011 Feb 15;44(2):83-90 – reference: 18316549 - Clin Cancer Res. 2008 Mar 1;14(5):1310-6 – reference: 15557125 - J Cell Biol. 2004 Nov 22;167(4):769-81 – reference: 21932809 - Acc Chem Res. 2011 Oct 18;44(10):1061-70 – reference: 11923519 - Science. 2002 Mar 29;295(5564):2387-92 – reference: 22626940 - J Control Release. 2012 Jul 20;161(2):328-37 – reference: 16088081 - Am J Nephrol. 2005 Jul-Aug;25(4):400-10 – reference: 21755933 - Acc Chem Res. 2011 Oct 18;44(10):999-1008 – reference: 21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62 – reference: 15611942 - J Magn Reson Imaging. 2005 Jan;21(1):46-52 – reference: 15928673 - Nat Rev Cancer. 2005 Jun;5(6):423-35 – reference: 20160097 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22 – reference: 21947761 - Appl Biochem Biotechnol. 2011 Dec;165(7-8):1628-51 – reference: 22523747 - Chem Commun (Camb). 2012 May 28;48(43):5319-21 – reference: 11087345 - Bioconjug Chem. 2000 Nov-Dec;11(6):941-6 – reference: 14980540 - Drug Discov Today. 2004 Mar 1;9(5):219-28 – reference: 16574996 - J Clin Oncol. 2006 Apr 1;24(10):1485-8 – reference: 10077466 - Bioconjug Chem. 1999 Mar-Apr;10(2):186-91 – reference: 21945285 - J Control Release. 2012 Jul 20;161(2):175-87 – reference: 18204490 - Br J Pharmacol. 2008 Apr;153(7):1344-52 – reference: 21732606 - Acc Chem Res. 2011 Oct 18;44(10):1114-22 – reference: 20160077 - Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6 – reference: 19563611 - Int J Exp Pathol. 2009 Jun;90(3):284-94 – reference: 14578209 - Am J Pathol. 2003 Nov;163(5):2113-26 – reference: 17794752 - Science. 1992 Jul 10;257(5067):219-23 |
SSID | ssj0031247 |
Score | 2.4767177 |
Snippet | A major drawback with current cancer therapy is the prevalence of unrequired dose‐limiting toxicity to non‐cancerous tissues and organs, which is further... A major drawback with current cancer therapy is the prevalence of unrequired dose-limiting toxicity to non-cancerous tissues and organs, which is further... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 566 |
SubjectTerms | Animals Antineoplastic Agents - pharmacology Apoptosis Biocompatibility Breast cancer Cancer cancer therapy Caspases - metabolism Chemical Phenomena - drug effects Drug delivery systems Drugs Enzymes Female Fibroblasts - drug effects Fibroblasts - enzymology Fibroblasts - pathology Humans iron oxide Magnetic Resonance Imaging Matrix Metalloproteinases, Membrane-Associated - metabolism Mice MMP-14 MR imaging Nanoparticles Nanotechnology Neoplasms - diagnosis Neoplasms - therapy NMR Nuclear magnetic resonance theranostic Therapy Tumors |
Title | Development of Novel Tumor-Targeted Theranostic Nanoparticles Activated by Membrane-Type Matrix Metalloproteinases for Combined Cancer Magnetic Resonance Imaging and Therapy |
URI | https://api.istex.fr/ark:/67375/WNG-TFTTF2KB-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201301456 https://www.ncbi.nlm.nih.gov/pubmed/24038954 https://www.proquest.com/docview/1494093500 https://www.proquest.com/docview/1499116078 https://www.proquest.com/docview/1513467931 https://pubmed.ncbi.nlm.nih.gov/PMC3946335 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoEDlHdoQUZCcEqb-JXkWCqWAt09QBB7ixLHKVW7SbUPqeXET-Cv8Jf4Jcw42bDLU4Jb4owlJ_48j3j8DcBjHpogLo3yS5FoX9qc-0VhSr_SSV6VJg6FprPDw5E-eCdfjdV45RR_yw_R_3CjleH0NS3wvJjtficNnU1OaesgpJhAEec2JWyRV_Sm548SaLxcdRW0WT4Rby1ZGwO-u959zSpdpg98_iuX8-fMyVWP1pmkwXXIly_TZqKc7CzmxY75-APP4_-87SZc6_xVttcC7AZcsvVNuLrCYngLvqwkHrGmYqMGb1m6mDTTr58-py7V3JYspZNedUO80Ax1OgbrXU4e2zOuxhrKFBdsaCc4ztpSV4yR2ZBqCJxj85xSBBytxHGNpnfG0N1mqM4wtMee-4TeKUof1XQsk9G2BHGJWPZy4goxsbzuxnB2cRvSwfN0_8DvKkH4BsMt7evEoiuRFHmglBWG61xgVG8CGVVGciPDMsxjXsXYFgeRiUypBDcWp91olVTiDmzUTW3vAeOqQlTYWHJpiZy_EJEMDMZsgpei5NoDfwmEzHQs6VSs4zRr-Z15RjOR9TPhwdNe_qzlB_mt5BOHq14sn55QVl2ksvejF1k6SNMBf_0sG3uwvQRe1imUGUZoiaQ96yDw4FH_GFUB7e_gpDQLJ4OmS6PT9wcZFQq0jYkIPbjbYrkfEFEzxomSHkRrKO8FiIp8_Ul9_MFRkotEaiGUB9yB-C-fIns7PDzs7-7_S6ctuILXss2f34aN-XRhH6B7OC8eOhXwDRXdYnU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgXQAL3tBAASMhWKVN_EqyLIVhSiezgCC6ixLHoVU7STUPqWXFJ_Ar_BJfwr3OgxmeEizjXEt2fH0f8fG5hDxhvvbCQku34JFyhcmYm-e6cEsVZWWhQ58rvDscj9XwnXh9IDs0Id6Fafgh-h9uuDOsvcYNjj-kt7-zhs4mJ3h24GNSINVFso5lvZE-_8WbnkGKg_uy9VXAa7lIvdXxNnpse7X_il9ax0989qug82fs5HJMa53S4BrJu-k0WJTjrcU839Iff2B6_K_5XidX25CV7jQ6doNcMNVNcmWJyPAW-bKEPaJ1Scc1PNJkMamnXz99Tiza3BQ0wcteVY3U0BTMOuTrLSyP7mhbZg1k8nMamwkMtDLYFdJkGmMZgTNoniNKwDJLHFXgfWcUIm4KFg2ye-i5iwo8BekPFd7MpHgygXQihu5NbC0mmlXtGE7Pb5Nk8DLZHbptMQhXQ8alXBUZiCaiPPOkNFwzlXFI7LUnglILpoVf-FnIyhDaQi_QgS4kZ9rAumslo5LfIWtVXZkNQpksQS1MKJgwyM-f80B4GtI2zgpeMOUQt9OEVLdE6Viv4yRtKJ5ZiiuR9ivhkGe9_GlDEfJbyadWsXqxbHqMwLpApu_Hr9JkkCQDtv88PXDIZqd5aWtTZpCkRQKPrT3PIY_712AN8IgHFqVeWBnwXgrivj_ISJ-De4y475C7jTL3A0J2xjCSwiHBipr3AshGvvqmOjq0rOQ8Eopz6RBmtfgvnyJ9G49G_dO9f-n0iFwaJvEoHe2N9--Ty9AuGjj9JlmbTxfmAUSL8_yhtQffAAGAZpE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWglRAseEMDBYyEYJU28SvJsrSEls6MEAQxuyhxHFq1k4zmIbWs-AR-hV_iS7jXyYQZnhIs7VxLdnxyH_H1uYQ8Yb72wkJLt-CRcoXJmJvnunBLFWVloUOfK7w73B-o_Xfi1VAOl27xN_wQ3Q83_DKsvsYPfFyU299JQ6ejUzw68DEmkOoiWRfKi7B4w96bjkCKg_Wy5VXAaLnIvLWgbfTY9ur4FbO0jm_47Fc-58-pk8surbVJ8TWSLVbTpKKcbM1n-Zb--APR4_8s9zq52jqsdKdB2A1ywVQ3yZUlGsNb5MtS5hGtSzqooUmT-aiefP30ObG55qagCV71qmokhqag1CFab5Py6I62RdZAJj-nfTOCeVYGh0KQTPtYROAMumeYI2B5JY4rsL1TCv42BX0GsT2M3EX4TkD6Q4X3MimeSyCZiKEHI1uJiWZVO4fx-W2SxC-S3X23LQXhaoi3lKsiA75ElGeelIZrpjIOYb32RFBqwbTwCz8LWRlCX-gFOtCF5Ewb2HatZFTyO2StqiuzQSiTJaDChIIJg-z8OQ-EpyFo46zgBVMOcRdASHVLk47VOk7ThuCZpbgTabcTDnnWyY8bgpDfSj61uOrEsskJptUFMn0_eJkmcZLE7PB5OnTI5gJ4aatRphCiRQIPrT3PIY-7x6AL8IAHNqWeWxmwXQq8vj_ISJ-DcYy475C7DZa7CSE3YxhJ4ZBgBeWdAHKRrz6pjo8sJzmPhOJcOoRZEP_lVaRv-71e17r3L4MekUuv9-K0dzA4vE8uQ7docuk3ydpsMjcPwFWc5Q-tNvgGhEdlQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Novel+Tumor%E2%80%90Targeted+Theranostic+Nanoparticles+Activated+by+Membrane%E2%80%90Type+Matrix+Metalloproteinases+for+Combined+Cancer+Magnetic+Resonance+Imaging+and+Therapy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Ansari%2C+Celina&rft.au=Tikhomirov%2C+Grigory+A.&rft.au=Hong%2C+Su+Hyun&rft.au=Falconer%2C+Robert+A.&rft.date=2014-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=10&rft.issue=3&rft.spage=566&rft.epage=575&rft_id=info:doi/10.1002%2Fsmll.201301456&rft.externalDBID=10.1002%252Fsmll.201301456&rft.externalDocID=SMLL201301456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |