Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics
Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal...
Saved in:
Published in | International journal of cancer Vol. 131; no. 1; pp. 30 - 40 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2012
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (‐)‐epigallocatechin‐3‐gallate (EGCG), an active compound in green tea, inhibits self‐renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c‐Myc and Oct‐4) and self‐renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self‐renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl‐2 and XIAP and activating caspase‐3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self‐renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs. |
---|---|
AbstractList | Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs. Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs. [PUBLICATION ABSTRACT] Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs.Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs. |
Author | Tang, Su-Ni Srivastava, Rakesh K. Fu, Junsheng Shankar, Sharmila Nall, Dara Rodova, Mariana |
AuthorAffiliation | 2 Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA 1 Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA |
AuthorAffiliation_xml | – name: 1 Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA – name: 2 Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA |
Author_xml | – sequence: 1 givenname: Su-Ni surname: Tang fullname: Tang, Su-Ni organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS – sequence: 2 givenname: Junsheng surname: Fu fullname: Fu, Junsheng organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS – sequence: 3 givenname: Dara surname: Nall fullname: Nall, Dara organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS – sequence: 4 givenname: Mariana surname: Rodova fullname: Rodova, Mariana organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS – sequence: 5 givenname: Sharmila surname: Shankar fullname: Shankar, Sharmila organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS – sequence: 6 givenname: Rakesh K. surname: Srivastava fullname: Srivastava, Rakesh K. email: rsrivastava@kumc.edu organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25905719$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21796625$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNURP_AgS-ALCEkOKS14zhOLpXQFpaFqnAo4mh5ncnGS2IvdkLZOx-cWXa3QAUcLFua33ua8Zvj5MB5B0nymNFTRml2ZpfmNCt4xu8lR4xWMqUZEwfJEdZoKhkvDpPjGJeUMiZo_iA5zJisiiITR8n3mWvt3A7WO-IbEr2zhrRQL6D1C7LSQ3uj10S7mqy6MdiVH8CZNem1dQMe6xak0WbwIZIAi7HTA5B27LVDrTMB9IB-Bp8QSBygJwa6jphWB1RBsBHr8WFyv9FdhEe7-yT5-PrV9eRNevl-Opu8vExNQQVPq9yUsqlYzagxrKqKppRCg5nXGWdlw-cya2oGGRKNBDGvqZHAS1E2tZYFMH6SnG99V-O8h9qAG4Lu1CrYXoe18tqqPyvOtmrhvyqel5QzigbPdwbBfxkhDqq3cTORduDHqDCNinGaZwLRp3fQpR-Dw_EUx4hKxjCj_1FM5HlVMFbmSD35ve_bhvcxIvBsB-hodNcE_HAbf3GiokKyCrmzLWeCjzFAo4wd9CZ8HNd22P9mhEzhQqmfC4WKF3cUe9O_sTv3G9vB-t-gmr2d7BXpVoF7AN9uFTp8VoXkUqhPV1M1vfgwuXpXXKhr_gN4VetL |
CODEN | IJCNAW |
CitedBy_id | crossref_primary_10_1111_eci_12343 crossref_primary_10_2174_0109298673281666231227053726 crossref_primary_10_1016_j_bioorg_2024_107681 crossref_primary_10_1016_j_phymed_2024_155377 crossref_primary_10_1016_j_canlet_2014_06_021 crossref_primary_10_1007_s40495_015_0035_9 crossref_primary_10_1016_j_arabjc_2023_105487 crossref_primary_10_1002_mnfr_201700621 crossref_primary_10_1007_s10555_013_9457_1 crossref_primary_10_1016_j_semcancer_2021_07_008 crossref_primary_10_1111_jcmm_17092 crossref_primary_10_3389_fonc_2020_00764 crossref_primary_10_1002_jcp_29703 crossref_primary_10_1242_jcs_162164 crossref_primary_10_1080_01635581_2021_1934043 crossref_primary_10_1007_s11596_021_2341_2 crossref_primary_10_1371_journal_pone_0096441 crossref_primary_10_1186_1476_4598_12_159 crossref_primary_10_17116_onkolog20154373_81 crossref_primary_10_1007_s10637_021_01187_2 crossref_primary_10_1016_j_canlet_2018_06_034 crossref_primary_10_1039_C6MB00595K crossref_primary_10_18632_oncotarget_5055 crossref_primary_10_1615_CritRevOncog_2023049513 crossref_primary_10_3390_cancers7030857 crossref_primary_10_1021_acs_jafc_6b02195 crossref_primary_10_1039_c3mb70159j crossref_primary_10_18632_oncotarget_10860 crossref_primary_10_1016_j_biopha_2017_12_065 crossref_primary_10_1007_s00432_017_2515_2 crossref_primary_10_20517_2394_5079_2024_56 crossref_primary_10_3892_mmr_2016_5471 crossref_primary_10_3390_cancers14174200 crossref_primary_10_3389_fphar_2022_860209 crossref_primary_10_1016_j_biomaterials_2019_04_005 crossref_primary_10_1038_s41392_023_01559_5 crossref_primary_10_1016_j_canlet_2012_10_020 crossref_primary_10_1016_j_csbj_2024_03_010 crossref_primary_10_1007_s13277_014_2899_4 crossref_primary_10_1080_01635581_2020_1828942 crossref_primary_10_1002_hep_26147 crossref_primary_10_3390_molecules21111566 crossref_primary_10_1111_jcmm_15731 crossref_primary_10_1111_jcmm_17235 crossref_primary_10_1098_rsob_170152 crossref_primary_10_1186_s12885_018_4792_9 crossref_primary_10_3390_molecules23102547 crossref_primary_10_1002_ptr_7794 crossref_primary_10_1016_j_bbcan_2012_06_002 crossref_primary_10_1016_j_phrs_2018_08_006 crossref_primary_10_1177_1087057112458152 crossref_primary_10_3390_cancers7030851 crossref_primary_10_1530_JME_14_0051 crossref_primary_10_1093_biohorizons_hzu004 crossref_primary_10_3892_ijo_2019_4700 crossref_primary_10_1016_j_phrs_2019_01_014 crossref_primary_10_3892_mmr_2015_4677 crossref_primary_10_1002_med_21966 crossref_primary_10_1016_j_bbrc_2018_01_021 crossref_primary_10_3390_cancers15041053 crossref_primary_10_3390_molecules28135246 crossref_primary_10_1016_j_chemosphere_2020_128414 crossref_primary_10_1016_j_ejca_2013_06_025 crossref_primary_10_1097_MPA_0000000000001023 crossref_primary_10_1155_2016_8352684 crossref_primary_10_3892_etm_2014_2141 crossref_primary_10_1016_j_bbcan_2015_04_003 crossref_primary_10_1002_cbin_11843 crossref_primary_10_1002_hed_26373 crossref_primary_10_18632_oncotarget_9790 crossref_primary_10_1111_bph_16249 crossref_primary_10_1002_jcb_27488 crossref_primary_10_1080_01635581_2021_1981404 crossref_primary_10_1038_s41598_017_05458_y crossref_primary_10_1186_s12876_024_03489_0 crossref_primary_10_1007_s12033_014_9788_3 crossref_primary_10_1016_j_fshw_2021_12_014 crossref_primary_10_3109_07357907_2013_820317 crossref_primary_10_1007_s13105_015_0381_4 crossref_primary_10_1097_MPA_0000000000001074 crossref_primary_10_1007_s13277_016_5461_8 crossref_primary_10_1016_j_drudis_2020_07_023 crossref_primary_10_1007_s00432_014_1899_5 crossref_primary_10_1038_s41416_018_0254_z crossref_primary_10_3390_cells9061512 crossref_primary_10_1016_S2222_1808_15_61040_4 crossref_primary_10_3390_ijms22094765 crossref_primary_10_1016_j_trecan_2017_08_007 crossref_primary_10_2174_1574888X19666230914103420 crossref_primary_10_1016_j_jnutbio_2015_08_016 crossref_primary_10_1158_1078_0432_CCR_13_2947 crossref_primary_10_3390_ijms18030486 crossref_primary_10_1016_j_canlet_2017_03_020 crossref_primary_10_3390_ijms231911746 crossref_primary_10_1007_s10565_020_09562_0 crossref_primary_10_1016_j_canlet_2013_05_009 crossref_primary_10_1038_srep32743 crossref_primary_10_1007_s00210_015_1107_4 crossref_primary_10_1371_journal_pone_0092161 crossref_primary_10_3109_15419061_2014_970270 crossref_primary_10_1155_2013_748587 crossref_primary_10_1002_mnfr_201500884 crossref_primary_10_1007_s10555_021_09979_x crossref_primary_10_1111_jcmm_13666 crossref_primary_10_1016_j_apsb_2013_02_006 crossref_primary_10_1093_carcin_bgx070 crossref_primary_10_3390_ijms222313044 crossref_primary_10_1016_j_ajpath_2012_04_008 crossref_primary_10_1007_s13402_015_0249_1 crossref_primary_10_1007_s40495_018_0145_2 crossref_primary_10_1016_j_critrevonc_2017_11_010 crossref_primary_10_1016_j_canlet_2013_07_009 crossref_primary_10_3390_biomedicines10112988 crossref_primary_10_3892_ijo_2014_2539 crossref_primary_10_1155_2019_1635837 crossref_primary_10_3892_or_2012_2210 crossref_primary_10_1158_1535_7163_MCT_12_1030 crossref_primary_10_18632_oncotarget_7567 crossref_primary_10_2174_0929867328666210628131409 crossref_primary_10_1007_s11060_014_1604_1 crossref_primary_10_1007_s11010_012_1448_y crossref_primary_10_1155_2019_8620469 crossref_primary_10_1038_gt_2016_15 crossref_primary_10_3390_ijms16059236 crossref_primary_10_4161_cbt_22007 crossref_primary_10_1016_j_ejphar_2022_175412 crossref_primary_10_1016_j_taap_2016_03_016 crossref_primary_10_1007_s00204_014_1433_1 crossref_primary_10_1371_journal_pone_0056082 crossref_primary_10_3389_fphar_2016_00084 crossref_primary_10_1016_j_nano_2015_07_001 crossref_primary_10_3389_fendo_2017_00284 crossref_primary_10_1016_j_fct_2021_112264 crossref_primary_10_1016_j_canlet_2014_12_004 crossref_primary_10_1111_jcmm_12397 crossref_primary_10_1111_jcmm_14178 crossref_primary_10_1016_j_semcancer_2015_02_006 crossref_primary_10_1111_cpr_12143 crossref_primary_10_1002_cam4_6170 crossref_primary_10_2217_fon_12_82 crossref_primary_10_1002_ijc_28648 crossref_primary_10_1186_s40169_014_0032_3 crossref_primary_10_1007_s11010_012_1493_6 crossref_primary_10_1038_s41419_019_1776_x |
Cites_doi | 10.1146/annurev.pathmechdis.3.121806.154305 10.1158/1535-7163.MCT-07-0001 10.1038/nature03100 10.1097/CAD.0b013e328336e940 10.1089/scd.2009.0113 10.1136/gut.2007.148189 10.1038/ncb435 10.1038/nrgastro.2010.188 10.1053/bega.2002.0317 10.1158/1078-0432.CCR-04-1285 10.1002/stem.29 10.1016/S0092-8674(03)00392-1 10.1016/j.ctrv.2009.02.005 10.1016/j.juro.2009.12.092 10.1016/j.tcb.2006.02.004 10.1016/j.bcp.2010.07.021 10.1056/NEJM199202133260706 10.1016/j.cell.2009.11.007 10.1200/JCO.2008.16.6702 10.1016/S0092-8674(03)00394-5 10.1016/j.mrfmmm.2005.03.029 10.1053/j.gastro.2009.05.053 10.3322/caac.20073 10.1271/bbb.90740 10.1074/jbc.M502573200 10.1038/35102167 10.1254/jphs.08236FP 10.1016/S0092-8674(03)00393-3 10.1101/gad.1693608 10.1097/MPA.0b013e3181f7e09f 10.1371/journal.pone.0016530 10.1186/1750-2187-5-14 10.1067/mcn.2002.129579 10.2741/e266 10.1038/sj.neo.7900203 10.1021/jf101192k 10.2741/e117 10.1093/oxfordjournals.aje.a009257 10.1111/j.1349-7006.2009.01419.x 10.1126/science.1164368 10.1093/jnci/djh095 10.1007/s00423-009-0502-z 10.1126/science.1171362 10.1007/s00109-009-0534-4 |
ContentType | Journal Article |
Copyright | Copyright © 2011 UICC 2015 INIST-CNRS Copyright © 2011 UICC. Copyright Wiley Subscription Services, Inc. Jul 2012 |
Copyright_xml | – notice: Copyright © 2011 UICC – notice: 2015 INIST-CNRS – notice: Copyright © 2011 UICC. – notice: Copyright Wiley Subscription Services, Inc. Jul 2012 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 5PM |
DOI | 10.1002/ijc.26323 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0215 |
EndPage | 40 |
ExternalDocumentID | PMC3480310 3372311191 21796625 25905719 10_1002_ijc_26323 IJC26323 ark_67375_WNG_GDPCNK6D_T |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01CA125262; RO1CA114469; RO1CA125262‐02S1; and Kansas Bioscience Authority – fundername: NCI NIH HHS grantid: R01CA125262 – fundername: NCI NIH HHS grantid: R01CA114469 – fundername: NCI NIH HHS grantid: R01CA125262-02S1 – fundername: NCI NIH HHS grantid: R01 CA114469 – fundername: NCI NIH HHS grantid: R01 CA125262 – fundername: National Cancer Institute : NCI grantid: R01 CA125262 || CA |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SUPJJ TEORI UB1 UDS V2E V8K V9Y W2D W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WWO WXI WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AAYCA AFWVQ ALVPJ .55 .GJ 31~ 3O- 53G 8WZ A6W AANHP AAYXX ABEFU ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEYWJ AGHNM AGQPQ AGYGG AHEFC AI. ASPBG AVWKF AZFZN BDRZF CITATION EX3 FEDTE GLUZI HVGLF M6P PALCI SAMSI VH1 WOW X7M Y6R ZGI ZXP AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7T5 7TO 7U9 H94 K9. 7X8 5PM |
ID | FETCH-LOGICAL-c6053-94c87f91d10cc1996f875aecbd2318f3b72fd1e291df7e5bd0c7e3858fda76e13 |
IEDL.DBID | DR2 |
ISSN | 0020-7136 1097-0215 |
IngestDate | Thu Aug 21 18:36:41 EDT 2025 Fri Jul 11 04:12:49 EDT 2025 Sat Jul 26 02:31:43 EDT 2025 Fri Jul 25 05:18:52 EDT 2025 Mon Jul 21 05:49:53 EDT 2025 Mon Jul 21 09:15:04 EDT 2025 Tue Jul 01 02:27:37 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Wed Jan 22 16:43:19 EST 2025 Wed Oct 30 09:52:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human RNAi RNA interference Stem cell EGCG sonic hedgehog pathway Malignant tumor pluripotency maintaining factors Cell transformation Gene silencing pancreatic cancer Cancerology Hedgehog protein Pancreas cancer Digestive diseases Inhibitor Epithelial mesenchymal transition cancer stem cells Tumor cell Pluripotency Cancer Pancreatic disease |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 UICC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6053-94c87f91d10cc1996f875aecbd2318f3b72fd1e291df7e5bd0c7e3858fda76e13 |
Notes | ark:/67375/WNG-GDPCNK6D-T National Institutes of Health - No. R01CA125262; No. RO1CA114469; No. RO1CA125262-02S1; and Kansas Bioscience Authority ArticleID:IJC26323 istex:DF4D7E7D00CF1BA77191F33523F8F3CE9F970F3A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.26323 |
PMID | 21796625 |
PQID | 1544961184 |
PQPubID | 105430 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3480310 proquest_miscellaneous_1009130425 proquest_journals_3097811215 proquest_journals_1544961184 pubmed_primary_21796625 pascalfrancis_primary_25905719 crossref_citationtrail_10_1002_ijc_26323 crossref_primary_10_1002_ijc_26323 wiley_primary_10_1002_ijc_26323_IJC26323 istex_primary_ark_67375_WNG_GDPCNK6D_T |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 1 July 2012 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | International journal of cancer |
PublicationTitleAlternate | Int. J. Cancer |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs. Stem Cells Dev 2009; 18: 1093-108. Dai J, Ai K, Du Y, Chen G. Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 2011; 40: 233-6. Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol 2008; 3: 157-88. Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993-1005. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293-9. Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35: 431-6. Magee CJ, Ghaneh P, Neoptolemos JP. Surgical and medical therapy for pancreatic carcinoma. Best Pract Res Clin Gastroenterol 2002; 16: 435-55. Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Ouellette MM, Yu W, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008; 57: 1420-30. Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 2010; 5: 14. Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto MI, Abrams RA, Laheru D, et al. Pancreatic cancer. Curr Probl Cancer 2002; 26: 176-275. Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011; 6: e16530. Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol 2006; 16: 176-80. Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, Siemann DW. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010; 183: 2045-53. Cavaleri F, Scholer HR. Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003; 113: 551-2. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55. Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target?. J Natl Cancer Inst 2004; 96: 583-5. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-72. Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 2011; 3: 515-28. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11. Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010; 395: 1-10. Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3: 535-46. Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-65. Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, Schoenberg MH, Berger F, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 1102-13. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42. Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008; 26: 2806-12. Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 2004; 10: 8521-30. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300. Ishizawa K, Izawa-Ishizawa Y, Ohnishi S, Motobayashi Y, Kawazoe K, Hamano S, Tsuchiya K, Tomita S, Minakuchi K, Tamaki T. Quercetin glucuronide inhibits cell migration and proliferation by platelet-derived growth factor in vascular smooth muscle cells. J Pharmacol Sci 2009; 109: 257-64. Jones RJ. Cancer stem cells: clinical relevance. J Mol Med 2009; 87: 1105-10. Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 1997; 146: 223-30. Rohatgi R, Scott MP. Patching the gaps in Hedgehog signalling. Nat Cell Biol 2007; 9: 1005-9. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011; 8: 27-33. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457-61. Mueller MT, Hermann PC, Heeschen C. Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci (Elite Ed) 2010; 2: 602-13. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324-31. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801-6. Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 2007; 6: 2591-9. Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731-7. Wong MY, Chiu GN. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 2010; 21: 401-10. Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA, Eibl G, Hines OJ, Go VL, Lu QY. Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 2010; 58: 7252-7. Duraj J, Zazrivcova K, Bodo J, Sulikova M, Sedlak J. Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma 2005; 52: 273-9. Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles. Biosci Biotechnol Biochem 2010; 74: 934-8. Dashwood WM, Carter O, Al-Fageeh M, Li Q, Dashwood RH. Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res 2005; 591: 161-72. Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 2010;80:1833-43. 2002; 16 2005; 591 2009; 87 2010; 58 2006; 16 2010; 101 2011; 40 1992; 326 2008; 57 2010; 183 2008; 3 2008; 321 2010; 80 2011; 3 2011; 6 2003; 113 2009; 27 2011; 8 2009; 137 2010; 60 2009; 139 1997; 146 2004; 10 2004; 96 2005; 280 2010; 21 2009; 35 2002; 26 2004; 432 2007; 9 2008; 26 2005; 52 2007; 6 2010; 395 2001; 3 2008; 22 2010; 2 2009; 109 2010; 5 2010; 74 2009; 324 2001; 414 2009; 18 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_45_2 e_1_2_7_46_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 Duraj J (e_1_2_7_23_2) 2005; 52 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 19415763 - Stem Cells. 2009 May;27(5):993-1005 15549094 - Nature. 2004 Nov 18;432(7015):324-31 19421768 - Langenbecks Arch Surg. 2010 Jan;395(1):1-10 9247006 - Am J Epidemiol. 1997 Aug 1;146(3):223-30 15860457 - J Biol Chem. 2005 Jul 1;280(26):24731-7 16516476 - Trends Cell Biol. 2006 Apr;16(4):176-80 18039136 - Annu Rev Pathol. 2008;3:157-88 18539958 - J Clin Oncol. 2008 Jun 10;26(17):2806-12 20654584 - Biochem Pharmacol. 2010 Dec 15;80(12):1833-43 20110806 - Anticancer Drugs. 2010 Apr;21(4):401-10 19945376 - Cell. 2009 Nov 25;139(5):871-90 20303530 - J Urol. 2010 May;183(5):2045-53 18515410 - Gut. 2008 Oct;57(10):1420-30 12399802 - Curr Probl Cancer. 2002 Jul-Aug;26(4):176-275 12787504 - Cell. 2003 May 30;113(5):631-42 20610543 - CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300 18794343 - Genes Dev. 2008 Sep 15;22(18):2454-72 12787505 - Cell. 2003 May 30;113(5):643-55 19202317 - J Pharmacol Sci. 2009 Feb;109(2):257-64 20718984 - J Mol Signal. 2010 Aug 18;5:14 20499918 - J Agric Food Chem. 2010 Jun 23;58(12):7252-7 16054165 - Mutat Res. 2005 Dec 11;591(1-2):161-72 20036905 - Front Biosci (Elite Ed). 2010;2:602-13 21304978 - PLoS One. 2011;6(1):e16530 16059641 - Neoplasma. 2005;52(4):273-9 19480567 - Stem Cells Dev. 2009 Sep;18(7):1093-108 20938369 - Pancreas. 2011 Mar;40(2):233-6 21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33 19328630 - Cancer Treat Rev. 2009 Aug;35(5):431-6 12787492 - Cell. 2003 May 30;113(5):551-2 1732772 - N Engl J Med. 1992 Feb 13;326(7):455-65 19816664 - J Mol Med (Berl). 2009 Nov;87(11):1105-10 11689955 - Nature. 2001 Nov 1;414(6859):105-11 19501590 - Gastroenterology. 2009 Sep;137(3):1102-13 18772397 - Science. 2008 Sep 26;321(5897):1801-6 17762891 - Nat Cell Biol. 2007 Sep;9(9):1005-9 19460966 - Science. 2009 Jun 12;324(5933):1457-61 17876056 - Mol Cancer Ther. 2007 Sep;6(9):2591-9 15623634 - Clin Cancer Res. 2004 Dec 15;10(24):8521-30 11774036 - Neoplasia. 2001 Nov-Dec;3(6):535-46 19961486 - Cancer Sci. 2010 Feb;101(2):293-9 20460716 - Biosci Biotechnol Biochem. 2010;74(5):934-8 21196331 - Front Biosci (Elite Ed). 2011;3:515-28 15100335 - J Natl Cancer Inst. 2004 Apr 21;96(8):583-5 12079268 - Best Pract Res Clin Gastroenterol. 2002 Jun;16(3):435-55 |
References_xml | – reference: Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, Schoenberg MH, Berger F, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 1102-13. – reference: Jones RJ. Cancer stem cells: clinical relevance. J Mol Med 2009; 87: 1105-10. – reference: Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Ouellette MM, Yu W, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008; 57: 1420-30. – reference: Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011; 8: 27-33. – reference: Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55. – reference: Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3: 535-46. – reference: Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-72. – reference: Rohatgi R, Scott MP. Patching the gaps in Hedgehog signalling. Nat Cell Biol 2007; 9: 1005-9. – reference: Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42. – reference: Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010; 395: 1-10. – reference: Dashwood WM, Carter O, Al-Fageeh M, Li Q, Dashwood RH. Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res 2005; 591: 161-72. – reference: Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324-31. – reference: Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target?. J Natl Cancer Inst 2004; 96: 583-5. – reference: Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008; 26: 2806-12. – reference: Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293-9. – reference: Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993-1005. – reference: Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs. Stem Cells Dev 2009; 18: 1093-108. – reference: Magee CJ, Ghaneh P, Neoptolemos JP. Surgical and medical therapy for pancreatic carcinoma. Best Pract Res Clin Gastroenterol 2002; 16: 435-55. – reference: Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457-61. – reference: Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300. – reference: Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles. Biosci Biotechnol Biochem 2010; 74: 934-8. – reference: Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol 2006; 16: 176-80. – reference: Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA, Eibl G, Hines OJ, Go VL, Lu QY. Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 2010; 58: 7252-7. – reference: Duraj J, Zazrivcova K, Bodo J, Sulikova M, Sedlak J. Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma 2005; 52: 273-9. – reference: Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90. – reference: Mueller MT, Hermann PC, Heeschen C. Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci (Elite Ed) 2010; 2: 602-13. – reference: Dai J, Ai K, Du Y, Chen G. Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 2011; 40: 233-6. – reference: Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto MI, Abrams RA, Laheru D, et al. Pancreatic cancer. Curr Probl Cancer 2002; 26: 176-275. – reference: Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 2011; 3: 515-28. – reference: Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 2010; 5: 14. – reference: Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, Siemann DW. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010; 183: 2045-53. – reference: Cavaleri F, Scholer HR. Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003; 113: 551-2. – reference: Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11. – reference: Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801-6. – reference: Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 2007; 6: 2591-9. – reference: Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 1997; 146: 223-30. – reference: Wong MY, Chiu GN. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 2010; 21: 401-10. – reference: Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol 2008; 3: 157-88. – reference: Ishizawa K, Izawa-Ishizawa Y, Ohnishi S, Motobayashi Y, Kawazoe K, Hamano S, Tsuchiya K, Tomita S, Minakuchi K, Tamaki T. Quercetin glucuronide inhibits cell migration and proliferation by platelet-derived growth factor in vascular smooth muscle cells. J Pharmacol Sci 2009; 109: 257-64. – reference: Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011; 6: e16530. – reference: Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 2010;80:1833-43. – reference: Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731-7. – reference: Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 2004; 10: 8521-30. – reference: Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35: 431-6. – reference: Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-65. – volume: 113 start-page: 631 year: 2003 end-page: 42 article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells publication-title: Cell – volume: 113 start-page: 551 year: 2003 end-page: 2 article-title: Nanog: a new recruit to the embryonic stem cell orchestra publication-title: Cell – volume: 40 start-page: 233 year: 2011 end-page: 6 article-title: Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma publication-title: Pancreas – volume: 10 start-page: 8521 year: 2004 end-page: 30 article-title: Transcription factor AP‐2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors publication-title: Clin Cancer Res – volume: 101 start-page: 293 year: 2010 end-page: 9 article-title: Epithelial‐mesenchymal transition in cancer development and its clinical significance publication-title: Cancer Sci – volume: 58 start-page: 7252 year: 2010 end-page: 7 article-title: Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts publication-title: J Agric Food Chem – volume: 26 start-page: 176 year: 2002 end-page: 275 article-title: Pancreatic cancer publication-title: Curr Probl Cancer – volume: 18 start-page: 1093 year: 2009 end-page: 108 article-title: Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs publication-title: Stem Cells Dev – volume: 57 start-page: 1420 year: 2008 end-page: 30 article-title: Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer publication-title: Gut – volume: 146 start-page: 223 year: 1997 end-page: 30 article-title: Dietary flavonoids and the risk of lung cancer and other malignant neoplasms publication-title: Am J Epidemiol – volume: 2 start-page: 602 year: 2010 end-page: 13 article-title: Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis publication-title: Front Biosci (Elite Ed) – volume: 8 start-page: 27 year: 2011 end-page: 33 article-title: Pancreatic cancer: understanding and overcoming chemoresistance publication-title: Nat Rev Gastroenterol Hepatol – volume: 96 start-page: 583 year: 2004 end-page: 5 article-title: Cancer stem cells: are we missing the target? publication-title: J Natl Cancer Inst – volume: 26 start-page: 2806 year: 2008 end-page: 12 article-title: Pancreatic cancer stem cells publication-title: J Clin Oncol – volume: 3 start-page: 515 year: 2011 end-page: 28 article-title: Sulforaphane synergizes with quercetin to inhibit self‐renewal capacity of pancreatic cancer stem cells publication-title: Front Biosci (Elite Ed) – volume: 280 start-page: 24731 year: 2005 end-page: 7 article-title: Transcriptional regulation of nanog by OCT4 and SOX2 publication-title: J Biol Chem – volume: 3 start-page: 535 year: 2001 end-page: 46 article-title: TRAIL/Apo‐2L: mechanisms and clinical applications in cancer publication-title: Neoplasia – volume: 137 start-page: 1102 year: 2009 end-page: 13 article-title: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer publication-title: Gastroenterology – volume: 3 start-page: 157 year: 2008 end-page: 88 article-title: Pancreatic cancer publication-title: Annu Rev Pathol – volume: 6 start-page: e16530 year: 2011 article-title: Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial‐mesenchymal transition publication-title: PLoS One – volume: 324 start-page: 1457 year: 2009 end-page: 61 article-title: Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer publication-title: Science – volume: 16 start-page: 176 year: 2006 end-page: 80 article-title: Hedgehog signalling: how to get from Smo to Ci and Gli publication-title: Trends Cell Biol – volume: 52 start-page: 273 year: 2005 end-page: 9 article-title: Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants publication-title: Neoplasma – volume: 395 start-page: 1 year: 2010 end-page: 10 article-title: Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications publication-title: Langenbecks Arch Surg – volume: 9 start-page: 1005 year: 2007 end-page: 9 article-title: Patching the gaps in Hedgehog signalling publication-title: Nat Cell Biol – volume: 27 start-page: 993 year: 2009 end-page: 1005 article-title: Functional evidence that the self‐renewal gene NANOG regulates human tumor development publication-title: Stem Cells – volume: 139 start-page: 871 year: 2009 end-page: 90 article-title: Epithelial‐mesenchymal transitions in development and disease publication-title: Cell – volume: 321 start-page: 1801 year: 2008 end-page: 6 article-title: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses publication-title: Science – volume: 22 start-page: 2454 year: 2008 end-page: 72 article-title: Hedgehog: functions and mechanisms publication-title: Genes Dev – volume: 80 start-page: 1833 year: 2010 end-page: 43 article-title: Delivery of anti‐inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer publication-title: Biochem Pharmacol – volume: 6 start-page: 2591 year: 2007 end-page: 9 article-title: Quercetin enhances TRAIL‐mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts publication-title: Mol Cancer Ther – volume: 591 start-page: 161 year: 2005 end-page: 72 article-title: Lysosomal trafficking of beta‐catenin induced by the tea polyphenol epigallocatechin‐3‐gallate publication-title: Mutat Res – volume: 183 start-page: 2045 year: 2010 end-page: 53 article-title: Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells publication-title: J Urol – volume: 21 start-page: 401 year: 2010 end-page: 10 article-title: Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen‐receptor‐negative breast cancer treatment publication-title: Anticancer Drugs – volume: 432 start-page: 324 year: 2004 end-page: 31 article-title: Tissue repair and stem cell renewal in carcinogenesis publication-title: Nature – volume: 60 start-page: 277 year: 2010 end-page: 300 article-title: Cancer statistics, 2010 publication-title: CA Cancer J Clin – volume: 16 start-page: 435 year: 2002 end-page: 55 article-title: Surgical and medical therapy for pancreatic carcinoma publication-title: Best Pract Res Clin Gastroenterol – volume: 5 start-page: 14 year: 2010 article-title: The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial‐mesenchymal transition publication-title: J Mol Signal – volume: 414 start-page: 105 year: 2001 end-page: 11 article-title: Stem cells, cancer, and cancer stem cells publication-title: Nature – volume: 74 start-page: 934 year: 2010 end-page: 8 article-title: Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4‐nitro‐3‐phenylphenol in diesel exhaust particles publication-title: Biosci Biotechnol Biochem – volume: 113 start-page: 643 year: 2003 end-page: 55 article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells publication-title: Cell – volume: 87 start-page: 1105 year: 2009 end-page: 10 article-title: Cancer stem cells: clinical relevance publication-title: J Mol Med – volume: 326 start-page: 455 year: 1992 end-page: 65 article-title: Pancreatic carcinoma publication-title: N Engl J Med – volume: 109 start-page: 257 year: 2009 end-page: 64 article-title: Quercetin glucuronide inhibits cell migration and proliferation by platelet‐derived growth factor in vascular smooth muscle cells publication-title: J Pharmacol Sci – volume: 35 start-page: 431 year: 2009 end-page: 6 article-title: Pancreatic cancer: current and future treatment strategies publication-title: Cancer Treat Rev – ident: e_1_2_7_38_2 doi: 10.1146/annurev.pathmechdis.3.121806.154305 – ident: e_1_2_7_21_2 doi: 10.1158/1535-7163.MCT-07-0001 – ident: e_1_2_7_13_2 doi: 10.1038/nature03100 – ident: e_1_2_7_46_2 doi: 10.1097/CAD.0b013e328336e940 – ident: e_1_2_7_30_2 doi: 10.1089/scd.2009.0113 – ident: e_1_2_7_17_2 doi: 10.1136/gut.2007.148189 – ident: e_1_2_7_14_2 doi: 10.1038/ncb435 – ident: e_1_2_7_37_2 doi: 10.1038/nrgastro.2010.188 – ident: e_1_2_7_4_2 doi: 10.1053/bega.2002.0317 – ident: e_1_2_7_44_2 doi: 10.1158/1078-0432.CCR-04-1285 – ident: e_1_2_7_31_2 doi: 10.1002/stem.29 – ident: e_1_2_7_43_2 doi: 10.1016/S0092-8674(03)00392-1 – ident: e_1_2_7_3_2 doi: 10.1016/j.ctrv.2009.02.005 – ident: e_1_2_7_33_2 doi: 10.1016/j.juro.2009.12.092 – ident: e_1_2_7_15_2 doi: 10.1016/j.tcb.2006.02.004 – ident: e_1_2_7_20_2 doi: 10.1016/j.bcp.2010.07.021 – ident: e_1_2_7_6_2 doi: 10.1056/NEJM199202133260706 – volume: 52 start-page: 273 year: 2005 ident: e_1_2_7_23_2 article-title: Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants publication-title: Neoplasma – ident: e_1_2_7_34_2 doi: 10.1016/j.cell.2009.11.007 – ident: e_1_2_7_18_2 doi: 10.1200/JCO.2008.16.6702 – ident: e_1_2_7_29_2 doi: 10.1016/S0092-8674(03)00394-5 – ident: e_1_2_7_45_2 doi: 10.1016/j.mrfmmm.2005.03.029 – ident: e_1_2_7_41_2 doi: 10.1053/j.gastro.2009.05.053 – ident: e_1_2_7_2_2 doi: 10.3322/caac.20073 – ident: e_1_2_7_25_2 doi: 10.1271/bbb.90740 – ident: e_1_2_7_42_2 doi: 10.1074/jbc.M502573200 – ident: e_1_2_7_8_2 doi: 10.1038/35102167 – ident: e_1_2_7_19_2 doi: 10.1254/jphs.08236FP – ident: e_1_2_7_32_2 doi: 10.1016/S0092-8674(03)00393-3 – ident: e_1_2_7_12_2 doi: 10.1101/gad.1693608 – ident: e_1_2_7_39_2 doi: 10.1097/MPA.0b013e3181f7e09f – ident: e_1_2_7_10_2 doi: 10.1371/journal.pone.0016530 – ident: e_1_2_7_27_2 doi: 10.1186/1750-2187-5-14 – ident: e_1_2_7_5_2 doi: 10.1067/mcn.2002.129579 – ident: e_1_2_7_26_2 doi: 10.2741/e266 – ident: e_1_2_7_28_2 doi: 10.1038/sj.neo.7900203 – ident: e_1_2_7_22_2 doi: 10.1021/jf101192k – ident: e_1_2_7_36_2 doi: 10.2741/e117 – ident: e_1_2_7_24_2 doi: 10.1093/oxfordjournals.aje.a009257 – ident: e_1_2_7_35_2 doi: 10.1111/j.1349-7006.2009.01419.x – ident: e_1_2_7_40_2 doi: 10.1126/science.1164368 – ident: e_1_2_7_7_2 doi: 10.1093/jnci/djh095 – ident: e_1_2_7_9_2 doi: 10.1007/s00423-009-0502-z – ident: e_1_2_7_16_2 doi: 10.1126/science.1171362 – ident: e_1_2_7_11_2 doi: 10.1007/s00109-009-0534-4 – reference: 19961486 - Cancer Sci. 2010 Feb;101(2):293-9 – reference: 12787505 - Cell. 2003 May 30;113(5):643-55 – reference: 12787504 - Cell. 2003 May 30;113(5):631-42 – reference: 15100335 - J Natl Cancer Inst. 2004 Apr 21;96(8):583-5 – reference: 16516476 - Trends Cell Biol. 2006 Apr;16(4):176-80 – reference: 19421768 - Langenbecks Arch Surg. 2010 Jan;395(1):1-10 – reference: 19945376 - Cell. 2009 Nov 25;139(5):871-90 – reference: 20036905 - Front Biosci (Elite Ed). 2010;2:602-13 – reference: 16054165 - Mutat Res. 2005 Dec 11;591(1-2):161-72 – reference: 15860457 - J Biol Chem. 2005 Jul 1;280(26):24731-7 – reference: 12787492 - Cell. 2003 May 30;113(5):551-2 – reference: 18794343 - Genes Dev. 2008 Sep 15;22(18):2454-72 – reference: 19816664 - J Mol Med (Berl). 2009 Nov;87(11):1105-10 – reference: 15549094 - Nature. 2004 Nov 18;432(7015):324-31 – reference: 12079268 - Best Pract Res Clin Gastroenterol. 2002 Jun;16(3):435-55 – reference: 20718984 - J Mol Signal. 2010 Aug 18;5:14 – reference: 19460966 - Science. 2009 Jun 12;324(5933):1457-61 – reference: 17876056 - Mol Cancer Ther. 2007 Sep;6(9):2591-9 – reference: 20610543 - CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300 – reference: 20654584 - Biochem Pharmacol. 2010 Dec 15;80(12):1833-43 – reference: 11689955 - Nature. 2001 Nov 1;414(6859):105-11 – reference: 21196331 - Front Biosci (Elite Ed). 2011;3:515-28 – reference: 15623634 - Clin Cancer Res. 2004 Dec 15;10(24):8521-30 – reference: 19328630 - Cancer Treat Rev. 2009 Aug;35(5):431-6 – reference: 17762891 - Nat Cell Biol. 2007 Sep;9(9):1005-9 – reference: 18515410 - Gut. 2008 Oct;57(10):1420-30 – reference: 19415763 - Stem Cells. 2009 May;27(5):993-1005 – reference: 19202317 - J Pharmacol Sci. 2009 Feb;109(2):257-64 – reference: 9247006 - Am J Epidemiol. 1997 Aug 1;146(3):223-30 – reference: 19501590 - Gastroenterology. 2009 Sep;137(3):1102-13 – reference: 21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33 – reference: 18539958 - J Clin Oncol. 2008 Jun 10;26(17):2806-12 – reference: 20938369 - Pancreas. 2011 Mar;40(2):233-6 – reference: 21304978 - PLoS One. 2011;6(1):e16530 – reference: 1732772 - N Engl J Med. 1992 Feb 13;326(7):455-65 – reference: 20110806 - Anticancer Drugs. 2010 Apr;21(4):401-10 – reference: 16059641 - Neoplasma. 2005;52(4):273-9 – reference: 11774036 - Neoplasia. 2001 Nov-Dec;3(6):535-46 – reference: 20499918 - J Agric Food Chem. 2010 Jun 23;58(12):7252-7 – reference: 12399802 - Curr Probl Cancer. 2002 Jul-Aug;26(4):176-275 – reference: 18772397 - Science. 2008 Sep 26;321(5897):1801-6 – reference: 20460716 - Biosci Biotechnol Biochem. 2010;74(5):934-8 – reference: 19480567 - Stem Cells Dev. 2009 Sep;18(7):1093-108 – reference: 18039136 - Annu Rev Pathol. 2008;3:157-88 – reference: 20303530 - J Urol. 2010 May;183(5):2045-53 |
SSID | ssj0011504 |
Score | 2.4817228 |
Snippet | Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is... Activation of the sonic hedgehog (Shh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30 |
SubjectTerms | Apoptosis Apoptosis - drug effects Biological and medical sciences Cancer cancer stem cells Caspase Caspase 3 - biosynthesis Catechin - analogs & derivatives Catechin - pharmacology Cell activation Cell Line, Tumor Cell proliferation Cell Proliferation - drug effects Drug Synergism EGCG Epigallocatechin gallate epithelial mesenchymal transition Epithelial-Mesenchymal Transition - drug effects Flavonoids Gastroenterology. Liver. Pancreas. Abdomen Green tea Hedgehog protein Hedgehog Proteins - metabolism Homeodomain Proteins - biosynthesis Humans LEF/TCF protein Liver. Biliary tract. Portal circulation. Exocrine pancreas Medical research Medical sciences Metastases Molecular modelling Myc protein Nanog Homeobox Protein Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - metabolism Neoplastic Stem Cells - pathology Octamer Transcription Factor-3 - biosynthesis Pancreas Pancreatic cancer Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Plant Extracts - pharmacology Pluripotency pluripotency maintaining factors Pluripotent Stem Cells Proto-Oncogene Proteins c-bcl-2 - biosynthesis Proto-Oncogene Proteins c-myc - biosynthesis Quercetin Quercetin - pharmacology RNAi Rodents Signal transduction Signal Transduction - drug effects Snail protein sonic hedgehog pathway Stem cells TCF Transcription Factors - antagonists & inhibitors Tea Transcription factors Transcription, Genetic - drug effects Tumorigenesis Tumors X-Linked Inhibitor of Apoptosis Protein - biosynthesis XIAP protein |
Title | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics |
URI | https://api.istex.fr/ark:/67375/WNG-GDPCNK6D-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.26323 https://www.ncbi.nlm.nih.gov/pubmed/21796625 https://www.proquest.com/docview/1544961184 https://www.proquest.com/docview/3097811215 https://www.proquest.com/docview/1009130425 https://pubmed.ncbi.nlm.nih.gov/PMC3480310 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqIiFeuI9AqQxCiJdsc9qJeEJbeqGuEGpFH5AsX-kuLUm12RWUZ344M85RAouEeIvksTaZHdvf2OPvI-RFkEquYSHys0IHfpJFxldMpT7eAY0whVVOkuVwwvaOk4OT9GSNvO7uwjT8EP2GG44MN1_jAJeq3roiDZ191iMkG0emT6zVQkD0oaeOQqDTMjAHPiRirGMVCqKtvudgLbqGbv2GtZGyBvcUja7FKuD5Z_3kr7jWLUw7t8in7pOaepSz0XKhRvr7b2yP__nNt8nNFrDSN02E3SFrtrxLrh-2R_L3yI_9cjpTrvCLVgWtkWqXTnGXblqdUhQ8_iovqSwNvThfwgxVIUi_pF_krFw06hS01fyhc3uKYmKWOuFA6Fs2kFZTjbE5p0g6TfGogeohz_R9crzz9mi857fSDr6G_Cn280RnvMhDEwZaYyF0AXmTtFoZwJtZESseFSa0EVgU3KbKBJpbPMMsjOTMhvEDsl5WpX1EqMkM04lkOTdJYmOeh5bLTMkQVURSmXnkVfcnC93ynqP8xrloGJsjAV4Vzqseed6bXjRkH6uMXrpI6S3k_Ayr43gqPk52xe72-_HkHdsWRx7ZHIRS3wEyTkDJYe6RjS62RDtz1ALZkXIGaV-ysjnGezchUoJ45FnfDFMCOl-WtlrW-L55iNtUYPOwidSr34YJmDFs4YMY7g2QbnzYUs6mjnY8TjLkkQV_uhD9u4fE_sHYPTz-d9Mn5AZA0bYQeoOsL-ZL-xTg3kJtunH9E1fOUuQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZKKwEX9mWgFIMQ4jLprPaMxAUltEnbRAilopfK8jZNusxUWQTlzA_Hz7OUgSAhbiP5WZl5eba_Zz9_H0JvvJhTaRYiN8mk50ZJoFxBROzCHdAAUlhhJVmGI9I_jPaO4qM19L6-C1PyQzQbbjAy7HwNAxw2pLevWUOnp7IDbOPhDbQBit7AnN_73JBHAdSpOJg916RipOYV8oLtpmtrNdoAx36D6kg-Nw7KSmWLVdDzzwrKX5GtXZp27qLj-qPKipSzznIhOvL7b3yP__vV99CdCrPiD2WQ3UdrOn-Abg6rU_mH6Mcgn0yFrf3CRYbnwLaLJ7BRNylOMGgef-VXmOcKX54vzSRVAE6_whd8mi9KgQpcyf7gmT4BPTGNrXag6ZuXqFZiCeE5w8A7jeG0Acs21fQjdLjzcdztu5W6gytNChW6aSQTmqW-8j0poRY6M6kT11IoAzmTLBQ0yJSvA2ORUR0L5Umq4RgzU5wS7YeP0Xpe5PopwipRREacpFRFkQ5p6mvKE8F9EBKJeeKgd_W_zGRFfQ4KHOesJG0OmPEqs1510OvG9LLk-1hl9NaGSmPBZ2dQIEdj9mW0y3Z7n7qjfdJjYwdttWKp6WCSTgOU_dRBm3VwsWrymDMgSEqJyfyilc0hXL3xgRXEQa-aZjMrgPN5rovlHN439WGnytg8KUP1-rfNHEwItNBWEDcGwDjebsmnE8s8HkYJUMkaf9oY_buH2GCvax-e_bvpS3SrPx4esIPBaP85um2QaVUXvYnWF7OlfmHQ30Js2UH-E0ojVwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cL8ExjAIIV7S5Won4gm1dOvGqgltYg-TLF_XspFUvQjGMz8cHyfNCBQJ8RbJx2pyemx_xz7-PoReBSmn0i5EfmZk4CdZpHxBROrDHdAIUljhJFkOh2TvJNk_TU_X0NvlXZiKH6LZcIOR4eZrGOATZXauSUPHn2UHyMbjG2gjIUEOug29jw13FCCdmoI58G0mRpa0QkG003RtLUYb4NdvUBzJZ9Y_phK2WIU8_yyg_BXYupWpfxudLb-pKki56CzmoiO__0b3-J8ffQfdqhErfleF2F20pot7aPOwPpO_j34MitFYuMovXBo8A65dPIJtulF5jkHx-Cu_wrxQeHK5sFNUCSj9Cn_h42JeyVPgWvQHT_U5qIlp7JQDbd-iwrQSSwjOKQbWaQxnDVi2iaYfoJP---Punl9rO_jSJlCxnycyoyYPVRhICZXQxiZOXEuhLODMTCxoZFSoI2thqE6FCiTVcIhpFKdEh_FDtF6UhX6MsMoUkQknOVVJomOah5ryTPAQZERSnnnozfJPZrImPgf9jUtWUTZHzHqVOa966GVjOqnYPlYZvXaR0ljw6QWUx9GUfRrust3eUXd4QHrs2EPbrVBqOtiU08LkMPfQ1jK2WD11zBjQI-XE5n3JyuYYLt6EwAnioRdNs50TwPm80OViBu-bh7BPZW0eVZF6_dt2BiYEWmgrhhsD4BtvtxTjkeMdj5MMiGStP12I_t1DbLDfdQ9P_t30Odo86vXZh8Hw4Cm6aWFpXRS9hdbn04V-ZqHfXGy7If4TDZFVrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+sonic+hedgehog+pathway+and+pluripotency+maintaining+factors+regulate+human+pancreatic+cancer+stem+cell+characteristics&rft.jtitle=International+journal+of+cancer&rft.au=Tang%2C+Su%E2%80%90Ni&rft.au=Fu%2C+Junsheng&rft.au=Nall%2C+Dara&rft.au=Rodova%2C+Mariana&rft.date=2012-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=131&rft.issue=1&rft.spage=30&rft.epage=40&rft_id=info:doi/10.1002%2Fijc.26323&rft.externalDBID=10.1002%252Fijc.26323&rft.externalDocID=IJC26323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon |