Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics

Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 131; no. 1; pp. 30 - 40
Main Authors Tang, Su-Ni, Fu, Junsheng, Nall, Dara, Rodova, Mariana, Shankar, Sharmila, Srivastava, Rakesh K.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2012
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Tea
Online AccessGet full text

Cover

Loading…
Abstract Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (‐)‐epigallocatechin‐3‐gallate (EGCG), an active compound in green tea, inhibits self‐renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c‐Myc and Oct‐4) and self‐renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self‐renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl‐2 and XIAP and activating caspase‐3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self‐renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs.
AbstractList Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs.
Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs. [PUBLICATION ABSTRACT]
Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs.Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is often recruited to stimulate growth of cancer stem cells (CSCs) and to orchestrate the reprogramming of cancer cells via epithelial mesenchymal transition (EMT). The objectives of this study were to examine the molecular mechanisms by which (-)-epigallocatechin-3-gallate (EGCG), an active compound in green tea, inhibits self-renewal capacity of pancreatic CSCs and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that EGCG inhibited the expression of pluripotency maintaining transcription factors (Nanog, c-Myc and Oct-4) and self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by shRNA enhanced the inhibitory effects of EGCG on self-renewal capacity of CSCs. EGCG inhibited cell proliferation and induced apoptosis by inhibiting the expression of Bcl-2 and XIAP and activating caspase-3. Interestingly, EGCG also inhibited the components of SHh pathway (smoothened, patched, Gli1 and Gli2) and Gli transcriptional activity. Furthermore, EGCG inhibited EMT by inhibiting the expression of Snail, Slug and ZEB1, and TCF/LEF transcriptional activity, which correlated with significantly reduced CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Furthermore, combination of quercetin with EGCG had synergistic inhibitory effects on self-renewal capacity of CSCs through attenuation of TCF/LEF and Gli activities. Since aberrant SHh signaling occurs in pancreatic tumorigenesis, therapeutics that target SHh pathway may improve the outcomes of patients with pancreatic cancer by targeting CSCs.
Author Tang, Su-Ni
Srivastava, Rakesh K.
Fu, Junsheng
Shankar, Sharmila
Nall, Dara
Rodova, Mariana
AuthorAffiliation 2 Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
1 Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
AuthorAffiliation_xml – name: 1 Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
– name: 2 Department of Pathology and Laboratory Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
Author_xml – sequence: 1
  givenname: Su-Ni
  surname: Tang
  fullname: Tang, Su-Ni
  organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
– sequence: 2
  givenname: Junsheng
  surname: Fu
  fullname: Fu, Junsheng
  organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
– sequence: 3
  givenname: Dara
  surname: Nall
  fullname: Nall, Dara
  organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
– sequence: 4
  givenname: Mariana
  surname: Rodova
  fullname: Rodova, Mariana
  organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
– sequence: 5
  givenname: Sharmila
  surname: Shankar
  fullname: Shankar, Sharmila
  organization: Department of Pathology and Laboratory Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
– sequence: 6
  givenname: Rakesh K.
  surname: Srivastava
  fullname: Srivastava, Rakesh K.
  email: rsrivastava@kumc.edu
  organization: Department of Pharmacology, Toxicology and Therapeutics, and Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25905719$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21796625$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxSNURP_AgS-ALCEkOKS14zhOLpXQFpaFqnAo4mh5ncnGS2IvdkLZOx-cWXa3QAUcLFua33ua8Zvj5MB5B0nymNFTRml2ZpfmNCt4xu8lR4xWMqUZEwfJEdZoKhkvDpPjGJeUMiZo_iA5zJisiiITR8n3mWvt3A7WO-IbEr2zhrRQL6D1C7LSQ3uj10S7mqy6MdiVH8CZNem1dQMe6xak0WbwIZIAi7HTA5B27LVDrTMB9IB-Bp8QSBygJwa6jphWB1RBsBHr8WFyv9FdhEe7-yT5-PrV9eRNevl-Opu8vExNQQVPq9yUsqlYzagxrKqKppRCg5nXGWdlw-cya2oGGRKNBDGvqZHAS1E2tZYFMH6SnG99V-O8h9qAG4Lu1CrYXoe18tqqPyvOtmrhvyqel5QzigbPdwbBfxkhDqq3cTORduDHqDCNinGaZwLRp3fQpR-Dw_EUx4hKxjCj_1FM5HlVMFbmSD35ve_bhvcxIvBsB-hodNcE_HAbf3GiokKyCrmzLWeCjzFAo4wd9CZ8HNd22P9mhEzhQqmfC4WKF3cUe9O_sTv3G9vB-t-gmr2d7BXpVoF7AN9uFTp8VoXkUqhPV1M1vfgwuXpXXKhr_gN4VetL
CODEN IJCNAW
CitedBy_id crossref_primary_10_1111_eci_12343
crossref_primary_10_2174_0109298673281666231227053726
crossref_primary_10_1016_j_bioorg_2024_107681
crossref_primary_10_1016_j_phymed_2024_155377
crossref_primary_10_1016_j_canlet_2014_06_021
crossref_primary_10_1007_s40495_015_0035_9
crossref_primary_10_1016_j_arabjc_2023_105487
crossref_primary_10_1002_mnfr_201700621
crossref_primary_10_1007_s10555_013_9457_1
crossref_primary_10_1016_j_semcancer_2021_07_008
crossref_primary_10_1111_jcmm_17092
crossref_primary_10_3389_fonc_2020_00764
crossref_primary_10_1002_jcp_29703
crossref_primary_10_1242_jcs_162164
crossref_primary_10_1080_01635581_2021_1934043
crossref_primary_10_1007_s11596_021_2341_2
crossref_primary_10_1371_journal_pone_0096441
crossref_primary_10_1186_1476_4598_12_159
crossref_primary_10_17116_onkolog20154373_81
crossref_primary_10_1007_s10637_021_01187_2
crossref_primary_10_1016_j_canlet_2018_06_034
crossref_primary_10_1039_C6MB00595K
crossref_primary_10_18632_oncotarget_5055
crossref_primary_10_1615_CritRevOncog_2023049513
crossref_primary_10_3390_cancers7030857
crossref_primary_10_1021_acs_jafc_6b02195
crossref_primary_10_1039_c3mb70159j
crossref_primary_10_18632_oncotarget_10860
crossref_primary_10_1016_j_biopha_2017_12_065
crossref_primary_10_1007_s00432_017_2515_2
crossref_primary_10_20517_2394_5079_2024_56
crossref_primary_10_3892_mmr_2016_5471
crossref_primary_10_3390_cancers14174200
crossref_primary_10_3389_fphar_2022_860209
crossref_primary_10_1016_j_biomaterials_2019_04_005
crossref_primary_10_1038_s41392_023_01559_5
crossref_primary_10_1016_j_canlet_2012_10_020
crossref_primary_10_1016_j_csbj_2024_03_010
crossref_primary_10_1007_s13277_014_2899_4
crossref_primary_10_1080_01635581_2020_1828942
crossref_primary_10_1002_hep_26147
crossref_primary_10_3390_molecules21111566
crossref_primary_10_1111_jcmm_15731
crossref_primary_10_1111_jcmm_17235
crossref_primary_10_1098_rsob_170152
crossref_primary_10_1186_s12885_018_4792_9
crossref_primary_10_3390_molecules23102547
crossref_primary_10_1002_ptr_7794
crossref_primary_10_1016_j_bbcan_2012_06_002
crossref_primary_10_1016_j_phrs_2018_08_006
crossref_primary_10_1177_1087057112458152
crossref_primary_10_3390_cancers7030851
crossref_primary_10_1530_JME_14_0051
crossref_primary_10_1093_biohorizons_hzu004
crossref_primary_10_3892_ijo_2019_4700
crossref_primary_10_1016_j_phrs_2019_01_014
crossref_primary_10_3892_mmr_2015_4677
crossref_primary_10_1002_med_21966
crossref_primary_10_1016_j_bbrc_2018_01_021
crossref_primary_10_3390_cancers15041053
crossref_primary_10_3390_molecules28135246
crossref_primary_10_1016_j_chemosphere_2020_128414
crossref_primary_10_1016_j_ejca_2013_06_025
crossref_primary_10_1097_MPA_0000000000001023
crossref_primary_10_1155_2016_8352684
crossref_primary_10_3892_etm_2014_2141
crossref_primary_10_1016_j_bbcan_2015_04_003
crossref_primary_10_1002_cbin_11843
crossref_primary_10_1002_hed_26373
crossref_primary_10_18632_oncotarget_9790
crossref_primary_10_1111_bph_16249
crossref_primary_10_1002_jcb_27488
crossref_primary_10_1080_01635581_2021_1981404
crossref_primary_10_1038_s41598_017_05458_y
crossref_primary_10_1186_s12876_024_03489_0
crossref_primary_10_1007_s12033_014_9788_3
crossref_primary_10_1016_j_fshw_2021_12_014
crossref_primary_10_3109_07357907_2013_820317
crossref_primary_10_1007_s13105_015_0381_4
crossref_primary_10_1097_MPA_0000000000001074
crossref_primary_10_1007_s13277_016_5461_8
crossref_primary_10_1016_j_drudis_2020_07_023
crossref_primary_10_1007_s00432_014_1899_5
crossref_primary_10_1038_s41416_018_0254_z
crossref_primary_10_3390_cells9061512
crossref_primary_10_1016_S2222_1808_15_61040_4
crossref_primary_10_3390_ijms22094765
crossref_primary_10_1016_j_trecan_2017_08_007
crossref_primary_10_2174_1574888X19666230914103420
crossref_primary_10_1016_j_jnutbio_2015_08_016
crossref_primary_10_1158_1078_0432_CCR_13_2947
crossref_primary_10_3390_ijms18030486
crossref_primary_10_1016_j_canlet_2017_03_020
crossref_primary_10_3390_ijms231911746
crossref_primary_10_1007_s10565_020_09562_0
crossref_primary_10_1016_j_canlet_2013_05_009
crossref_primary_10_1038_srep32743
crossref_primary_10_1007_s00210_015_1107_4
crossref_primary_10_1371_journal_pone_0092161
crossref_primary_10_3109_15419061_2014_970270
crossref_primary_10_1155_2013_748587
crossref_primary_10_1002_mnfr_201500884
crossref_primary_10_1007_s10555_021_09979_x
crossref_primary_10_1111_jcmm_13666
crossref_primary_10_1016_j_apsb_2013_02_006
crossref_primary_10_1093_carcin_bgx070
crossref_primary_10_3390_ijms222313044
crossref_primary_10_1016_j_ajpath_2012_04_008
crossref_primary_10_1007_s13402_015_0249_1
crossref_primary_10_1007_s40495_018_0145_2
crossref_primary_10_1016_j_critrevonc_2017_11_010
crossref_primary_10_1016_j_canlet_2013_07_009
crossref_primary_10_3390_biomedicines10112988
crossref_primary_10_3892_ijo_2014_2539
crossref_primary_10_1155_2019_1635837
crossref_primary_10_3892_or_2012_2210
crossref_primary_10_1158_1535_7163_MCT_12_1030
crossref_primary_10_18632_oncotarget_7567
crossref_primary_10_2174_0929867328666210628131409
crossref_primary_10_1007_s11060_014_1604_1
crossref_primary_10_1007_s11010_012_1448_y
crossref_primary_10_1155_2019_8620469
crossref_primary_10_1038_gt_2016_15
crossref_primary_10_3390_ijms16059236
crossref_primary_10_4161_cbt_22007
crossref_primary_10_1016_j_ejphar_2022_175412
crossref_primary_10_1016_j_taap_2016_03_016
crossref_primary_10_1007_s00204_014_1433_1
crossref_primary_10_1371_journal_pone_0056082
crossref_primary_10_3389_fphar_2016_00084
crossref_primary_10_1016_j_nano_2015_07_001
crossref_primary_10_3389_fendo_2017_00284
crossref_primary_10_1016_j_fct_2021_112264
crossref_primary_10_1016_j_canlet_2014_12_004
crossref_primary_10_1111_jcmm_12397
crossref_primary_10_1111_jcmm_14178
crossref_primary_10_1016_j_semcancer_2015_02_006
crossref_primary_10_1111_cpr_12143
crossref_primary_10_1002_cam4_6170
crossref_primary_10_2217_fon_12_82
crossref_primary_10_1002_ijc_28648
crossref_primary_10_1186_s40169_014_0032_3
crossref_primary_10_1007_s11010_012_1493_6
crossref_primary_10_1038_s41419_019_1776_x
Cites_doi 10.1146/annurev.pathmechdis.3.121806.154305
10.1158/1535-7163.MCT-07-0001
10.1038/nature03100
10.1097/CAD.0b013e328336e940
10.1089/scd.2009.0113
10.1136/gut.2007.148189
10.1038/ncb435
10.1038/nrgastro.2010.188
10.1053/bega.2002.0317
10.1158/1078-0432.CCR-04-1285
10.1002/stem.29
10.1016/S0092-8674(03)00392-1
10.1016/j.ctrv.2009.02.005
10.1016/j.juro.2009.12.092
10.1016/j.tcb.2006.02.004
10.1016/j.bcp.2010.07.021
10.1056/NEJM199202133260706
10.1016/j.cell.2009.11.007
10.1200/JCO.2008.16.6702
10.1016/S0092-8674(03)00394-5
10.1016/j.mrfmmm.2005.03.029
10.1053/j.gastro.2009.05.053
10.3322/caac.20073
10.1271/bbb.90740
10.1074/jbc.M502573200
10.1038/35102167
10.1254/jphs.08236FP
10.1016/S0092-8674(03)00393-3
10.1101/gad.1693608
10.1097/MPA.0b013e3181f7e09f
10.1371/journal.pone.0016530
10.1186/1750-2187-5-14
10.1067/mcn.2002.129579
10.2741/e266
10.1038/sj.neo.7900203
10.1021/jf101192k
10.2741/e117
10.1093/oxfordjournals.aje.a009257
10.1111/j.1349-7006.2009.01419.x
10.1126/science.1164368
10.1093/jnci/djh095
10.1007/s00423-009-0502-z
10.1126/science.1171362
10.1007/s00109-009-0534-4
ContentType Journal Article
Copyright Copyright © 2011 UICC
2015 INIST-CNRS
Copyright © 2011 UICC.
Copyright Wiley Subscription Services, Inc. Jul 2012
Copyright_xml – notice: Copyright © 2011 UICC
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 UICC.
– notice: Copyright Wiley Subscription Services, Inc. Jul 2012
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
5PM
DOI 10.1002/ijc.26323
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts

CrossRef
AIDS and Cancer Research Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 40
ExternalDocumentID PMC3480310
3372311191
21796625
25905719
10_1002_ijc_26323
IJC26323
ark_67375_WNG_GDPCNK6D_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01CA125262; RO1CA114469; RO1CA125262‐02S1; and Kansas Bioscience Authority
– fundername: NCI NIH HHS
  grantid: R01CA125262
– fundername: NCI NIH HHS
  grantid: R01CA114469
– fundername: NCI NIH HHS
  grantid: R01CA125262-02S1
– fundername: NCI NIH HHS
  grantid: R01 CA114469
– fundername: NCI NIH HHS
  grantid: R01 CA125262
– fundername: National Cancer Institute : NCI
  grantid: R01 CA125262 || CA
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AAYCA
AFWVQ
ALVPJ
.55
.GJ
31~
3O-
53G
8WZ
A6W
AANHP
AAYXX
ABEFU
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
AHEFC
AI.
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EX3
FEDTE
GLUZI
HVGLF
M6P
PALCI
SAMSI
VH1
WOW
X7M
Y6R
ZGI
ZXP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TO
7U9
H94
K9.
7X8
5PM
ID FETCH-LOGICAL-c6053-94c87f91d10cc1996f875aecbd2318f3b72fd1e291df7e5bd0c7e3858fda76e13
IEDL.DBID DR2
ISSN 0020-7136
1097-0215
IngestDate Thu Aug 21 18:36:41 EDT 2025
Fri Jul 11 04:12:49 EDT 2025
Sat Jul 26 02:31:43 EDT 2025
Fri Jul 25 05:18:52 EDT 2025
Mon Jul 21 05:49:53 EDT 2025
Mon Jul 21 09:15:04 EDT 2025
Tue Jul 01 02:27:37 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Wed Jan 22 16:43:19 EST 2025
Wed Oct 30 09:52:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
RNAi
RNA interference
Stem cell
EGCG
sonic hedgehog pathway
Malignant tumor
pluripotency maintaining factors
Cell transformation
Gene silencing
pancreatic cancer
Cancerology
Hedgehog protein
Pancreas cancer
Digestive diseases
Inhibitor
Epithelial mesenchymal transition
cancer stem cells
Tumor cell
Pluripotency
Cancer
Pancreatic disease
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 UICC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6053-94c87f91d10cc1996f875aecbd2318f3b72fd1e291df7e5bd0c7e3858fda76e13
Notes ark:/67375/WNG-GDPCNK6D-T
National Institutes of Health - No. R01CA125262; No. RO1CA114469; No. RO1CA125262-02S1; and Kansas Bioscience Authority
ArticleID:IJC26323
istex:DF4D7E7D00CF1BA77191F33523F8F3CE9F970F3A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.26323
PMID 21796625
PQID 1544961184
PQPubID 105430
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3480310
proquest_miscellaneous_1009130425
proquest_journals_3097811215
proquest_journals_1544961184
pubmed_primary_21796625
pascalfrancis_primary_25905719
crossref_citationtrail_10_1002_ijc_26323
crossref_primary_10_1002_ijc_26323
wiley_primary_10_1002_ijc_26323_IJC26323
istex_primary_ark_67375_WNG_GDPCNK6D_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 1 July 2012
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle International journal of cancer
PublicationTitleAlternate Int. J. Cancer
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs. Stem Cells Dev 2009; 18: 1093-108.
Dai J, Ai K, Du Y, Chen G. Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 2011; 40: 233-6.
Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol 2008; 3: 157-88.
Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993-1005.
Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293-9.
Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35: 431-6.
Magee CJ, Ghaneh P, Neoptolemos JP. Surgical and medical therapy for pancreatic carcinoma. Best Pract Res Clin Gastroenterol 2002; 16: 435-55.
Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Ouellette MM, Yu W, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008; 57: 1420-30.
Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 2010; 5: 14.
Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto MI, Abrams RA, Laheru D, et al. Pancreatic cancer. Curr Probl Cancer 2002; 26: 176-275.
Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011; 6: e16530.
Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol 2006; 16: 176-80.
Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, Siemann DW. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010; 183: 2045-53.
Cavaleri F, Scholer HR. Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003; 113: 551-2.
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55.
Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target?. J Natl Cancer Inst 2004; 96: 583-5.
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90.
Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-72.
Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 2011; 3: 515-28.
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.
Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010; 395: 1-10.
Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3: 535-46.
Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-65.
Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, Schoenberg MH, Berger F, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 1102-13.
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42.
Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008; 26: 2806-12.
Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 2004; 10: 8521-30.
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300.
Ishizawa K, Izawa-Ishizawa Y, Ohnishi S, Motobayashi Y, Kawazoe K, Hamano S, Tsuchiya K, Tomita S, Minakuchi K, Tamaki T. Quercetin glucuronide inhibits cell migration and proliferation by platelet-derived growth factor in vascular smooth muscle cells. J Pharmacol Sci 2009; 109: 257-64.
Jones RJ. Cancer stem cells: clinical relevance. J Mol Med 2009; 87: 1105-10.
Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 1997; 146: 223-30.
Rohatgi R, Scott MP. Patching the gaps in Hedgehog signalling. Nat Cell Biol 2007; 9: 1005-9.
Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011; 8: 27-33.
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457-61.
Mueller MT, Hermann PC, Heeschen C. Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci (Elite Ed) 2010; 2: 602-13.
Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324-31.
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801-6.
Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 2007; 6: 2591-9.
Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731-7.
Wong MY, Chiu GN. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 2010; 21: 401-10.
Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA, Eibl G, Hines OJ, Go VL, Lu QY. Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 2010; 58: 7252-7.
Duraj J, Zazrivcova K, Bodo J, Sulikova M, Sedlak J. Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma 2005; 52: 273-9.
Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles. Biosci Biotechnol Biochem 2010; 74: 934-8.
Dashwood WM, Carter O, Al-Fageeh M, Li Q, Dashwood RH. Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res 2005; 591: 161-72.
Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 2010;80:1833-43.
2002; 16
2005; 591
2009; 87
2010; 58
2006; 16
2010; 101
2011; 40
1992; 326
2008; 57
2010; 183
2008; 3
2008; 321
2010; 80
2011; 3
2011; 6
2003; 113
2009; 27
2011; 8
2009; 137
2010; 60
2009; 139
1997; 146
2004; 10
2004; 96
2005; 280
2010; 21
2009; 35
2002; 26
2004; 432
2007; 9
2008; 26
2005; 52
2007; 6
2010; 395
2001; 3
2008; 22
2010; 2
2009; 109
2010; 5
2010; 74
2009; 324
2001; 414
2009; 18
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_46_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Duraj J (e_1_2_7_23_2) 2005; 52
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
19415763 - Stem Cells. 2009 May;27(5):993-1005
15549094 - Nature. 2004 Nov 18;432(7015):324-31
19421768 - Langenbecks Arch Surg. 2010 Jan;395(1):1-10
9247006 - Am J Epidemiol. 1997 Aug 1;146(3):223-30
15860457 - J Biol Chem. 2005 Jul 1;280(26):24731-7
16516476 - Trends Cell Biol. 2006 Apr;16(4):176-80
18039136 - Annu Rev Pathol. 2008;3:157-88
18539958 - J Clin Oncol. 2008 Jun 10;26(17):2806-12
20654584 - Biochem Pharmacol. 2010 Dec 15;80(12):1833-43
20110806 - Anticancer Drugs. 2010 Apr;21(4):401-10
19945376 - Cell. 2009 Nov 25;139(5):871-90
20303530 - J Urol. 2010 May;183(5):2045-53
18515410 - Gut. 2008 Oct;57(10):1420-30
12399802 - Curr Probl Cancer. 2002 Jul-Aug;26(4):176-275
12787504 - Cell. 2003 May 30;113(5):631-42
20610543 - CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300
18794343 - Genes Dev. 2008 Sep 15;22(18):2454-72
12787505 - Cell. 2003 May 30;113(5):643-55
19202317 - J Pharmacol Sci. 2009 Feb;109(2):257-64
20718984 - J Mol Signal. 2010 Aug 18;5:14
20499918 - J Agric Food Chem. 2010 Jun 23;58(12):7252-7
16054165 - Mutat Res. 2005 Dec 11;591(1-2):161-72
20036905 - Front Biosci (Elite Ed). 2010;2:602-13
21304978 - PLoS One. 2011;6(1):e16530
16059641 - Neoplasma. 2005;52(4):273-9
19480567 - Stem Cells Dev. 2009 Sep;18(7):1093-108
20938369 - Pancreas. 2011 Mar;40(2):233-6
21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33
19328630 - Cancer Treat Rev. 2009 Aug;35(5):431-6
12787492 - Cell. 2003 May 30;113(5):551-2
1732772 - N Engl J Med. 1992 Feb 13;326(7):455-65
19816664 - J Mol Med (Berl). 2009 Nov;87(11):1105-10
11689955 - Nature. 2001 Nov 1;414(6859):105-11
19501590 - Gastroenterology. 2009 Sep;137(3):1102-13
18772397 - Science. 2008 Sep 26;321(5897):1801-6
17762891 - Nat Cell Biol. 2007 Sep;9(9):1005-9
19460966 - Science. 2009 Jun 12;324(5933):1457-61
17876056 - Mol Cancer Ther. 2007 Sep;6(9):2591-9
15623634 - Clin Cancer Res. 2004 Dec 15;10(24):8521-30
11774036 - Neoplasia. 2001 Nov-Dec;3(6):535-46
19961486 - Cancer Sci. 2010 Feb;101(2):293-9
20460716 - Biosci Biotechnol Biochem. 2010;74(5):934-8
21196331 - Front Biosci (Elite Ed). 2011;3:515-28
15100335 - J Natl Cancer Inst. 2004 Apr 21;96(8):583-5
12079268 - Best Pract Res Clin Gastroenterol. 2002 Jun;16(3):435-55
References_xml – reference: Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, Schoenberg MH, Berger F, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 2009; 137: 1102-13.
– reference: Jones RJ. Cancer stem cells: clinical relevance. J Mol Med 2009; 87: 1105-10.
– reference: Feldmann G, Habbe N, Dhara S, Bisht S, Alvarez H, Fendrich V, Beaty R, Mullendore M, Karikari C, Bardeesy N, Ouellette MM, Yu W, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008; 57: 1420-30.
– reference: Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Sarkar FH. Pancreatic cancer: understanding and overcoming chemoresistance. Nat Rev Gastroenterol Hepatol 2011; 8: 27-33.
– reference: Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643-55.
– reference: Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3: 535-46.
– reference: Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-72.
– reference: Rohatgi R, Scott MP. Patching the gaps in Hedgehog signalling. Nat Cell Biol 2007; 9: 1005-9.
– reference: Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42.
– reference: Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010; 395: 1-10.
– reference: Dashwood WM, Carter O, Al-Fageeh M, Li Q, Dashwood RH. Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res 2005; 591: 161-72.
– reference: Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324-31.
– reference: Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target?. J Natl Cancer Inst 2004; 96: 583-5.
– reference: Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol 2008; 26: 2806-12.
– reference: Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 2010; 101: 293-9.
– reference: Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 2009; 27: 993-1005.
– reference: Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs. Stem Cells Dev 2009; 18: 1093-108.
– reference: Magee CJ, Ghaneh P, Neoptolemos JP. Surgical and medical therapy for pancreatic carcinoma. Best Pract Res Clin Gastroenterol 2002; 16: 435-55.
– reference: Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009; 324: 1457-61.
– reference: Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300.
– reference: Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4-nitro-3-phenylphenol in diesel exhaust particles. Biosci Biotechnol Biochem 2010; 74: 934-8.
– reference: Osterlund T, Kogerman P. Hedgehog signalling: how to get from Smo to Ci and Gli. Trends Cell Biol 2006; 16: 176-80.
– reference: Zhang L, Angst E, Park JL, Moro A, Dawson DW, Reber HA, Eibl G, Hines OJ, Go VL, Lu QY. Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts. J Agric Food Chem 2010; 58: 7252-7.
– reference: Duraj J, Zazrivcova K, Bodo J, Sulikova M, Sedlak J. Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma 2005; 52: 273-9.
– reference: Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90.
– reference: Mueller MT, Hermann PC, Heeschen C. Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Front Biosci (Elite Ed) 2010; 2: 602-13.
– reference: Dai J, Ai K, Du Y, Chen G. Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma. Pancreas 2011; 40: 233-6.
– reference: Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto MI, Abrams RA, Laheru D, et al. Pancreatic cancer. Curr Probl Cancer 2002; 26: 176-275.
– reference: Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 2011; 3: 515-28.
– reference: Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 2010; 5: 14.
– reference: Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT, Kelley V, Jorgensen M, Steindler DA, Vieweg J, Siemann DW. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010; 183: 2045-53.
– reference: Cavaleri F, Scholer HR. Nanog: a new recruit to the embryonic stem cell orchestra. Cell 2003; 113: 551-2.
– reference: Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.
– reference: Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801-6.
– reference: Psahoulia FH, Drosopoulos KG, Doubravska L, Andera L, Pintzas A. Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol Cancer Ther 2007; 6: 2591-9.
– reference: Knekt P, Jarvinen R, Seppanen R, Hellovaara M, Teppo L, Pukkala E, Aromaa A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 1997; 146: 223-30.
– reference: Wong MY, Chiu GN. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 2010; 21: 401-10.
– reference: Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol 2008; 3: 157-88.
– reference: Ishizawa K, Izawa-Ishizawa Y, Ohnishi S, Motobayashi Y, Kawazoe K, Hamano S, Tsuchiya K, Tomita S, Minakuchi K, Tamaki T. Quercetin glucuronide inhibits cell migration and proliferation by platelet-derived growth factor in vascular smooth muscle cells. J Pharmacol Sci 2009; 109: 257-64.
– reference: Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 2011; 6: e16530.
– reference: Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB. Delivery of anti-inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 2010;80:1833-43.
– reference: Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, Robson P. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 24731-7.
– reference: Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 2004; 10: 8521-30.
– reference: Pliarchopoulou K, Pectasides D. Pancreatic cancer: current and future treatment strategies. Cancer Treat Rev 2009; 35: 431-6.
– reference: Warshaw AL, Fernandez-del Castillo C. Pancreatic carcinoma. N Engl J Med 1992; 326: 455-65.
– volume: 113
  start-page: 631
  year: 2003
  end-page: 42
  article-title: The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells
  publication-title: Cell
– volume: 113
  start-page: 551
  year: 2003
  end-page: 2
  article-title: Nanog: a new recruit to the embryonic stem cell orchestra
  publication-title: Cell
– volume: 40
  start-page: 233
  year: 2011
  end-page: 6
  article-title: Sonic hedgehog expression correlates with distant metastasis in pancreatic adenocarcinoma
  publication-title: Pancreas
– volume: 10
  start-page: 8521
  year: 2004
  end-page: 30
  article-title: Transcription factor AP‐2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors
  publication-title: Clin Cancer Res
– volume: 101
  start-page: 293
  year: 2010
  end-page: 9
  article-title: Epithelial‐mesenchymal transition in cancer development and its clinical significance
  publication-title: Cancer Sci
– volume: 58
  start-page: 7252
  year: 2010
  end-page: 7
  article-title: Quercetin aglycone is bioavailable in murine pancreas and pancreatic xenografts
  publication-title: J Agric Food Chem
– volume: 26
  start-page: 176
  year: 2002
  end-page: 275
  article-title: Pancreatic cancer
  publication-title: Curr Probl Cancer
– volume: 18
  start-page: 1093
  year: 2009
  end-page: 108
  article-title: Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG. OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell micro. RNAs
  publication-title: Stem Cells Dev
– volume: 57
  start-page: 1420
  year: 2008
  end-page: 30
  article-title: Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer
  publication-title: Gut
– volume: 146
  start-page: 223
  year: 1997
  end-page: 30
  article-title: Dietary flavonoids and the risk of lung cancer and other malignant neoplasms
  publication-title: Am J Epidemiol
– volume: 2
  start-page: 602
  year: 2010
  end-page: 13
  article-title: Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis
  publication-title: Front Biosci (Elite Ed)
– volume: 8
  start-page: 27
  year: 2011
  end-page: 33
  article-title: Pancreatic cancer: understanding and overcoming chemoresistance
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 96
  start-page: 583
  year: 2004
  end-page: 5
  article-title: Cancer stem cells: are we missing the target?
  publication-title: J Natl Cancer Inst
– volume: 26
  start-page: 2806
  year: 2008
  end-page: 12
  article-title: Pancreatic cancer stem cells
  publication-title: J Clin Oncol
– volume: 3
  start-page: 515
  year: 2011
  end-page: 28
  article-title: Sulforaphane synergizes with quercetin to inhibit self‐renewal capacity of pancreatic cancer stem cells
  publication-title: Front Biosci (Elite Ed)
– volume: 280
  start-page: 24731
  year: 2005
  end-page: 7
  article-title: Transcriptional regulation of nanog by OCT4 and SOX2
  publication-title: J Biol Chem
– volume: 3
  start-page: 535
  year: 2001
  end-page: 46
  article-title: TRAIL/Apo‐2L: mechanisms and clinical applications in cancer
  publication-title: Neoplasia
– volume: 137
  start-page: 1102
  year: 2009
  end-page: 13
  article-title: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer
  publication-title: Gastroenterology
– volume: 3
  start-page: 157
  year: 2008
  end-page: 88
  article-title: Pancreatic cancer
  publication-title: Annu Rev Pathol
– volume: 6
  start-page: e16530
  year: 2011
  article-title: Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial‐mesenchymal transition
  publication-title: PLoS One
– volume: 324
  start-page: 1457
  year: 2009
  end-page: 61
  article-title: Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
  publication-title: Science
– volume: 16
  start-page: 176
  year: 2006
  end-page: 80
  article-title: Hedgehog signalling: how to get from Smo to Ci and Gli
  publication-title: Trends Cell Biol
– volume: 52
  start-page: 273
  year: 2005
  end-page: 9
  article-title: Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants
  publication-title: Neoplasma
– volume: 395
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications
  publication-title: Langenbecks Arch Surg
– volume: 9
  start-page: 1005
  year: 2007
  end-page: 9
  article-title: Patching the gaps in Hedgehog signalling
  publication-title: Nat Cell Biol
– volume: 27
  start-page: 993
  year: 2009
  end-page: 1005
  article-title: Functional evidence that the self‐renewal gene NANOG regulates human tumor development
  publication-title: Stem Cells
– volume: 139
  start-page: 871
  year: 2009
  end-page: 90
  article-title: Epithelial‐mesenchymal transitions in development and disease
  publication-title: Cell
– volume: 321
  start-page: 1801
  year: 2008
  end-page: 6
  article-title: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
  publication-title: Science
– volume: 22
  start-page: 2454
  year: 2008
  end-page: 72
  article-title: Hedgehog: functions and mechanisms
  publication-title: Genes Dev
– volume: 80
  start-page: 1833
  year: 2010
  end-page: 43
  article-title: Delivery of anti‐inflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer
  publication-title: Biochem Pharmacol
– volume: 6
  start-page: 2591
  year: 2007
  end-page: 9
  article-title: Quercetin enhances TRAIL‐mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts
  publication-title: Mol Cancer Ther
– volume: 591
  start-page: 161
  year: 2005
  end-page: 72
  article-title: Lysosomal trafficking of beta‐catenin induced by the tea polyphenol epigallocatechin‐3‐gallate
  publication-title: Mutat Res
– volume: 183
  start-page: 2045
  year: 2010
  end-page: 53
  article-title: Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells
  publication-title: J Urol
– volume: 21
  start-page: 401
  year: 2010
  end-page: 10
  article-title: Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen‐receptor‐negative breast cancer treatment
  publication-title: Anticancer Drugs
– volume: 432
  start-page: 324
  year: 2004
  end-page: 31
  article-title: Tissue repair and stem cell renewal in carcinogenesis
  publication-title: Nature
– volume: 60
  start-page: 277
  year: 2010
  end-page: 300
  article-title: Cancer statistics, 2010
  publication-title: CA Cancer J Clin
– volume: 16
  start-page: 435
  year: 2002
  end-page: 55
  article-title: Surgical and medical therapy for pancreatic carcinoma
  publication-title: Best Pract Res Clin Gastroenterol
– volume: 5
  start-page: 14
  year: 2010
  article-title: The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial‐mesenchymal transition
  publication-title: J Mol Signal
– volume: 414
  start-page: 105
  year: 2001
  end-page: 11
  article-title: Stem cells, cancer, and cancer stem cells
  publication-title: Nature
– volume: 74
  start-page: 934
  year: 2010
  end-page: 8
  article-title: Quercetin attenuates oxidative damage induced by treatment of embryonic chicken spermatogonial cells with 4‐nitro‐3‐phenylphenol in diesel exhaust particles
  publication-title: Biosci Biotechnol Biochem
– volume: 113
  start-page: 643
  year: 2003
  end-page: 55
  article-title: Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells
  publication-title: Cell
– volume: 87
  start-page: 1105
  year: 2009
  end-page: 10
  article-title: Cancer stem cells: clinical relevance
  publication-title: J Mol Med
– volume: 326
  start-page: 455
  year: 1992
  end-page: 65
  article-title: Pancreatic carcinoma
  publication-title: N Engl J Med
– volume: 109
  start-page: 257
  year: 2009
  end-page: 64
  article-title: Quercetin glucuronide inhibits cell migration and proliferation by platelet‐derived growth factor in vascular smooth muscle cells
  publication-title: J Pharmacol Sci
– volume: 35
  start-page: 431
  year: 2009
  end-page: 6
  article-title: Pancreatic cancer: current and future treatment strategies
  publication-title: Cancer Treat Rev
– ident: e_1_2_7_38_2
  doi: 10.1146/annurev.pathmechdis.3.121806.154305
– ident: e_1_2_7_21_2
  doi: 10.1158/1535-7163.MCT-07-0001
– ident: e_1_2_7_13_2
  doi: 10.1038/nature03100
– ident: e_1_2_7_46_2
  doi: 10.1097/CAD.0b013e328336e940
– ident: e_1_2_7_30_2
  doi: 10.1089/scd.2009.0113
– ident: e_1_2_7_17_2
  doi: 10.1136/gut.2007.148189
– ident: e_1_2_7_14_2
  doi: 10.1038/ncb435
– ident: e_1_2_7_37_2
  doi: 10.1038/nrgastro.2010.188
– ident: e_1_2_7_4_2
  doi: 10.1053/bega.2002.0317
– ident: e_1_2_7_44_2
  doi: 10.1158/1078-0432.CCR-04-1285
– ident: e_1_2_7_31_2
  doi: 10.1002/stem.29
– ident: e_1_2_7_43_2
  doi: 10.1016/S0092-8674(03)00392-1
– ident: e_1_2_7_3_2
  doi: 10.1016/j.ctrv.2009.02.005
– ident: e_1_2_7_33_2
  doi: 10.1016/j.juro.2009.12.092
– ident: e_1_2_7_15_2
  doi: 10.1016/j.tcb.2006.02.004
– ident: e_1_2_7_20_2
  doi: 10.1016/j.bcp.2010.07.021
– ident: e_1_2_7_6_2
  doi: 10.1056/NEJM199202133260706
– volume: 52
  start-page: 273
  year: 2005
  ident: e_1_2_7_23_2
  article-title: Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants
  publication-title: Neoplasma
– ident: e_1_2_7_34_2
  doi: 10.1016/j.cell.2009.11.007
– ident: e_1_2_7_18_2
  doi: 10.1200/JCO.2008.16.6702
– ident: e_1_2_7_29_2
  doi: 10.1016/S0092-8674(03)00394-5
– ident: e_1_2_7_45_2
  doi: 10.1016/j.mrfmmm.2005.03.029
– ident: e_1_2_7_41_2
  doi: 10.1053/j.gastro.2009.05.053
– ident: e_1_2_7_2_2
  doi: 10.3322/caac.20073
– ident: e_1_2_7_25_2
  doi: 10.1271/bbb.90740
– ident: e_1_2_7_42_2
  doi: 10.1074/jbc.M502573200
– ident: e_1_2_7_8_2
  doi: 10.1038/35102167
– ident: e_1_2_7_19_2
  doi: 10.1254/jphs.08236FP
– ident: e_1_2_7_32_2
  doi: 10.1016/S0092-8674(03)00393-3
– ident: e_1_2_7_12_2
  doi: 10.1101/gad.1693608
– ident: e_1_2_7_39_2
  doi: 10.1097/MPA.0b013e3181f7e09f
– ident: e_1_2_7_10_2
  doi: 10.1371/journal.pone.0016530
– ident: e_1_2_7_27_2
  doi: 10.1186/1750-2187-5-14
– ident: e_1_2_7_5_2
  doi: 10.1067/mcn.2002.129579
– ident: e_1_2_7_26_2
  doi: 10.2741/e266
– ident: e_1_2_7_28_2
  doi: 10.1038/sj.neo.7900203
– ident: e_1_2_7_22_2
  doi: 10.1021/jf101192k
– ident: e_1_2_7_36_2
  doi: 10.2741/e117
– ident: e_1_2_7_24_2
  doi: 10.1093/oxfordjournals.aje.a009257
– ident: e_1_2_7_35_2
  doi: 10.1111/j.1349-7006.2009.01419.x
– ident: e_1_2_7_40_2
  doi: 10.1126/science.1164368
– ident: e_1_2_7_7_2
  doi: 10.1093/jnci/djh095
– ident: e_1_2_7_9_2
  doi: 10.1007/s00423-009-0502-z
– ident: e_1_2_7_16_2
  doi: 10.1126/science.1171362
– ident: e_1_2_7_11_2
  doi: 10.1007/s00109-009-0534-4
– reference: 19961486 - Cancer Sci. 2010 Feb;101(2):293-9
– reference: 12787505 - Cell. 2003 May 30;113(5):643-55
– reference: 12787504 - Cell. 2003 May 30;113(5):631-42
– reference: 15100335 - J Natl Cancer Inst. 2004 Apr 21;96(8):583-5
– reference: 16516476 - Trends Cell Biol. 2006 Apr;16(4):176-80
– reference: 19421768 - Langenbecks Arch Surg. 2010 Jan;395(1):1-10
– reference: 19945376 - Cell. 2009 Nov 25;139(5):871-90
– reference: 20036905 - Front Biosci (Elite Ed). 2010;2:602-13
– reference: 16054165 - Mutat Res. 2005 Dec 11;591(1-2):161-72
– reference: 15860457 - J Biol Chem. 2005 Jul 1;280(26):24731-7
– reference: 12787492 - Cell. 2003 May 30;113(5):551-2
– reference: 18794343 - Genes Dev. 2008 Sep 15;22(18):2454-72
– reference: 19816664 - J Mol Med (Berl). 2009 Nov;87(11):1105-10
– reference: 15549094 - Nature. 2004 Nov 18;432(7015):324-31
– reference: 12079268 - Best Pract Res Clin Gastroenterol. 2002 Jun;16(3):435-55
– reference: 20718984 - J Mol Signal. 2010 Aug 18;5:14
– reference: 19460966 - Science. 2009 Jun 12;324(5933):1457-61
– reference: 17876056 - Mol Cancer Ther. 2007 Sep;6(9):2591-9
– reference: 20610543 - CA Cancer J Clin. 2010 Sep-Oct;60(5):277-300
– reference: 20654584 - Biochem Pharmacol. 2010 Dec 15;80(12):1833-43
– reference: 11689955 - Nature. 2001 Nov 1;414(6859):105-11
– reference: 21196331 - Front Biosci (Elite Ed). 2011;3:515-28
– reference: 15623634 - Clin Cancer Res. 2004 Dec 15;10(24):8521-30
– reference: 19328630 - Cancer Treat Rev. 2009 Aug;35(5):431-6
– reference: 17762891 - Nat Cell Biol. 2007 Sep;9(9):1005-9
– reference: 18515410 - Gut. 2008 Oct;57(10):1420-30
– reference: 19415763 - Stem Cells. 2009 May;27(5):993-1005
– reference: 19202317 - J Pharmacol Sci. 2009 Feb;109(2):257-64
– reference: 9247006 - Am J Epidemiol. 1997 Aug 1;146(3):223-30
– reference: 19501590 - Gastroenterology. 2009 Sep;137(3):1102-13
– reference: 21102532 - Nat Rev Gastroenterol Hepatol. 2011 Jan;8(1):27-33
– reference: 18539958 - J Clin Oncol. 2008 Jun 10;26(17):2806-12
– reference: 20938369 - Pancreas. 2011 Mar;40(2):233-6
– reference: 21304978 - PLoS One. 2011;6(1):e16530
– reference: 1732772 - N Engl J Med. 1992 Feb 13;326(7):455-65
– reference: 20110806 - Anticancer Drugs. 2010 Apr;21(4):401-10
– reference: 16059641 - Neoplasma. 2005;52(4):273-9
– reference: 11774036 - Neoplasia. 2001 Nov-Dec;3(6):535-46
– reference: 20499918 - J Agric Food Chem. 2010 Jun 23;58(12):7252-7
– reference: 12399802 - Curr Probl Cancer. 2002 Jul-Aug;26(4):176-275
– reference: 18772397 - Science. 2008 Sep 26;321(5897):1801-6
– reference: 20460716 - Biosci Biotechnol Biochem. 2010;74(5):934-8
– reference: 19480567 - Stem Cells Dev. 2009 Sep;18(7):1093-108
– reference: 18039136 - Annu Rev Pathol. 2008;3:157-88
– reference: 20303530 - J Urol. 2010 May;183(5):2045-53
SSID ssj0011504
Score 2.4817228
Snippet Activation of the sonic hedgehog (SHh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is...
Activation of the sonic hedgehog (Shh) pathway is required for the growth of numerous tissues and organs and recent evidence indicates that this pathway is...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30
SubjectTerms Apoptosis
Apoptosis - drug effects
Biological and medical sciences
Cancer
cancer stem cells
Caspase
Caspase 3 - biosynthesis
Catechin - analogs & derivatives
Catechin - pharmacology
Cell activation
Cell Line, Tumor
Cell proliferation
Cell Proliferation - drug effects
Drug Synergism
EGCG
Epigallocatechin gallate
epithelial mesenchymal transition
Epithelial-Mesenchymal Transition - drug effects
Flavonoids
Gastroenterology. Liver. Pancreas. Abdomen
Green tea
Hedgehog protein
Hedgehog Proteins - metabolism
Homeodomain Proteins - biosynthesis
Humans
LEF/TCF protein
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Medical research
Medical sciences
Metastases
Molecular modelling
Myc protein
Nanog Homeobox Protein
Neoplastic Stem Cells - drug effects
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Octamer Transcription Factor-3 - biosynthesis
Pancreas
Pancreatic cancer
Pancreatic Neoplasms - metabolism
Pancreatic Neoplasms - pathology
Plant Extracts - pharmacology
Pluripotency
pluripotency maintaining factors
Pluripotent Stem Cells
Proto-Oncogene Proteins c-bcl-2 - biosynthesis
Proto-Oncogene Proteins c-myc - biosynthesis
Quercetin
Quercetin - pharmacology
RNAi
Rodents
Signal transduction
Signal Transduction - drug effects
Snail protein
sonic hedgehog pathway
Stem cells
TCF Transcription Factors - antagonists & inhibitors
Tea
Transcription factors
Transcription, Genetic - drug effects
Tumorigenesis
Tumors
X-Linked Inhibitor of Apoptosis Protein - biosynthesis
XIAP protein
Title Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics
URI https://api.istex.fr/ark:/67375/WNG-GDPCNK6D-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.26323
https://www.ncbi.nlm.nih.gov/pubmed/21796625
https://www.proquest.com/docview/1544961184
https://www.proquest.com/docview/3097811215
https://www.proquest.com/docview/1009130425
https://pubmed.ncbi.nlm.nih.gov/PMC3480310
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaqIiFeuI9AqQxCiJdsc9qJeEJbeqGuEGpFH5AsX-kuLUm12RWUZ344M85RAouEeIvksTaZHdvf2OPvI-RFkEquYSHys0IHfpJFxldMpT7eAY0whVVOkuVwwvaOk4OT9GSNvO7uwjT8EP2GG44MN1_jAJeq3roiDZ191iMkG0emT6zVQkD0oaeOQqDTMjAHPiRirGMVCqKtvudgLbqGbv2GtZGyBvcUja7FKuD5Z_3kr7jWLUw7t8in7pOaepSz0XKhRvr7b2yP__nNt8nNFrDSN02E3SFrtrxLrh-2R_L3yI_9cjpTrvCLVgWtkWqXTnGXblqdUhQ8_iovqSwNvThfwgxVIUi_pF_krFw06hS01fyhc3uKYmKWOuFA6Fs2kFZTjbE5p0g6TfGogeohz_R9crzz9mi857fSDr6G_Cn280RnvMhDEwZaYyF0AXmTtFoZwJtZESseFSa0EVgU3KbKBJpbPMMsjOTMhvEDsl5WpX1EqMkM04lkOTdJYmOeh5bLTMkQVURSmXnkVfcnC93ynqP8xrloGJsjAV4Vzqseed6bXjRkH6uMXrpI6S3k_Ayr43gqPk52xe72-_HkHdsWRx7ZHIRS3wEyTkDJYe6RjS62RDtz1ALZkXIGaV-ysjnGezchUoJ45FnfDFMCOl-WtlrW-L55iNtUYPOwidSr34YJmDFs4YMY7g2QbnzYUs6mjnY8TjLkkQV_uhD9u4fE_sHYPTz-d9Mn5AZA0bYQeoOsL-ZL-xTg3kJtunH9E1fOUuQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZKKwEX9mWgFIMQ4jLprPaMxAUltEnbRAilopfK8jZNusxUWQTlzA_Hz7OUgSAhbiP5WZl5eba_Zz9_H0JvvJhTaRYiN8mk50ZJoFxBROzCHdAAUlhhJVmGI9I_jPaO4qM19L6-C1PyQzQbbjAy7HwNAxw2pLevWUOnp7IDbOPhDbQBit7AnN_73JBHAdSpOJg916RipOYV8oLtpmtrNdoAx36D6kg-Nw7KSmWLVdDzzwrKX5GtXZp27qLj-qPKipSzznIhOvL7b3yP__vV99CdCrPiD2WQ3UdrOn-Abg6rU_mH6Mcgn0yFrf3CRYbnwLaLJ7BRNylOMGgef-VXmOcKX54vzSRVAE6_whd8mi9KgQpcyf7gmT4BPTGNrXag6ZuXqFZiCeE5w8A7jeG0Acs21fQjdLjzcdztu5W6gytNChW6aSQTmqW-8j0poRY6M6kT11IoAzmTLBQ0yJSvA2ORUR0L5Umq4RgzU5wS7YeP0Xpe5PopwipRREacpFRFkQ5p6mvKE8F9EBKJeeKgd_W_zGRFfQ4KHOesJG0OmPEqs1510OvG9LLk-1hl9NaGSmPBZ2dQIEdj9mW0y3Z7n7qjfdJjYwdttWKp6WCSTgOU_dRBm3VwsWrymDMgSEqJyfyilc0hXL3xgRXEQa-aZjMrgPN5rovlHN439WGnytg8KUP1-rfNHEwItNBWEDcGwDjebsmnE8s8HkYJUMkaf9oY_buH2GCvax-e_bvpS3SrPx4esIPBaP85um2QaVUXvYnWF7OlfmHQ30Js2UH-E0ojVwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJk28cL8ExjAIIV7S5Won4gm1dOvGqgltYg-TLF_XspFUvQjGMz8cHyfNCBQJ8RbJx2pyemx_xz7-PoReBSmn0i5EfmZk4CdZpHxBROrDHdAIUljhJFkOh2TvJNk_TU_X0NvlXZiKH6LZcIOR4eZrGOATZXauSUPHn2UHyMbjG2gjIUEOug29jw13FCCdmoI58G0mRpa0QkG003RtLUYb4NdvUBzJZ9Y_phK2WIU8_yyg_BXYupWpfxudLb-pKki56CzmoiO__0b3-J8ffQfdqhErfleF2F20pot7aPOwPpO_j34MitFYuMovXBo8A65dPIJtulF5jkHx-Cu_wrxQeHK5sFNUCSj9Cn_h42JeyVPgWvQHT_U5qIlp7JQDbd-iwrQSSwjOKQbWaQxnDVi2iaYfoJP---Punl9rO_jSJlCxnycyoyYPVRhICZXQxiZOXEuhLODMTCxoZFSoI2thqE6FCiTVcIhpFKdEh_FDtF6UhX6MsMoUkQknOVVJomOah5ryTPAQZERSnnnozfJPZrImPgf9jUtWUTZHzHqVOa966GVjOqnYPlYZvXaR0ljw6QWUx9GUfRrust3eUXd4QHrs2EPbrVBqOtiU08LkMPfQ1jK2WD11zBjQI-XE5n3JyuYYLt6EwAnioRdNs50TwPm80OViBu-bh7BPZW0eVZF6_dt2BiYEWmgrhhsD4BtvtxTjkeMdj5MMiGStP12I_t1DbLDfdQ9P_t30Odo86vXZh8Hw4Cm6aWFpXRS9hdbn04V-ZqHfXGy7If4TDZFVrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+sonic+hedgehog+pathway+and+pluripotency+maintaining+factors+regulate+human+pancreatic+cancer+stem+cell+characteristics&rft.jtitle=International+journal+of+cancer&rft.au=Tang%2C+Su%E2%80%90Ni&rft.au=Fu%2C+Junsheng&rft.au=Nall%2C+Dara&rft.au=Rodova%2C+Mariana&rft.date=2012-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0020-7136&rft.eissn=1097-0215&rft.volume=131&rft.issue=1&rft.spage=30&rft.epage=40&rft_id=info:doi/10.1002%2Fijc.26323&rft.externalDBID=10.1002%252Fijc.26323&rft.externalDocID=IJC26323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon