基于一种小波核优化学习的KSPP子空间故障特征提取
针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 11; pp. 3223 - 3228 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
海军航空工程学院科研部,山东烟台,264001
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.11.005 |
Cover
Abstract | 针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。 |
---|---|
AbstractList | TP391; 针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法.通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同一类别数据间的局部结构特征.以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取.实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能. 针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。 |
Abstract_FL | In the fault diagnosis of electronic system,it is difficult to extract effectively fault features.As a result,this paper presented a new feature extraction method based on self-optimization wavelet kernel sparsity preserving projection.At first,the kernel polarization criterion was extended to an improved form so that it could simultaneously encode the multiclass information and preserve the local structure of within-class data.For Mexico-hat wavelet kernel function,this paper established a new objective function based on improved kernel evaluation measurement criterion.Then it obtained the optimal kernel parameter by minimizing objective function based on particle swarm optimization algorithm.Finally,it extracted effective features from kernel feature subspace by inserting optimized wavelet kernel function into kernel sparsity preserving projection.Compared with several well-known feature extraction methods,experimental results show that the proposed method can obtain higher classification accuracy and better generalization performance. |
Author | 张伟 许爱强 高明哲 |
AuthorAffiliation | 海军航空工程学院科研部,山东烟台264001 |
AuthorAffiliation_xml | – name: 海军航空工程学院科研部,山东烟台,264001 |
Author_FL | Zhang Wei Xu Aiqiang Gao Mingzhe |
Author_FL_xml | – sequence: 1 fullname: Zhang Wei – sequence: 2 fullname: Xu Aiqiang – sequence: 3 fullname: Gao Mingzhe |
Author_xml | – sequence: 1 fullname: 张伟 许爱强 高明哲 |
BookMark | eNo9j81Kw0AcxPdQwbb6EuLBS-J_d7Mb9ijFLyxYqPeyaZPaoFttEMlNQQ-Cml6sUgSLB8VDQdBDW8SnySb0LYxUPM0w_JhhCiin2spFaBmDSQUXq77ZCgJlYgBsUC6YSQDbJsYmAMuh_H8-jwpB4ANYBAvIo5J-msST23h0lr7e6Pco-XhOBqP460Ff9_TwJR4P0v7FTrVS0cNu-jaZ3n8md5fT_mN6Ndbf50nU1VFvAc158iBwF_-0iKob63ulLaO8u7ldWisbdQ7MkDZzKHYAY2CCOJ5LHCyo9BgHbgmQsm43CAGPNLCUwmGZdwk4HKRtucymRbQyaz2VypOqWfPbJx2V7dX8wA_D0P89nJUDy9ClGVrfb6vmcSuDjzqtQ9kJa9ymFuUW4fQHjfFw6g |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.11.005 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Method for feature extraction in KSPP feature subspace based on wavelet kernel learning |
DocumentTitle_FL | Method for feature extraction in KSPP feature subspace based on wavelet kernel learning |
EndPage | 3228 |
ExternalDocumentID | jsjyyyj201711005 673436426 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61571454) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c605-a75b31b0110592bfe2b193af5606490aac7d220f2d1aa9b5220e20b60a74e573 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 09:55:52 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | 小波核 核稀疏保持投影 故障识别 kernel sparsity preserving projection (KSPP) 核极化 wavelet kernel 核属性约简 kernel attribute reduction kernel polarization fault identification |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c605-a75b31b0110592bfe2b193af5606490aac7d220f2d1aa9b5220e20b60a74e573 |
Notes | 51-1196/TP In the fault diagnosis of electronic system,it is difficult to extract effectively fault features. As a result,this paper presented a new feature extraction method based on self-optimization wavelet kernel sparsity preserving projection. At first, the kernel polarization criterion was extended to an improved form so that it could simultaneously encode the muhiclass information and preserve the local structure of within-class data. For Mexico-hat wavelet kernel function, this paper established a new objective function based on improved kernel evaluation measurement criterion. Then it obtained the optimal kernel parameter by minimizing objective function based on particle swarm optimization algorithm. Finally, it extracted effective features from kernel feature subspace by inserting optimized wavelet kernel function into kernel sparsity preserving projection. Compared with several well-known feature extraction methods, experimental results show that the proposed method can obtain higher classification |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jsjyyyj201711005 chongqing_primary_673436426 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 海军航空工程学院科研部,山东烟台,264001 |
Publisher_xml | – name: 海军航空工程学院科研部,山东烟台,264001 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.0608048 |
Snippet | ... TP391;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 3223 |
SubjectTerms | 小波核 故障识别 核属性约简 核极化 核稀疏保持投影 |
Title | 基于一种小波核优化学习的KSPP子空间故障特征提取 |
URI | http://lib.cqvip.com/qk/93231X/201711/673436426.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201711005 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKgtiBe_xVqVCp1T2ZpkPpI5TrZZiqIUWqG3JdlkW3rYqm0P7UlBD4LaXqxSBIsHxUNB0ENbxB_iebNL_4XvTaZpDkXUyzA78_Lm7XvD-xhm3iNkjGOYnClWE2nKalxJLPPSYrUYrR_jaeoyfO98776cesDvzIm5gYFflVtLqyvJRGv9xHcl_yNVGAO54ivZf5BsiRQGoA_yhRYkDO1fyZhGgqoGDTWNOLZBZDoBXl-IfKp9GkwiTOjQoEEjSUNGtYcd7SAYAtepChAmgI7Ejp6kWpophWCARwFmfndmetpOqwK7MgsrqnwackSqAIswI5qqOsIECrEgBRG4rAgDdODnwnRk1TWmUUB1RLVrkEeIFnHWzSoCW8UNNZzqwMA4dgQpKQ8YDWzdUF78u8a4xRyar4KAhq4FCvU4kqtDwwOJLbIQmMpo6FUPRIqXn1Z74_0wJouqnUfq3Z6V2m3sVpQ16DJWMfzwMzjJqDAllTEquMZEuQZeC_QnMAOsI46NaXnFUfqMMwju5Cky5Pm-KwbJkA4nw8axswq-XTV5oYd5gY6DQ8zsLyvaGMsNgnkptbFwmS9M7YLC7-AwWeTesASeJmOW-tt_oh2TiiwsdeYfgatkXq512nFnvuJkzZ4nZ210NKqLrX6BDKwvXCTnjiqPjFpDdInU8w8H3YPX3b0n_c-v8q8bvW8fezt73R_v8pdb-e6n7v5Of_sZ7th8d7P_5eDw7ffem-eH2-_7L_bzn097G5v5xtZlMtOIZutTNVsOpNaCmLsW-yJhboJsE8pL2pmXQPARt8Fll1w5cdzyU89z2l7qxrFKIK5wMs9JpBP7PBM-u0IGO0ud7CoZ5RCye0ngOplKeNxKAuYAZjD0eBrARDpMRkqONB8WSV-apTyHyS3Lo6ZVBcvNxeXFtbW1ReQqpmAU1_6IYYScQcjiIO86GVx5vJrdANd2Jblp98hvPsl_7w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%80%E7%A7%8D%E5%B0%8F%E6%B3%A2%E6%A0%B8%E4%BC%98%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84KSPP%E5%AD%90%E7%A9%BA%E9%97%B4%E6%95%85%E9%9A%9C%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%BC%A0%E4%BC%9F+%E8%AE%B8%E7%88%B1%E5%BC%BA+%E9%AB%98%E6%98%8E%E5%93%B2&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=11&rft.spage=3223&rft.epage=3228&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.11.005&rft.externalDocID=673436426 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |