基于一种小波核优化学习的KSPP子空间故障特征提取

针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 11; pp. 3223 - 3228
Main Author 张伟 许爱强 高明哲
Format Journal Article
LanguageChinese
Published 海军航空工程学院科研部,山东烟台,264001 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.11.005

Cover

Abstract 针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。
AbstractList TP391; 针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法.通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同一类别数据间的局部结构特征.以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取.实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能.
针对电子系统故障诊断中有效特征提取困难、核属性约简方法中核函数与核参数选择繁琐等问题,提出了一种基于自优化小波核稀疏保持投影的子空间特征提取方法。通过对核极化准则的改进,使得新准则不仅可以处理多类别信息,而且可以保留同二类别数据间的局部结构特征。以墨西哥帽小波核函数为对象,基于改进的核评估准则构建优化目标函数,并采用粒子群优化算法进行核参数选择;将优化的小波核作为核稀疏保持投影的核函数,最终实现了在核子空间中对有效特征的提取。实验结果表明,相比于其他流行的子空间特征提取方法,提出的方法有效提升了分类精度,具有良好的泛化性能。
Abstract_FL In the fault diagnosis of electronic system,it is difficult to extract effectively fault features.As a result,this paper presented a new feature extraction method based on self-optimization wavelet kernel sparsity preserving projection.At first,the kernel polarization criterion was extended to an improved form so that it could simultaneously encode the multiclass information and preserve the local structure of within-class data.For Mexico-hat wavelet kernel function,this paper established a new objective function based on improved kernel evaluation measurement criterion.Then it obtained the optimal kernel parameter by minimizing objective function based on particle swarm optimization algorithm.Finally,it extracted effective features from kernel feature subspace by inserting optimized wavelet kernel function into kernel sparsity preserving projection.Compared with several well-known feature extraction methods,experimental results show that the proposed method can obtain higher classification accuracy and better generalization performance.
Author 张伟 许爱强 高明哲
AuthorAffiliation 海军航空工程学院科研部,山东烟台264001
AuthorAffiliation_xml – name: 海军航空工程学院科研部,山东烟台,264001
Author_FL Zhang Wei
Xu Aiqiang
Gao Mingzhe
Author_FL_xml – sequence: 1
  fullname: Zhang Wei
– sequence: 2
  fullname: Xu Aiqiang
– sequence: 3
  fullname: Gao Mingzhe
Author_xml – sequence: 1
  fullname: 张伟 许爱强 高明哲
BookMark eNo9j81Kw0AcxPdQwbb6EuLBS-J_d7Mb9ijFLyxYqPeyaZPaoFttEMlNQQ-Cml6sUgSLB8VDQdBDW8SnySb0LYxUPM0w_JhhCiin2spFaBmDSQUXq77ZCgJlYgBsUC6YSQDbJsYmAMuh_H8-jwpB4ANYBAvIo5J-msST23h0lr7e6Pco-XhOBqP460Ff9_TwJR4P0v7FTrVS0cNu-jaZ3n8md5fT_mN6Ndbf50nU1VFvAc158iBwF_-0iKob63ulLaO8u7ldWisbdQ7MkDZzKHYAY2CCOJ5LHCyo9BgHbgmQsm43CAGPNLCUwmGZdwk4HKRtucymRbQyaz2VypOqWfPbJx2V7dX8wA_D0P89nJUDy9ClGVrfb6vmcSuDjzqtQ9kJa9ymFuUW4fQHjfFw6g
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.11.005
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Method for feature extraction in KSPP feature subspace based on wavelet kernel learning
DocumentTitle_FL Method for feature extraction in KSPP feature subspace based on wavelet kernel learning
EndPage 3228
ExternalDocumentID jsjyyyj201711005
673436426
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61571454)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c605-a75b31b0110592bfe2b193af5606490aac7d220f2d1aa9b5220e20b60a74e573
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:55:52 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 小波核
核稀疏保持投影
故障识别
kernel sparsity preserving projection (KSPP)
核极化
wavelet kernel
核属性约简
kernel attribute reduction
kernel polarization
fault identification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605-a75b31b0110592bfe2b193af5606490aac7d220f2d1aa9b5220e20b60a74e573
Notes 51-1196/TP
In the fault diagnosis of electronic system,it is difficult to extract effectively fault features. As a result,this paper presented a new feature extraction method based on self-optimization wavelet kernel sparsity preserving projection. At first, the kernel polarization criterion was extended to an improved form so that it could simultaneously encode the muhiclass information and preserve the local structure of within-class data. For Mexico-hat wavelet kernel function, this paper established a new objective function based on improved kernel evaluation measurement criterion. Then it obtained the optimal kernel parameter by minimizing objective function based on particle swarm optimization algorithm. Finally, it extracted effective features from kernel feature subspace by inserting optimized wavelet kernel function into kernel sparsity preserving projection. Compared with several well-known feature extraction methods, experimental results show that the proposed method can obtain higher classification
PageCount 6
ParticipantIDs wanfang_journals_jsjyyyj201711005
chongqing_primary_673436426
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 海军航空工程学院科研部,山东烟台,264001
Publisher_xml – name: 海军航空工程学院科研部,山东烟台,264001
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0608048
Snippet ...
TP391;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3223
SubjectTerms 小波核
故障识别
核属性约简
核极化
核稀疏保持投影
Title 基于一种小波核优化学习的KSPP子空间故障特征提取
URI http://lib.cqvip.com/qk/93231X/201711/673436426.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201711005
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKgtiBe_xVqVCp1T2ZpkPpI5TrZZiqIUWqG3JdlkW3rYqm0P7UlBD4LaXqxSBIsHxUNB0ENbxB_iebNL_4XvTaZpDkXUyzA78_Lm7XvD-xhm3iNkjGOYnClWE2nKalxJLPPSYrUYrR_jaeoyfO98776cesDvzIm5gYFflVtLqyvJRGv9xHcl_yNVGAO54ivZf5BsiRQGoA_yhRYkDO1fyZhGgqoGDTWNOLZBZDoBXl-IfKp9GkwiTOjQoEEjSUNGtYcd7SAYAtepChAmgI7Ejp6kWpophWCARwFmfndmetpOqwK7MgsrqnwackSqAIswI5qqOsIECrEgBRG4rAgDdODnwnRk1TWmUUB1RLVrkEeIFnHWzSoCW8UNNZzqwMA4dgQpKQ8YDWzdUF78u8a4xRyar4KAhq4FCvU4kqtDwwOJLbIQmMpo6FUPRIqXn1Z74_0wJouqnUfq3Z6V2m3sVpQ16DJWMfzwMzjJqDAllTEquMZEuQZeC_QnMAOsI46NaXnFUfqMMwju5Cky5Pm-KwbJkA4nw8axswq-XTV5oYd5gY6DQ8zsLyvaGMsNgnkptbFwmS9M7YLC7-AwWeTesASeJmOW-tt_oh2TiiwsdeYfgatkXq512nFnvuJkzZ4nZ210NKqLrX6BDKwvXCTnjiqPjFpDdInU8w8H3YPX3b0n_c-v8q8bvW8fezt73R_v8pdb-e6n7v5Of_sZ7th8d7P_5eDw7ffem-eH2-_7L_bzn097G5v5xtZlMtOIZutTNVsOpNaCmLsW-yJhboJsE8pL2pmXQPARt8Fll1w5cdzyU89z2l7qxrFKIK5wMs9JpBP7PBM-u0IGO0ud7CoZ5RCye0ngOplKeNxKAuYAZjD0eBrARDpMRkqONB8WSV-apTyHyS3Lo6ZVBcvNxeXFtbW1ReQqpmAU1_6IYYScQcjiIO86GVx5vJrdANd2Jblp98hvPsl_7w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%80%E7%A7%8D%E5%B0%8F%E6%B3%A2%E6%A0%B8%E4%BC%98%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84KSPP%E5%AD%90%E7%A9%BA%E9%97%B4%E6%95%85%E9%9A%9C%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%BC%A0%E4%BC%9F+%E8%AE%B8%E7%88%B1%E5%BC%BA+%E9%AB%98%E6%98%8E%E5%93%B2&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=11&rft.spage=3223&rft.epage=3228&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.11.005&rft.externalDocID=673436426
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg