基于改进粒子滤波的井下跟踪算法研究与实现

井下环境复杂多变,射频信号易受到阴影效应、多径衰落等因素的影响.采用传统的粒子滤波跟踪方法误差较大,研究了一种基于改进粒子滤波的井下跟踪算法.初始化阶段利用第一次指纹匹配算法的定位结果来设计初始化概率分布函数;采用核函数法与指纹匹配技术相结合的算法,在采样数据中搜索与目标节点指纹特征相匹配的位置并加权得到位置坐标作为跟踪中的观测值;最后利用粒子滤波将观测值与目标运动状态相融合以跟踪目标运动轨迹.实验结果表明,粒子滤波算法较优化卡尔曼滤波算法更适用于井下跟踪;改进的算法有效增强了跟踪系统的可靠性,提高了跟踪精度,满足了井下的跟踪要求....

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 5; pp. 1476 - 1479
Main Author 崔丽珍 吴迪 赫佳星 邬嵩
Format Journal Article
LanguageChinese
Published 内蒙古科技大学信息工程学院,内蒙古包头,014010 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.05.045

Cover

Abstract 井下环境复杂多变,射频信号易受到阴影效应、多径衰落等因素的影响.采用传统的粒子滤波跟踪方法误差较大,研究了一种基于改进粒子滤波的井下跟踪算法.初始化阶段利用第一次指纹匹配算法的定位结果来设计初始化概率分布函数;采用核函数法与指纹匹配技术相结合的算法,在采样数据中搜索与目标节点指纹特征相匹配的位置并加权得到位置坐标作为跟踪中的观测值;最后利用粒子滤波将观测值与目标运动状态相融合以跟踪目标运动轨迹.实验结果表明,粒子滤波算法较优化卡尔曼滤波算法更适用于井下跟踪;改进的算法有效增强了跟踪系统的可靠性,提高了跟踪精度,满足了井下的跟踪要求.
AbstractList TN929.4; 井下环境复杂多变,射频信号易受到阴影效应、多径衰落等因素的影响.采用传统的粒子滤波跟踪方法误差较大,研究了一种基于改进粒子滤波的井下跟踪算法.初始化阶段利用第一次指纹匹配算法的定位结果来设计初始化概率分布函数;采用核函数法与指纹匹配技术相结合的算法,在采样数据中搜索与目标节点指纹特征相匹配的位置并加权得到位置坐标作为跟踪中的观测值;最后利用粒子滤波将观测值与目标运动状态相融合以跟踪目标运动轨迹.实验结果表明,粒子滤波算法较优化卡尔曼滤波算法更适用于井下跟踪;改进的算法有效增强了跟踪系统的可靠性,提高了跟踪精度,满足了井下的跟踪要求.
井下环境复杂多变,射频信号易受到阴影效应、多径衰落等因素的影响.采用传统的粒子滤波跟踪方法误差较大,研究了一种基于改进粒子滤波的井下跟踪算法.初始化阶段利用第一次指纹匹配算法的定位结果来设计初始化概率分布函数;采用核函数法与指纹匹配技术相结合的算法,在采样数据中搜索与目标节点指纹特征相匹配的位置并加权得到位置坐标作为跟踪中的观测值;最后利用粒子滤波将观测值与目标运动状态相融合以跟踪目标运动轨迹.实验结果表明,粒子滤波算法较优化卡尔曼滤波算法更适用于井下跟踪;改进的算法有效增强了跟踪系统的可靠性,提高了跟踪精度,满足了井下的跟踪要求.
Abstract_FL The downhole environment is complicated,RF signal is influenced by shadow effect,multipath fading,etc.Tracking error of using traditional method is bigger,this paper studied an improved downhole tracking algorithm,which optimized the particle filter algorithm.In initialization phase,it used first positioning results of fingerprint matching algorithm to design initial probability distribution function.By using the method that the kernel function method combined with fingerprint matching technique,it searched the location which matched with fingerprint feature of the target node in the sampled data and put the weighted coordinates as observed values in the track.Finally by utilizing particle filter to combine observed values with target motion state,it tracked the target motion trajectory.The experimental results show that,particle filter algorithm is more suitable than improved Kalman filtering algorithm for the coal mine tracking.The improved algorithm effectively enhances the reliability of the tracking system,increases the tracking accuracy and satisfies the requirement of underground track.
Author 崔丽珍 吴迪 赫佳星 邬嵩
AuthorAffiliation 内蒙古科技大学信息工程学院,内蒙古包头014010
AuthorAffiliation_xml – name: 内蒙古科技大学信息工程学院,内蒙古包头,014010
Author_FL Wu Di
Wu Song
Cui Lizhen
He Jiaxing
Author_FL_xml – sequence: 1
  fullname: Cui Lizhen
– sequence: 2
  fullname: Wu Di
– sequence: 3
  fullname: He Jiaxing
– sequence: 4
  fullname: Wu Song
Author_xml – sequence: 1
  fullname: 崔丽珍 吴迪 赫佳星 邬嵩
BookMark eNo9j8tKw0AYhWdRwbb6EuLCTeKfmc5kBtxI8QYFN92HIZfaoFNNEMnenRBEWgQFK-JGwSIWtMaFL5PbYxipuDpw-DiXBqqpgXIRWjVAJ4KJdV_vh6HSDQBDI0xQHYNh6kB1aNEaqv_7i6gRhj5ACxsC6mgjGydpEufDz_L7tni7yl4u86_HfPpQ3JynySidXZQf43L2XEyu8-mouB8WT-_pLM4md0X8uoQWPHkYust_2kTd7a1ue1fr7O_stTc7ms2AagYHAiAdjjmh4DqMccYodUULcw8cYI7ElBDPtgXhDgNJmGczIoTnmtKVkjTR2jz2TCpPqp7lD04DVRVafuhHUeT_XgVaHa3QlTlqHwxU76RfwcdB_0gGkcXMagjmHJMfvM9u4g
ClassificationCodes TN929.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.05.045
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Research and implementation on underground tracking algorithm based on improved particle filter
DocumentTitle_FL Research and implementation on underground tracking algorithm based on improved particle filter
EndPage 1479
ExternalDocumentID jsjyyyj201705045
671802882
GrantInformation_xml – fundername: 内蒙古自治区科技计划资助项目; 内蒙古自治区自然基金资助项目
  funderid: (201502013-1); (2015MS0623)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c605-180300ad828350ed6686655e9428f0d06da2533fcc938d60a36fc6399fe7aeaa3
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:03:53 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords downhole tracking
wireless sensor network
received signal strength indicator
fingerprint matching
接收信号强度
粒子滤波
核函数
无线传感器网络
particle filter
指纹匹配
kernel function
井下跟踪
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605-180300ad828350ed6686655e9428f0d06da2533fcc938d60a36fc6399fe7aeaa3
Notes 51-1196/TP
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201705045
chongqing_primary_671802882
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 内蒙古科技大学信息工程学院,内蒙古包头,014010
Publisher_xml – name: 内蒙古科技大学信息工程学院,内蒙古包头,014010
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0607216
Snippet ...
TN929.4;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1476
SubjectTerms 井下跟踪
指纹匹配
接收信号强度
无线传感器网络
核函数
粒子滤波
Title 基于改进粒子滤波的井下跟踪算法研究与实现
URI http://lib.cqvip.com/qk/93231X/201705/671802882.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201705045
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFA_9APHit1irUqE5bs18ZRLwktmdoQh6qtDbMjsfrT1sq90etmdvQhFpERSsiBcFi7SgtR78Z7a7_TN8L5ndHWsp1cvwNvnlveS97LyXIXkhZDqRDZHgPj-R-HHFBRdSiZ00rcSCOQI9XKw3jz98xGcfuw_mvfmR0d3SrqW1VmMmWT_xXMn_WBXKwK54SvYfLDtgCgVAg33hCRaG55lsTEOPyogGioYuPkVIQ04l0JKGggYRlQENfRrYVNoIVjUqGWKCgCpXEw5VNmIkNHcLPtLThKAi0Hx8lIKEoEohWIVU-kVzBEMJQ7lISBrwfvNQCwVwiFXwM2DlaBh5Qq2y_uApq3pEnu6J5glPJf6W0p8sGuvqGi02qGlpERW1MgRGDiijF6WGNVAAnQx04xqOCPsgYMhDiKTCpqqqBQFWlr-VmEOhel5jveBUeMgUNC6lLom0rqHTMBILuQuFG0xQNS4WGsMoo7VIqwMwFlWRFggNjYqNPQZgifzBeHb1VLlAVHWVFgcawJvWYb3LSv4Id7w53NxD2ndYxdffJ-UtAdr7WK7PS5EM_JQneUlHcqm9JIqYGYjAfY4mja1J8HksD_nS6lK73V6ydQImgIyScdv3LW-MjKugFkTDIBxi1nJSRhvzHQ0XvXhjAS95GbxGEdzmwMt4luN7-k4GE0-5UGlyihT9PEemi0HcO20ImCxlcbm58BRCQH0ir5nHzYVS8Dh3iVwoVn1TyvyFL5OR9cUr5GL_RpWpwsFeJfcPtw86BxvdzR9Hv972dl8dfnnZ_fmxu_eh9-Z552Crs__i6Pv20f7n3s7r7t5W7_1m79O3zv7G4c673sbXa2QuCueqs5XifpNKwjH_L7wOGYtTgSkPWZZyjrknvUy6tshZynga27AYy5NEOiLlLHZ4nuCCIs_8OItj5zoZay43sxtkKk0yP0_ixLIyz_XTTEiWJjCXciYbScbjCTI50EV9xaSxqXMfsz_CCnuC3C20Uy9ebqv149a-eQbMJDmPtPlAeYuMtZ6tZbchZG817hRz5DfdZbPK
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E7%9A%84%E4%BA%95%E4%B8%8B%E8%B7%9F%E8%B8%AA%E7%AE%97%E6%B3%95%E7%A0%94%E7%A9%B6%E4%B8%8E%E5%AE%9E%E7%8E%B0&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%B4%94%E4%B8%BD%E7%8F%8D&rft.au=%E5%90%B4%E8%BF%AA&rft.au=%E8%B5%AB%E4%BD%B3%E6%98%9F&rft.au=%E9%82%AC%E5%B5%A9&rft.date=2017&rft.pub=%E5%86%85%E8%92%99%E5%8F%A4%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%86%85%E8%92%99%E5%8F%A4%E5%8C%85%E5%A4%B4%2C014010&rft.issn=1001-3695&rft.volume=34&rft.issue=5&rft.spage=1476&rft.epage=1479&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.05.045&rft.externalDocID=jsjyyyj201705045
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg