Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model

The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate e...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 109; no. 508; pp. 1625 - 1635
Main Authors Ning, Jing, Qin, Jing, Shen, Yu
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.12.2014
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1537-274X
0162-1459
1537-274X
DOI10.1080/01621459.2014.946034

Cover

Loading…
Abstract The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.
AbstractList The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.
The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.
The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.
Author Ning, Jing
Qin, Jing
Shen, Yu
Author_xml – sequence: 1
  givenname: Jing
  surname: Ning
  fullname: Ning, Jing
– sequence: 2
  givenname: Jing
  surname: Qin
  fullname: Qin, Jing
– sequence: 3
  givenname: Yu
  surname: Shen
  fullname: Shen, Yu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25663727$$D View this record in MEDLINE/PubMed
BookMark eNqNUktvEzEYXKEi-oB_wGMlLlwS_PYuB1BVJYAUxKGNxM3y-pE6eO3W3gX13-OwDZReii-29M2MZ-w5rg5CDKaqnkMwh6ABbwFkCBLazhGAZN4SBjB5VB1BivkMcfLt4M75sDrOeQvK4k3zpDpElDHMET-qunMVk6kXeXC9HFzY1IvrsRxiyLVNsa8XfWe0Nrpeue_Gu8sYdb0cg5og66BNqk-VMt4kORTYUjo_FsUL15v6S9TGP60eW-mzeXa7n1Tr5eLi7NNs9fXj57PT1UwxQIZZixGWCKJWYtASrGynANOUkwYiZjBkXDMKoaXGEMu7jhZfTOpOWVaGlOKT6v2kezV2vdHKhCFJL65SSZZuRJRO_DsJ7lJs4g9BMOQYNUXgza1AitejyYPoXS7JvAwmjlnABjEGEW3_BwpKCszZDvr6HnQbxxTKS4iSqW1aXPIV1Mu75v-43v9UAbybACrFnJOxQrnh90eVLM4LCMSuFmJfC7GrhZhqUcjkHnmv_wDtxUTb5iGmv54IIhy3O9MfprkLNqZe_ozJazHIGx-TTTIolwV-4IZXk4KVUchNKoT1eQGwUtWGsobhXyUY4Cs
CODEN JSTNAL
CitedBy_id crossref_primary_10_1007_s10120_024_01554_x
crossref_primary_10_1007_s10985_016_9367_y
crossref_primary_10_1111_rssb_12308
crossref_primary_10_14309_ajg_0000000000003313
crossref_primary_10_1002_jcsm_13623
crossref_primary_10_1111_biom_12727
crossref_primary_10_1093_biostatistics_kxx024
crossref_primary_10_1111_insr_12510
crossref_primary_10_1080_10485252_2018_1424335
crossref_primary_10_1111_dom_15928
crossref_primary_10_4093_dmj_2024_0552
crossref_primary_10_1214_17_STS638
crossref_primary_10_1053_j_gastro_2024_08_050
crossref_primary_10_1109_TR_2017_2747762
crossref_primary_10_1111_apt_18287
crossref_primary_10_1111_apt_18249
crossref_primary_10_1007_s10255_021_1021_0
crossref_primary_10_1016_j_cmi_2024_08_026
crossref_primary_10_1080_01621459_2019_1611586
crossref_primary_10_1080_02664763_2020_1784854
crossref_primary_10_1177_23969873241286984
crossref_primary_10_1681_ASN_0000000552
Cites_doi 10.1111/j.1541-0420.2009.01260.x
10.1214/aos/1176348668
10.1093/biomet/79.4.837
10.1007/s10985-006-9012-2
10.1007/BF01586937
10.1093/biomet/69.3.521
10.1198/jasa.2009.tm08614
10.1093/biomet/84.1.73
10.1093/biomet/76.4.751
10.1111/j.1467-9868.2010.00742.x
10.1002/9781118032985
10.1093/biomet/90.2.341
10.1093/biomet/ast019
10.1214/aos/1176348253
10.1214/aos/1176349016
10.1017/CBO9780511802256
10.1056/NEJM200104123441501
10.1093/biomet/66.3.429
10.1198/016214507000001085
10.1198/016214502753479347
10.1214/aos/1176350948
10.1111/j.1541-0420.2011.01667.x
10.1145/355616.361024
10.1111/j.1541-0420.2009.01366_1.x
10.1214/aos/1176347504
10.1214/009053605000000372
10.1111/j.1541-0420.2011.01568.x
10.1073/pnas.0611618104
10.1093/biomet/65.1.167
10.1214/aos/1176347502
10.1214/aos/1176348110
10.1016/0378-3758(94)00039-X
10.1093/biomet/77.4.845
ContentType Journal Article
Copyright 2014 American Statistical Association 2014
Copyright © 2014 American Statistical Association
Copyright Taylor & Francis Ltd. Dec 2014
Copyright_xml – notice: 2014 American Statistical Association 2014
– notice: Copyright © 2014 American Statistical Association
– notice: Copyright Taylor & Francis Ltd. Dec 2014
DBID FBQ
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7S9
L.6
7X8
5PM
DOI 10.1080/01621459.2014.946034
DatabaseName AGRIS
CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)

PubMed

AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1635
ExternalDocumentID PMC4317328
3680336491
25663727
10_1080_01621459_2014_946034
24247396
946034
US201600085686
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: R01 CA079466
GroupedDBID -DZ
-~X
.-4
..I
.7F
.GJ
.QJ
07G
0BK
0R~
1OL
29L
2AX
30N
3R3
4.4
5GY
5RE
692
7WY
7X7
85S
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAVZ
AABCJ
AAENE
AAFWJ
AAHBH
AAIKQ
AAJMT
AAKBW
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEFU
ABEHJ
ABFAN
ABFIM
ABJCF
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUWG
ABXSQ
ABXUL
ABXYU
ABYWD
ACAGQ
ACGEE
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADBBV
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEUMN
AEUPB
AEYOC
AFFNX
AFKRA
AFQQW
AFRVT
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGLEN
AGLNM
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALCKM
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMATQ
AMEWO
AMXXU
AQRUH
AQUVI
AVBZW
AWYRJ
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BLEHA
BPHCQ
BPLKW
BVXVI
C06
CCCUG
CCPQU
CJ0
CRFIH
CS3
D0L
DGEBU
DKSSO
DMQIW
DQDLB
DSRWC
DU5
DWIFK
DWQXO
E.L
EBS
ECEWR
EJD
E~A
E~B
F5P
FBQ
FEDTE
FJW
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GTTXZ
GUQSH
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZ~
H~9
H~P
IPNFZ
IPSME
IVXBP
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
K9-
KQ8
KYCEM
L6V
LJTGL
LU7
M0C
M0R
M0T
M1P
M2O
M2P
M4Z
M7S
MS~
MVM
MW2
NA5
NHB
NUSFT
NY~
O9-
OFU
OK1
P-O
P2P
PADUT
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
S0X
SA0
SJN
SNACF
TAE
TAQ
TBQAZ
TDBHL
TEJ
TFL
TFMCV
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UKHRP
UPT
UQL
UT5
UU3
VH1
VOH
WH7
WHG
WZA
YQT
YXB
YYM
YYP
ZCG
ZGI
ZGOLN
ZUP
ZXP
~S~
ABYAD
ACTWD
GROUPED_ABI_INFORM_COMPLETE
IAO
IEA
IGG
IOF
IPO
JSODD
N95
AAGDL
AAHIA
ADXHL
AMPGV
AMVHM
AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
TASJS
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c604t-9323a2129a30943cfbc06d5748126e3167d6511f5ee4f7bb5bed6adbcf6316553
ISSN 1537-274X
0162-1459
IngestDate Thu Aug 21 14:12:30 EDT 2025
Fri Jul 11 08:52:39 EDT 2025
Wed Jul 02 04:43:07 EDT 2025
Sat Aug 16 22:42:18 EDT 2025
Thu Apr 03 07:06:07 EDT 2025
Tue Jul 01 02:39:28 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri May 30 11:48:48 EDT 2025
Wed Dec 25 09:05:05 EST 2024
Thu Apr 03 09:40:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 508
Keywords Length-biased data
Accelerated failure time model
Proportional odds model
Cox model
Score equation
Likelihood function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c604t-9323a2129a30943cfbc06d5748126e3167d6511f5ee4f7bb5bed6adbcf6316553
Notes http://dx.doi.org/10.1080/01621459.2014.946034
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4317328
PMID 25663727
PQID 1679893126
PQPubID 41715
PageCount 11
ParticipantIDs proquest_miscellaneous_1803093768
proquest_journals_1679893126
pubmed_primary_25663727
fao_agris_US201600085686
jstor_primary_24247396
crossref_citationtrail_10_1080_01621459_2014_946034
proquest_miscellaneous_1826612598
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4317328
crossref_primary_10_1080_01621459_2014_946034
informaworld_taylorfrancis_310_1080_01621459_2014_946034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2014
Publisher Taylor & Francis
Taylor & Francis Group, LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group, LLC
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
Rayner J. C.W. (cit0022) 2011
cit0030
Neyman J. (cit0018) 1937; 20
cit0019
cit0017
cit0015
cit0016
Robins J.M. (cit0024) 1992; 79
cit0013
cit0035
cit0014
cit0036
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0003
cit0025
16917734 - Lifetime Data Anal. 2006 Sep;12(3):267-84
21950348 - Biometrics. 2012 Mar;68(1):101-12
21057599 - J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202
11297701 - N Engl J Med. 2001 Apr 12;344(15):1111-6
19432792 - Biometrics. 2010 Mar;66(1):149-58
17360461 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3967-72
21385160 - Biometrics. 2011 Dec;67(4):1369-78
21031144 - J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630
19995351 - Biometrics. 2010 Dec;66(4):1306-8; discussion 1308
References_xml – ident: cit0006
  doi: 10.1111/j.1541-0420.2009.01260.x
– ident: cit0031
  doi: 10.1214/aos/1176348668
– ident: cit0036
  doi: 10.1093/biomet/79.4.837
– ident: cit0001
  doi: 10.1007/s10985-006-9012-2
– ident: cit0007
  doi: 10.1007/BF01586937
– ident: cit0017
  doi: 10.1093/biomet/69.3.521
– volume: 20
  start-page: 150
  year: 1937
  ident: cit0018
  publication-title: Skand. Aktuar
– ident: cit0026
  doi: 10.1198/jasa.2009.tm08614
– ident: cit0011
  doi: 10.1093/biomet/84.1.73
– ident: cit0030
  doi: 10.1093/biomet/76.4.751
– ident: cit0019
  doi: 10.1111/j.1467-9868.2010.00742.x
– ident: cit0012
  doi: 10.1002/9781118032985
– ident: cit0010
  doi: 10.1093/biomet/90.2.341
– ident: cit0008
  doi: 10.1093/biomet/ast019
– ident: cit0013
  doi: 10.1214/aos/1176348253
– ident: cit0034
  doi: 10.1214/aos/1176349016
– volume: 79
  start-page: 311
  year: 1992
  ident: cit0024
  publication-title: Biometrika
– ident: cit0029
  doi: 10.1017/CBO9780511802256
– volume-title: Smooth Tests of Goodness of Fit: Using R
  year: 2011
  ident: cit0022
– ident: cit0033
  doi: 10.1056/NEJM200104123441501
– ident: cit0005
  doi: 10.1093/biomet/66.3.429
– ident: cit0035
  doi: 10.1198/016214507000001085
– ident: cit0002
  doi: 10.1198/016214502753479347
– ident: cit0009
  doi: 10.1214/aos/1176350948
– ident: cit0027
  doi: 10.1111/j.1541-0420.2011.01667.x
– ident: cit0004
  doi: 10.1145/355616.361024
– ident: cit0016
  doi: 10.1111/j.1541-0420.2009.01366_1.x
– ident: cit0028
  doi: 10.1214/aos/1176347504
– ident: cit0003
  doi: 10.1214/009053605000000372
– ident: cit0020
  doi: 10.1111/j.1541-0420.2011.01568.x
– ident: cit0025
  doi: 10.1073/pnas.0611618104
– ident: cit0021
  doi: 10.1093/biomet/65.1.167
– ident: cit0023
  doi: 10.1214/aos/1176347502
– ident: cit0014
  doi: 10.1214/aos/1176348110
– ident: cit0015
  doi: 10.1016/0378-3758(94)00039-X
– ident: cit0032
  doi: 10.1093/biomet/77.4.845
– reference: 19995351 - Biometrics. 2010 Dec;66(4):1306-8; discussion 1308
– reference: 21057599 - J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202
– reference: 21950348 - Biometrics. 2012 Mar;68(1):101-12
– reference: 16917734 - Lifetime Data Anal. 2006 Sep;12(3):267-84
– reference: 19432792 - Biometrics. 2010 Mar;66(1):149-58
– reference: 21031144 - J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630
– reference: 21385160 - Biometrics. 2011 Dec;67(4):1369-78
– reference: 17360461 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3967-72
– reference: 11297701 - N Engl J Med. 2001 Apr 12;344(15):1111-6
SSID ssj0000788
Score 2.269878
Snippet The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the...
The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1625
SubjectTerms Analytical estimating
Censored data
Cox model
Data sampling
Dementia
equations
Estimation methods
Estimators
Failure analysis
Length-biased data
Mathematical functions
Mathematical models
Parameter estimation
Preliminary estimates
probability
Proportional odds model
Random variables
Regression analysis
Sampling bias
Score equation
Statistical bias
Statistical estimation
Statistics
Theory and Methods
Title Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.946034
https://www.jstor.org/stable/24247396
https://www.ncbi.nlm.nih.gov/pubmed/25663727
https://www.proquest.com/docview/1679893126
https://www.proquest.com/docview/1803093768
https://www.proquest.com/docview/1826612598
https://pubmed.ncbi.nlm.nih.gov/PMC4317328
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYuOyC-DVWNpCRuKFMaeK4yRGhVhMa5dBWKicriR2o6FJg6YW_ft9znB-dyhhcoip-day8z_Z7znvfY-ytFroATHIvg7vsiWhovCTT2ou1wXYLj8hYSqFPU3mxEB-X0bKrsWmzS6rsPP-9N6_kf7SKe9ArZcn-g2bbTnEDv6FfXKFhXO-l4xlxUL4bY5aS3Qmff_xz60LbbNrI-CozWFg0PO_vZr2yDMYTbGS1CKWPUYB8jp2HCCPQlq4oSt3mhdgqaes_2K69fBRbAbiydM97tG2_eLig32aTpGNWVwOsd2vm0kS-bPsHEUPRC-pwZ5My8IbCEXw3i6uf9FAU-XFvsYR8tHcVd2GPaKfuKP5OnCdC-u7Yc4c0e_pZTRaXl2o-Xs4P2MMA3gKtz6E_7TbkkS0_2o6vyaAkivU9z9ixUA6KdHOLxbaJXN3nk9wOre3ZKvPH7JFTFH9fI-YJe2DKp-yo1dP1M5ZZ6PAOOryFDifo8AY6vIMOb6HDLXR4DzrcQYcTdLiFznO2mIznHy48V27Dy6UvKg-WfJjCkknSkMJN8yLLfamjkYANKA0xJmgJ87yIjBHFKMsijEOmOssLicYoCo_ZYbkpzQnjmOUml0b4SSqE0NgkjB8nupA5FYYOggELm1escsdFTyVR1mrYUNY6xShSjKoVM2Be-68fNRfLX-RPoD2VfsV2qRazgMgUycWQsRywuK9SVdnjsaKuZaPCu3s9tupvh0AJVqMwQZ9nDR6UWySulf3KmYR4gwP2pm3GEk7f5dLSbLaQiW08Ahz_u2TIkg6iBDIvaoh1A4BLFsIPGbDRDvhaAaKQ320pV98slTy5D2EQv7zHc0_ZUTfrz9hh9WtrXsEgr7LXdrrdAE-J2Vg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RcqCX8iw1FFgkrg5Odr22jxVKFCDNpY3EbeV9uEQNDiXOhV_PzK6dNhEUCY7RPuSMZ2e-8c58A_DOCluhmphYY7gci7Tv4kJbG-fWobvFiMh5SqGzqRzPxKcvaZdNuGrTKimGrgJRhLfVdLjpY3SXEvceYQoRbFOdSV_0CiETLvbgflrIjM4mT6Y3xjjzrSdpRUxLuuq5P-yy5Z32qnK5w2DaZS3-Do_uplXe8lOjh6C7fxjSU65660b3zM8d8sf_EsEjOGxRLDsNavcY7rn6CRwQcA28z09BnxM_JhviT8LE9SUbXgdW8RWjkhY2_KYdGj3LJvMrt5gTuzIboZMNU3w7JnZqDHpFIrPAsXJOGfSMalYYdXBbPIPZaHjxYRy3_RxiIxPRxAgVeYmusig55TOaSptE2jQTCDKko5J8KxH_Valzosq0TvE5ZGm1qSQOpik_gv16WbtjYKhGzkiHwWkphLBohVySF7aShjoPDwYR8O49KtOSnVPPjYXqd5yorQAVCVAFAUYQb1Z9D2Qff5l_jCqiyku0x2p2PiC2PsKwMpcR5Lf1RjX--0sVmqUofveuR17HNo9AFTwZL3DPk07pVGtpVspfoxUcJRjB280w2gi6-Clrt1zjnNxfeGNkedccgmoYDOOc50GPbx4AMT9HoBtBtqXhmwnEUb49Us-_eq5ywqd8kL_4d3G8gQfji7OJmnycfn4JBzQS0olOYL_5sXavEBQ2-rU_9r8A6tVP-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIqFeeJcaCiwSV4cku17bxwoSFSgRUonU28r7KlGDU6hz4dczs2unSQRFgmO0D23G45lvvDPfALy2wnpUE5NqDJdTkQ1cWmpr08I6dLcYEblAKfRpIo-n4sNZdrZWxU9plRRD-0gUEWw1vdyX1ncZcW8QpRC_NpWZDESvFLLPxQ7clnTHR0Uc_cm1Lc5D50lakdKSrnjuD7tsOKcdXy22CEy7pMXfwdHtrMo1NzW-B1X3B2N2ykVv2eie-bnF_fg_ErgPd1sMy46i0j2AW65-CHsEWyPr8yPQp8SOyUb4kxBxfc5G3yOn-BWjghY2-qYdmjzLTmYXbj4jbmU2Rhcbp4RmTOzIGPSJRGWBY9WM8ucZVaww6t82fwzT8ejL2-O07eaQGnwyTYpAkVfoKMuKUzaj8dr0pc1ygRBDOirItxLRn8-cEz7XOsNzyMpq4yUOZhnfh916UbsDYKhEzkiHoWklhLBog1y_KK2XhvoOD4cJ8O4xKtNSnVPHjbkadIyorQAVCVBFASaQrlZdRqqPv8w_QA1R1TlaYzU9HRJXHyFYWcgEinW1UU34-uJjqxTFb951P6jY6ghUv5PzEvc87HROtXbmSoVLtJKjBBN4tRpGC0HXPlXtFkucU4Trbowrb5pDQA1DYZzzJKrx9QEQ8XOEuQnkGwq-mkAM5Zsj9exrYCondMqHxdN_F8dLuPP53VidvJ98fAZ7NBBziQ5ht_mxdM8RETb6RXjpfwF3Xk6f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Score+Estimating+Equations+from+Embedded+Likelihood+Functions+under+Accelerated+Failure+Time+Model&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Ning%2C+Jing&rft.au=Qin%2C+Jing&rft.au=Shen%2C+Yu&rft.date=2014-12-01&rft.issn=0162-1459&rft.volume=109&rft.issue=508&rft.spage=1625&rft_id=info:doi/10.1080%2F01621459.2014.946034&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon