Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model
The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate e...
Saved in:
Published in | Journal of the American Statistical Association Vol. 109; no. 508; pp. 1625 - 1635 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.12.2014
Taylor & Francis Group, LLC Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1537-274X 0162-1459 1537-274X |
DOI | 10.1080/01621459.2014.946034 |
Cover
Loading…
Abstract | The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. |
---|---|
AbstractList | The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples.The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed failure time data can be transformed to identically independent distributed random variables without covariate effects. We describe a class of estimating equations based on the score functions for the transformed data, which are derived from the full likelihood function under commonly used semiparametric models such as the proportional hazards or proportional odds model. The methods of estimating regression parameters under the AFT model can be applied to traditional right-censored survival data as well as more complex time-to-event data subject to length-biased sampling. We establish the asymptotic properties and evaluate the small sample performance of the proposed estimators. We illustrate the proposed methods through applications in two examples. |
Author | Ning, Jing Qin, Jing Shen, Yu |
Author_xml | – sequence: 1 givenname: Jing surname: Ning fullname: Ning, Jing – sequence: 2 givenname: Jing surname: Qin fullname: Qin, Jing – sequence: 3 givenname: Yu surname: Shen fullname: Shen, Yu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25663727$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUktvEzEYXKEi-oB_wGMlLlwS_PYuB1BVJYAUxKGNxM3y-pE6eO3W3gX13-OwDZReii-29M2MZ-w5rg5CDKaqnkMwh6ABbwFkCBLazhGAZN4SBjB5VB1BivkMcfLt4M75sDrOeQvK4k3zpDpElDHMET-qunMVk6kXeXC9HFzY1IvrsRxiyLVNsa8XfWe0Nrpeue_Gu8sYdb0cg5og66BNqk-VMt4kORTYUjo_FsUL15v6S9TGP60eW-mzeXa7n1Tr5eLi7NNs9fXj57PT1UwxQIZZixGWCKJWYtASrGynANOUkwYiZjBkXDMKoaXGEMu7jhZfTOpOWVaGlOKT6v2kezV2vdHKhCFJL65SSZZuRJRO_DsJ7lJs4g9BMOQYNUXgza1AitejyYPoXS7JvAwmjlnABjEGEW3_BwpKCszZDvr6HnQbxxTKS4iSqW1aXPIV1Mu75v-43v9UAbybACrFnJOxQrnh90eVLM4LCMSuFmJfC7GrhZhqUcjkHnmv_wDtxUTb5iGmv54IIhy3O9MfprkLNqZe_ozJazHIGx-TTTIolwV-4IZXk4KVUchNKoT1eQGwUtWGsobhXyUY4Cs |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1007_s10120_024_01554_x crossref_primary_10_1007_s10985_016_9367_y crossref_primary_10_1111_rssb_12308 crossref_primary_10_14309_ajg_0000000000003313 crossref_primary_10_1002_jcsm_13623 crossref_primary_10_1111_biom_12727 crossref_primary_10_1093_biostatistics_kxx024 crossref_primary_10_1111_insr_12510 crossref_primary_10_1080_10485252_2018_1424335 crossref_primary_10_1111_dom_15928 crossref_primary_10_4093_dmj_2024_0552 crossref_primary_10_1214_17_STS638 crossref_primary_10_1053_j_gastro_2024_08_050 crossref_primary_10_1109_TR_2017_2747762 crossref_primary_10_1111_apt_18287 crossref_primary_10_1111_apt_18249 crossref_primary_10_1007_s10255_021_1021_0 crossref_primary_10_1016_j_cmi_2024_08_026 crossref_primary_10_1080_01621459_2019_1611586 crossref_primary_10_1080_02664763_2020_1784854 crossref_primary_10_1177_23969873241286984 crossref_primary_10_1681_ASN_0000000552 |
Cites_doi | 10.1111/j.1541-0420.2009.01260.x 10.1214/aos/1176348668 10.1093/biomet/79.4.837 10.1007/s10985-006-9012-2 10.1007/BF01586937 10.1093/biomet/69.3.521 10.1198/jasa.2009.tm08614 10.1093/biomet/84.1.73 10.1093/biomet/76.4.751 10.1111/j.1467-9868.2010.00742.x 10.1002/9781118032985 10.1093/biomet/90.2.341 10.1093/biomet/ast019 10.1214/aos/1176348253 10.1214/aos/1176349016 10.1017/CBO9780511802256 10.1056/NEJM200104123441501 10.1093/biomet/66.3.429 10.1198/016214507000001085 10.1198/016214502753479347 10.1214/aos/1176350948 10.1111/j.1541-0420.2011.01667.x 10.1145/355616.361024 10.1111/j.1541-0420.2009.01366_1.x 10.1214/aos/1176347504 10.1214/009053605000000372 10.1111/j.1541-0420.2011.01568.x 10.1073/pnas.0611618104 10.1093/biomet/65.1.167 10.1214/aos/1176347502 10.1214/aos/1176348110 10.1016/0378-3758(94)00039-X 10.1093/biomet/77.4.845 |
ContentType | Journal Article |
Copyright | 2014 American Statistical Association 2014 Copyright © 2014 American Statistical Association Copyright Taylor & Francis Ltd. Dec 2014 |
Copyright_xml | – notice: 2014 American Statistical Association 2014 – notice: Copyright © 2014 American Statistical Association – notice: Copyright Taylor & Francis Ltd. Dec 2014 |
DBID | FBQ AAYXX CITATION NPM 8BJ FQK JBE K9. 7S9 L.6 7X8 5PM |
DOI | 10.1080/01621459.2014.946034 |
DatabaseName | AGRIS CrossRef PubMed International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1537-274X |
EndPage | 1635 |
ExternalDocumentID | PMC4317328 3680336491 25663727 10_1080_01621459_2014_946034 24247396 946034 US201600085686 |
Genre | Article Journal Article Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: R01 CA079466 |
GroupedDBID | -DZ -~X .-4 ..I .7F .GJ .QJ 07G 0BK 0R~ 1OL 29L 2AX 30N 3R3 4.4 5GY 5RE 692 7WY 7X7 85S 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAVZ AABCJ AAENE AAFWJ AAHBH AAIKQ AAJMT AAKBW AALDU AAMIU AAPUL AAQRR AAWIL ABAWQ ABBHK ABCCY ABEFU ABEHJ ABFAN ABFIM ABJCF ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABUWG ABXSQ ABXUL ABXYU ABYWD ACAGQ ACGEE ACGFO ACGFS ACGOD ACHJO ACIWK ACMTB ACNCT ACTIO ACTMH ACUBG ADBBV ADCVX ADGTB ADLSF ADMHG ADODI ADULT ADYSH AEISY AENEX AEOZL AEPSL AEUMN AEUPB AEYOC AFFNX AFKRA AFQQW AFRVT AFSUE AFVYC AFXHP AGCQS AGDLA AGLEN AGLNM AGMYJ AGROQ AHDZW AHMOU AI. AIHAF AIJEM AIYEW AKBVH AKOOK ALCKM ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AMATQ AMEWO AMXXU AQRUH AQUVI AVBZW AWYRJ AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BLEHA BPHCQ BPLKW BVXVI C06 CCCUG CCPQU CJ0 CRFIH CS3 D0L DGEBU DKSSO DMQIW DQDLB DSRWC DU5 DWIFK DWQXO E.L EBS ECEWR EJD E~A E~B F5P FBQ FEDTE FJW FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GTTXZ GUQSH H13 HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZ~ H~9 H~P IPNFZ IPSME IVXBP J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K60 K6~ K9- KQ8 KYCEM L6V LJTGL LU7 M0C M0R M0T M1P M2O M2P M4Z M7S MS~ MVM MW2 NA5 NHB NUSFT NY~ O9- OFU OK1 P-O P2P PADUT PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T S0X SA0 SJN SNACF TAE TAQ TBQAZ TDBHL TEJ TFL TFMCV TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UKHRP UPT UQL UT5 UU3 VH1 VOH WH7 WHG WZA YQT YXB YYM YYP ZCG ZGI ZGOLN ZUP ZXP ~S~ ABYAD ACTWD GROUPED_ABI_INFORM_COMPLETE IAO IEA IGG IOF IPO JSODD N95 AAGDL AAHIA ADXHL AMPGV AMVHM AAYXX CITATION NPM 8BJ FQK JBE K9. TASJS 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c604t-9323a2129a30943cfbc06d5748126e3167d6511f5ee4f7bb5bed6adbcf6316553 |
ISSN | 1537-274X 0162-1459 |
IngestDate | Thu Aug 21 14:12:30 EDT 2025 Fri Jul 11 08:52:39 EDT 2025 Wed Jul 02 04:43:07 EDT 2025 Sat Aug 16 22:42:18 EDT 2025 Thu Apr 03 07:06:07 EDT 2025 Tue Jul 01 02:39:28 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri May 30 11:48:48 EDT 2025 Wed Dec 25 09:05:05 EST 2024 Thu Apr 03 09:40:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 508 |
Keywords | Length-biased data Accelerated failure time model Proportional odds model Cox model Score equation Likelihood function |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c604t-9323a2129a30943cfbc06d5748126e3167d6511f5ee4f7bb5bed6adbcf6316553 |
Notes | http://dx.doi.org/10.1080/01621459.2014.946034 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4317328 |
PMID | 25663727 |
PQID | 1679893126 |
PQPubID | 41715 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1803093768 proquest_journals_1679893126 pubmed_primary_25663727 fao_agris_US201600085686 jstor_primary_24247396 crossref_citationtrail_10_1080_01621459_2014_946034 proquest_miscellaneous_1826612598 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4317328 crossref_primary_10_1080_01621459_2014_946034 informaworld_taylorfrancis_310_1080_01621459_2014_946034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationTitleAlternate | J Am Stat Assoc |
PublicationYear | 2014 |
Publisher | Taylor & Francis Taylor & Francis Group, LLC Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group, LLC – name: Taylor & Francis Ltd |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 Rayner J. C.W. (cit0022) 2011 cit0030 Neyman J. (cit0018) 1937; 20 cit0019 cit0017 cit0015 cit0016 Robins J.M. (cit0024) 1992; 79 cit0013 cit0035 cit0014 cit0036 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0003 cit0025 16917734 - Lifetime Data Anal. 2006 Sep;12(3):267-84 21950348 - Biometrics. 2012 Mar;68(1):101-12 21057599 - J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202 11297701 - N Engl J Med. 2001 Apr 12;344(15):1111-6 19432792 - Biometrics. 2010 Mar;66(1):149-58 17360461 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3967-72 21385160 - Biometrics. 2011 Dec;67(4):1369-78 21031144 - J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630 19995351 - Biometrics. 2010 Dec;66(4):1306-8; discussion 1308 |
References_xml | – ident: cit0006 doi: 10.1111/j.1541-0420.2009.01260.x – ident: cit0031 doi: 10.1214/aos/1176348668 – ident: cit0036 doi: 10.1093/biomet/79.4.837 – ident: cit0001 doi: 10.1007/s10985-006-9012-2 – ident: cit0007 doi: 10.1007/BF01586937 – ident: cit0017 doi: 10.1093/biomet/69.3.521 – volume: 20 start-page: 150 year: 1937 ident: cit0018 publication-title: Skand. Aktuar – ident: cit0026 doi: 10.1198/jasa.2009.tm08614 – ident: cit0011 doi: 10.1093/biomet/84.1.73 – ident: cit0030 doi: 10.1093/biomet/76.4.751 – ident: cit0019 doi: 10.1111/j.1467-9868.2010.00742.x – ident: cit0012 doi: 10.1002/9781118032985 – ident: cit0010 doi: 10.1093/biomet/90.2.341 – ident: cit0008 doi: 10.1093/biomet/ast019 – ident: cit0013 doi: 10.1214/aos/1176348253 – ident: cit0034 doi: 10.1214/aos/1176349016 – volume: 79 start-page: 311 year: 1992 ident: cit0024 publication-title: Biometrika – ident: cit0029 doi: 10.1017/CBO9780511802256 – volume-title: Smooth Tests of Goodness of Fit: Using R year: 2011 ident: cit0022 – ident: cit0033 doi: 10.1056/NEJM200104123441501 – ident: cit0005 doi: 10.1093/biomet/66.3.429 – ident: cit0035 doi: 10.1198/016214507000001085 – ident: cit0002 doi: 10.1198/016214502753479347 – ident: cit0009 doi: 10.1214/aos/1176350948 – ident: cit0027 doi: 10.1111/j.1541-0420.2011.01667.x – ident: cit0004 doi: 10.1145/355616.361024 – ident: cit0016 doi: 10.1111/j.1541-0420.2009.01366_1.x – ident: cit0028 doi: 10.1214/aos/1176347504 – ident: cit0003 doi: 10.1214/009053605000000372 – ident: cit0020 doi: 10.1111/j.1541-0420.2011.01568.x – ident: cit0025 doi: 10.1073/pnas.0611618104 – ident: cit0021 doi: 10.1093/biomet/65.1.167 – ident: cit0023 doi: 10.1214/aos/1176347502 – ident: cit0014 doi: 10.1214/aos/1176348110 – ident: cit0015 doi: 10.1016/0378-3758(94)00039-X – ident: cit0032 doi: 10.1093/biomet/77.4.845 – reference: 19995351 - Biometrics. 2010 Dec;66(4):1306-8; discussion 1308 – reference: 21057599 - J Am Stat Assoc. 2009 Sep 1;104(487):1192-1202 – reference: 21950348 - Biometrics. 2012 Mar;68(1):101-12 – reference: 16917734 - Lifetime Data Anal. 2006 Sep;12(3):267-84 – reference: 19432792 - Biometrics. 2010 Mar;66(1):149-58 – reference: 21031144 - J R Stat Soc Series B Stat Methodol. 2010 Nov 1;72(5):609-630 – reference: 21385160 - Biometrics. 2011 Dec;67(4):1369-78 – reference: 17360461 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3967-72 – reference: 11297701 - N Engl J Med. 2001 Apr 12;344(15):1111-6 |
SSID | ssj0000788 |
Score | 2.269878 |
Snippet | The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the... The semiparametric accelerated failure time (AFT) model is one of the most popular models for analyzing time-to-event outcomes. One appealing feature of the... |
SourceID | pubmedcentral proquest pubmed crossref jstor informaworld fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1625 |
SubjectTerms | Analytical estimating Censored data Cox model Data sampling Dementia equations Estimation methods Estimators Failure analysis Length-biased data Mathematical functions Mathematical models Parameter estimation Preliminary estimates probability Proportional odds model Random variables Regression analysis Sampling bias Score equation Statistical bias Statistical estimation Statistics Theory and Methods |
Title | Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model |
URI | https://www.tandfonline.com/doi/abs/10.1080/01621459.2014.946034 https://www.jstor.org/stable/24247396 https://www.ncbi.nlm.nih.gov/pubmed/25663727 https://www.proquest.com/docview/1679893126 https://www.proquest.com/docview/1803093768 https://www.proquest.com/docview/1826612598 https://pubmed.ncbi.nlm.nih.gov/PMC4317328 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbYuOyC-DVWNpCRuKFMaeK4yRGhVhMa5dBWKicriR2o6FJg6YW_ft9znB-dyhhcoip-day8z_Z7znvfY-ytFroATHIvg7vsiWhovCTT2ou1wXYLj8hYSqFPU3mxEB-X0bKrsWmzS6rsPP-9N6_kf7SKe9ArZcn-g2bbTnEDv6FfXKFhXO-l4xlxUL4bY5aS3Qmff_xz60LbbNrI-CozWFg0PO_vZr2yDMYTbGS1CKWPUYB8jp2HCCPQlq4oSt3mhdgqaes_2K69fBRbAbiydM97tG2_eLig32aTpGNWVwOsd2vm0kS-bPsHEUPRC-pwZ5My8IbCEXw3i6uf9FAU-XFvsYR8tHcVd2GPaKfuKP5OnCdC-u7Yc4c0e_pZTRaXl2o-Xs4P2MMA3gKtz6E_7TbkkS0_2o6vyaAkivU9z9ixUA6KdHOLxbaJXN3nk9wOre3ZKvPH7JFTFH9fI-YJe2DKp-yo1dP1M5ZZ6PAOOryFDifo8AY6vIMOb6HDLXR4DzrcQYcTdLiFznO2mIznHy48V27Dy6UvKg-WfJjCkknSkMJN8yLLfamjkYANKA0xJmgJ87yIjBHFKMsijEOmOssLicYoCo_ZYbkpzQnjmOUml0b4SSqE0NgkjB8nupA5FYYOggELm1escsdFTyVR1mrYUNY6xShSjKoVM2Be-68fNRfLX-RPoD2VfsV2qRazgMgUycWQsRywuK9SVdnjsaKuZaPCu3s9tupvh0AJVqMwQZ9nDR6UWySulf3KmYR4gwP2pm3GEk7f5dLSbLaQiW08Ahz_u2TIkg6iBDIvaoh1A4BLFsIPGbDRDvhaAaKQ320pV98slTy5D2EQv7zHc0_ZUTfrz9hh9WtrXsEgr7LXdrrdAE-J2Vg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RcqCX8iw1FFgkrg5Odr22jxVKFCDNpY3EbeV9uEQNDiXOhV_PzK6dNhEUCY7RPuSMZ2e-8c58A_DOCluhmphYY7gci7Tv4kJbG-fWobvFiMh5SqGzqRzPxKcvaZdNuGrTKimGrgJRhLfVdLjpY3SXEvceYQoRbFOdSV_0CiETLvbgflrIjM4mT6Y3xjjzrSdpRUxLuuq5P-yy5Z32qnK5w2DaZS3-Do_uplXe8lOjh6C7fxjSU65660b3zM8d8sf_EsEjOGxRLDsNavcY7rn6CRwQcA28z09BnxM_JhviT8LE9SUbXgdW8RWjkhY2_KYdGj3LJvMrt5gTuzIboZMNU3w7JnZqDHpFIrPAsXJOGfSMalYYdXBbPIPZaHjxYRy3_RxiIxPRxAgVeYmusig55TOaSptE2jQTCDKko5J8KxH_Valzosq0TvE5ZGm1qSQOpik_gv16WbtjYKhGzkiHwWkphLBohVySF7aShjoPDwYR8O49KtOSnVPPjYXqd5yorQAVCVAFAUYQb1Z9D2Qff5l_jCqiyku0x2p2PiC2PsKwMpcR5Lf1RjX--0sVmqUofveuR17HNo9AFTwZL3DPk07pVGtpVspfoxUcJRjB280w2gi6-Clrt1zjnNxfeGNkedccgmoYDOOc50GPbx4AMT9HoBtBtqXhmwnEUb49Us-_eq5ywqd8kL_4d3G8gQfji7OJmnycfn4JBzQS0olOYL_5sXavEBQ2-rU_9r8A6tVP-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIqFeeJcaCiwSV4cku17bxwoSFSgRUonU28r7KlGDU6hz4dczs2unSQRFgmO0D23G45lvvDPfALy2wnpUE5NqDJdTkQ1cWmpr08I6dLcYEblAKfRpIo-n4sNZdrZWxU9plRRD-0gUEWw1vdyX1ncZcW8QpRC_NpWZDESvFLLPxQ7clnTHR0Uc_cm1Lc5D50lakdKSrnjuD7tsOKcdXy22CEy7pMXfwdHtrMo1NzW-B1X3B2N2ykVv2eie-bnF_fg_ErgPd1sMy46i0j2AW65-CHsEWyPr8yPQp8SOyUb4kxBxfc5G3yOn-BWjghY2-qYdmjzLTmYXbj4jbmU2Rhcbp4RmTOzIGPSJRGWBY9WM8ucZVaww6t82fwzT8ejL2-O07eaQGnwyTYpAkVfoKMuKUzaj8dr0pc1ygRBDOirItxLRn8-cEz7XOsNzyMpq4yUOZhnfh916UbsDYKhEzkiHoWklhLBog1y_KK2XhvoOD4cJ8O4xKtNSnVPHjbkadIyorQAVCVBFASaQrlZdRqqPv8w_QA1R1TlaYzU9HRJXHyFYWcgEinW1UU34-uJjqxTFb951P6jY6ghUv5PzEvc87HROtXbmSoVLtJKjBBN4tRpGC0HXPlXtFkucU4Trbowrb5pDQA1DYZzzJKrx9QEQ8XOEuQnkGwq-mkAM5Zsj9exrYCondMqHxdN_F8dLuPP53VidvJ98fAZ7NBBziQ5ht_mxdM8RETb6RXjpfwF3Xk6f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Score+Estimating+Equations+from+Embedded+Likelihood+Functions+under+Accelerated+Failure+Time+Model&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Ning%2C+Jing&rft.au=Qin%2C+Jing&rft.au=Shen%2C+Yu&rft.date=2014-12-01&rft.issn=0162-1459&rft.volume=109&rft.issue=508&rft.spage=1625&rft_id=info:doi/10.1080%2F01621459.2014.946034&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-274X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-274X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-274X&client=summon |