Comparing Families of Dynamic Causal Models

Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 6; no. 3; p. e1000709
Main Authors Penny, Will D., Stephan, Klaas E., Daunizeau, Jean, Rosa, Maria J., Friston, Karl J., Schofield, Thomas M., Leff, Alex P.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This "best model" approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: TMS APL. Performed the experiments: TMS APL. Analyzed the data: WDP MJR TMS APL. Wrote the paper: WDP KES JD KJF.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1000709