The future of NMR-based metabolomics
[Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development. The two leading analytical approaches to met...
Saved in:
Published in | Current opinion in biotechnology Vol. 43; pp. 34 - 40 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0958-1669 1879-0429 |
DOI | 10.1016/j.copbio.2016.08.001 |
Cover
Loading…
Abstract | [Display omitted]
•NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development.
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications. |
---|---|
AbstractList | The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications. [Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development. The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications. The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo . NMR results have a proven track record of translating in vitro findings to in vivo clinical applications. Graphical abstract |
Author | Markley, John L Wishart, David S Powers, Robert Edison, Arthur S Raftery, Daniel Eghbalnia, Hamid R Brüschweiler, Rafael |
AuthorAffiliation | c Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA d Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln NE 68588, USA e Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle WA 98109, USA a Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison WI 53706, USA b Departments of Chemistry & Biochemistry and Biological Chemistry & Pharmacology, The Ohio State University, 151 W. Woodruff Ave., Columbus OH 43210, USA f Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8 |
AuthorAffiliation_xml | – name: f Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8 – name: b Departments of Chemistry & Biochemistry and Biological Chemistry & Pharmacology, The Ohio State University, 151 W. Woodruff Ave., Columbus OH 43210, USA – name: d Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln NE 68588, USA – name: a Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison WI 53706, USA – name: c Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA – name: e Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle WA 98109, USA |
Author_xml | – sequence: 1 givenname: John L surname: Markley fullname: Markley, John L email: jmarkley@wisc.edu organization: Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA – sequence: 2 givenname: Rafael surname: Brüschweiler fullname: Brüschweiler, Rafael organization: Department of Chemistry & Biochemistry, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA – sequence: 3 givenname: Arthur S surname: Edison fullname: Edison, Arthur S organization: Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA – sequence: 4 givenname: Hamid R surname: Eghbalnia fullname: Eghbalnia, Hamid R organization: Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA – sequence: 5 givenname: Robert surname: Powers fullname: Powers, Robert organization: Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588, USA – sequence: 6 givenname: Daniel surname: Raftery fullname: Raftery, Daniel organization: Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle, WA 98109, USA – sequence: 7 givenname: David S surname: Wishart fullname: Wishart, David S organization: Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E8 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27580257$$D View this record in MEDLINE/PubMed |
BookMark | eNqVklFrFDEUhYNU7Lb6D0T2wQdfZrxJJslERJBiVagKWp9DJnPHZp2ZbJOZQv99M-xaVJDFpxByzpd777kn5GgMIxLylEJJgcqXm9KFbeNDyfKthLoEoA_IitZKF1AxfURWoEVdUCn1MTlJaQMAgit4RI6ZEjUwoVbk-eUVrrt5miOuQ7f-_Olr0diE7XrAyTahD4N36TF52Nk-4ZP9eUq-n7-7PPtQXHx5__Hs7UXhJFRTISrKtXNcK0lbpSrrKlZryxsuastBS10zTXmrGqCIGirZWWjaDhgICUrzU_Jmx93OzYCtw3GKtjfb6Acbb02w3vz5Mvor8yPcGMFBVExmwIs9IIbrGdNkBp8c9r0dMczJsDwCTqms1EEprbkQwKWCLH32e1n39fyaYhZUO4GLIaWI3b2EglnCMhuzC8ssYRmoTQ4r2179ZXN-spMPS3O-P2TezwpzIDceo0nO4-iw9RHdZNrg_xfgej96Z_ufeItpE-Y45rANNYkZMN-WZVp2iUoOVMk6A17_G3D4_zuBcdhx |
CitedBy_id | crossref_primary_10_1021_acsomega_9b04429 crossref_primary_10_1002_anie_201804736 crossref_primary_10_1016_j_fochms_2020_100009 crossref_primary_10_1039_C8AN01778F crossref_primary_10_3390_nu9121307 crossref_primary_10_1016_j_biologicals_2019_07_003 crossref_primary_10_3390_molecules24122195 crossref_primary_10_1016_j_cca_2019_08_011 crossref_primary_10_1016_j_waojou_2024_101013 crossref_primary_10_1021_acs_analchem_2c00891 crossref_primary_10_1039_C7CC07023C crossref_primary_10_1016_j_foodcont_2024_110817 crossref_primary_10_1016_j_mam_2021_100990 crossref_primary_10_1016_j_xcrm_2024_101579 crossref_primary_10_3390_ani9110898 crossref_primary_10_1002_nbm_3927 crossref_primary_10_1016_j_jbc_2024_107746 crossref_primary_10_1016_j_jpba_2017_07_035 crossref_primary_10_1016_j_scitotenv_2018_11_113 crossref_primary_10_4155_bio_2019_0014 crossref_primary_10_3389_fphar_2024_1463673 crossref_primary_10_1021_acs_analchem_0c00591 crossref_primary_10_1103_PhysRevX_10_021053 crossref_primary_10_1016_j_jmr_2022_107335 crossref_primary_10_1016_j_ab_2020_113692 crossref_primary_10_1002_cphc_201800917 crossref_primary_10_3390_molecules27030802 crossref_primary_10_1016_j_aca_2019_07_026 crossref_primary_10_1002_mrc_4814 crossref_primary_10_1016_j_molmet_2019_12_002 crossref_primary_10_1038_s41591_022_01980_3 crossref_primary_10_1016_j_pnmrs_2021_03_001 crossref_primary_10_3390_metabo14040219 crossref_primary_10_3390_metabo14050253 crossref_primary_10_1016_j_foodchem_2019_125510 crossref_primary_10_1021_acs_jproteome_1c00914 crossref_primary_10_1016_j_envres_2022_114011 crossref_primary_10_3390_polym16141999 crossref_primary_10_1002_ansa_202100054 crossref_primary_10_3390_jpm8030028 crossref_primary_10_1111_1471_0307_12745 crossref_primary_10_1007_s11306_024_02217_9 crossref_primary_10_1007_s11306_016_1155_x crossref_primary_10_1016_j_cca_2019_08_030 crossref_primary_10_1016_j_transci_2021_103155 crossref_primary_10_3390_molecules29102216 crossref_primary_10_3389_fonc_2024_1331215 crossref_primary_10_1016_j_arr_2021_101346 crossref_primary_10_7831_ras_10_0_304 crossref_primary_10_1038_s41598_022_22127_x crossref_primary_10_1038_s41598_021_93401_7 crossref_primary_10_1016_j_nefroe_2020_12_002 crossref_primary_10_1016_j_aca_2021_338298 crossref_primary_10_1016_j_pnmrs_2017_01_001 crossref_primary_10_1007_s10815_018_1281_7 crossref_primary_10_1186_s12967_022_03478_5 crossref_primary_10_1007_s00018_018_2744_9 crossref_primary_10_3389_fphar_2022_805782 crossref_primary_10_1002_ansa_202000117 crossref_primary_10_1002_bit_27243 crossref_primary_10_1055_a_1529_8370 crossref_primary_10_3389_fcimb_2022_833269 crossref_primary_10_3390_molecules27082579 crossref_primary_10_1002_mrm_29166 crossref_primary_10_3390_metabo11120891 crossref_primary_10_1016_j_envint_2021_106941 crossref_primary_10_1021_acs_analchem_3c03677 crossref_primary_10_1016_j_jprot_2017_08_020 crossref_primary_10_1111_prd_12351 crossref_primary_10_1093_bib_bbab138 crossref_primary_10_1136_jclinpath_2018_205414 crossref_primary_10_3390_molecules25061444 crossref_primary_10_1002_adfm_201910335 crossref_primary_10_1016_j_meegid_2020_104571 crossref_primary_10_3390_biomedicines10061254 crossref_primary_10_3390_ht7020015 crossref_primary_10_1016_j_copbio_2018_02_010 crossref_primary_10_1016_j_jpba_2017_06_024 crossref_primary_10_1016_j_aquatox_2017_09_010 crossref_primary_10_1515_hsz_2021_0232 crossref_primary_10_1016_j_lwt_2017_12_069 crossref_primary_10_1002_pmic_201800363 crossref_primary_10_1016_j_foodres_2017_11_077 crossref_primary_10_1016_j_tplants_2021_06_004 crossref_primary_10_1016_j_nefro_2020_07_002 crossref_primary_10_3389_fnut_2021_780228 crossref_primary_10_1007_s11101_021_09762_4 crossref_primary_10_1021_acsomega_8b02882 crossref_primary_10_1007_s00216_023_04744_1 crossref_primary_10_3389_fphys_2022_858869 crossref_primary_10_1134_S1068162019070070 crossref_primary_10_3390_molecules26216502 crossref_primary_10_1016_j_heliyon_2018_e00856 crossref_primary_10_1016_j_cotox_2019_03_007 crossref_primary_10_1039_D4NR02328E crossref_primary_10_1016_j_neulet_2017_06_016 crossref_primary_10_1128_mSystems_00580_20 crossref_primary_10_1515_cclm_2018_0380 crossref_primary_10_3390_molecules26020382 crossref_primary_10_1007_s11306_023_02041_7 crossref_primary_10_1021_acs_jproteome_0c00243 crossref_primary_10_1038_s41467_021_25496_5 crossref_primary_10_3390_metabo13101075 crossref_primary_10_1080_10408398_2020_1761287 crossref_primary_10_3390_metabo11010039 crossref_primary_10_1159_000513545 crossref_primary_10_1002_ansa_202000169 crossref_primary_10_3390_metabo12080678 crossref_primary_10_1007_s10545_017_0074_y crossref_primary_10_1016_j_molliq_2024_125997 crossref_primary_10_1038_s41598_023_43056_3 crossref_primary_10_3892_mmr_2018_9477 crossref_primary_10_1021_acs_analchem_6b04420 crossref_primary_10_1021_acsphotonics_1c01934 crossref_primary_10_1007_s11306_021_01808_0 crossref_primary_10_1039_C7NJ01416C crossref_primary_10_1016_j_aca_2018_04_006 crossref_primary_10_1002_ange_201804736 crossref_primary_10_1007_s12161_019_01664_8 crossref_primary_10_1016_j_envint_2016_11_026 crossref_primary_10_1039_C9RA06808B crossref_primary_10_1021_acsomega_8b01692 crossref_primary_10_1186_s12931_017_0631_9 crossref_primary_10_1021_acs_analchem_8b05611 crossref_primary_10_1021_acs_jafc_3c09362 crossref_primary_10_1016_j_aca_2020_10_054 crossref_primary_10_1016_j_aquatox_2021_105766 crossref_primary_10_1155_2018_6532789 crossref_primary_10_1038_s41467_020_16937_8 crossref_primary_10_3390_mps1040045 crossref_primary_10_1039_C8NP00065D crossref_primary_10_1038_s41592_019_0358_2 crossref_primary_10_1186_s13023_021_02075_x crossref_primary_10_1016_j_jpba_2018_08_046 crossref_primary_10_3389_fmicb_2020_626183 crossref_primary_10_2217_bmm_2019_0008 crossref_primary_10_1016_j_foodres_2023_113071 crossref_primary_10_3390_molecules26010245 crossref_primary_10_1002_jbt_23807 crossref_primary_10_1039_C8SC03628D crossref_primary_10_1093_biolinnean_blx120 crossref_primary_10_1080_17460441_2020_1722636 crossref_primary_10_1016_j_jmb_2019_07_020 crossref_primary_10_1111_pai_13785 crossref_primary_10_1146_annurev_anchem_091620_015205 crossref_primary_10_3390_molecules26247565 crossref_primary_10_1002_nbm_4177 crossref_primary_10_1016_j_foodres_2020_109763 crossref_primary_10_1039_C8AN01310A crossref_primary_10_1155_2024_7004371 crossref_primary_10_1016_j_jmr_2022_107165 crossref_primary_10_1016_j_cca_2024_119842 crossref_primary_10_1021_acs_analchem_3c02756 crossref_primary_10_1038_s43586_023_00274_3 crossref_primary_10_1007_s00216_019_01863_6 crossref_primary_10_14258_jcprm_20230111663 crossref_primary_10_3390_ijms222212133 crossref_primary_10_3390_biom10030357 crossref_primary_10_1021_acs_analchem_0c04679 crossref_primary_10_1186_s40798_020_0238_4 crossref_primary_10_2174_0929867324666171006151408 crossref_primary_10_1016_j_surfin_2022_102440 crossref_primary_10_1016_j_clnu_2024_07_027 crossref_primary_10_1186_s12944_024_02368_7 crossref_primary_10_3390_metabo11050284 crossref_primary_10_3390_ijerph19042377 crossref_primary_10_1007_s11306_017_1273_0 crossref_primary_10_1021_acs_analchem_2c03743 crossref_primary_10_3389_fbioe_2024_1347138 crossref_primary_10_1021_acs_analchem_3c00225 crossref_primary_10_1007_s00216_019_01600_z crossref_primary_10_1016_j_chemphyslip_2024_105395 crossref_primary_10_1002_rcm_8197 crossref_primary_10_1016_j_foodchem_2022_135191 crossref_primary_10_1016_j_heares_2022_108645 crossref_primary_10_3390_ph14100978 crossref_primary_10_1021_acs_jpca_2c06858 crossref_primary_10_1177_2397847318820768 crossref_primary_10_1039_C8AY00830B crossref_primary_10_3390_metabo13020144 crossref_primary_10_1016_j_preteyeres_2018_11_002 crossref_primary_10_17352_ijpsdr_000029 crossref_primary_10_3390_genes10121011 crossref_primary_10_1002_chem_201701572 crossref_primary_10_1007_s10858_017_0119_4 crossref_primary_10_3390_antibiotics10050565 crossref_primary_10_1016_j_fbio_2023_102538 crossref_primary_10_1016_j_trac_2018_11_021 crossref_primary_10_1371_journal_pntd_0008767 crossref_primary_10_1002_fsn3_2968 crossref_primary_10_1002_pca_3241 crossref_primary_10_3389_fvets_2023_1129741 crossref_primary_10_1038_s41598_019_50346_2 crossref_primary_10_1038_s41598_024_65504_4 crossref_primary_10_1080_10408347_2022_2162810 crossref_primary_10_1002_cbdv_201800479 crossref_primary_10_3390_ijms21144853 crossref_primary_10_3390_ht7020009 crossref_primary_10_2174_1386207322666190704094003 crossref_primary_10_1038_s41598_020_62413_0 crossref_primary_10_1016_j_ab_2020_113992 crossref_primary_10_3390_jpm11111143 crossref_primary_10_1021_acs_analchem_9b03107 crossref_primary_10_1016_j_jchromb_2019_04_029 crossref_primary_10_1002_cpps_98 crossref_primary_10_1111_epi_16768 crossref_primary_10_1098_rsob_200092 crossref_primary_10_1002_mrc_4874 crossref_primary_10_1007_s00338_021_02125_7 crossref_primary_10_1016_j_jmr_2022_107272 crossref_primary_10_1021_acs_est_8b05024 crossref_primary_10_1002_mas_21672 crossref_primary_10_3389_fphys_2020_532271 crossref_primary_10_3390_metabo11120818 crossref_primary_10_1016_j_foodchem_2024_140991 crossref_primary_10_1016_j_ophtha_2024_07_004 crossref_primary_10_1097_HEP_0000000000000879 crossref_primary_10_37039_1982_8551_20220056 crossref_primary_10_3390_agronomy11050824 crossref_primary_10_1016_j_bioadv_2024_214085 crossref_primary_10_1186_s13007_019_0487_8 crossref_primary_10_3390_biomedicines9101481 crossref_primary_10_1016_j_jhazmat_2019_02_084 crossref_primary_10_1021_acs_analchem_2c03323 crossref_primary_10_1021_acs_jproteome_2c00030 crossref_primary_10_1007_s12020_021_02858_z crossref_primary_10_1016_j_heliyon_2024_e36944 crossref_primary_10_1016_j_cell_2018_03_055 crossref_primary_10_1002_anie_202100734 crossref_primary_10_3390_molecules22081289 crossref_primary_10_1021_acs_analchem_8b04482 crossref_primary_10_1080_10408363_2022_2027864 crossref_primary_10_1016_j_bbrc_2019_04_003 crossref_primary_10_1007_s11033_024_10175_7 crossref_primary_10_14258_jcprm_2018044003 crossref_primary_10_1002_advs_202001714 crossref_primary_10_1007_s40619_023_01370_y crossref_primary_10_3390_ijms21072533 crossref_primary_10_1007_s11306_020_1633_z crossref_primary_10_1039_C8NR00897C crossref_primary_10_1016_j_tice_2021_101663 crossref_primary_10_1088_1757_899X_572_1_012010 crossref_primary_10_1088_1757_899X_572_1_012011 crossref_primary_10_3389_fpls_2019_01313 crossref_primary_10_1021_acs_analchem_0c04766 crossref_primary_10_1038_s41598_018_37525_3 crossref_primary_10_1016_j_jenvman_2018_05_068 crossref_primary_10_12677_ACM_2024_142591 crossref_primary_10_3389_fneur_2017_00719 crossref_primary_10_1002_nbm_4192 crossref_primary_10_1161_JAHA_122_027725 crossref_primary_10_1073_pnas_2300942120 crossref_primary_10_1016_j_jmr_2019_07_013 crossref_primary_10_1007_s00702_024_02844_5 crossref_primary_10_18097_pbmc20206604279 crossref_primary_10_3390_molecules26040931 crossref_primary_10_1146_annurev_arplant_060223_013842 crossref_primary_10_3389_fphar_2022_904231 crossref_primary_10_1080_00032719_2021_2019758 crossref_primary_10_3390_jof6040223 crossref_primary_10_1080_09553002_2020_1704299 crossref_primary_10_1080_14737159_2019_1626719 crossref_primary_10_1021_acs_analchem_4c04600 crossref_primary_10_1016_j_jpba_2018_01_025 crossref_primary_10_1016_j_jprot_2020_103795 crossref_primary_10_1021_acs_analchem_0c04414 crossref_primary_10_3390_ijms19061759 crossref_primary_10_30773_pi_2024_0164 crossref_primary_10_1016_j_jfca_2022_105019 crossref_primary_10_3389_fchem_2023_1142287 crossref_primary_10_3390_ani11113056 crossref_primary_10_1007_s40471_019_00187_4 crossref_primary_10_1002_cppb_20100 crossref_primary_10_1016_j_phymed_2020_153246 crossref_primary_10_3390_ijms21228835 crossref_primary_10_1016_j_rbmo_2020_09_002 crossref_primary_10_4103_ijmr_IJMR_239_19 crossref_primary_10_1039_D1MO00017A crossref_primary_10_1073_pnas_2114186119 crossref_primary_10_3390_diagnostics11020234 crossref_primary_10_1038_s41598_018_33496_7 crossref_primary_10_3390_agriculture12070984 crossref_primary_10_1002_bmc_4741 crossref_primary_10_1186_s13020_018_0218_5 crossref_primary_10_1021_acscentsci_3c01201 crossref_primary_10_3390_plants11162182 crossref_primary_10_1016_j_psj_2022_101866 crossref_primary_10_1186_s10020_024_01046_9 crossref_primary_10_1016_j_bpc_2020_106462 crossref_primary_10_1016_j_sajb_2022_05_060 crossref_primary_10_1021_acs_analchem_4c02688 crossref_primary_10_1093_bioinformatics_btad593 crossref_primary_10_1109_TED_2019_2909067 crossref_primary_10_1089_rej_2018_2118 crossref_primary_10_1016_j_chemolab_2020_104169 crossref_primary_10_1016_j_ecoenv_2018_12_008 crossref_primary_10_1080_17512433_2020_1713750 crossref_primary_10_1039_D4RA03019B crossref_primary_10_1039_D5AN00074B crossref_primary_10_1186_s13020_019_0240_2 crossref_primary_10_1002_mrc_5212 crossref_primary_10_1021_acsestwater_4c00308 crossref_primary_10_1002_nbm_4683 crossref_primary_10_1021_acs_analchem_9b03849 crossref_primary_10_1007_s11306_018_1396_y crossref_primary_10_1080_14786419_2024_2447052 crossref_primary_10_1002_mrc_5106 crossref_primary_10_1021_acs_jchemed_9b00133 crossref_primary_10_1039_D1RA03008F crossref_primary_10_1093_ofid_ofab483 crossref_primary_10_3390_encyclopedia4040102 crossref_primary_10_1080_10408347_2020_1823811 crossref_primary_10_3389_fonc_2022_1110104 crossref_primary_10_1016_j_scitotenv_2023_169196 crossref_primary_10_1016_j_pnmrs_2019_09_003 crossref_primary_10_1109_RBME_2022_3161352 crossref_primary_10_1016_j_isci_2023_107623 crossref_primary_10_1155_2018_2815439 crossref_primary_10_30843_nzpp_2024_77_11772 crossref_primary_10_3390_toxins14020132 crossref_primary_10_1080_10408363_2020_1833298 crossref_primary_10_1039_D1RA05626C crossref_primary_10_1016_j_mad_2023_111875 crossref_primary_10_1016_j_trac_2023_117478 crossref_primary_10_1080_14737159_2021_1933448 crossref_primary_10_1007_s43032_025_01789_8 crossref_primary_10_1016_j_clinbiochem_2018_06_011 crossref_primary_10_1002_jms_5019 crossref_primary_10_1186_s13068_017_0960_4 crossref_primary_10_3390_metabo11080544 crossref_primary_10_3389_fmolb_2019_00108 crossref_primary_10_1016_j_scienta_2022_111584 crossref_primary_10_1093_rheumatology_kex497 crossref_primary_10_4251_wjgo_v13_i6_536 crossref_primary_10_3390_ani14142030 crossref_primary_10_1016_j_pnmrs_2023_10_002 crossref_primary_10_3390_plants9050591 crossref_primary_10_1016_j_biopha_2023_115685 crossref_primary_10_1002_jms_4292 crossref_primary_10_3390_molecules26175115 crossref_primary_10_1080_14789450_2020_1772059 crossref_primary_10_1002_cjce_23409 crossref_primary_10_3389_fimmu_2021_618726 crossref_primary_10_1038_s41467_019_11331_5 crossref_primary_10_3390_metabo11080537 crossref_primary_10_1007_s10522_021_09921_2 crossref_primary_10_1016_j_copbio_2018_07_001 crossref_primary_10_1016_j_etap_2020_103382 crossref_primary_10_1021_acs_analchem_1c00113 crossref_primary_10_3390_foods11192974 crossref_primary_10_1186_s12986_023_00728_1 crossref_primary_10_1007_s11101_024_10048_8 crossref_primary_10_1093_oncolo_oyac047 crossref_primary_10_1007_s11306_023_02027_5 crossref_primary_10_1016_j_cbpa_2016_12_022 crossref_primary_10_1038_s41592_021_01116_4 crossref_primary_10_1021_acs_analchem_1c00756 crossref_primary_10_1038_s41598_024_74641_9 crossref_primary_10_1021_acs_jpca_7b01954 crossref_primary_10_3390_healthcare6030111 crossref_primary_10_2478_s11756_020_00574_z crossref_primary_10_1039_D3FO01770B crossref_primary_10_1111_jfpe_14430 crossref_primary_10_1016_j_jsbmb_2018_05_005 crossref_primary_10_1038_s41598_019_42434_0 crossref_primary_10_1007_s00216_024_05622_0 crossref_primary_10_3390_metabo13030402 crossref_primary_10_1007_s00726_017_2419_0 crossref_primary_10_1016_j_ssc_2023_115148 crossref_primary_10_1021_acsomega_9b00931 crossref_primary_10_1007_s11306_019_1607_1 crossref_primary_10_1016_j_phymed_2018_12_038 crossref_primary_10_1021_acs_analchem_0c05205 crossref_primary_10_1016_j_biotechadv_2018_02_013 crossref_primary_10_1080_14786419_2018_1431629 crossref_primary_10_1007_s10067_020_05511_8 crossref_primary_10_1002_jcb_29242 crossref_primary_10_1155_2022_5705637 crossref_primary_10_1007_s11306_019_1487_4 crossref_primary_10_1155_2018_7620671 crossref_primary_10_1021_acs_jproteome_8b00773 crossref_primary_10_1016_j_chemolab_2024_105221 crossref_primary_10_1016_j_cbpa_2016_12_005 crossref_primary_10_1007_s11306_018_1384_2 crossref_primary_10_1016_j_scp_2021_100474 crossref_primary_10_1021_acs_analchem_9b03776 crossref_primary_10_1371_journal_pcbi_1006018 crossref_primary_10_1073_pnas_2308496120 crossref_primary_10_2903_sp_efsa_2018_EN_1512 crossref_primary_10_1002_nbm_4594 crossref_primary_10_3390_molecules26113285 crossref_primary_10_1242_dmm_035758 crossref_primary_10_3389_fmolb_2024_1395677 crossref_primary_10_1016_j_scitotenv_2018_01_180 crossref_primary_10_3389_fmolb_2019_00027 crossref_primary_10_1016_j_cyto_2018_07_022 crossref_primary_10_23736_S2724_6507_20_03199_5 crossref_primary_10_1038_s41598_021_01670_z crossref_primary_10_3390_gucdd1010006 crossref_primary_10_1016_j_talanta_2023_125527 crossref_primary_10_1007_s00726_023_03255_8 crossref_primary_10_1002_elps_201700110 crossref_primary_10_1016_j_aca_2020_09_065 crossref_primary_10_1021_acs_analchem_8b05074 crossref_primary_10_1016_j_trac_2022_116825 crossref_primary_10_1021_jacs_7b00236 crossref_primary_10_1016_j_heliyon_2024_e30434 crossref_primary_10_1210_clinem_dgac212 crossref_primary_10_1016_j_jmr_2019_04_007 crossref_primary_10_3389_fmicb_2020_547458 crossref_primary_10_1016_j_bios_2021_113011 crossref_primary_10_3390_plants12030491 crossref_primary_10_1021_acsinfecdis_9b00199 crossref_primary_10_1007_s11306_023_02003_z crossref_primary_10_1007_s10753_017_0725_z crossref_primary_10_1080_14756366_2019_1611802 crossref_primary_10_1002_wsbm_1472 crossref_primary_10_1007_s12016_025_09028_3 crossref_primary_10_1016_j_bbadis_2021_166123 crossref_primary_10_1016_j_scitotenv_2018_05_256 crossref_primary_10_1021_jasms_0c00439 crossref_primary_10_1007_s11356_018_3111_y crossref_primary_10_1146_annurev_anchem_091520_085936 crossref_primary_10_1021_acs_analchem_2c05145 crossref_primary_10_1039_C8FD00213D crossref_primary_10_3389_fneur_2017_00450 crossref_primary_10_1021_acsnano_3c01176 crossref_primary_10_1021_acs_jproteome_8b00567 crossref_primary_10_2903_sp_efsa_2024_EN_8602 crossref_primary_10_1155_2021_7600835 crossref_primary_10_1007_s00204_018_2384_8 crossref_primary_10_1021_acs_analchem_6b03724 crossref_primary_10_1021_acs_jproteome_9b00316 crossref_primary_10_1016_j_trac_2024_117819 crossref_primary_10_1002_pca_2932 crossref_primary_10_3390_nu14183705 crossref_primary_10_1080_10408398_2022_2062698 crossref_primary_10_3390_ph17101307 crossref_primary_10_3389_fped_2019_00030 crossref_primary_10_1007_s12275_017_6551_z crossref_primary_10_1039_D1CC05665D crossref_primary_10_3389_fpls_2020_00554 crossref_primary_10_1021_acs_jproteome_8b00455 crossref_primary_10_1002_cbdv_202000413 crossref_primary_10_1007_s00216_018_1408_9 crossref_primary_10_1038_s41598_019_44540_5 crossref_primary_10_4081_acbr_2021_134 crossref_primary_10_1016_j_phymed_2019_152829 crossref_primary_10_1371_journal_pone_0247378 crossref_primary_10_1002_jmd2_12273 crossref_primary_10_1016_j_jep_2023_117359 crossref_primary_10_1016_j_talanta_2019_120248 crossref_primary_10_3390_biom8040151 crossref_primary_10_1016_j_scitotenv_2023_161737 crossref_primary_10_1093_gastro_goae106 crossref_primary_10_1016_j_trsl_2017_07_001 crossref_primary_10_1007_s00784_024_05883_0 crossref_primary_10_1111_1541_4337_12938 crossref_primary_10_1021_jasms_1c00315 crossref_primary_10_1021_acs_jproteome_7b00457 crossref_primary_10_1186_s13020_022_00601_y crossref_primary_10_1021_acs_jproteome_8b00306 crossref_primary_10_1016_j_pharmthera_2021_107827 crossref_primary_10_3390_molecules26206308 crossref_primary_10_1016_j_tifs_2022_11_002 crossref_primary_10_3390_metabo10110460 crossref_primary_10_3390_metabo11040206 crossref_primary_10_1039_D0AN00142B crossref_primary_10_1007_s11306_024_02164_5 crossref_primary_10_1128_jcm_01522_22 crossref_primary_10_1002_pmic_202000235 crossref_primary_10_1146_annurev_food_032818_121715 crossref_primary_10_1080_1061186X_2017_1358728 crossref_primary_10_1016_j_tibs_2019_05_005 crossref_primary_10_3389_fnins_2022_917197 crossref_primary_10_1038_nrrheum_2017_5 crossref_primary_10_1007_s11306_019_1481_x crossref_primary_10_1021_acs_analchem_0c00768 crossref_primary_10_1007_s11306_018_1390_4 crossref_primary_10_1016_j_foodres_2020_110062 crossref_primary_10_1021_acs_jproteome_0c00300 crossref_primary_10_3389_fmedt_2022_1065506 crossref_primary_10_1128_mSystems_00843_19 crossref_primary_10_2174_0929867329666220329090822 crossref_primary_10_1002_ange_202100734 crossref_primary_10_1007_s11101_024_10006_4 crossref_primary_10_1002_mc_23255 crossref_primary_10_1080_17460441_2022_2113774 crossref_primary_10_1126_sciadv_aaw7895 crossref_primary_10_1002_elps_201900115 crossref_primary_10_3390_jpm14060555 crossref_primary_10_1016_j_jmb_2020_04_027 crossref_primary_10_1021_acs_jproteome_9b00343 crossref_primary_10_1016_j_cofs_2022_100823 crossref_primary_10_1016_j_ecoenv_2019_109602 crossref_primary_10_3390_molecules27217365 crossref_primary_10_1021_acs_analchem_2c02902 crossref_primary_10_1007_s40291_017_0282_z crossref_primary_10_1021_jacs_0c06877 crossref_primary_10_1021_acs_chemrev_0c00901 crossref_primary_10_1016_j_biotechadv_2017_04_003 crossref_primary_10_3390_metabo12060488 crossref_primary_10_1016_j_ymben_2021_01_008 crossref_primary_10_1016_j_lwt_2024_116572 crossref_primary_10_3390_metabo13091007 crossref_primary_10_12688_f1000research_11495_1 crossref_primary_10_1016_j_bej_2018_07_016 crossref_primary_10_3389_fcell_2018_00092 crossref_primary_10_3389_fmolb_2021_698337 crossref_primary_10_1007_s11306_024_02208_w crossref_primary_10_3389_fonc_2020_570516 crossref_primary_10_1186_s13036_019_0145_8 crossref_primary_10_3390_ijms23105716 crossref_primary_10_1007_s11306_019_1483_8 crossref_primary_10_3390_molecules28020792 crossref_primary_10_1016_j_tim_2024_11_009 crossref_primary_10_1007_s00203_024_03911_x crossref_primary_10_1038_s41598_019_41216_y crossref_primary_10_1016_j_bbcan_2018_04_009 crossref_primary_10_1021_acs_analchem_7b04922 crossref_primary_10_1007_s40242_022_2119_5 crossref_primary_10_1002_ijc_31929 crossref_primary_10_1371_journal_pone_0237377 crossref_primary_10_3390_metabo11110765 crossref_primary_10_4103_UROS_UROS_2_19 crossref_primary_10_4236_jamp_2022_105099 crossref_primary_10_1016_j_foodchem_2020_128316 crossref_primary_10_1016_j_foodres_2021_110290 crossref_primary_10_1016_j_cofs_2024_101175 crossref_primary_10_3390_app14125147 crossref_primary_10_1111_evj_13199 crossref_primary_10_3390_molecules26113311 crossref_primary_10_1021_acs_analchem_8b04928 crossref_primary_10_1007_s00535_025_02237_9 crossref_primary_10_1002_mrc_5350 crossref_primary_10_1371_journal_pone_0241627 crossref_primary_10_1093_jas_skz228 crossref_primary_10_1016_j_urine_2021_05_002 crossref_primary_10_1038_s41598_019_43404_2 crossref_primary_10_1021_acs_jproteome_0c00854 crossref_primary_10_1073_pnas_1917259117 crossref_primary_10_1111_resp_13530 crossref_primary_10_1038_s41598_019_56073_y crossref_primary_10_3390_plants13071024 crossref_primary_10_3389_fendo_2018_00814 crossref_primary_10_5194_mr_4_19_2023 crossref_primary_10_1007_s11244_019_01131_y crossref_primary_10_1016_j_jep_2019_112134 crossref_primary_10_1002_cpch_83 crossref_primary_10_1016_j_jchromb_2024_124124 crossref_primary_10_1021_acs_analchem_7b02884 crossref_primary_10_3390_separations11100282 crossref_primary_10_1134_S1990750821010042 crossref_primary_10_1021_acs_analchem_0c00967 crossref_primary_10_1093_jcbiol_ruy068 crossref_primary_10_1038_s41585_019_0185_3 crossref_primary_10_1111_ijfs_17308 |
Cites_doi | 10.1093/nar/gkn810 10.1016/j.pnmrs.2016.01.005 10.1021/ac502346h 10.1126/sciadv.1501438 10.1002/anie.201410653 10.1021/ac5025039 10.1371/journal.pone.0124219 10.1002/mrc.4199 10.1039/C6CC01783E 10.1021/acs.analchem.5b00867 10.1016/S0140-6736(13)62227-8 10.1021/ac401712a 10.1021/jm401803b 10.1021/cb5006382 10.1021/acs.analchem.5b03889 10.1021/pr060114v 10.1097/MCO.0000000000000206 10.1021/ac500979g 10.1021/acs.analchem.6b00442 10.1021/ac201948f 10.1016/j.csbj.2015.01.002 10.1021/acs.jproteome.5b00059 10.1093/icb/icv077 10.1021/ac504435b 10.1021/acs.jproteome.5b01111 10.1016/j.jmr.2013.07.012 10.1021/ac400913m 10.1021/acs.jproteome.5b00184 10.1038/ncomms1562 10.1021/ac200536b 10.1039/C4NP00072B 10.1021/ar2001606 10.1021/ac201625f 10.1093/nar/gkm957 10.1093/nar/gkv1042 10.1007/s11306-014-0704-4 10.1021/acs.jproteome.5b00885 10.1021/cb4008937 10.1021/cb400894a 10.1038/nbt0208-162 10.1002/mrc.2526 10.4155/bio-2015-0004 10.1021/ac504633z 10.1021/ac071583z 10.1007/s11306-015-0810-y 10.1021/ac503651e 10.1016/j.jmr.2015.07.014 10.1021/ac4019268 10.1073/pnas.1733835100 |
ContentType | Journal Article |
Copyright | 2016 The Author(s) The Author(s) Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2016 The Author(s) – notice: The Author(s) – notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.copbio.2016.08.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0429 |
EndPage | 40 |
ExternalDocumentID | PMC5305426 27580257 10_1016_j_copbio_2016_08_001 S0958166916301768 1_s2_0_S0958166916301768 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA163649 – fundername: NIGMS NIH HHS grantid: R01 GM066041 – fundername: NIGMS NIH HHS grantid: R01 GM109046 – fundername: NIGMS NIH HHS grantid: P41 GM111135 – fundername: NCI NIH HHS grantid: P30 CA015704 – fundername: NCRR NIH HHS grantid: P20 RR017675 – fundername: NCI NIH HHS grantid: F31 CA157045 – fundername: NIAID NIH HHS grantid: P01 AI083211 – fundername: NIDDK NIH HHS grantid: U24 DK097209 – fundername: NIGMS NIH HHS grantid: R01 GM085291 |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABEFU ABFRF ABGSF ABJNI ABMAC ABNUV ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TWZ VH1 WUQ Z5R ~02 ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG 6I. AAFTH AAIAV ABYKQ AJBFU DOVZS EFLBG XFK AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c604t-54139cc39761d774ac4289a3b358a3096982913d7b01ee9046fa0bdf020560793 |
IEDL.DBID | .~1 |
ISSN | 0958-1669 |
IngestDate | Thu Aug 21 17:31:39 EDT 2025 Tue Aug 05 10:07:36 EDT 2025 Fri Jul 11 12:14:48 EDT 2025 Mon Jul 21 05:53:45 EDT 2025 Tue Jul 01 00:50:59 EDT 2025 Thu Apr 24 23:04:59 EDT 2025 Fri Feb 23 02:22:50 EST 2024 Tue Feb 25 20:01:09 EST 2025 Tue Aug 26 16:55:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c604t-54139cc39761d774ac4289a3b358a3096982913d7b01ee9046fa0bdf020560793 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0958166916301768 |
PMID | 27580257 |
PQID | 1835503670 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5305426 proquest_miscellaneous_2000311647 proquest_miscellaneous_1835503670 pubmed_primary_27580257 crossref_primary_10_1016_j_copbio_2016_08_001 crossref_citationtrail_10_1016_j_copbio_2016_08_001 elsevier_sciencedirect_doi_10_1016_j_copbio_2016_08_001 elsevier_clinicalkeyesjournals_1_s2_0_S0958166916301768 elsevier_clinicalkey_doi_10_1016_j_copbio_2016_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in biotechnology |
PublicationTitleAlternate | Curr Opin Biotechnol |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ravanbakhsh, Liu, Bjorndahl, Mandal, Grant, Wilson, Eisner, Sinelnikov, Hu, Luchinat (bib0300) 2015; 10 Bingol, Zhang, Bruschweiler-Li, Brüschweiler (bib0440) 2013; 85 Clendinen, Lee-McMullen, Williams, Stupp, Vandenborne, Hahn, Walter, Edison (bib0510) 2014; 86 Ardenkjaer-Larsen, Fridlund, Gram, Hansson, Hansson, Lerche, Servin, Thaning, Golman (bib0520) 2003; 100 Bingol, Brüschweiler (bib0405) 2015; 14 Tayyari, Gowda, Gu, Raftery (bib0385) 2013; 85 Wei, Zhang, Liu, Ye, Gowda, Tayyari, Raftery (bib0330) 2011; 83 Bingol, Bruschweiler-Li, Li, Brüschweiler (bib0310) 2014; 86 Lei, Zavala-Flores, Garcia-Garcia, Nandakumar, Huang, Madayiputhiya, Stanton, Dodds, Powers, Franco (bib0450) 2014; 9 Gebregiworgis, Nielsen, Massilamany, Gangaplara, Reddy, Illes, Powers (bib0490) 2016; 15 Robinette, Brüschweiler, Schroeder, Edison (bib0270) 2012; 45 Bingol, Brüschweiler (bib0395) 2015; 18 Ramaswamy, Hooker, Withers, Nast, Brey, Edison (bib0500) 2013; 235 Bingol, Li, Bruschweiler-Li, Cabrera, Megraw, Zhang, Brüschweiler (bib0315) 2015; 10 Wishart, Knox, Guo, Eisner, Young, Gautam, Hau, Psychogios, Dong, Bouatra (bib0275) 2009; 37 Worley, Powers (bib0365) 2014; 9 Bingol, Bruschweiler-Li, Yu, Somogyi, Zhang, Brüschweiler (bib0410) 2015; 87 Marshall, Lei, Worley, Huang, Garcia-Garcia, Franco, Dodds, Powers (bib0400) 2015; 11 Lewis, Schommer, Hodis, Robb, Tonelli, Westler, Sussman, Markley (bib0420) 2007; 79 Nagana Gowda, Abell, Lee, Tian, Raftery (bib0445) 2016; 88 Zhang, Xie, Bruschweiler-Li, Bruschweiler (bib0380) 2016; 88 Powers (bib0480) 2014; 57 Ramaswamy, Hooker, Withers, Nast, Edison, Brey (bib0505) 2016 Emwas, Roy, McKay, Ryan, Brennan, Tenori, Luchinat, Gao, Zeri, Gowda (bib0355) 2016; 15 Nagana Gowda, Gowda, Raftery (bib0370) 2015; 87 Ulrich, Akutsu, Doreleijers, Harano, Ioannidis, Lin, Livny, Mading, Maziuk, Miller (bib0340) 2008; 36 Hu, Ellinger, Chylla, Markley (bib0425) 2011; 83 Edison, Hall, Junot, Karp, Kurland, Mistrik, Reed, Saito, Salek, Steinbeck (bib0455) 2016 Ardenkjaer-Larsen, Boebinger, Comment, Duckett, Edison, Engelke, Griesinger, Griffin, Hilty, Maeda (bib0495) 2015; 54 Edison, Clendinen, Ajredini, Beecher, Ponce, Stupp (bib0470) 2015; 55 Fan, Lane (bib0280) 2016; 92-93 Bingol, Bruschweiler-Li, Li, Zhang, Xie, Brüschweiler (bib0295) 2016; 8 Chen, Deng, Wei, Nagana Gowda, Gu, Chiorean, Abu Zaid, Harrison, Pekny, Loehrer (bib0485) 2015; 14 Clendinen, Pasquel, Ajredini, Edison (bib0515) 2015; 87 Ioannidis, Greenland, Hlatky, Khoury, Macleod, Moher, Schulz, Tibshirani (bib0530) 2014; 383 Sumner, Lei, Nikolau, Saito (bib0465) 2015; 32 Gu, Gowda, Neto, Opp, Raftery (bib0415) 2013; 85 Dona, Jimenez, Schafer, Humpfer, Spraul, Lewis, Pearce, Holmes, Lindon, Nicholson (bib0360) 2014; 86 Lewis, Schommer, Markley (bib0305) 2009; 47 Salek, Neumann, Schober, Hummel, Billiau, Kopka, Correa, Reijmers, Rosato, Tenori (bib0350) 2015; 11 Sud, Fahy, Cotter, Azam, Vadivelu, Burant, Edison, Fiehn, Higashi, Nair (bib0345) 2016; 44 Cui, Lewis, Hegeman, Anderson, Li, Schulte, Westler, Eghbalnia, Sussman, Markley (bib0320) 2008; 26 Tiziani, Kang, Choi, Roberts, Paternostro (bib0290) 2011; 2 Everett (bib0325) 2015; 13 Fan, Lane, Higashi (bib0335) 2016 Mauve, Khlifi, Gilard, Mouille, Farjon (bib0435) 2016; 52 Forgue, Halouska, Werth, Xu, Harris, Powers (bib0475) 2006; 5 Chylla, Hu, Ellinger, Markley (bib0430) 2011; 83 Nagana Gowda, Raftery (bib0285) 2015; 260 Theis, Ortiz, Logan, Claytor, Feng, Huhn, Blum, Malcolmson, Chekmenev, Wang (bib0525) 2016; 2 Halouska, Zhang, Gaupp, Lei, Snell, Fenton, Barletta, Somerville, Powers (bib0460) 2013; 3 Nagana Gowda, Gowda, Raftery (bib0375) 2015; 87 Lane, Arumugam, Lorkiewicz, Higashi, Laulhe, Nantz, Moseley, Fan (bib0390) 2015; 53 Lei (10.1016/j.copbio.2016.08.001_bib0450) 2014; 9 Emwas (10.1016/j.copbio.2016.08.001_sbref0355) 2016; 15 Lane (10.1016/j.copbio.2016.08.001_sbref0390) 2015; 53 Bingol (10.1016/j.copbio.2016.08.001_sbref0395) 2015; 18 Powers (10.1016/j.copbio.2016.08.001_sbref0480) 2014; 57 Worley (10.1016/j.copbio.2016.08.001_sbref0365) 2014; 9 Bingol (10.1016/j.copbio.2016.08.001_sbref0405) 2015; 14 Theis (10.1016/j.copbio.2016.08.001_sbref0525) 2016; 2 Bingol (10.1016/j.copbio.2016.08.001_sbref0315) 2015; 10 Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0375) 2015; 87 Ravanbakhsh (10.1016/j.copbio.2016.08.001_sbref0300) 2015; 10 Bingol (10.1016/j.copbio.2016.08.001_sbref0295) 2016; 8 Nagana Gowda (10.1016/j.copbio.2016.08.001_bib0370) 2015; 87 Bingol (10.1016/j.copbio.2016.08.001_sbref0410) 2015; 87 Lewis (10.1016/j.copbio.2016.08.001_bib0305) 2009; 47 Lewis (10.1016/j.copbio.2016.08.001_bib0420) 2007; 79 Clendinen (10.1016/j.copbio.2016.08.001_bib0515) 2015; 87 Hu (10.1016/j.copbio.2016.08.001_bib0425) 2011; 83 Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0445) 2016; 88 Bingol (10.1016/j.copbio.2016.08.001_sbref0310) 2014; 86 Tayyari (10.1016/j.copbio.2016.08.001_bib0385) 2013; 85 Dona (10.1016/j.copbio.2016.08.001_bib0360) 2014; 86 Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0285) 2015; 260 Wei (10.1016/j.copbio.2016.08.001_bib0330) 2011; 83 Ardenkjaer-Larsen (10.1016/j.copbio.2016.08.001_bib0520) 2003; 100 Cui (10.1016/j.copbio.2016.08.001_bib0320) 2008; 26 Fan (10.1016/j.copbio.2016.08.001_sbref0280) 2016; 92-93 Ioannidis (10.1016/j.copbio.2016.08.001_sbref0530) 2014; 383 Everett (10.1016/j.copbio.2016.08.001_bib0325) 2015; 13 Ardenkjaer-Larsen (10.1016/j.copbio.2016.08.001_sbref0495) 2015; 54 Bingol (10.1016/j.copbio.2016.08.001_bib0440) 2013; 85 Sud (10.1016/j.copbio.2016.08.001_sbref0345) 2016; 44 Fan (10.1016/j.copbio.2016.08.001_sbref0335) 2016 Edison (10.1016/j.copbio.2016.08.001_sbref0470) 2015; 55 Ulrich (10.1016/j.copbio.2016.08.001_bib0340) 2008; 36 Wishart (10.1016/j.copbio.2016.08.001_bib0275) 2009; 37 Gebregiworgis (10.1016/j.copbio.2016.08.001_bib0490) 2016; 15 Gu (10.1016/j.copbio.2016.08.001_bib0415) 2013; 85 Ramaswamy (10.1016/j.copbio.2016.08.001_bib0500) 2013; 235 Salek (10.1016/j.copbio.2016.08.001_sbref0350) 2015; 11 Sumner (10.1016/j.copbio.2016.08.001_bib0465) 2015; 32 Zhang (10.1016/j.copbio.2016.08.001_sbref0380) 2016; 88 Ramaswamy (10.1016/j.copbio.2016.08.001_sbref0505) 2016 Marshall (10.1016/j.copbio.2016.08.001_bib0400) 2015; 11 Forgue (10.1016/j.copbio.2016.08.001_bib0475) 2006; 5 Edison (10.1016/j.copbio.2016.08.001_sbref0455) 2016 Chylla (10.1016/j.copbio.2016.08.001_bib0430) 2011; 83 Clendinen (10.1016/j.copbio.2016.08.001_bib0510) 2014; 86 Robinette (10.1016/j.copbio.2016.08.001_bib0270) 2012; 45 Tiziani (10.1016/j.copbio.2016.08.001_bib0290) 2011; 2 Halouska (10.1016/j.copbio.2016.08.001_bib0460) 2013; 3 Mauve (10.1016/j.copbio.2016.08.001_bib0435) 2016; 52 Chen (10.1016/j.copbio.2016.08.001_bib0485) 2015; 14 25919433 - J Proteome Res. 2015 Jun 5;14(6):2492-9 24588729 - J Med Chem. 2014 Jul 24;57(14):5860-70 25342293 - Nat Prod Rep. 2015 Feb;32(2):212-29 27043450 - Anal Chem. 2016 May 3;88(9):4817-24 24576144 - ACS Chem Biol. 2014 May 16;9(5):1138-44 23969086 - J Magn Reson. 2013 Oct;235:58-65 25746059 - Anal Chem. 2015 Apr 7;87(7):3800-5 26745651 - J Proteome Res. 2016 Feb 5;15(2):360-73 25774104 - Metabolomics. 2015 Apr;11(2):391-402 25881480 - J Proteome Res. 2015 Jun 5;14(6):2642-8 18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10 26467476 - Nucleic Acids Res. 2016 Jan 4;44(D1):D463-70 12930897 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63 16889413 - J Proteome Res. 2006 Aug;5(8):1916-23 26605638 - Anal Chem. 2016 Jan 5;88(1):1003-7 26952191 - Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53 27074265 - Chem Commun (Camb). 2016 May 4;52(36):6142-5 27158639 - Bio Protoc. 2016 Feb 5;6(3):null 22029275 - Anal Chem. 2011 Dec 15;83(24):9352-60 22109519 - Nat Commun. 2011 Nov 22;2:545 25616249 - Magn Reson Chem. 2015 May;53(5):337-43 26476597 - J Magn Reson. 2015 Nov;260:144-60 21894988 - Anal Chem. 2011 Oct 15;83(20):7616-23 25180432 - Anal Chem. 2014 Oct 7;86(19):9887-94 25333826 - ACS Chem Biol. 2015 Feb 20;10(2):452-9 17984079 - Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8 26078915 - J Integr OMICS. 2013 Dec;3(2):120-137 24773139 - Anal Chem. 2014 Jun 3;86(11):5494-501 27051867 - Sci Adv. 2016 Mar 25;2(3):e1501438 23773204 - Anal Chem. 2013 Jul 2;85(13):6414-20 25674812 - Anal Chem. 2015 Apr 7;87(7):3864-70 26491418 - Metabolomics. 2015;11(6):1587-1597 26915807 - Bioanalysis. 2016 Mar;8(6):557-73 26141866 - Integr Comp Biol. 2015 Sep;55(3):478-85 25750701 - Comput Struct Biotechnol J. 2015 Jan 27;13:131-44 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4 26759122 - J Proteome Res. 2016 Feb 5;15(2):659-66 26891337 - Metabolites. 2016 Feb 15;6(1):null 21526800 - Anal Chem. 2011 Jun 15;83(12):4871-80 26136394 - Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85 24411645 - Lancet. 2014 Jan 11;383(9912):166-75 25485990 - Anal Chem. 2015 Jan 6;87(1):706-15 17985927 - Anal Chem. 2007 Dec 15;79(24):9385-90 26154280 - Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):471-7 26017271 - PLoS One. 2015 May 27;10(5):e0124219 19821464 - Magn Reson Chem. 2009 Dec;47 Suppl 1:S123-6 24168717 - Anal Chem. 2013 Nov 19;85(22):10771-9 23930664 - Anal Chem. 2013 Sep 17;85(18):8715-21 21888316 - Acc Chem Res. 2012 Feb 21;45(2):288-97 24937102 - ACS Chem Biol. 2014 Sep 19;9(9):2032-48 25140385 - Anal Chem. 2014 Sep 16;86(18):9242-50 25932900 - Anal Chem. 2015 Jun 2;87(11):5698-706 |
References_xml | – volume: 2 start-page: 545 year: 2011 ident: bib0290 article-title: Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library publication-title: Nat Commun – volume: 52 start-page: 6142 year: 2016 end-page: 6145 ident: bib0435 article-title: Sensitive, highly resolved, and quantitative (1)H-(13)C NMR data in one go for tracking metabolites in vegetal extracts publication-title: Chem Commun (Camb) – volume: 383 start-page: 166 year: 2014 end-page: 175 ident: bib0530 article-title: Increasing value and reducing waste in research design, conduct, and analysis publication-title: Lancet – volume: 87 start-page: 3864 year: 2015 end-page: 3870 ident: bib0410 article-title: Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures publication-title: Anal Chem – volume: 87 start-page: 706 year: 2015 end-page: 715 ident: bib0375 article-title: Expanding the limits of human blood metabolite quantitation using NMR spectroscopy publication-title: Anal Chem – volume: 88 start-page: 4817 year: 2016 end-page: 4824 ident: bib0445 article-title: Simultaneous analysis of major coenzymes of cellular redox reactions and energy using publication-title: Anal Chem – volume: 83 start-page: 7616 year: 2011 end-page: 7623 ident: bib0330 article-title: Ratio analysis nuclear magnetic resonance spectroscopy for selective metabolite identification in complex samples publication-title: Anal Chem – volume: 32 start-page: 212 year: 2015 end-page: 229 ident: bib0465 article-title: Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects publication-title: Nat Prod Rep – volume: 235 start-page: 58 year: 2013 end-page: 65 ident: bib0500 article-title: Development of a publication-title: J Magn Reson – volume: 15 start-page: 360 year: 2016 end-page: 373 ident: bib0355 article-title: Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis publication-title: J Proteome Res – volume: 87 start-page: 3800 year: 2015 end-page: 3805 ident: bib0370 article-title: Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy publication-title: Anal Chem – volume: 14 start-page: 2642 year: 2015 end-page: 2648 ident: bib0405 article-title: NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine publication-title: J Proteome Res – volume: 45 start-page: 288 year: 2012 end-page: 297 ident: bib0270 article-title: NMR in metabolomics and natural products research: two sides of the same coin publication-title: Acc Chem Res – start-page: 6 year: 2016 ident: bib0455 article-title: The time is right to focus on model organism metabolomes publication-title: Metabolites – volume: 54 start-page: 9162 year: 2015 end-page: 9185 ident: bib0495 article-title: Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy publication-title: Angew Chem Int Ed Engl – volume: 8 start-page: 557 year: 2016 end-page: 573 ident: bib0295 article-title: Emerging new strategies for successful metabolite identification in metabolomics publication-title: Bioanalysis – volume: 9 start-page: 2032 year: 2014 end-page: 2048 ident: bib0450 article-title: Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity publication-title: ACS Chem Biol – volume: 57 start-page: 5860 year: 2014 end-page: 5870 ident: bib0480 article-title: The current state of drug discovery and a potential role for NMR metabolomics publication-title: J Med Chem – volume: 92-93 start-page: 18 year: 2016 end-page: 53 ident: bib0280 article-title: Applications of NMR spectroscopy to systems biochemistry publication-title: Prog Nucl Magn Reson Spectrosc – volume: 55 start-page: 478 year: 2015 end-page: 485 ident: bib0470 article-title: Metabolomics and natural-products strategies to study chemical ecology in nematodes publication-title: Integr Comp Biol – volume: 87 start-page: 5698 year: 2015 end-page: 5706 ident: bib0515 article-title: C NMR metabolomics: inadequate network analysis publication-title: Anal Chem – volume: 37 start-page: D603 year: 2009 end-page: D610 ident: bib0275 article-title: HMDB: a knowledgebase for the human metabolome publication-title: Nucleic Acids Res – volume: 86 start-page: 9887 year: 2014 end-page: 9894 ident: bib0360 article-title: Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping publication-title: Anal Chem – volume: 79 start-page: 9385 year: 2007 end-page: 9390 ident: bib0420 article-title: Method for determining molar concentrations of metabolites in complex solutions from two-dimensional publication-title: Anal Chem – volume: 86 start-page: 9242 year: 2014 end-page: 9250 ident: bib0510 article-title: C NMR metabolomics: applications at natural abundance publication-title: Anal Chem – volume: 10 start-page: e0124219 year: 2015 ident: bib0300 article-title: Accurate, fully-automated NMR spectral profiling for metabolomics publication-title: PLoS One – volume: 9 start-page: 1138 year: 2014 end-page: 1144 ident: bib0365 article-title: MVAPACK: a complete data handling package for NMR metabolomics publication-title: ACS Chem Biol – volume: 83 start-page: 9352 year: 2011 end-page: 9360 ident: bib0425 article-title: Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero publication-title: Anal Chem – volume: 11 start-page: 1587 year: 2015 end-page: 1597 ident: bib0350 article-title: COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access publication-title: Metabolomics – volume: 11 start-page: 391 year: 2015 end-page: 402 ident: bib0400 article-title: Combining DI-ESI-MS and NMR datasets for metabolic profiling publication-title: Metabolomics – volume: 47 start-page: s123 year: 2009 end-page: s126 ident: bib0305 article-title: rNMR: open source software for identifying and quantifying metabolites in NMR spectra publication-title: Magn Reson Chem – volume: 26 start-page: 162 year: 2008 end-page: 164 ident: bib0320 article-title: Metabolite identification via the Madison Metabolomics Consortium Database publication-title: Nat Biotechnol – volume: 18 start-page: 471 year: 2015 end-page: 477 ident: bib0395 article-title: Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics publication-title: Curr Opin Clin Nutr Metab Care – volume: 53 start-page: 337 year: 2015 end-page: 343 ident: bib0390 article-title: Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by publication-title: Magn Reson Chem – volume: 260 start-page: 144 year: 2015 end-page: 160 ident: bib0285 article-title: Can NMR solve some significant challenges in metabolomics? publication-title: J Magn Reson – volume: 5 start-page: 1916 year: 2006 end-page: 1923 ident: bib0475 article-title: NMR metabolic profiling of publication-title: J Proteome Res – volume: 83 start-page: 4871 year: 2011 end-page: 4880 ident: bib0430 article-title: Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics publication-title: Anal Chem – volume: 15 start-page: 659 year: 2016 end-page: 666 ident: bib0490 article-title: A urinary metabolic signature for multiple sclerosis and neuromyelitis optica publication-title: J Proteome Res – volume: 100 start-page: 10158 year: 2003 end-page: 10163 ident: bib0520 article-title: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: D402 year: 2008 end-page: D408 ident: bib0340 article-title: Bio Mag Res Bank publication-title: Nucleic Acids Res – volume: 14 start-page: 2492 year: 2015 end-page: 2499 ident: bib0485 article-title: Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression publication-title: J Proteome Res – volume: 88 start-page: 1003 year: 2016 end-page: 1007 ident: bib0380 article-title: Nanoparticle-assisted removal of protein in human serum for metabolomics studies publication-title: Anal Chem – volume: 10 start-page: 452 year: 2015 end-page: 459 ident: bib0315 article-title: Unified and isomer-specific NMR metabolomics database for the accurate analysis of publication-title: ACS Chem Biol – volume: 3 start-page: 120 year: 2013 end-page: 137 ident: bib0460 article-title: Revisiting protocols for the NMR analysis of bacterial metabolomes publication-title: J Integr OMICS – volume: 85 start-page: 6414 year: 2013 end-page: 6420 ident: bib0440 article-title: Quantitative analysis of metabolic mixtures by two-dimensional publication-title: Anal Chem – start-page: 26 year: 2016 ident: bib0505 article-title: Development of a publication-title: Ieee Transact Appl Superconduct – start-page: 6 year: 2016 ident: bib0335 article-title: Stable isotope resolved metabolomics studies tissue slices publication-title: Bio Protoc – volume: 86 start-page: 5494 year: 2014 end-page: 5501 ident: bib0310 article-title: Customized metabolomics database for the analysis of NMR publication-title: Anal Chem – volume: 13 start-page: 131 year: 2015 end-page: 144 ident: bib0325 article-title: A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency publication-title: Comput Struct Biotechnol J – volume: 44 start-page: D463 year: 2016 end-page: D470 ident: bib0345 article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools publication-title: Nucleic Acids Res – volume: 85 start-page: 8715 year: 2013 end-page: 8721 ident: bib0385 article-title: N-cholamine publication-title: Anal Chem – volume: 85 start-page: 10771 year: 2013 end-page: 10779 ident: bib0415 article-title: RAMSY: ratio analysis of mass spectrometry to improve compound identification publication-title: Anal Chem – volume: 2 start-page: e1501438 year: 2016 ident: bib0525 article-title: Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal publication-title: Sci Adv – volume: 37 start-page: D603 year: 2009 ident: 10.1016/j.copbio.2016.08.001_bib0275 article-title: HMDB: a knowledgebase for the human metabolome publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn810 – volume: 92-93 start-page: 18 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0280 article-title: Applications of NMR spectroscopy to systems biochemistry publication-title: Prog Nucl Magn Reson Spectrosc doi: 10.1016/j.pnmrs.2016.01.005 – volume: 86 start-page: 9242 year: 2014 ident: 10.1016/j.copbio.2016.08.001_bib0510 article-title: 13C NMR metabolomics: applications at natural abundance publication-title: Anal Chem doi: 10.1021/ac502346h – volume: 2 start-page: e1501438 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0525 article-title: Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags publication-title: Sci Adv doi: 10.1126/sciadv.1501438 – volume: 54 start-page: 9162 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0495 article-title: Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201410653 – volume: 86 start-page: 9887 year: 2014 ident: 10.1016/j.copbio.2016.08.001_bib0360 article-title: Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping publication-title: Anal Chem doi: 10.1021/ac5025039 – volume: 10 start-page: e0124219 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0300 article-title: Accurate, fully-automated NMR spectral profiling for metabolomics publication-title: PLoS One doi: 10.1371/journal.pone.0124219 – volume: 53 start-page: 337 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0390 article-title: Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N nuclear magnetic resonance publication-title: Magn Reson Chem doi: 10.1002/mrc.4199 – volume: 52 start-page: 6142 year: 2016 ident: 10.1016/j.copbio.2016.08.001_bib0435 article-title: Sensitive, highly resolved, and quantitative (1)H-(13)C NMR data in one go for tracking metabolites in vegetal extracts publication-title: Chem Commun (Camb) doi: 10.1039/C6CC01783E – volume: 87 start-page: 5698 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0515 article-title: 13C NMR metabolomics: inadequate network analysis publication-title: Anal Chem doi: 10.1021/acs.analchem.5b00867 – volume: 383 start-page: 166 year: 2014 ident: 10.1016/j.copbio.2016.08.001_sbref0530 article-title: Increasing value and reducing waste in research design, conduct, and analysis publication-title: Lancet doi: 10.1016/S0140-6736(13)62227-8 – volume: 85 start-page: 8715 year: 2013 ident: 10.1016/j.copbio.2016.08.001_bib0385 article-title: 15N-cholamine—a smart isotope tag for combining NMR- and MS-based metabolite profiling publication-title: Anal Chem doi: 10.1021/ac401712a – volume: 57 start-page: 5860 year: 2014 ident: 10.1016/j.copbio.2016.08.001_sbref0480 article-title: The current state of drug discovery and a potential role for NMR metabolomics publication-title: J Med Chem doi: 10.1021/jm401803b – start-page: 6 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0455 article-title: The time is right to focus on model organism metabolomes publication-title: Metabolites – volume: 10 start-page: 452 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0315 article-title: Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra publication-title: ACS Chem Biol doi: 10.1021/cb5006382 – volume: 88 start-page: 1003 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0380 article-title: Nanoparticle-assisted removal of protein in human serum for metabolomics studies publication-title: Anal Chem doi: 10.1021/acs.analchem.5b03889 – volume: 5 start-page: 1916 year: 2006 ident: 10.1016/j.copbio.2016.08.001_bib0475 article-title: NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity publication-title: J Proteome Res doi: 10.1021/pr060114v – volume: 18 start-page: 471 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0395 article-title: Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics publication-title: Curr Opin Clin Nutr Metab Care doi: 10.1097/MCO.0000000000000206 – volume: 86 start-page: 5494 year: 2014 ident: 10.1016/j.copbio.2016.08.001_sbref0310 article-title: Customized metabolomics database for the analysis of NMR 1H-1H TOCSY and 13C-1H HSQC-TOCSY spectra of complex mixtures publication-title: Anal Chem doi: 10.1021/ac500979g – volume: 88 start-page: 4817 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0445 article-title: Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo 1H NMR spectroscopy publication-title: Anal Chem doi: 10.1021/acs.analchem.6b00442 – volume: 83 start-page: 9352 year: 2011 ident: 10.1016/j.copbio.2016.08.001_bib0425 article-title: Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H–13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis publication-title: Anal Chem doi: 10.1021/ac201948f – volume: 13 start-page: 131 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0325 article-title: A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2015.01.002 – volume: 14 start-page: 2492 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0485 article-title: Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00059 – volume: 55 start-page: 478 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0470 article-title: Metabolomics and natural-products strategies to study chemical ecology in nematodes publication-title: Integr Comp Biol doi: 10.1093/icb/icv077 – volume: 87 start-page: 3800 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0370 article-title: Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy publication-title: Anal Chem doi: 10.1021/ac504435b – start-page: 6 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0335 article-title: Stable isotope resolved metabolomics studies tissue slices publication-title: Bio Protoc – volume: 15 start-page: 659 year: 2016 ident: 10.1016/j.copbio.2016.08.001_bib0490 article-title: A urinary metabolic signature for multiple sclerosis and neuromyelitis optica publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b01111 – volume: 235 start-page: 58 year: 2013 ident: 10.1016/j.copbio.2016.08.001_bib0500 article-title: Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe publication-title: J Magn Reson doi: 10.1016/j.jmr.2013.07.012 – volume: 85 start-page: 6414 year: 2013 ident: 10.1016/j.copbio.2016.08.001_bib0440 article-title: Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy publication-title: Anal Chem doi: 10.1021/ac400913m – start-page: 26 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0505 article-title: Development of a 1H–13C dual-optimized NMR probe based on double-tuned high temperature superconducting resonators publication-title: Ieee Transact Appl Superconduct – volume: 14 start-page: 2642 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0405 article-title: NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00184 – volume: 2 start-page: 545 year: 2011 ident: 10.1016/j.copbio.2016.08.001_bib0290 article-title: Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library publication-title: Nat Commun doi: 10.1038/ncomms1562 – volume: 83 start-page: 4871 year: 2011 ident: 10.1016/j.copbio.2016.08.001_bib0430 article-title: Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics publication-title: Anal Chem doi: 10.1021/ac200536b – volume: 32 start-page: 212 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0465 article-title: Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects publication-title: Nat Prod Rep doi: 10.1039/C4NP00072B – volume: 45 start-page: 288 year: 2012 ident: 10.1016/j.copbio.2016.08.001_bib0270 article-title: NMR in metabolomics and natural products research: two sides of the same coin publication-title: Acc Chem Res doi: 10.1021/ar2001606 – volume: 83 start-page: 7616 year: 2011 ident: 10.1016/j.copbio.2016.08.001_bib0330 article-title: Ratio analysis nuclear magnetic resonance spectroscopy for selective metabolite identification in complex samples publication-title: Anal Chem doi: 10.1021/ac201625f – volume: 36 start-page: D402 year: 2008 ident: 10.1016/j.copbio.2016.08.001_bib0340 article-title: Bio Mag Res Bank publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm957 – volume: 44 start-page: D463 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0345 article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1042 – volume: 11 start-page: 391 year: 2015 ident: 10.1016/j.copbio.2016.08.001_bib0400 article-title: Combining DI-ESI-MS and NMR datasets for metabolic profiling publication-title: Metabolomics doi: 10.1007/s11306-014-0704-4 – volume: 15 start-page: 360 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0355 article-title: Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis publication-title: J Proteome Res doi: 10.1021/acs.jproteome.5b00885 – volume: 9 start-page: 1138 year: 2014 ident: 10.1016/j.copbio.2016.08.001_sbref0365 article-title: MVAPACK: a complete data handling package for NMR metabolomics publication-title: ACS Chem Biol doi: 10.1021/cb4008937 – volume: 9 start-page: 2032 year: 2014 ident: 10.1016/j.copbio.2016.08.001_bib0450 article-title: Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity publication-title: ACS Chem Biol doi: 10.1021/cb400894a – volume: 26 start-page: 162 year: 2008 ident: 10.1016/j.copbio.2016.08.001_bib0320 article-title: Metabolite identification via the Madison Metabolomics Consortium Database publication-title: Nat Biotechnol doi: 10.1038/nbt0208-162 – volume: 47 start-page: s123 year: 2009 ident: 10.1016/j.copbio.2016.08.001_bib0305 article-title: rNMR: open source software for identifying and quantifying metabolites in NMR spectra publication-title: Magn Reson Chem doi: 10.1002/mrc.2526 – volume: 8 start-page: 557 year: 2016 ident: 10.1016/j.copbio.2016.08.001_sbref0295 article-title: Emerging new strategies for successful metabolite identification in metabolomics publication-title: Bioanalysis doi: 10.4155/bio-2015-0004 – volume: 3 start-page: 120 year: 2013 ident: 10.1016/j.copbio.2016.08.001_bib0460 article-title: Revisiting protocols for the NMR analysis of bacterial metabolomes publication-title: J Integr OMICS – volume: 87 start-page: 3864 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0410 article-title: Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures publication-title: Anal Chem doi: 10.1021/ac504633z – volume: 79 start-page: 9385 year: 2007 ident: 10.1016/j.copbio.2016.08.001_bib0420 article-title: Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra publication-title: Anal Chem doi: 10.1021/ac071583z – volume: 11 start-page: 1587 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0350 article-title: COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access publication-title: Metabolomics doi: 10.1007/s11306-015-0810-y – volume: 87 start-page: 706 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0375 article-title: Expanding the limits of human blood metabolite quantitation using NMR spectroscopy publication-title: Anal Chem doi: 10.1021/ac503651e – volume: 260 start-page: 144 year: 2015 ident: 10.1016/j.copbio.2016.08.001_sbref0285 article-title: Can NMR solve some significant challenges in metabolomics? publication-title: J Magn Reson doi: 10.1016/j.jmr.2015.07.014 – volume: 85 start-page: 10771 year: 2013 ident: 10.1016/j.copbio.2016.08.001_bib0415 article-title: RAMSY: ratio analysis of mass spectrometry to improve compound identification publication-title: Anal Chem doi: 10.1021/ac4019268 – volume: 100 start-page: 10158 year: 2003 ident: 10.1016/j.copbio.2016.08.001_bib0520 article-title: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1733835100 – reference: 25674812 - Anal Chem. 2015 Apr 7;87(7):3864-70 – reference: 25919433 - J Proteome Res. 2015 Jun 5;14(6):2492-9 – reference: 25881480 - J Proteome Res. 2015 Jun 5;14(6):2642-8 – reference: 23773204 - Anal Chem. 2013 Jul 2;85(13):6414-20 – reference: 27051867 - Sci Adv. 2016 Mar 25;2(3):e1501438 – reference: 24773139 - Anal Chem. 2014 Jun 3;86(11):5494-501 – reference: 26154280 - Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):471-7 – reference: 25180432 - Anal Chem. 2014 Oct 7;86(19):9887-94 – reference: 21894988 - Anal Chem. 2011 Oct 15;83(20):7616-23 – reference: 25746059 - Anal Chem. 2015 Apr 7;87(7):3800-5 – reference: 24937102 - ACS Chem Biol. 2014 Sep 19;9(9):2032-48 – reference: 26605638 - Anal Chem. 2016 Jan 5;88(1):1003-7 – reference: 12930897 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63 – reference: 26745651 - J Proteome Res. 2016 Feb 5;15(2):360-73 – reference: 26078915 - J Integr OMICS. 2013 Dec;3(2):120-137 – reference: 26891337 - Metabolites. 2016 Feb 15;6(1):null – reference: 17984079 - Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8 – reference: 24168717 - Anal Chem. 2013 Nov 19;85(22):10771-9 – reference: 21526800 - Anal Chem. 2011 Jun 15;83(12):4871-80 – reference: 26136394 - Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85 – reference: 26952191 - Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53 – reference: 27074265 - Chem Commun (Camb). 2016 May 4;52(36):6142-5 – reference: 25774104 - Metabolomics. 2015 Apr;11(2):391-402 – reference: 26915807 - Bioanalysis. 2016 Mar;8(6):557-73 – reference: 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4 – reference: 26141866 - Integr Comp Biol. 2015 Sep;55(3):478-85 – reference: 27158639 - Bio Protoc. 2016 Feb 5;6(3):null – reference: 17985927 - Anal Chem. 2007 Dec 15;79(24):9385-90 – reference: 22029275 - Anal Chem. 2011 Dec 15;83(24):9352-60 – reference: 26476597 - J Magn Reson. 2015 Nov;260:144-60 – reference: 25485990 - Anal Chem. 2015 Jan 6;87(1):706-15 – reference: 27043450 - Anal Chem. 2016 May 3;88(9):4817-24 – reference: 26491418 - Metabolomics. 2015;11(6):1587-1597 – reference: 21888316 - Acc Chem Res. 2012 Feb 21;45(2):288-97 – reference: 18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10 – reference: 23969086 - J Magn Reson. 2013 Oct;235:58-65 – reference: 26759122 - J Proteome Res. 2016 Feb 5;15(2):659-66 – reference: 25333826 - ACS Chem Biol. 2015 Feb 20;10(2):452-9 – reference: 25932900 - Anal Chem. 2015 Jun 2;87(11):5698-706 – reference: 24588729 - J Med Chem. 2014 Jul 24;57(14):5860-70 – reference: 19821464 - Magn Reson Chem. 2009 Dec;47 Suppl 1:S123-6 – reference: 26467476 - Nucleic Acids Res. 2016 Jan 4;44(D1):D463-70 – reference: 25140385 - Anal Chem. 2014 Sep 16;86(18):9242-50 – reference: 25342293 - Nat Prod Rep. 2015 Feb;32(2):212-29 – reference: 24576144 - ACS Chem Biol. 2014 May 16;9(5):1138-44 – reference: 26017271 - PLoS One. 2015 May 27;10(5):e0124219 – reference: 22109519 - Nat Commun. 2011 Nov 22;2:545 – reference: 25616249 - Magn Reson Chem. 2015 May;53(5):337-43 – reference: 24411645 - Lancet. 2014 Jan 11;383(9912):166-75 – reference: 25750701 - Comput Struct Biotechnol J. 2015 Jan 27;13:131-44 – reference: 23930664 - Anal Chem. 2013 Sep 17;85(18):8715-21 – reference: 16889413 - J Proteome Res. 2006 Aug;5(8):1916-23 |
SSID | ssj0005370 |
Score | 2.6658165 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its... Graphical abstract The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | Animals biochemical pathways Biomarkers - analysis Biomarkers - metabolism Humans Internal Medicine isotopes Magnetic Resonance Imaging Magnetic Resonance Spectroscopy - methods mass spectrometry Metabolic Networks and Pathways metabolomics Metabolomics - methods nuclear magnetic resonance spectroscopy |
Title | The future of NMR-based metabolomics |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0958166916301768 https://www.clinicalkey.es/playcontent/1-s2.0-S0958166916301768 https://dx.doi.org/10.1016/j.copbio.2016.08.001 https://www.ncbi.nlm.nih.gov/pubmed/27580257 https://www.proquest.com/docview/1835503670 https://www.proquest.com/docview/2000311647 https://pubmed.ncbi.nlm.nih.gov/PMC5305426 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-BYfpCZcV9ou27JHQjSogYNKwm3T3e5GDBYicPW3O9MHAcFgvLazaTuZnfmmO_MNITWhtI59a6hVzNKGHyoKcbxJmRGcs9BYT-P_jm4v6PQbjwM-KJF20QuDZZW57898euqt8yv1XJv1yXBYfwFwgIdegG_ASAE1Ywd7I8SyvtuvpTIPlg6MQ2GK0kX7XFrjpccTNcQWQC9IiTzz0TAbwtM6_PxZRbkUlu4PyH6OJ51W9sqHpGSSI7K3xDJ4TGpgCk7GHeKMrdPrPlOMXbHzYWZgAiPsS56ekP793Wu7Q_PhCFQHbmNGOUQfoTXCCS8GDBdpSCRExBTjzYhBYiKavvBYHCrXM0ZAGmwjV8UW4CGAHNiVp6ScjBNzTpwotpbzQFhjBeRLEUjpSAdWG1fEipkKYYVOpM6Zw3GAxUgWJWLvMtOkRE1KnGvpehVCF6smGXPGFnleqFsWXaHgxyS49i3rwk3rzDTfjFPpyakvXblmMMsrV2zuD8-8KexBwnbEM5YoMeM5PAsQLXeRFe93GeyOYh4SuVXIWWZDCw35kL8BDIU74Yp1LQSQDnz1TjJ8S2nBObhuwFsX__6qS7LrI2hJa9KvSHn2OTfXALlmqpruqSrZaT08dXrfL3gq8Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMPSxdtmjdYFehdhWZEfHoFiRtkkOfQC9CZYsoSlSJ2iS_z_SlrNkTdGh15iEHYIiP9rkR4BTqY3JY2eZ09yxdpxqhnm8w7iVQvDUusjQ-47BMOndtS_vxf0WnNWzMNRW6WN_FdPLaO1_aXlrtqajUesGwQF99EJ8g06KqPkDbBM7VbsB292Lq97wb6cHL3fGkTwjhXqCrmzzMpOpHtEUYJSUXJ5-O8yGDPUSgf7bSLmSmc534IuHlEG3eupd2LLFHnxeIRrch1P0hqCiDwkmLhgOrhmlrzx4snP0gjGNJs--wt3579uzHvP7EZhJwvacCUxA0hhCFFGOMC4zWEvIjGsuOhnH2kR2YhnxPNVhZK3ESthloc4dIkTEOXgwD6BRTAr7DYIsd06IRDrrJJZMGUqZzCTO2FDmmtsm8NomynjycNphMVZ1l9ijqiypyJKKVluGURPYUmtakWe8IS9qc6t6MBRDmcLo_oZeuknPzvx5nKlIzWIVqhc-s6q55nb_cc-T2h8Unkj6zJIVdrLAeyGoFSER470uQwNSPCIutyYcVj60tFCMJRwiUbySrnnXUoAYwdevFKOHkhlcYPRGyPX93f_qGD72bgd91b8YXv2ATzFhmLJF_Sc05s8L-wsR2Fwf-RP2B1azLaI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+future+of+NMR-based+metabolomics&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Markley%2C+John+L&rft.au=Br%C3%BCschweiler%2C+Rafael&rft.au=Edison%2C+Arthur+S&rft.au=Eghbalnia%2C+Hamid+R&rft.date=2017-02-01&rft.pub=Elsevier+Ltd&rft.issn=0958-1669&rft.eissn=1879-0429&rft.volume=43&rft.spage=34&rft.epage=40&rft_id=info:doi/10.1016%2Fj.copbio.2016.08.001&rft.externalDocID=S0958166916301768 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09581669%2Fcov200h.gif |