The future of NMR-based metabolomics

[Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development. The two leading analytical approaches to met...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biotechnology Vol. 43; pp. 34 - 40
Main Authors Markley, John L, Brüschweiler, Rafael, Edison, Arthur S, Eghbalnia, Hamid R, Powers, Robert, Raftery, Daniel, Wishart, David S
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2017
Subjects
Online AccessGet full text
ISSN0958-1669
1879-0429
DOI10.1016/j.copbio.2016.08.001

Cover

Loading…
Abstract [Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development. The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
AbstractList The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
[Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its inherent strengths.•Reproducibility and data sharing are of key importance in technology development. The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo. NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently overshadowed by MS in terms of numbers of compounds resolved, NMR spectroscopy offers advantages both on its own and coupled with MS. NMR data are highly reproducible and quantitative over a wide dynamic range and are unmatched for determining structures of unknowns. NMR is adept at tracing metabolic pathways and fluxes using isotope labels. Moreover, NMR is non-destructive and can be utilized in vivo . NMR results have a proven track record of translating in vitro findings to in vivo clinical applications.
Graphical abstract
Author Markley, John L
Wishart, David S
Powers, Robert
Edison, Arthur S
Raftery, Daniel
Eghbalnia, Hamid R
Brüschweiler, Rafael
AuthorAffiliation c Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA
d Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln NE 68588, USA
e Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle WA 98109, USA
a Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison WI 53706, USA
b Departments of Chemistry & Biochemistry and Biological Chemistry & Pharmacology, The Ohio State University, 151 W. Woodruff Ave., Columbus OH 43210, USA
f Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8
AuthorAffiliation_xml – name: f Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2E8
– name: b Departments of Chemistry & Biochemistry and Biological Chemistry & Pharmacology, The Ohio State University, 151 W. Woodruff Ave., Columbus OH 43210, USA
– name: d Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln NE 68588, USA
– name: a Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison WI 53706, USA
– name: c Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens GA 30602, USA
– name: e Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle WA 98109, USA
Author_xml – sequence: 1
  givenname: John L
  surname: Markley
  fullname: Markley, John L
  email: jmarkley@wisc.edu
  organization: Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
– sequence: 2
  givenname: Rafael
  surname: Brüschweiler
  fullname: Brüschweiler, Rafael
  organization: Department of Chemistry & Biochemistry, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA
– sequence: 3
  givenname: Arthur S
  surname: Edison
  fullname: Edison, Arthur S
  organization: Department of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
– sequence: 4
  givenname: Hamid R
  surname: Eghbalnia
  fullname: Eghbalnia, Hamid R
  organization: Biochemistry Department, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
– sequence: 5
  givenname: Robert
  surname: Powers
  fullname: Powers, Robert
  organization: Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588, USA
– sequence: 6
  givenname: Daniel
  surname: Raftery
  fullname: Raftery, Daniel
  organization: Department of Anesthesiology & Pain Medicine, 850 Republican St, University of Washington, Seattle, WA 98109, USA
– sequence: 7
  givenname: David S
  surname: Wishart
  fullname: Wishart, David S
  organization: Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E8
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27580257$$D View this record in MEDLINE/PubMed
BookMark eNqVklFrFDEUhYNU7Lb6D0T2wQdfZrxJJslERJBiVagKWp9DJnPHZp2ZbJOZQv99M-xaVJDFpxByzpd777kn5GgMIxLylEJJgcqXm9KFbeNDyfKthLoEoA_IitZKF1AxfURWoEVdUCn1MTlJaQMAgit4RI6ZEjUwoVbk-eUVrrt5miOuQ7f-_Olr0diE7XrAyTahD4N36TF52Nk-4ZP9eUq-n7-7PPtQXHx5__Hs7UXhJFRTISrKtXNcK0lbpSrrKlZryxsuastBS10zTXmrGqCIGirZWWjaDhgICUrzU_Jmx93OzYCtw3GKtjfb6Acbb02w3vz5Mvor8yPcGMFBVExmwIs9IIbrGdNkBp8c9r0dMczJsDwCTqms1EEprbkQwKWCLH32e1n39fyaYhZUO4GLIaWI3b2EglnCMhuzC8ssYRmoTQ4r2179ZXN-spMPS3O-P2TezwpzIDceo0nO4-iw9RHdZNrg_xfgej96Z_ufeItpE-Y45rANNYkZMN-WZVp2iUoOVMk6A17_G3D4_zuBcdhx
CitedBy_id crossref_primary_10_1021_acsomega_9b04429
crossref_primary_10_1002_anie_201804736
crossref_primary_10_1016_j_fochms_2020_100009
crossref_primary_10_1039_C8AN01778F
crossref_primary_10_3390_nu9121307
crossref_primary_10_1016_j_biologicals_2019_07_003
crossref_primary_10_3390_molecules24122195
crossref_primary_10_1016_j_cca_2019_08_011
crossref_primary_10_1016_j_waojou_2024_101013
crossref_primary_10_1021_acs_analchem_2c00891
crossref_primary_10_1039_C7CC07023C
crossref_primary_10_1016_j_foodcont_2024_110817
crossref_primary_10_1016_j_mam_2021_100990
crossref_primary_10_1016_j_xcrm_2024_101579
crossref_primary_10_3390_ani9110898
crossref_primary_10_1002_nbm_3927
crossref_primary_10_1016_j_jbc_2024_107746
crossref_primary_10_1016_j_jpba_2017_07_035
crossref_primary_10_1016_j_scitotenv_2018_11_113
crossref_primary_10_4155_bio_2019_0014
crossref_primary_10_3389_fphar_2024_1463673
crossref_primary_10_1021_acs_analchem_0c00591
crossref_primary_10_1103_PhysRevX_10_021053
crossref_primary_10_1016_j_jmr_2022_107335
crossref_primary_10_1016_j_ab_2020_113692
crossref_primary_10_1002_cphc_201800917
crossref_primary_10_3390_molecules27030802
crossref_primary_10_1016_j_aca_2019_07_026
crossref_primary_10_1002_mrc_4814
crossref_primary_10_1016_j_molmet_2019_12_002
crossref_primary_10_1038_s41591_022_01980_3
crossref_primary_10_1016_j_pnmrs_2021_03_001
crossref_primary_10_3390_metabo14040219
crossref_primary_10_3390_metabo14050253
crossref_primary_10_1016_j_foodchem_2019_125510
crossref_primary_10_1021_acs_jproteome_1c00914
crossref_primary_10_1016_j_envres_2022_114011
crossref_primary_10_3390_polym16141999
crossref_primary_10_1002_ansa_202100054
crossref_primary_10_3390_jpm8030028
crossref_primary_10_1111_1471_0307_12745
crossref_primary_10_1007_s11306_024_02217_9
crossref_primary_10_1007_s11306_016_1155_x
crossref_primary_10_1016_j_cca_2019_08_030
crossref_primary_10_1016_j_transci_2021_103155
crossref_primary_10_3390_molecules29102216
crossref_primary_10_3389_fonc_2024_1331215
crossref_primary_10_1016_j_arr_2021_101346
crossref_primary_10_7831_ras_10_0_304
crossref_primary_10_1038_s41598_022_22127_x
crossref_primary_10_1038_s41598_021_93401_7
crossref_primary_10_1016_j_nefroe_2020_12_002
crossref_primary_10_1016_j_aca_2021_338298
crossref_primary_10_1016_j_pnmrs_2017_01_001
crossref_primary_10_1007_s10815_018_1281_7
crossref_primary_10_1186_s12967_022_03478_5
crossref_primary_10_1007_s00018_018_2744_9
crossref_primary_10_3389_fphar_2022_805782
crossref_primary_10_1002_ansa_202000117
crossref_primary_10_1002_bit_27243
crossref_primary_10_1055_a_1529_8370
crossref_primary_10_3389_fcimb_2022_833269
crossref_primary_10_3390_molecules27082579
crossref_primary_10_1002_mrm_29166
crossref_primary_10_3390_metabo11120891
crossref_primary_10_1016_j_envint_2021_106941
crossref_primary_10_1021_acs_analchem_3c03677
crossref_primary_10_1016_j_jprot_2017_08_020
crossref_primary_10_1111_prd_12351
crossref_primary_10_1093_bib_bbab138
crossref_primary_10_1136_jclinpath_2018_205414
crossref_primary_10_3390_molecules25061444
crossref_primary_10_1002_adfm_201910335
crossref_primary_10_1016_j_meegid_2020_104571
crossref_primary_10_3390_biomedicines10061254
crossref_primary_10_3390_ht7020015
crossref_primary_10_1016_j_copbio_2018_02_010
crossref_primary_10_1016_j_jpba_2017_06_024
crossref_primary_10_1016_j_aquatox_2017_09_010
crossref_primary_10_1515_hsz_2021_0232
crossref_primary_10_1016_j_lwt_2017_12_069
crossref_primary_10_1002_pmic_201800363
crossref_primary_10_1016_j_foodres_2017_11_077
crossref_primary_10_1016_j_tplants_2021_06_004
crossref_primary_10_1016_j_nefro_2020_07_002
crossref_primary_10_3389_fnut_2021_780228
crossref_primary_10_1007_s11101_021_09762_4
crossref_primary_10_1021_acsomega_8b02882
crossref_primary_10_1007_s00216_023_04744_1
crossref_primary_10_3389_fphys_2022_858869
crossref_primary_10_1134_S1068162019070070
crossref_primary_10_3390_molecules26216502
crossref_primary_10_1016_j_heliyon_2018_e00856
crossref_primary_10_1016_j_cotox_2019_03_007
crossref_primary_10_1039_D4NR02328E
crossref_primary_10_1016_j_neulet_2017_06_016
crossref_primary_10_1128_mSystems_00580_20
crossref_primary_10_1515_cclm_2018_0380
crossref_primary_10_3390_molecules26020382
crossref_primary_10_1007_s11306_023_02041_7
crossref_primary_10_1021_acs_jproteome_0c00243
crossref_primary_10_1038_s41467_021_25496_5
crossref_primary_10_3390_metabo13101075
crossref_primary_10_1080_10408398_2020_1761287
crossref_primary_10_3390_metabo11010039
crossref_primary_10_1159_000513545
crossref_primary_10_1002_ansa_202000169
crossref_primary_10_3390_metabo12080678
crossref_primary_10_1007_s10545_017_0074_y
crossref_primary_10_1016_j_molliq_2024_125997
crossref_primary_10_1038_s41598_023_43056_3
crossref_primary_10_3892_mmr_2018_9477
crossref_primary_10_1021_acs_analchem_6b04420
crossref_primary_10_1021_acsphotonics_1c01934
crossref_primary_10_1007_s11306_021_01808_0
crossref_primary_10_1039_C7NJ01416C
crossref_primary_10_1016_j_aca_2018_04_006
crossref_primary_10_1002_ange_201804736
crossref_primary_10_1007_s12161_019_01664_8
crossref_primary_10_1016_j_envint_2016_11_026
crossref_primary_10_1039_C9RA06808B
crossref_primary_10_1021_acsomega_8b01692
crossref_primary_10_1186_s12931_017_0631_9
crossref_primary_10_1021_acs_analchem_8b05611
crossref_primary_10_1021_acs_jafc_3c09362
crossref_primary_10_1016_j_aca_2020_10_054
crossref_primary_10_1016_j_aquatox_2021_105766
crossref_primary_10_1155_2018_6532789
crossref_primary_10_1038_s41467_020_16937_8
crossref_primary_10_3390_mps1040045
crossref_primary_10_1039_C8NP00065D
crossref_primary_10_1038_s41592_019_0358_2
crossref_primary_10_1186_s13023_021_02075_x
crossref_primary_10_1016_j_jpba_2018_08_046
crossref_primary_10_3389_fmicb_2020_626183
crossref_primary_10_2217_bmm_2019_0008
crossref_primary_10_1016_j_foodres_2023_113071
crossref_primary_10_3390_molecules26010245
crossref_primary_10_1002_jbt_23807
crossref_primary_10_1039_C8SC03628D
crossref_primary_10_1093_biolinnean_blx120
crossref_primary_10_1080_17460441_2020_1722636
crossref_primary_10_1016_j_jmb_2019_07_020
crossref_primary_10_1111_pai_13785
crossref_primary_10_1146_annurev_anchem_091620_015205
crossref_primary_10_3390_molecules26247565
crossref_primary_10_1002_nbm_4177
crossref_primary_10_1016_j_foodres_2020_109763
crossref_primary_10_1039_C8AN01310A
crossref_primary_10_1155_2024_7004371
crossref_primary_10_1016_j_jmr_2022_107165
crossref_primary_10_1016_j_cca_2024_119842
crossref_primary_10_1021_acs_analchem_3c02756
crossref_primary_10_1038_s43586_023_00274_3
crossref_primary_10_1007_s00216_019_01863_6
crossref_primary_10_14258_jcprm_20230111663
crossref_primary_10_3390_ijms222212133
crossref_primary_10_3390_biom10030357
crossref_primary_10_1021_acs_analchem_0c04679
crossref_primary_10_1186_s40798_020_0238_4
crossref_primary_10_2174_0929867324666171006151408
crossref_primary_10_1016_j_surfin_2022_102440
crossref_primary_10_1016_j_clnu_2024_07_027
crossref_primary_10_1186_s12944_024_02368_7
crossref_primary_10_3390_metabo11050284
crossref_primary_10_3390_ijerph19042377
crossref_primary_10_1007_s11306_017_1273_0
crossref_primary_10_1021_acs_analchem_2c03743
crossref_primary_10_3389_fbioe_2024_1347138
crossref_primary_10_1021_acs_analchem_3c00225
crossref_primary_10_1007_s00216_019_01600_z
crossref_primary_10_1016_j_chemphyslip_2024_105395
crossref_primary_10_1002_rcm_8197
crossref_primary_10_1016_j_foodchem_2022_135191
crossref_primary_10_1016_j_heares_2022_108645
crossref_primary_10_3390_ph14100978
crossref_primary_10_1021_acs_jpca_2c06858
crossref_primary_10_1177_2397847318820768
crossref_primary_10_1039_C8AY00830B
crossref_primary_10_3390_metabo13020144
crossref_primary_10_1016_j_preteyeres_2018_11_002
crossref_primary_10_17352_ijpsdr_000029
crossref_primary_10_3390_genes10121011
crossref_primary_10_1002_chem_201701572
crossref_primary_10_1007_s10858_017_0119_4
crossref_primary_10_3390_antibiotics10050565
crossref_primary_10_1016_j_fbio_2023_102538
crossref_primary_10_1016_j_trac_2018_11_021
crossref_primary_10_1371_journal_pntd_0008767
crossref_primary_10_1002_fsn3_2968
crossref_primary_10_1002_pca_3241
crossref_primary_10_3389_fvets_2023_1129741
crossref_primary_10_1038_s41598_019_50346_2
crossref_primary_10_1038_s41598_024_65504_4
crossref_primary_10_1080_10408347_2022_2162810
crossref_primary_10_1002_cbdv_201800479
crossref_primary_10_3390_ijms21144853
crossref_primary_10_3390_ht7020009
crossref_primary_10_2174_1386207322666190704094003
crossref_primary_10_1038_s41598_020_62413_0
crossref_primary_10_1016_j_ab_2020_113992
crossref_primary_10_3390_jpm11111143
crossref_primary_10_1021_acs_analchem_9b03107
crossref_primary_10_1016_j_jchromb_2019_04_029
crossref_primary_10_1002_cpps_98
crossref_primary_10_1111_epi_16768
crossref_primary_10_1098_rsob_200092
crossref_primary_10_1002_mrc_4874
crossref_primary_10_1007_s00338_021_02125_7
crossref_primary_10_1016_j_jmr_2022_107272
crossref_primary_10_1021_acs_est_8b05024
crossref_primary_10_1002_mas_21672
crossref_primary_10_3389_fphys_2020_532271
crossref_primary_10_3390_metabo11120818
crossref_primary_10_1016_j_foodchem_2024_140991
crossref_primary_10_1016_j_ophtha_2024_07_004
crossref_primary_10_1097_HEP_0000000000000879
crossref_primary_10_37039_1982_8551_20220056
crossref_primary_10_3390_agronomy11050824
crossref_primary_10_1016_j_bioadv_2024_214085
crossref_primary_10_1186_s13007_019_0487_8
crossref_primary_10_3390_biomedicines9101481
crossref_primary_10_1016_j_jhazmat_2019_02_084
crossref_primary_10_1021_acs_analchem_2c03323
crossref_primary_10_1021_acs_jproteome_2c00030
crossref_primary_10_1007_s12020_021_02858_z
crossref_primary_10_1016_j_heliyon_2024_e36944
crossref_primary_10_1016_j_cell_2018_03_055
crossref_primary_10_1002_anie_202100734
crossref_primary_10_3390_molecules22081289
crossref_primary_10_1021_acs_analchem_8b04482
crossref_primary_10_1080_10408363_2022_2027864
crossref_primary_10_1016_j_bbrc_2019_04_003
crossref_primary_10_1007_s11033_024_10175_7
crossref_primary_10_14258_jcprm_2018044003
crossref_primary_10_1002_advs_202001714
crossref_primary_10_1007_s40619_023_01370_y
crossref_primary_10_3390_ijms21072533
crossref_primary_10_1007_s11306_020_1633_z
crossref_primary_10_1039_C8NR00897C
crossref_primary_10_1016_j_tice_2021_101663
crossref_primary_10_1088_1757_899X_572_1_012010
crossref_primary_10_1088_1757_899X_572_1_012011
crossref_primary_10_3389_fpls_2019_01313
crossref_primary_10_1021_acs_analchem_0c04766
crossref_primary_10_1038_s41598_018_37525_3
crossref_primary_10_1016_j_jenvman_2018_05_068
crossref_primary_10_12677_ACM_2024_142591
crossref_primary_10_3389_fneur_2017_00719
crossref_primary_10_1002_nbm_4192
crossref_primary_10_1161_JAHA_122_027725
crossref_primary_10_1073_pnas_2300942120
crossref_primary_10_1016_j_jmr_2019_07_013
crossref_primary_10_1007_s00702_024_02844_5
crossref_primary_10_18097_pbmc20206604279
crossref_primary_10_3390_molecules26040931
crossref_primary_10_1146_annurev_arplant_060223_013842
crossref_primary_10_3389_fphar_2022_904231
crossref_primary_10_1080_00032719_2021_2019758
crossref_primary_10_3390_jof6040223
crossref_primary_10_1080_09553002_2020_1704299
crossref_primary_10_1080_14737159_2019_1626719
crossref_primary_10_1021_acs_analchem_4c04600
crossref_primary_10_1016_j_jpba_2018_01_025
crossref_primary_10_1016_j_jprot_2020_103795
crossref_primary_10_1021_acs_analchem_0c04414
crossref_primary_10_3390_ijms19061759
crossref_primary_10_30773_pi_2024_0164
crossref_primary_10_1016_j_jfca_2022_105019
crossref_primary_10_3389_fchem_2023_1142287
crossref_primary_10_3390_ani11113056
crossref_primary_10_1007_s40471_019_00187_4
crossref_primary_10_1002_cppb_20100
crossref_primary_10_1016_j_phymed_2020_153246
crossref_primary_10_3390_ijms21228835
crossref_primary_10_1016_j_rbmo_2020_09_002
crossref_primary_10_4103_ijmr_IJMR_239_19
crossref_primary_10_1039_D1MO00017A
crossref_primary_10_1073_pnas_2114186119
crossref_primary_10_3390_diagnostics11020234
crossref_primary_10_1038_s41598_018_33496_7
crossref_primary_10_3390_agriculture12070984
crossref_primary_10_1002_bmc_4741
crossref_primary_10_1186_s13020_018_0218_5
crossref_primary_10_1021_acscentsci_3c01201
crossref_primary_10_3390_plants11162182
crossref_primary_10_1016_j_psj_2022_101866
crossref_primary_10_1186_s10020_024_01046_9
crossref_primary_10_1016_j_bpc_2020_106462
crossref_primary_10_1016_j_sajb_2022_05_060
crossref_primary_10_1021_acs_analchem_4c02688
crossref_primary_10_1093_bioinformatics_btad593
crossref_primary_10_1109_TED_2019_2909067
crossref_primary_10_1089_rej_2018_2118
crossref_primary_10_1016_j_chemolab_2020_104169
crossref_primary_10_1016_j_ecoenv_2018_12_008
crossref_primary_10_1080_17512433_2020_1713750
crossref_primary_10_1039_D4RA03019B
crossref_primary_10_1039_D5AN00074B
crossref_primary_10_1186_s13020_019_0240_2
crossref_primary_10_1002_mrc_5212
crossref_primary_10_1021_acsestwater_4c00308
crossref_primary_10_1002_nbm_4683
crossref_primary_10_1021_acs_analchem_9b03849
crossref_primary_10_1007_s11306_018_1396_y
crossref_primary_10_1080_14786419_2024_2447052
crossref_primary_10_1002_mrc_5106
crossref_primary_10_1021_acs_jchemed_9b00133
crossref_primary_10_1039_D1RA03008F
crossref_primary_10_1093_ofid_ofab483
crossref_primary_10_3390_encyclopedia4040102
crossref_primary_10_1080_10408347_2020_1823811
crossref_primary_10_3389_fonc_2022_1110104
crossref_primary_10_1016_j_scitotenv_2023_169196
crossref_primary_10_1016_j_pnmrs_2019_09_003
crossref_primary_10_1109_RBME_2022_3161352
crossref_primary_10_1016_j_isci_2023_107623
crossref_primary_10_1155_2018_2815439
crossref_primary_10_30843_nzpp_2024_77_11772
crossref_primary_10_3390_toxins14020132
crossref_primary_10_1080_10408363_2020_1833298
crossref_primary_10_1039_D1RA05626C
crossref_primary_10_1016_j_mad_2023_111875
crossref_primary_10_1016_j_trac_2023_117478
crossref_primary_10_1080_14737159_2021_1933448
crossref_primary_10_1007_s43032_025_01789_8
crossref_primary_10_1016_j_clinbiochem_2018_06_011
crossref_primary_10_1002_jms_5019
crossref_primary_10_1186_s13068_017_0960_4
crossref_primary_10_3390_metabo11080544
crossref_primary_10_3389_fmolb_2019_00108
crossref_primary_10_1016_j_scienta_2022_111584
crossref_primary_10_1093_rheumatology_kex497
crossref_primary_10_4251_wjgo_v13_i6_536
crossref_primary_10_3390_ani14142030
crossref_primary_10_1016_j_pnmrs_2023_10_002
crossref_primary_10_3390_plants9050591
crossref_primary_10_1016_j_biopha_2023_115685
crossref_primary_10_1002_jms_4292
crossref_primary_10_3390_molecules26175115
crossref_primary_10_1080_14789450_2020_1772059
crossref_primary_10_1002_cjce_23409
crossref_primary_10_3389_fimmu_2021_618726
crossref_primary_10_1038_s41467_019_11331_5
crossref_primary_10_3390_metabo11080537
crossref_primary_10_1007_s10522_021_09921_2
crossref_primary_10_1016_j_copbio_2018_07_001
crossref_primary_10_1016_j_etap_2020_103382
crossref_primary_10_1021_acs_analchem_1c00113
crossref_primary_10_3390_foods11192974
crossref_primary_10_1186_s12986_023_00728_1
crossref_primary_10_1007_s11101_024_10048_8
crossref_primary_10_1093_oncolo_oyac047
crossref_primary_10_1007_s11306_023_02027_5
crossref_primary_10_1016_j_cbpa_2016_12_022
crossref_primary_10_1038_s41592_021_01116_4
crossref_primary_10_1021_acs_analchem_1c00756
crossref_primary_10_1038_s41598_024_74641_9
crossref_primary_10_1021_acs_jpca_7b01954
crossref_primary_10_3390_healthcare6030111
crossref_primary_10_2478_s11756_020_00574_z
crossref_primary_10_1039_D3FO01770B
crossref_primary_10_1111_jfpe_14430
crossref_primary_10_1016_j_jsbmb_2018_05_005
crossref_primary_10_1038_s41598_019_42434_0
crossref_primary_10_1007_s00216_024_05622_0
crossref_primary_10_3390_metabo13030402
crossref_primary_10_1007_s00726_017_2419_0
crossref_primary_10_1016_j_ssc_2023_115148
crossref_primary_10_1021_acsomega_9b00931
crossref_primary_10_1007_s11306_019_1607_1
crossref_primary_10_1016_j_phymed_2018_12_038
crossref_primary_10_1021_acs_analchem_0c05205
crossref_primary_10_1016_j_biotechadv_2018_02_013
crossref_primary_10_1080_14786419_2018_1431629
crossref_primary_10_1007_s10067_020_05511_8
crossref_primary_10_1002_jcb_29242
crossref_primary_10_1155_2022_5705637
crossref_primary_10_1007_s11306_019_1487_4
crossref_primary_10_1155_2018_7620671
crossref_primary_10_1021_acs_jproteome_8b00773
crossref_primary_10_1016_j_chemolab_2024_105221
crossref_primary_10_1016_j_cbpa_2016_12_005
crossref_primary_10_1007_s11306_018_1384_2
crossref_primary_10_1016_j_scp_2021_100474
crossref_primary_10_1021_acs_analchem_9b03776
crossref_primary_10_1371_journal_pcbi_1006018
crossref_primary_10_1073_pnas_2308496120
crossref_primary_10_2903_sp_efsa_2018_EN_1512
crossref_primary_10_1002_nbm_4594
crossref_primary_10_3390_molecules26113285
crossref_primary_10_1242_dmm_035758
crossref_primary_10_3389_fmolb_2024_1395677
crossref_primary_10_1016_j_scitotenv_2018_01_180
crossref_primary_10_3389_fmolb_2019_00027
crossref_primary_10_1016_j_cyto_2018_07_022
crossref_primary_10_23736_S2724_6507_20_03199_5
crossref_primary_10_1038_s41598_021_01670_z
crossref_primary_10_3390_gucdd1010006
crossref_primary_10_1016_j_talanta_2023_125527
crossref_primary_10_1007_s00726_023_03255_8
crossref_primary_10_1002_elps_201700110
crossref_primary_10_1016_j_aca_2020_09_065
crossref_primary_10_1021_acs_analchem_8b05074
crossref_primary_10_1016_j_trac_2022_116825
crossref_primary_10_1021_jacs_7b00236
crossref_primary_10_1016_j_heliyon_2024_e30434
crossref_primary_10_1210_clinem_dgac212
crossref_primary_10_1016_j_jmr_2019_04_007
crossref_primary_10_3389_fmicb_2020_547458
crossref_primary_10_1016_j_bios_2021_113011
crossref_primary_10_3390_plants12030491
crossref_primary_10_1021_acsinfecdis_9b00199
crossref_primary_10_1007_s11306_023_02003_z
crossref_primary_10_1007_s10753_017_0725_z
crossref_primary_10_1080_14756366_2019_1611802
crossref_primary_10_1002_wsbm_1472
crossref_primary_10_1007_s12016_025_09028_3
crossref_primary_10_1016_j_bbadis_2021_166123
crossref_primary_10_1016_j_scitotenv_2018_05_256
crossref_primary_10_1021_jasms_0c00439
crossref_primary_10_1007_s11356_018_3111_y
crossref_primary_10_1146_annurev_anchem_091520_085936
crossref_primary_10_1021_acs_analchem_2c05145
crossref_primary_10_1039_C8FD00213D
crossref_primary_10_3389_fneur_2017_00450
crossref_primary_10_1021_acsnano_3c01176
crossref_primary_10_1021_acs_jproteome_8b00567
crossref_primary_10_2903_sp_efsa_2024_EN_8602
crossref_primary_10_1155_2021_7600835
crossref_primary_10_1007_s00204_018_2384_8
crossref_primary_10_1021_acs_analchem_6b03724
crossref_primary_10_1021_acs_jproteome_9b00316
crossref_primary_10_1016_j_trac_2024_117819
crossref_primary_10_1002_pca_2932
crossref_primary_10_3390_nu14183705
crossref_primary_10_1080_10408398_2022_2062698
crossref_primary_10_3390_ph17101307
crossref_primary_10_3389_fped_2019_00030
crossref_primary_10_1007_s12275_017_6551_z
crossref_primary_10_1039_D1CC05665D
crossref_primary_10_3389_fpls_2020_00554
crossref_primary_10_1021_acs_jproteome_8b00455
crossref_primary_10_1002_cbdv_202000413
crossref_primary_10_1007_s00216_018_1408_9
crossref_primary_10_1038_s41598_019_44540_5
crossref_primary_10_4081_acbr_2021_134
crossref_primary_10_1016_j_phymed_2019_152829
crossref_primary_10_1371_journal_pone_0247378
crossref_primary_10_1002_jmd2_12273
crossref_primary_10_1016_j_jep_2023_117359
crossref_primary_10_1016_j_talanta_2019_120248
crossref_primary_10_3390_biom8040151
crossref_primary_10_1016_j_scitotenv_2023_161737
crossref_primary_10_1093_gastro_goae106
crossref_primary_10_1016_j_trsl_2017_07_001
crossref_primary_10_1007_s00784_024_05883_0
crossref_primary_10_1111_1541_4337_12938
crossref_primary_10_1021_jasms_1c00315
crossref_primary_10_1021_acs_jproteome_7b00457
crossref_primary_10_1186_s13020_022_00601_y
crossref_primary_10_1021_acs_jproteome_8b00306
crossref_primary_10_1016_j_pharmthera_2021_107827
crossref_primary_10_3390_molecules26206308
crossref_primary_10_1016_j_tifs_2022_11_002
crossref_primary_10_3390_metabo10110460
crossref_primary_10_3390_metabo11040206
crossref_primary_10_1039_D0AN00142B
crossref_primary_10_1007_s11306_024_02164_5
crossref_primary_10_1128_jcm_01522_22
crossref_primary_10_1002_pmic_202000235
crossref_primary_10_1146_annurev_food_032818_121715
crossref_primary_10_1080_1061186X_2017_1358728
crossref_primary_10_1016_j_tibs_2019_05_005
crossref_primary_10_3389_fnins_2022_917197
crossref_primary_10_1038_nrrheum_2017_5
crossref_primary_10_1007_s11306_019_1481_x
crossref_primary_10_1021_acs_analchem_0c00768
crossref_primary_10_1007_s11306_018_1390_4
crossref_primary_10_1016_j_foodres_2020_110062
crossref_primary_10_1021_acs_jproteome_0c00300
crossref_primary_10_3389_fmedt_2022_1065506
crossref_primary_10_1128_mSystems_00843_19
crossref_primary_10_2174_0929867329666220329090822
crossref_primary_10_1002_ange_202100734
crossref_primary_10_1007_s11101_024_10006_4
crossref_primary_10_1002_mc_23255
crossref_primary_10_1080_17460441_2022_2113774
crossref_primary_10_1126_sciadv_aaw7895
crossref_primary_10_1002_elps_201900115
crossref_primary_10_3390_jpm14060555
crossref_primary_10_1016_j_jmb_2020_04_027
crossref_primary_10_1021_acs_jproteome_9b00343
crossref_primary_10_1016_j_cofs_2022_100823
crossref_primary_10_1016_j_ecoenv_2019_109602
crossref_primary_10_3390_molecules27217365
crossref_primary_10_1021_acs_analchem_2c02902
crossref_primary_10_1007_s40291_017_0282_z
crossref_primary_10_1021_jacs_0c06877
crossref_primary_10_1021_acs_chemrev_0c00901
crossref_primary_10_1016_j_biotechadv_2017_04_003
crossref_primary_10_3390_metabo12060488
crossref_primary_10_1016_j_ymben_2021_01_008
crossref_primary_10_1016_j_lwt_2024_116572
crossref_primary_10_3390_metabo13091007
crossref_primary_10_12688_f1000research_11495_1
crossref_primary_10_1016_j_bej_2018_07_016
crossref_primary_10_3389_fcell_2018_00092
crossref_primary_10_3389_fmolb_2021_698337
crossref_primary_10_1007_s11306_024_02208_w
crossref_primary_10_3389_fonc_2020_570516
crossref_primary_10_1186_s13036_019_0145_8
crossref_primary_10_3390_ijms23105716
crossref_primary_10_1007_s11306_019_1483_8
crossref_primary_10_3390_molecules28020792
crossref_primary_10_1016_j_tim_2024_11_009
crossref_primary_10_1007_s00203_024_03911_x
crossref_primary_10_1038_s41598_019_41216_y
crossref_primary_10_1016_j_bbcan_2018_04_009
crossref_primary_10_1021_acs_analchem_7b04922
crossref_primary_10_1007_s40242_022_2119_5
crossref_primary_10_1002_ijc_31929
crossref_primary_10_1371_journal_pone_0237377
crossref_primary_10_3390_metabo11110765
crossref_primary_10_4103_UROS_UROS_2_19
crossref_primary_10_4236_jamp_2022_105099
crossref_primary_10_1016_j_foodchem_2020_128316
crossref_primary_10_1016_j_foodres_2021_110290
crossref_primary_10_1016_j_cofs_2024_101175
crossref_primary_10_3390_app14125147
crossref_primary_10_1111_evj_13199
crossref_primary_10_3390_molecules26113311
crossref_primary_10_1021_acs_analchem_8b04928
crossref_primary_10_1007_s00535_025_02237_9
crossref_primary_10_1002_mrc_5350
crossref_primary_10_1371_journal_pone_0241627
crossref_primary_10_1093_jas_skz228
crossref_primary_10_1016_j_urine_2021_05_002
crossref_primary_10_1038_s41598_019_43404_2
crossref_primary_10_1021_acs_jproteome_0c00854
crossref_primary_10_1073_pnas_1917259117
crossref_primary_10_1111_resp_13530
crossref_primary_10_1038_s41598_019_56073_y
crossref_primary_10_3390_plants13071024
crossref_primary_10_3389_fendo_2018_00814
crossref_primary_10_5194_mr_4_19_2023
crossref_primary_10_1007_s11244_019_01131_y
crossref_primary_10_1016_j_jep_2019_112134
crossref_primary_10_1002_cpch_83
crossref_primary_10_1016_j_jchromb_2024_124124
crossref_primary_10_1021_acs_analchem_7b02884
crossref_primary_10_3390_separations11100282
crossref_primary_10_1134_S1990750821010042
crossref_primary_10_1021_acs_analchem_0c00967
crossref_primary_10_1093_jcbiol_ruy068
crossref_primary_10_1038_s41585_019_0185_3
crossref_primary_10_1111_ijfs_17308
Cites_doi 10.1093/nar/gkn810
10.1016/j.pnmrs.2016.01.005
10.1021/ac502346h
10.1126/sciadv.1501438
10.1002/anie.201410653
10.1021/ac5025039
10.1371/journal.pone.0124219
10.1002/mrc.4199
10.1039/C6CC01783E
10.1021/acs.analchem.5b00867
10.1016/S0140-6736(13)62227-8
10.1021/ac401712a
10.1021/jm401803b
10.1021/cb5006382
10.1021/acs.analchem.5b03889
10.1021/pr060114v
10.1097/MCO.0000000000000206
10.1021/ac500979g
10.1021/acs.analchem.6b00442
10.1021/ac201948f
10.1016/j.csbj.2015.01.002
10.1021/acs.jproteome.5b00059
10.1093/icb/icv077
10.1021/ac504435b
10.1021/acs.jproteome.5b01111
10.1016/j.jmr.2013.07.012
10.1021/ac400913m
10.1021/acs.jproteome.5b00184
10.1038/ncomms1562
10.1021/ac200536b
10.1039/C4NP00072B
10.1021/ar2001606
10.1021/ac201625f
10.1093/nar/gkm957
10.1093/nar/gkv1042
10.1007/s11306-014-0704-4
10.1021/acs.jproteome.5b00885
10.1021/cb4008937
10.1021/cb400894a
10.1038/nbt0208-162
10.1002/mrc.2526
10.4155/bio-2015-0004
10.1021/ac504633z
10.1021/ac071583z
10.1007/s11306-015-0810-y
10.1021/ac503651e
10.1016/j.jmr.2015.07.014
10.1021/ac4019268
10.1073/pnas.1733835100
ContentType Journal Article
Copyright 2016 The Author(s)
The Author(s)
Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2016 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.copbio.2016.08.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE



AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0429
EndPage 40
ExternalDocumentID PMC5305426
27580257
10_1016_j_copbio_2016_08_001
S0958166916301768
1_s2_0_S0958166916301768
Genre Journal Article
Review
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA163649
– fundername: NIGMS NIH HHS
  grantid: R01 GM066041
– fundername: NIGMS NIH HHS
  grantid: R01 GM109046
– fundername: NIGMS NIH HHS
  grantid: P41 GM111135
– fundername: NCI NIH HHS
  grantid: P30 CA015704
– fundername: NCRR NIH HHS
  grantid: P20 RR017675
– fundername: NCI NIH HHS
  grantid: F31 CA157045
– fundername: NIAID NIH HHS
  grantid: P01 AI083211
– fundername: NIDDK NIH HHS
  grantid: U24 DK097209
– fundername: NIGMS NIH HHS
  grantid: R01 GM085291
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TWZ
VH1
WUQ
Z5R
~02
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
6I.
AAFTH
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
XFK
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c604t-54139cc39761d774ac4289a3b358a3096982913d7b01ee9046fa0bdf020560793
IEDL.DBID .~1
ISSN 0958-1669
IngestDate Thu Aug 21 17:31:39 EDT 2025
Tue Aug 05 10:07:36 EDT 2025
Fri Jul 11 12:14:48 EDT 2025
Mon Jul 21 05:53:45 EDT 2025
Tue Jul 01 00:50:59 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
Fri Feb 23 02:22:50 EST 2024
Tue Feb 25 20:01:09 EST 2025
Tue Aug 26 16:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-54139cc39761d774ac4289a3b358a3096982913d7b01ee9046fa0bdf020560793
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0958166916301768
PMID 27580257
PQID 1835503670
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5305426
proquest_miscellaneous_2000311647
proquest_miscellaneous_1835503670
pubmed_primary_27580257
crossref_primary_10_1016_j_copbio_2016_08_001
crossref_citationtrail_10_1016_j_copbio_2016_08_001
elsevier_sciencedirect_doi_10_1016_j_copbio_2016_08_001
elsevier_clinicalkeyesjournals_1_s2_0_S0958166916301768
elsevier_clinicalkey_doi_10_1016_j_copbio_2016_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in biotechnology
PublicationTitleAlternate Curr Opin Biotechnol
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ravanbakhsh, Liu, Bjorndahl, Mandal, Grant, Wilson, Eisner, Sinelnikov, Hu, Luchinat (bib0300) 2015; 10
Bingol, Zhang, Bruschweiler-Li, Brüschweiler (bib0440) 2013; 85
Clendinen, Lee-McMullen, Williams, Stupp, Vandenborne, Hahn, Walter, Edison (bib0510) 2014; 86
Ardenkjaer-Larsen, Fridlund, Gram, Hansson, Hansson, Lerche, Servin, Thaning, Golman (bib0520) 2003; 100
Bingol, Brüschweiler (bib0405) 2015; 14
Tayyari, Gowda, Gu, Raftery (bib0385) 2013; 85
Wei, Zhang, Liu, Ye, Gowda, Tayyari, Raftery (bib0330) 2011; 83
Bingol, Bruschweiler-Li, Li, Brüschweiler (bib0310) 2014; 86
Lei, Zavala-Flores, Garcia-Garcia, Nandakumar, Huang, Madayiputhiya, Stanton, Dodds, Powers, Franco (bib0450) 2014; 9
Gebregiworgis, Nielsen, Massilamany, Gangaplara, Reddy, Illes, Powers (bib0490) 2016; 15
Robinette, Brüschweiler, Schroeder, Edison (bib0270) 2012; 45
Bingol, Brüschweiler (bib0395) 2015; 18
Ramaswamy, Hooker, Withers, Nast, Brey, Edison (bib0500) 2013; 235
Bingol, Li, Bruschweiler-Li, Cabrera, Megraw, Zhang, Brüschweiler (bib0315) 2015; 10
Wishart, Knox, Guo, Eisner, Young, Gautam, Hau, Psychogios, Dong, Bouatra (bib0275) 2009; 37
Worley, Powers (bib0365) 2014; 9
Bingol, Bruschweiler-Li, Yu, Somogyi, Zhang, Brüschweiler (bib0410) 2015; 87
Marshall, Lei, Worley, Huang, Garcia-Garcia, Franco, Dodds, Powers (bib0400) 2015; 11
Lewis, Schommer, Hodis, Robb, Tonelli, Westler, Sussman, Markley (bib0420) 2007; 79
Nagana Gowda, Abell, Lee, Tian, Raftery (bib0445) 2016; 88
Zhang, Xie, Bruschweiler-Li, Bruschweiler (bib0380) 2016; 88
Powers (bib0480) 2014; 57
Ramaswamy, Hooker, Withers, Nast, Edison, Brey (bib0505) 2016
Emwas, Roy, McKay, Ryan, Brennan, Tenori, Luchinat, Gao, Zeri, Gowda (bib0355) 2016; 15
Nagana Gowda, Gowda, Raftery (bib0370) 2015; 87
Ulrich, Akutsu, Doreleijers, Harano, Ioannidis, Lin, Livny, Mading, Maziuk, Miller (bib0340) 2008; 36
Hu, Ellinger, Chylla, Markley (bib0425) 2011; 83
Edison, Hall, Junot, Karp, Kurland, Mistrik, Reed, Saito, Salek, Steinbeck (bib0455) 2016
Ardenkjaer-Larsen, Boebinger, Comment, Duckett, Edison, Engelke, Griesinger, Griffin, Hilty, Maeda (bib0495) 2015; 54
Edison, Clendinen, Ajredini, Beecher, Ponce, Stupp (bib0470) 2015; 55
Fan, Lane (bib0280) 2016; 92-93
Bingol, Bruschweiler-Li, Li, Zhang, Xie, Brüschweiler (bib0295) 2016; 8
Chen, Deng, Wei, Nagana Gowda, Gu, Chiorean, Abu Zaid, Harrison, Pekny, Loehrer (bib0485) 2015; 14
Clendinen, Pasquel, Ajredini, Edison (bib0515) 2015; 87
Ioannidis, Greenland, Hlatky, Khoury, Macleod, Moher, Schulz, Tibshirani (bib0530) 2014; 383
Sumner, Lei, Nikolau, Saito (bib0465) 2015; 32
Gu, Gowda, Neto, Opp, Raftery (bib0415) 2013; 85
Dona, Jimenez, Schafer, Humpfer, Spraul, Lewis, Pearce, Holmes, Lindon, Nicholson (bib0360) 2014; 86
Lewis, Schommer, Markley (bib0305) 2009; 47
Salek, Neumann, Schober, Hummel, Billiau, Kopka, Correa, Reijmers, Rosato, Tenori (bib0350) 2015; 11
Sud, Fahy, Cotter, Azam, Vadivelu, Burant, Edison, Fiehn, Higashi, Nair (bib0345) 2016; 44
Cui, Lewis, Hegeman, Anderson, Li, Schulte, Westler, Eghbalnia, Sussman, Markley (bib0320) 2008; 26
Tiziani, Kang, Choi, Roberts, Paternostro (bib0290) 2011; 2
Everett (bib0325) 2015; 13
Fan, Lane, Higashi (bib0335) 2016
Mauve, Khlifi, Gilard, Mouille, Farjon (bib0435) 2016; 52
Forgue, Halouska, Werth, Xu, Harris, Powers (bib0475) 2006; 5
Chylla, Hu, Ellinger, Markley (bib0430) 2011; 83
Nagana Gowda, Raftery (bib0285) 2015; 260
Theis, Ortiz, Logan, Claytor, Feng, Huhn, Blum, Malcolmson, Chekmenev, Wang (bib0525) 2016; 2
Halouska, Zhang, Gaupp, Lei, Snell, Fenton, Barletta, Somerville, Powers (bib0460) 2013; 3
Nagana Gowda, Gowda, Raftery (bib0375) 2015; 87
Lane, Arumugam, Lorkiewicz, Higashi, Laulhe, Nantz, Moseley, Fan (bib0390) 2015; 53
Lei (10.1016/j.copbio.2016.08.001_bib0450) 2014; 9
Emwas (10.1016/j.copbio.2016.08.001_sbref0355) 2016; 15
Lane (10.1016/j.copbio.2016.08.001_sbref0390) 2015; 53
Bingol (10.1016/j.copbio.2016.08.001_sbref0395) 2015; 18
Powers (10.1016/j.copbio.2016.08.001_sbref0480) 2014; 57
Worley (10.1016/j.copbio.2016.08.001_sbref0365) 2014; 9
Bingol (10.1016/j.copbio.2016.08.001_sbref0405) 2015; 14
Theis (10.1016/j.copbio.2016.08.001_sbref0525) 2016; 2
Bingol (10.1016/j.copbio.2016.08.001_sbref0315) 2015; 10
Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0375) 2015; 87
Ravanbakhsh (10.1016/j.copbio.2016.08.001_sbref0300) 2015; 10
Bingol (10.1016/j.copbio.2016.08.001_sbref0295) 2016; 8
Nagana Gowda (10.1016/j.copbio.2016.08.001_bib0370) 2015; 87
Bingol (10.1016/j.copbio.2016.08.001_sbref0410) 2015; 87
Lewis (10.1016/j.copbio.2016.08.001_bib0305) 2009; 47
Lewis (10.1016/j.copbio.2016.08.001_bib0420) 2007; 79
Clendinen (10.1016/j.copbio.2016.08.001_bib0515) 2015; 87
Hu (10.1016/j.copbio.2016.08.001_bib0425) 2011; 83
Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0445) 2016; 88
Bingol (10.1016/j.copbio.2016.08.001_sbref0310) 2014; 86
Tayyari (10.1016/j.copbio.2016.08.001_bib0385) 2013; 85
Dona (10.1016/j.copbio.2016.08.001_bib0360) 2014; 86
Nagana Gowda (10.1016/j.copbio.2016.08.001_sbref0285) 2015; 260
Wei (10.1016/j.copbio.2016.08.001_bib0330) 2011; 83
Ardenkjaer-Larsen (10.1016/j.copbio.2016.08.001_bib0520) 2003; 100
Cui (10.1016/j.copbio.2016.08.001_bib0320) 2008; 26
Fan (10.1016/j.copbio.2016.08.001_sbref0280) 2016; 92-93
Ioannidis (10.1016/j.copbio.2016.08.001_sbref0530) 2014; 383
Everett (10.1016/j.copbio.2016.08.001_bib0325) 2015; 13
Ardenkjaer-Larsen (10.1016/j.copbio.2016.08.001_sbref0495) 2015; 54
Bingol (10.1016/j.copbio.2016.08.001_bib0440) 2013; 85
Sud (10.1016/j.copbio.2016.08.001_sbref0345) 2016; 44
Fan (10.1016/j.copbio.2016.08.001_sbref0335) 2016
Edison (10.1016/j.copbio.2016.08.001_sbref0470) 2015; 55
Ulrich (10.1016/j.copbio.2016.08.001_bib0340) 2008; 36
Wishart (10.1016/j.copbio.2016.08.001_bib0275) 2009; 37
Gebregiworgis (10.1016/j.copbio.2016.08.001_bib0490) 2016; 15
Gu (10.1016/j.copbio.2016.08.001_bib0415) 2013; 85
Ramaswamy (10.1016/j.copbio.2016.08.001_bib0500) 2013; 235
Salek (10.1016/j.copbio.2016.08.001_sbref0350) 2015; 11
Sumner (10.1016/j.copbio.2016.08.001_bib0465) 2015; 32
Zhang (10.1016/j.copbio.2016.08.001_sbref0380) 2016; 88
Ramaswamy (10.1016/j.copbio.2016.08.001_sbref0505) 2016
Marshall (10.1016/j.copbio.2016.08.001_bib0400) 2015; 11
Forgue (10.1016/j.copbio.2016.08.001_bib0475) 2006; 5
Edison (10.1016/j.copbio.2016.08.001_sbref0455) 2016
Chylla (10.1016/j.copbio.2016.08.001_bib0430) 2011; 83
Clendinen (10.1016/j.copbio.2016.08.001_bib0510) 2014; 86
Robinette (10.1016/j.copbio.2016.08.001_bib0270) 2012; 45
Tiziani (10.1016/j.copbio.2016.08.001_bib0290) 2011; 2
Halouska (10.1016/j.copbio.2016.08.001_bib0460) 2013; 3
Mauve (10.1016/j.copbio.2016.08.001_bib0435) 2016; 52
Chen (10.1016/j.copbio.2016.08.001_bib0485) 2015; 14
25919433 - J Proteome Res. 2015 Jun 5;14(6):2492-9
24588729 - J Med Chem. 2014 Jul 24;57(14):5860-70
25342293 - Nat Prod Rep. 2015 Feb;32(2):212-29
27043450 - Anal Chem. 2016 May 3;88(9):4817-24
24576144 - ACS Chem Biol. 2014 May 16;9(5):1138-44
23969086 - J Magn Reson. 2013 Oct;235:58-65
25746059 - Anal Chem. 2015 Apr 7;87(7):3800-5
26745651 - J Proteome Res. 2016 Feb 5;15(2):360-73
25774104 - Metabolomics. 2015 Apr;11(2):391-402
25881480 - J Proteome Res. 2015 Jun 5;14(6):2642-8
18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10
26467476 - Nucleic Acids Res. 2016 Jan 4;44(D1):D463-70
12930897 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63
16889413 - J Proteome Res. 2006 Aug;5(8):1916-23
26605638 - Anal Chem. 2016 Jan 5;88(1):1003-7
26952191 - Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53
27074265 - Chem Commun (Camb). 2016 May 4;52(36):6142-5
27158639 - Bio Protoc. 2016 Feb 5;6(3):null
22029275 - Anal Chem. 2011 Dec 15;83(24):9352-60
22109519 - Nat Commun. 2011 Nov 22;2:545
25616249 - Magn Reson Chem. 2015 May;53(5):337-43
26476597 - J Magn Reson. 2015 Nov;260:144-60
21894988 - Anal Chem. 2011 Oct 15;83(20):7616-23
25180432 - Anal Chem. 2014 Oct 7;86(19):9887-94
25333826 - ACS Chem Biol. 2015 Feb 20;10(2):452-9
17984079 - Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8
26078915 - J Integr OMICS. 2013 Dec;3(2):120-137
24773139 - Anal Chem. 2014 Jun 3;86(11):5494-501
27051867 - Sci Adv. 2016 Mar 25;2(3):e1501438
23773204 - Anal Chem. 2013 Jul 2;85(13):6414-20
25674812 - Anal Chem. 2015 Apr 7;87(7):3864-70
26491418 - Metabolomics. 2015;11(6):1587-1597
26915807 - Bioanalysis. 2016 Mar;8(6):557-73
26141866 - Integr Comp Biol. 2015 Sep;55(3):478-85
25750701 - Comput Struct Biotechnol J. 2015 Jan 27;13:131-44
18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4
26759122 - J Proteome Res. 2016 Feb 5;15(2):659-66
26891337 - Metabolites. 2016 Feb 15;6(1):null
21526800 - Anal Chem. 2011 Jun 15;83(12):4871-80
26136394 - Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85
24411645 - Lancet. 2014 Jan 11;383(9912):166-75
25485990 - Anal Chem. 2015 Jan 6;87(1):706-15
17985927 - Anal Chem. 2007 Dec 15;79(24):9385-90
26154280 - Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):471-7
26017271 - PLoS One. 2015 May 27;10(5):e0124219
19821464 - Magn Reson Chem. 2009 Dec;47 Suppl 1:S123-6
24168717 - Anal Chem. 2013 Nov 19;85(22):10771-9
23930664 - Anal Chem. 2013 Sep 17;85(18):8715-21
21888316 - Acc Chem Res. 2012 Feb 21;45(2):288-97
24937102 - ACS Chem Biol. 2014 Sep 19;9(9):2032-48
25140385 - Anal Chem. 2014 Sep 16;86(18):9242-50
25932900 - Anal Chem. 2015 Jun 2;87(11):5698-706
References_xml – volume: 2
  start-page: 545
  year: 2011
  ident: bib0290
  article-title: Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library
  publication-title: Nat Commun
– volume: 52
  start-page: 6142
  year: 2016
  end-page: 6145
  ident: bib0435
  article-title: Sensitive, highly resolved, and quantitative (1)H-(13)C NMR data in one go for tracking metabolites in vegetal extracts
  publication-title: Chem Commun (Camb)
– volume: 383
  start-page: 166
  year: 2014
  end-page: 175
  ident: bib0530
  article-title: Increasing value and reducing waste in research design, conduct, and analysis
  publication-title: Lancet
– volume: 87
  start-page: 3864
  year: 2015
  end-page: 3870
  ident: bib0410
  article-title: Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures
  publication-title: Anal Chem
– volume: 87
  start-page: 706
  year: 2015
  end-page: 715
  ident: bib0375
  article-title: Expanding the limits of human blood metabolite quantitation using NMR spectroscopy
  publication-title: Anal Chem
– volume: 88
  start-page: 4817
  year: 2016
  end-page: 4824
  ident: bib0445
  article-title: Simultaneous analysis of major coenzymes of cellular redox reactions and energy using
  publication-title: Anal Chem
– volume: 83
  start-page: 7616
  year: 2011
  end-page: 7623
  ident: bib0330
  article-title: Ratio analysis nuclear magnetic resonance spectroscopy for selective metabolite identification in complex samples
  publication-title: Anal Chem
– volume: 32
  start-page: 212
  year: 2015
  end-page: 229
  ident: bib0465
  article-title: Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects
  publication-title: Nat Prod Rep
– volume: 235
  start-page: 58
  year: 2013
  end-page: 65
  ident: bib0500
  article-title: Development of a
  publication-title: J Magn Reson
– volume: 15
  start-page: 360
  year: 2016
  end-page: 373
  ident: bib0355
  article-title: Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis
  publication-title: J Proteome Res
– volume: 87
  start-page: 3800
  year: 2015
  end-page: 3805
  ident: bib0370
  article-title: Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy
  publication-title: Anal Chem
– volume: 14
  start-page: 2642
  year: 2015
  end-page: 2648
  ident: bib0405
  article-title: NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine
  publication-title: J Proteome Res
– volume: 45
  start-page: 288
  year: 2012
  end-page: 297
  ident: bib0270
  article-title: NMR in metabolomics and natural products research: two sides of the same coin
  publication-title: Acc Chem Res
– start-page: 6
  year: 2016
  ident: bib0455
  article-title: The time is right to focus on model organism metabolomes
  publication-title: Metabolites
– volume: 54
  start-page: 9162
  year: 2015
  end-page: 9185
  ident: bib0495
  article-title: Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy
  publication-title: Angew Chem Int Ed Engl
– volume: 8
  start-page: 557
  year: 2016
  end-page: 573
  ident: bib0295
  article-title: Emerging new strategies for successful metabolite identification in metabolomics
  publication-title: Bioanalysis
– volume: 9
  start-page: 2032
  year: 2014
  end-page: 2048
  ident: bib0450
  article-title: Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity
  publication-title: ACS Chem Biol
– volume: 57
  start-page: 5860
  year: 2014
  end-page: 5870
  ident: bib0480
  article-title: The current state of drug discovery and a potential role for NMR metabolomics
  publication-title: J Med Chem
– volume: 92-93
  start-page: 18
  year: 2016
  end-page: 53
  ident: bib0280
  article-title: Applications of NMR spectroscopy to systems biochemistry
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 55
  start-page: 478
  year: 2015
  end-page: 485
  ident: bib0470
  article-title: Metabolomics and natural-products strategies to study chemical ecology in nematodes
  publication-title: Integr Comp Biol
– volume: 87
  start-page: 5698
  year: 2015
  end-page: 5706
  ident: bib0515
  article-title: C NMR metabolomics: inadequate network analysis
  publication-title: Anal Chem
– volume: 37
  start-page: D603
  year: 2009
  end-page: D610
  ident: bib0275
  article-title: HMDB: a knowledgebase for the human metabolome
  publication-title: Nucleic Acids Res
– volume: 86
  start-page: 9887
  year: 2014
  end-page: 9894
  ident: bib0360
  article-title: Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping
  publication-title: Anal Chem
– volume: 79
  start-page: 9385
  year: 2007
  end-page: 9390
  ident: bib0420
  article-title: Method for determining molar concentrations of metabolites in complex solutions from two-dimensional
  publication-title: Anal Chem
– volume: 86
  start-page: 9242
  year: 2014
  end-page: 9250
  ident: bib0510
  article-title: C NMR metabolomics: applications at natural abundance
  publication-title: Anal Chem
– volume: 10
  start-page: e0124219
  year: 2015
  ident: bib0300
  article-title: Accurate, fully-automated NMR spectral profiling for metabolomics
  publication-title: PLoS One
– volume: 9
  start-page: 1138
  year: 2014
  end-page: 1144
  ident: bib0365
  article-title: MVAPACK: a complete data handling package for NMR metabolomics
  publication-title: ACS Chem Biol
– volume: 83
  start-page: 9352
  year: 2011
  end-page: 9360
  ident: bib0425
  article-title: Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero
  publication-title: Anal Chem
– volume: 11
  start-page: 1587
  year: 2015
  end-page: 1597
  ident: bib0350
  article-title: COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access
  publication-title: Metabolomics
– volume: 11
  start-page: 391
  year: 2015
  end-page: 402
  ident: bib0400
  article-title: Combining DI-ESI-MS and NMR datasets for metabolic profiling
  publication-title: Metabolomics
– volume: 47
  start-page: s123
  year: 2009
  end-page: s126
  ident: bib0305
  article-title: rNMR: open source software for identifying and quantifying metabolites in NMR spectra
  publication-title: Magn Reson Chem
– volume: 26
  start-page: 162
  year: 2008
  end-page: 164
  ident: bib0320
  article-title: Metabolite identification via the Madison Metabolomics Consortium Database
  publication-title: Nat Biotechnol
– volume: 18
  start-page: 471
  year: 2015
  end-page: 477
  ident: bib0395
  article-title: Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 53
  start-page: 337
  year: 2015
  end-page: 343
  ident: bib0390
  article-title: Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by
  publication-title: Magn Reson Chem
– volume: 260
  start-page: 144
  year: 2015
  end-page: 160
  ident: bib0285
  article-title: Can NMR solve some significant challenges in metabolomics?
  publication-title: J Magn Reson
– volume: 5
  start-page: 1916
  year: 2006
  end-page: 1923
  ident: bib0475
  article-title: NMR metabolic profiling of
  publication-title: J Proteome Res
– volume: 83
  start-page: 4871
  year: 2011
  end-page: 4880
  ident: bib0430
  article-title: Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics
  publication-title: Anal Chem
– volume: 15
  start-page: 659
  year: 2016
  end-page: 666
  ident: bib0490
  article-title: A urinary metabolic signature for multiple sclerosis and neuromyelitis optica
  publication-title: J Proteome Res
– volume: 100
  start-page: 10158
  year: 2003
  end-page: 10163
  ident: bib0520
  article-title: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR
  publication-title: Proc Natl Acad Sci U S A
– volume: 36
  start-page: D402
  year: 2008
  end-page: D408
  ident: bib0340
  article-title: Bio Mag Res Bank
  publication-title: Nucleic Acids Res
– volume: 14
  start-page: 2492
  year: 2015
  end-page: 2499
  ident: bib0485
  article-title: Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression
  publication-title: J Proteome Res
– volume: 88
  start-page: 1003
  year: 2016
  end-page: 1007
  ident: bib0380
  article-title: Nanoparticle-assisted removal of protein in human serum for metabolomics studies
  publication-title: Anal Chem
– volume: 10
  start-page: 452
  year: 2015
  end-page: 459
  ident: bib0315
  article-title: Unified and isomer-specific NMR metabolomics database for the accurate analysis of
  publication-title: ACS Chem Biol
– volume: 3
  start-page: 120
  year: 2013
  end-page: 137
  ident: bib0460
  article-title: Revisiting protocols for the NMR analysis of bacterial metabolomes
  publication-title: J Integr OMICS
– volume: 85
  start-page: 6414
  year: 2013
  end-page: 6420
  ident: bib0440
  article-title: Quantitative analysis of metabolic mixtures by two-dimensional
  publication-title: Anal Chem
– start-page: 26
  year: 2016
  ident: bib0505
  article-title: Development of a
  publication-title: Ieee Transact Appl Superconduct
– start-page: 6
  year: 2016
  ident: bib0335
  article-title: Stable isotope resolved metabolomics studies tissue slices
  publication-title: Bio Protoc
– volume: 86
  start-page: 5494
  year: 2014
  end-page: 5501
  ident: bib0310
  article-title: Customized metabolomics database for the analysis of NMR
  publication-title: Anal Chem
– volume: 13
  start-page: 131
  year: 2015
  end-page: 144
  ident: bib0325
  article-title: A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency
  publication-title: Comput Struct Biotechnol J
– volume: 44
  start-page: D463
  year: 2016
  end-page: D470
  ident: bib0345
  article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools
  publication-title: Nucleic Acids Res
– volume: 85
  start-page: 8715
  year: 2013
  end-page: 8721
  ident: bib0385
  article-title: N-cholamine
  publication-title: Anal Chem
– volume: 85
  start-page: 10771
  year: 2013
  end-page: 10779
  ident: bib0415
  article-title: RAMSY: ratio analysis of mass spectrometry to improve compound identification
  publication-title: Anal Chem
– volume: 2
  start-page: e1501438
  year: 2016
  ident: bib0525
  article-title: Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal
  publication-title: Sci Adv
– volume: 37
  start-page: D603
  year: 2009
  ident: 10.1016/j.copbio.2016.08.001_bib0275
  article-title: HMDB: a knowledgebase for the human metabolome
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn810
– volume: 92-93
  start-page: 18
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0280
  article-title: Applications of NMR spectroscopy to systems biochemistry
  publication-title: Prog Nucl Magn Reson Spectrosc
  doi: 10.1016/j.pnmrs.2016.01.005
– volume: 86
  start-page: 9242
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_bib0510
  article-title: 13C NMR metabolomics: applications at natural abundance
  publication-title: Anal Chem
  doi: 10.1021/ac502346h
– volume: 2
  start-page: e1501438
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0525
  article-title: Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501438
– volume: 54
  start-page: 9162
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0495
  article-title: Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201410653
– volume: 86
  start-page: 9887
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_bib0360
  article-title: Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping
  publication-title: Anal Chem
  doi: 10.1021/ac5025039
– volume: 10
  start-page: e0124219
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0300
  article-title: Accurate, fully-automated NMR spectral profiling for metabolomics
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124219
– volume: 53
  start-page: 337
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0390
  article-title: Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N nuclear magnetic resonance
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.4199
– volume: 52
  start-page: 6142
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_bib0435
  article-title: Sensitive, highly resolved, and quantitative (1)H-(13)C NMR data in one go for tracking metabolites in vegetal extracts
  publication-title: Chem Commun (Camb)
  doi: 10.1039/C6CC01783E
– volume: 87
  start-page: 5698
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0515
  article-title: 13C NMR metabolomics: inadequate network analysis
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b00867
– volume: 383
  start-page: 166
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_sbref0530
  article-title: Increasing value and reducing waste in research design, conduct, and analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62227-8
– volume: 85
  start-page: 8715
  year: 2013
  ident: 10.1016/j.copbio.2016.08.001_bib0385
  article-title: 15N-cholamine—a smart isotope tag for combining NMR- and MS-based metabolite profiling
  publication-title: Anal Chem
  doi: 10.1021/ac401712a
– volume: 57
  start-page: 5860
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_sbref0480
  article-title: The current state of drug discovery and a potential role for NMR metabolomics
  publication-title: J Med Chem
  doi: 10.1021/jm401803b
– start-page: 6
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0455
  article-title: The time is right to focus on model organism metabolomes
  publication-title: Metabolites
– volume: 10
  start-page: 452
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0315
  article-title: Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13C-1H HSQC spectra
  publication-title: ACS Chem Biol
  doi: 10.1021/cb5006382
– volume: 88
  start-page: 1003
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0380
  article-title: Nanoparticle-assisted removal of protein in human serum for metabolomics studies
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b03889
– volume: 5
  start-page: 1916
  year: 2006
  ident: 10.1016/j.copbio.2016.08.001_bib0475
  article-title: NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity
  publication-title: J Proteome Res
  doi: 10.1021/pr060114v
– volume: 18
  start-page: 471
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0395
  article-title: Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics
  publication-title: Curr Opin Clin Nutr Metab Care
  doi: 10.1097/MCO.0000000000000206
– volume: 86
  start-page: 5494
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_sbref0310
  article-title: Customized metabolomics database for the analysis of NMR 1H-1H TOCSY and 13C-1H HSQC-TOCSY spectra of complex mixtures
  publication-title: Anal Chem
  doi: 10.1021/ac500979g
– volume: 88
  start-page: 4817
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0445
  article-title: Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo 1H NMR spectroscopy
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.6b00442
– volume: 83
  start-page: 9352
  year: 2011
  ident: 10.1016/j.copbio.2016.08.001_bib0425
  article-title: Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H–13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis
  publication-title: Anal Chem
  doi: 10.1021/ac201948f
– volume: 13
  start-page: 131
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0325
  article-title: A new paradigm for known metabolite identification in metabonomics/metabolomics: metabolite identification efficiency
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2015.01.002
– volume: 14
  start-page: 2492
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0485
  article-title: Exploring metabolic profile differences between colorectal polyp patients and controls using seemingly unrelated regression
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00059
– volume: 55
  start-page: 478
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0470
  article-title: Metabolomics and natural-products strategies to study chemical ecology in nematodes
  publication-title: Integr Comp Biol
  doi: 10.1093/icb/icv077
– volume: 87
  start-page: 3800
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0370
  article-title: Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy
  publication-title: Anal Chem
  doi: 10.1021/ac504435b
– start-page: 6
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0335
  article-title: Stable isotope resolved metabolomics studies tissue slices
  publication-title: Bio Protoc
– volume: 15
  start-page: 659
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_bib0490
  article-title: A urinary metabolic signature for multiple sclerosis and neuromyelitis optica
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b01111
– volume: 235
  start-page: 58
  year: 2013
  ident: 10.1016/j.copbio.2016.08.001_bib0500
  article-title: Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2013.07.012
– volume: 85
  start-page: 6414
  year: 2013
  ident: 10.1016/j.copbio.2016.08.001_bib0440
  article-title: Quantitative analysis of metabolic mixtures by two-dimensional 13C constant-time TOCSY NMR spectroscopy
  publication-title: Anal Chem
  doi: 10.1021/ac400913m
– start-page: 26
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0505
  article-title: Development of a 1H–13C dual-optimized NMR probe based on double-tuned high temperature superconducting resonators
  publication-title: Ieee Transact Appl Superconduct
– volume: 14
  start-page: 2642
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0405
  article-title: NMR/MS translator for the enhanced simultaneous analysis of metabolomics mixtures by NMR spectroscopy and mass spectrometry: application to human urine
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00184
– volume: 2
  start-page: 545
  year: 2011
  ident: 10.1016/j.copbio.2016.08.001_bib0290
  article-title: Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library
  publication-title: Nat Commun
  doi: 10.1038/ncomms1562
– volume: 83
  start-page: 4871
  year: 2011
  ident: 10.1016/j.copbio.2016.08.001_bib0430
  article-title: Deconvolution of two-dimensional NMR spectra by fast maximum likelihood reconstruction: application to quantitative metabolomics
  publication-title: Anal Chem
  doi: 10.1021/ac200536b
– volume: 32
  start-page: 212
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0465
  article-title: Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects
  publication-title: Nat Prod Rep
  doi: 10.1039/C4NP00072B
– volume: 45
  start-page: 288
  year: 2012
  ident: 10.1016/j.copbio.2016.08.001_bib0270
  article-title: NMR in metabolomics and natural products research: two sides of the same coin
  publication-title: Acc Chem Res
  doi: 10.1021/ar2001606
– volume: 83
  start-page: 7616
  year: 2011
  ident: 10.1016/j.copbio.2016.08.001_bib0330
  article-title: Ratio analysis nuclear magnetic resonance spectroscopy for selective metabolite identification in complex samples
  publication-title: Anal Chem
  doi: 10.1021/ac201625f
– volume: 36
  start-page: D402
  year: 2008
  ident: 10.1016/j.copbio.2016.08.001_bib0340
  article-title: Bio Mag Res Bank
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm957
– volume: 44
  start-page: D463
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0345
  article-title: Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1042
– volume: 11
  start-page: 391
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_bib0400
  article-title: Combining DI-ESI-MS and NMR datasets for metabolic profiling
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0704-4
– volume: 15
  start-page: 360
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0355
  article-title: Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis
  publication-title: J Proteome Res
  doi: 10.1021/acs.jproteome.5b00885
– volume: 9
  start-page: 1138
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_sbref0365
  article-title: MVAPACK: a complete data handling package for NMR metabolomics
  publication-title: ACS Chem Biol
  doi: 10.1021/cb4008937
– volume: 9
  start-page: 2032
  year: 2014
  ident: 10.1016/j.copbio.2016.08.001_bib0450
  article-title: Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity
  publication-title: ACS Chem Biol
  doi: 10.1021/cb400894a
– volume: 26
  start-page: 162
  year: 2008
  ident: 10.1016/j.copbio.2016.08.001_bib0320
  article-title: Metabolite identification via the Madison Metabolomics Consortium Database
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0208-162
– volume: 47
  start-page: s123
  year: 2009
  ident: 10.1016/j.copbio.2016.08.001_bib0305
  article-title: rNMR: open source software for identifying and quantifying metabolites in NMR spectra
  publication-title: Magn Reson Chem
  doi: 10.1002/mrc.2526
– volume: 8
  start-page: 557
  year: 2016
  ident: 10.1016/j.copbio.2016.08.001_sbref0295
  article-title: Emerging new strategies for successful metabolite identification in metabolomics
  publication-title: Bioanalysis
  doi: 10.4155/bio-2015-0004
– volume: 3
  start-page: 120
  year: 2013
  ident: 10.1016/j.copbio.2016.08.001_bib0460
  article-title: Revisiting protocols for the NMR analysis of bacterial metabolomes
  publication-title: J Integr OMICS
– volume: 87
  start-page: 3864
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0410
  article-title: Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures
  publication-title: Anal Chem
  doi: 10.1021/ac504633z
– volume: 79
  start-page: 9385
  year: 2007
  ident: 10.1016/j.copbio.2016.08.001_bib0420
  article-title: Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra
  publication-title: Anal Chem
  doi: 10.1021/ac071583z
– volume: 11
  start-page: 1587
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0350
  article-title: COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access
  publication-title: Metabolomics
  doi: 10.1007/s11306-015-0810-y
– volume: 87
  start-page: 706
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0375
  article-title: Expanding the limits of human blood metabolite quantitation using NMR spectroscopy
  publication-title: Anal Chem
  doi: 10.1021/ac503651e
– volume: 260
  start-page: 144
  year: 2015
  ident: 10.1016/j.copbio.2016.08.001_sbref0285
  article-title: Can NMR solve some significant challenges in metabolomics?
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2015.07.014
– volume: 85
  start-page: 10771
  year: 2013
  ident: 10.1016/j.copbio.2016.08.001_bib0415
  article-title: RAMSY: ratio analysis of mass spectrometry to improve compound identification
  publication-title: Anal Chem
  doi: 10.1021/ac4019268
– volume: 100
  start-page: 10158
  year: 2003
  ident: 10.1016/j.copbio.2016.08.001_bib0520
  article-title: Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1733835100
– reference: 25674812 - Anal Chem. 2015 Apr 7;87(7):3864-70
– reference: 25919433 - J Proteome Res. 2015 Jun 5;14(6):2492-9
– reference: 25881480 - J Proteome Res. 2015 Jun 5;14(6):2642-8
– reference: 23773204 - Anal Chem. 2013 Jul 2;85(13):6414-20
– reference: 27051867 - Sci Adv. 2016 Mar 25;2(3):e1501438
– reference: 24773139 - Anal Chem. 2014 Jun 3;86(11):5494-501
– reference: 26154280 - Curr Opin Clin Nutr Metab Care. 2015 Sep;18(5):471-7
– reference: 25180432 - Anal Chem. 2014 Oct 7;86(19):9887-94
– reference: 21894988 - Anal Chem. 2011 Oct 15;83(20):7616-23
– reference: 25746059 - Anal Chem. 2015 Apr 7;87(7):3800-5
– reference: 24937102 - ACS Chem Biol. 2014 Sep 19;9(9):2032-48
– reference: 26605638 - Anal Chem. 2016 Jan 5;88(1):1003-7
– reference: 12930897 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10158-63
– reference: 26745651 - J Proteome Res. 2016 Feb 5;15(2):360-73
– reference: 26078915 - J Integr OMICS. 2013 Dec;3(2):120-137
– reference: 26891337 - Metabolites. 2016 Feb 15;6(1):null
– reference: 17984079 - Nucleic Acids Res. 2008 Jan;36(Database issue):D402-8
– reference: 24168717 - Anal Chem. 2013 Nov 19;85(22):10771-9
– reference: 21526800 - Anal Chem. 2011 Jun 15;83(12):4871-80
– reference: 26136394 - Angew Chem Int Ed Engl. 2015 Aug 3;54(32):9162-85
– reference: 26952191 - Prog Nucl Magn Reson Spectrosc. 2016 Feb;92-93:18-53
– reference: 27074265 - Chem Commun (Camb). 2016 May 4;52(36):6142-5
– reference: 25774104 - Metabolomics. 2015 Apr;11(2):391-402
– reference: 26915807 - Bioanalysis. 2016 Mar;8(6):557-73
– reference: 18259166 - Nat Biotechnol. 2008 Feb;26(2):162-4
– reference: 26141866 - Integr Comp Biol. 2015 Sep;55(3):478-85
– reference: 27158639 - Bio Protoc. 2016 Feb 5;6(3):null
– reference: 17985927 - Anal Chem. 2007 Dec 15;79(24):9385-90
– reference: 22029275 - Anal Chem. 2011 Dec 15;83(24):9352-60
– reference: 26476597 - J Magn Reson. 2015 Nov;260:144-60
– reference: 25485990 - Anal Chem. 2015 Jan 6;87(1):706-15
– reference: 27043450 - Anal Chem. 2016 May 3;88(9):4817-24
– reference: 26491418 - Metabolomics. 2015;11(6):1587-1597
– reference: 21888316 - Acc Chem Res. 2012 Feb 21;45(2):288-97
– reference: 18953024 - Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10
– reference: 23969086 - J Magn Reson. 2013 Oct;235:58-65
– reference: 26759122 - J Proteome Res. 2016 Feb 5;15(2):659-66
– reference: 25333826 - ACS Chem Biol. 2015 Feb 20;10(2):452-9
– reference: 25932900 - Anal Chem. 2015 Jun 2;87(11):5698-706
– reference: 24588729 - J Med Chem. 2014 Jul 24;57(14):5860-70
– reference: 19821464 - Magn Reson Chem. 2009 Dec;47 Suppl 1:S123-6
– reference: 26467476 - Nucleic Acids Res. 2016 Jan 4;44(D1):D463-70
– reference: 25140385 - Anal Chem. 2014 Sep 16;86(18):9242-50
– reference: 25342293 - Nat Prod Rep. 2015 Feb;32(2):212-29
– reference: 24576144 - ACS Chem Biol. 2014 May 16;9(5):1138-44
– reference: 26017271 - PLoS One. 2015 May 27;10(5):e0124219
– reference: 22109519 - Nat Commun. 2011 Nov 22;2:545
– reference: 25616249 - Magn Reson Chem. 2015 May;53(5):337-43
– reference: 24411645 - Lancet. 2014 Jan 11;383(9912):166-75
– reference: 25750701 - Comput Struct Biotechnol J. 2015 Jan 27;13:131-44
– reference: 23930664 - Anal Chem. 2013 Sep 17;85(18):8715-21
– reference: 16889413 - J Proteome Res. 2006 Aug;5(8):1916-23
SSID ssj0005370
Score 2.6658165
SecondaryResourceType review_article
Snippet [Display omitted] •NMR offers advantages for metabolomics that may be currently underappreciated.•In future, NMR-based metabolomics needs to focus on its...
Graphical abstract
The two leading analytical approaches to metabolomics are mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Although currently...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms Animals
biochemical pathways
Biomarkers - analysis
Biomarkers - metabolism
Humans
Internal Medicine
isotopes
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy - methods
mass spectrometry
Metabolic Networks and Pathways
metabolomics
Metabolomics - methods
nuclear magnetic resonance spectroscopy
Title The future of NMR-based metabolomics
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0958166916301768
https://www.clinicalkey.es/playcontent/1-s2.0-S0958166916301768
https://dx.doi.org/10.1016/j.copbio.2016.08.001
https://www.ncbi.nlm.nih.gov/pubmed/27580257
https://www.proquest.com/docview/1835503670
https://www.proquest.com/docview/2000311647
https://pubmed.ncbi.nlm.nih.gov/PMC5305426
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-BYfpCZcV9ou27JHQjSogYNKwm3T3e5GDBYicPW3O9MHAcFgvLazaTuZnfmmO_MNITWhtI59a6hVzNKGHyoKcbxJmRGcs9BYT-P_jm4v6PQbjwM-KJF20QuDZZW57898euqt8yv1XJv1yXBYfwFwgIdegG_ASAE1Ywd7I8SyvtuvpTIPlg6MQ2GK0kX7XFrjpccTNcQWQC9IiTzz0TAbwtM6_PxZRbkUlu4PyH6OJ51W9sqHpGSSI7K3xDJ4TGpgCk7GHeKMrdPrPlOMXbHzYWZgAiPsS56ekP793Wu7Q_PhCFQHbmNGOUQfoTXCCS8GDBdpSCRExBTjzYhBYiKavvBYHCrXM0ZAGmwjV8UW4CGAHNiVp6ScjBNzTpwotpbzQFhjBeRLEUjpSAdWG1fEipkKYYVOpM6Zw3GAxUgWJWLvMtOkRE1KnGvpehVCF6smGXPGFnleqFsWXaHgxyS49i3rwk3rzDTfjFPpyakvXblmMMsrV2zuD8-8KexBwnbEM5YoMeM5PAsQLXeRFe93GeyOYh4SuVXIWWZDCw35kL8BDIU74Yp1LQSQDnz1TjJ8S2nBObhuwFsX__6qS7LrI2hJa9KvSHn2OTfXALlmqpruqSrZaT08dXrfL3gq8Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LDtMPSxdtmjdYFehdhWZEfHoFiRtkkOfQC9CZYsoSlSJ2iS_z_SlrNkTdGh15iEHYIiP9rkR4BTqY3JY2eZ09yxdpxqhnm8w7iVQvDUusjQ-47BMOndtS_vxf0WnNWzMNRW6WN_FdPLaO1_aXlrtqajUesGwQF99EJ8g06KqPkDbBM7VbsB292Lq97wb6cHL3fGkTwjhXqCrmzzMpOpHtEUYJSUXJ5-O8yGDPUSgf7bSLmSmc534IuHlEG3eupd2LLFHnxeIRrch1P0hqCiDwkmLhgOrhmlrzx4snP0gjGNJs--wt3579uzHvP7EZhJwvacCUxA0hhCFFGOMC4zWEvIjGsuOhnH2kR2YhnxPNVhZK3ESthloc4dIkTEOXgwD6BRTAr7DYIsd06IRDrrJJZMGUqZzCTO2FDmmtsm8NomynjycNphMVZ1l9ijqiypyJKKVluGURPYUmtakWe8IS9qc6t6MBRDmcLo_oZeuknPzvx5nKlIzWIVqhc-s6q55nb_cc-T2h8Unkj6zJIVdrLAeyGoFSER470uQwNSPCIutyYcVj60tFCMJRwiUbySrnnXUoAYwdevFKOHkhlcYPRGyPX93f_qGD72bgd91b8YXv2ATzFhmLJF_Sc05s8L-wsR2Fwf-RP2B1azLaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+future+of+NMR-based+metabolomics&rft.jtitle=Current+opinion+in+biotechnology&rft.au=Markley%2C+John+L&rft.au=Br%C3%BCschweiler%2C+Rafael&rft.au=Edison%2C+Arthur+S&rft.au=Eghbalnia%2C+Hamid+R&rft.date=2017-02-01&rft.pub=Elsevier+Ltd&rft.issn=0958-1669&rft.eissn=1879-0429&rft.volume=43&rft.spage=34&rft.epage=40&rft_id=info:doi/10.1016%2Fj.copbio.2016.08.001&rft.externalDocID=S0958166916301768
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09581669%2Fcov200h.gif