A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 15; no. 9; pp. 21931 - 21956
Main Authors Liu, Jian, Liang, Huawei, Wang, Zhiling, Chen, Xiangcheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.08.2015
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.
AbstractList The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.
The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc. , is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e. , a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.
Author Liang, Huawei
Liu, Jian
Chen, Xiangcheng
Wang, Zhiling
AuthorAffiliation 1 Department of Automation, University of Science and Technology of China, Hefei 230026, China; E-Mail: chenxgcg@ustc.edu
2 Institute of Applied Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China; E-Mails: hwliang@iim.ac.cn (H.L.); zlwang@hfcas.ac.cn (Z.W.)
AuthorAffiliation_xml – name: 1 Department of Automation, University of Science and Technology of China, Hefei 230026, China; E-Mail: chenxgcg@ustc.edu
– name: 2 Institute of Applied Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China; E-Mails: hwliang@iim.ac.cn (H.L.); zlwang@hfcas.ac.cn (Z.W.)
Author_xml – sequence: 1
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
– sequence: 2
  givenname: Huawei
  surname: Liang
  fullname: Liang, Huawei
– sequence: 3
  givenname: Zhiling
  surname: Wang
  fullname: Wang, Zhiling
– sequence: 4
  givenname: Xiangcheng
  surname: Chen
  fullname: Chen, Xiangcheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26404290$$D View this record in MEDLINE/PubMed
BookMark eNqNkltv1DAQhSNURC_wwg9AlnhBSIGx41z8grRsL6y0iArBs-U4k62XxF7sZNH-e5xuW9oKCZ48sr859vGc4-TAOotJ8pLCuywT8D7QHASjIqNPkiPKGU8rxuDgXn2YHIewBmBZllXPkkNWcOBMwFGympFzr3r85fwP0jpPZptNtzN2RS6dsQOZd25sArnwqq6xIfWOfB67waQfUfVkuTidfSXGkkv0Gs12ahuukJz6fX1mt8Y726MdnidPW9UFfHGzniTfz8--zT-lyy8Xi_lsmeoC-JAyEE3VihZ5pZjKcwq5LnTe1loUrc4RWhB1g0ABSw6tptFGS3NUGnSNeZ6dJIu9buPUWm686ZXfSaeMvN5wfiWVH4zuUIpMcKFZFCgVF6JUDa9YQbHUcVNXKmp92GttxrrHRkcbXnUPRB-eWHMlV24reRHfVdIo8OZGwLufI4ZB9iZo7Dpl0Y1B0rIsRZxcnMq_0YxVcc4M_gOlFZRVxSf09SN07UZv4wAiFRPDec6nu1_d93ln8DYlEXi7B7R3IXhs7xAKcoqg_BPBCMMjWJtBDcZNf2S6v7X8BmCo2uA
CitedBy_id crossref_primary_10_3390_s21216952
crossref_primary_10_3390_s18113681
crossref_primary_10_1016_j_jpowsour_2016_07_065
crossref_primary_10_3390_app7050457
crossref_primary_10_1541_ieejjia_24005255
crossref_primary_10_3390_info8030093
crossref_primary_10_1016_j_engappai_2021_104406
crossref_primary_10_3390_s19071551
crossref_primary_10_3390_s16010102
crossref_primary_10_3390_rs11242929
crossref_primary_10_3390_s17030594
Cites_doi 10.1109/TPAMI.2006.104
10.1109/ICRA.2011.5979818
10.1002/rob.20256
10.1002/rob.20260
10.1163/016918610X501291
10.1109/ICCP.2009.5284804
10.1049/iet-cta.2009.0032
10.1002/rob.20258
10.1109/TITS.2009.2018961
10.1109/TCSVT.2008.928228
10.1109/IVS.2012.6232303
10.1109/TRA.2004.825269
10.1109/TVT.2014.2321899
10.1109/TGRS.2003.810682
10.1007/s10514-009-9115-1
10.1109/IVS.2007.4290294
10.1109/ICDE.2005.258
10.1109/ICIP.2012.6466890
10.1109/TITS.2004.838221
10.1109/TVT.2007.891426
10.1016/j.isprsjprs.2010.10.005
10.1109/TGRS.2014.2344438
10.1109/IVS.2012.6232119
10.1016/j.infrared.2010.09.006
10.3390/s130101102
10.1109/TITS.2010.2040177
10.1109/ITSC.2011.6083015
10.1109/ICIP.2011.6115883
10.1002/rob.20147
10.1109/CVPR.2008.4587583
10.1016/j.patrec.2010.02.006
10.1002/rob.20255
10.1109/IVS.2010.5548080
10.1007/s10846-013-9889-4
10.1007/BF00133570
10.1109/ROBOT.2007.363041
10.1016/1049-9660(92)90003-L
10.1109/TPAMI.2011.155
10.1109/TVT.2012.2182785
10.1109/ICCP.2014.6936964
10.1002/rob.20252
10.1109/IVS.2009.5164280
ContentType Journal Article
Copyright Copyright MDPI AG 2015
2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
Copyright_xml – notice: Copyright MDPI AG 2015
– notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7TG
KL.
7SP
7TB
7U5
8FD
FR3
L7M
5PM
DOA
DOI 10.3390/s150921931
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Meteorological & Geoastrophysical Abstracts - Academic

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 21956
ExternalDocumentID oai_doaj_org_article_93949c242f7a4997ad48261e7cc24c8a
PMC4610471
3835600121
26404290
10_3390_s150921931
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7TG
KL.
7SP
7TB
7U5
8FD
FR3
L7M
5PM
PUEGO
ID FETCH-LOGICAL-c604t-209d8f9fe48a2a55105c6c5fbc96fc5e0f09bde010e740fc1042f15eac0cbe553
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:22 EDT 2025
Thu Aug 21 18:25:53 EDT 2025
Fri Jul 11 08:13:23 EDT 2025
Tue Aug 05 09:05:32 EDT 2025
Fri Jul 11 15:10:10 EDT 2025
Fri Jul 25 05:34:52 EDT 2025
Mon Jul 21 05:49:54 EDT 2025
Tue Jul 01 01:36:15 EDT 2025
Thu Apr 24 22:57:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords dynamic obstacle modeling
multi-feature ground segmentation
road curb modeling
multi-beam LIDAR
Language English
License https://creativecommons.org/licenses/by/4.0
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-209d8f9fe48a2a55105c6c5fbc96fc5e0f09bde010e740fc1042f15eac0cbe553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s150921931
PMID 26404290
PQID 1721944543
PQPubID 2032333
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_93949c242f7a4997ad48261e7cc24c8a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4610471
proquest_miscellaneous_1777992133
proquest_miscellaneous_1732815020
proquest_miscellaneous_1718078840
proquest_journals_1721944543
pubmed_primary_26404290
crossref_primary_10_3390_s150921931
crossref_citationtrail_10_3390_s150921931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-31
PublicationDateYYYYMMDD 2015-08-31
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-31
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2015
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Simon (ref_41) 2010; 4
Williams (ref_44) 1992; 55
Sun (ref_7) 2006; 28
Liu (ref_22) 2013; 13
Yao (ref_24) 2011; 66
Ge (ref_15) 2009; 10
Chen (ref_32) 2014; 76
ref_14
ref_36
ref_13
Yinghua (ref_3) 2004; 5
ref_12
Zhang (ref_26) 2003; 41
ref_11
Jones (ref_16) 2010; 53
ref_10
Bohren (ref_39) 2008; 25
ref_31
Yao (ref_23) 2010; 31
Kelly (ref_9) 2008; 18
ref_18
ref_17
Vaskevicius (ref_29) 2010; 24
Wijesoma (ref_19) 2004; 20
Borcs (ref_25) 2015; 53
Kammel (ref_35) 2008; 25
Pascoal (ref_28) 2015; 64
Kass (ref_43) 1987; 1
Himmelsbach (ref_33) 2008; 25
Urmson (ref_34) 2008; 25
Sivaraman (ref_5) 2010; 11
Dollar (ref_1) 2012; 34
ref_42
ref_40
Montemerlo (ref_37) 2008; 25
ref_2
Kodagoda (ref_21) 2007; 56
ref_27
Petrovskaya (ref_30) 2009; 26
ref_8
Jaehyun (ref_20) 2012; 61
Thrun (ref_38) 2006; 23
ref_4
ref_6
16640257 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):694-711
21808091 - IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):743-61
23325170 - Sensors (Basel). 2013 Jan 16;13(1):1102-20
References_xml – volume: 28
  start-page: 694
  year: 2006
  ident: ref_7
  article-title: On-road vehicle detection: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.104
– ident: ref_27
  doi: 10.1109/ICRA.2011.5979818
– volume: 25
  start-page: 640
  year: 2008
  ident: ref_33
  article-title: Driving with tentacles: Integral structures for sensing and motion
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20256
– volume: 25
  start-page: 598
  year: 2008
  ident: ref_39
  article-title: Little Ben: The Ben Franklin Racing Team’s entry in the 2007 DARPA Urban Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20260
– volume: 24
  start-page: 1169
  year: 2010
  ident: ref_29
  article-title: Efficient Representation in Three-Dimensional Environment Modeling for Planetary Robotic Exploration
  publication-title: Adv. Robot.
  doi: 10.1163/016918610X501291
– ident: ref_11
  doi: 10.1109/ICCP.2009.5284804
– volume: 4
  start-page: 1303
  year: 2010
  ident: ref_41
  article-title: Kalman filtering with state constraints: A survey of linear and nonlinear algorithms
  publication-title: IET Contr. Theory Appl.
  doi: 10.1049/iet-cta.2009.0032
– volume: 25
  start-page: 569
  year: 2008
  ident: ref_37
  article-title: Junior: The Stanford entry in the Urban Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20258
– volume: 10
  start-page: 283
  year: 2009
  ident: ref_15
  article-title: Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2009.2018961
– volume: 18
  start-page: 1163
  year: 2008
  ident: ref_9
  article-title: A framework for evaluating stereo-based pedestrian detection techniques
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2008.928228
– ident: ref_31
  doi: 10.1109/IVS.2012.6232303
– ident: ref_42
– volume: 20
  start-page: 456
  year: 2004
  ident: ref_19
  article-title: Road-boundary detection and tracking using ladar sensing
  publication-title: IEEE Trans. Robotics. Autom.
  doi: 10.1109/TRA.2004.825269
– volume: 64
  start-page: 441
  year: 2015
  ident: ref_28
  article-title: Simultaneous Segmentation and Superquadrics Fitting in Laser-Range Data
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2321899
– volume: 41
  start-page: 872
  year: 2003
  ident: ref_26
  article-title: A progressive morphological filter for removing nonground measurements from airborne LIDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.810682
– volume: 26
  start-page: 123
  year: 2009
  ident: ref_30
  article-title: Model based vehicle detection and tracking for autonomous urban driving
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-009-9115-1
– ident: ref_8
– ident: ref_17
  doi: 10.1109/IVS.2007.4290294
– ident: ref_10
  doi: 10.1109/ICDE.2005.258
– ident: ref_40
  doi: 10.1109/ICIP.2012.6466890
– volume: 5
  start-page: 309
  year: 2004
  ident: ref_3
  article-title: Color-based road detection in urban traffic scenes
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2004.838221
– volume: 56
  start-page: 478
  year: 2007
  ident: ref_21
  article-title: IMMPDAF approach for road-boundary tracking
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.891426
– volume: 66
  start-page: 260
  year: 2011
  ident: ref_24
  article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.10.005
– volume: 53
  start-page: 1475
  year: 2015
  ident: ref_25
  article-title: Extraction of Vehicle Groups in Airborne Lidar Point Clouds With Two-Level Point Processes
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2344438
– ident: ref_6
  doi: 10.1109/IVS.2012.6232119
– volume: 53
  start-page: 439
  year: 2010
  ident: ref_16
  article-title: Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2010.09.006
– volume: 13
  start-page: 1102
  year: 2013
  ident: ref_22
  article-title: A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data
  publication-title: Sensors
  doi: 10.3390/s130101102
– volume: 11
  start-page: 267
  year: 2010
  ident: ref_5
  article-title: A general active-learning framework for on-road vehicle recognition and tracking
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2040177
– ident: ref_12
  doi: 10.1109/ITSC.2011.6083015
– ident: ref_13
  doi: 10.1109/ICIP.2011.6115883
– volume: 23
  start-page: 661
  year: 2006
  ident: ref_38
  article-title: Stanley: The robot that won the DARPA Grand Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20147
– ident: ref_2
  doi: 10.1109/CVPR.2008.4587583
– volume: 31
  start-page: 1100
  year: 2010
  ident: ref_23
  article-title: Automatic vehicle extraction from airborne LiDAR data of urban areas aided by geodesic morphology
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.02.006
– volume: 25
  start-page: 425
  year: 2008
  ident: ref_34
  article-title: Autonomous driving in urban environments: Boss and the Urban Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20255
– ident: ref_18
  doi: 10.1109/IVS.2010.5548080
– volume: 76
  start-page: 563
  year: 2014
  ident: ref_32
  article-title: Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-013-9889-4
– volume: 1
  start-page: 321
  year: 1987
  ident: ref_43
  article-title: Snakes–Active contour models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00133570
– ident: ref_4
  doi: 10.1109/ROBOT.2007.363041
– volume: 55
  start-page: 14
  year: 1992
  ident: ref_44
  article-title: A fast algorithm for active contours and curvature estimation
  publication-title: Cvgip Image Underst.
  doi: 10.1016/1049-9660(92)90003-L
– volume: 34
  start-page: 743
  year: 2012
  ident: ref_1
  article-title: Pedestrian Detection: An Evaluation of the State of the Art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
– volume: 61
  start-page: 971
  year: 2012
  ident: ref_20
  article-title: Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2182785
– ident: ref_14
  doi: 10.1109/ICCP.2014.6936964
– volume: 25
  start-page: 615
  year: 2008
  ident: ref_35
  article-title: Team AnnieWAY’s autonomous system for the 2007 DARPA Urban Challenge
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20252
– ident: ref_36
  doi: 10.1109/IVS.2009.5164280
– reference: 21808091 - IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):743-61
– reference: 23325170 - Sensors (Basel). 2013 Jan 16;13(1):1102-20
– reference: 16640257 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):694-711
SSID ssj0023338
Score 2.2135882
Snippet The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing...
The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc. , is critical for developing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 21931
SubjectTerms Cameras
dynamic obstacle modeling
Dynamics
Lasers
Lidar
Mathematical models
multi-beam LIDAR
multi-feature ground segmentation
Obstacles
Online
Remote sensing
road curb modeling
Roads
Sensors
Three dimensional models
Tracking
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkx6Mb9dXMHrx0NgWWOC4PtZH1BijibcGKOgm2jX7OPjvnWm7664xevHW0GkKw9D5PgofhBxwYzTKhkTGeRtBvs4jo9MQsTgAlAP6ozTuRr65bV488qsn8TRx1BeuCavkgSvHHWmmuXaQSII0gM6lyTkg4sRLB4VOldAIct6ITNVUiwHzqsRIGZD6oz7AHg1jkyVT6adU6f8JWn5fITmRctqLZKHGirRV1XGJzPhimcxPKAiukOcWbY-WV1HAnxRRJe5confdTjGgJ6_dYd6n5z1jrc-p_aDljtvo2Js3en152rqnnYLe4eqWDk4tUMCD9LRXXZ99bYJbJY_ts4eTi6g-OyFyzZgPIPh1roIOniuTGoEwyjWdCNbpZnDCxyHWNvfAxrzkcXDAytKQCPgMx856IdgamS26hd8gNJdaKO-8MKnlVqVWOSUtczZ2iTKSNcjhyKWZq4XF8XyL1wwIBro_-3J_g-yPbd8rOY0frY6xZ8YWKIFdFkBgZHVgZH8FRoNsj_o1q8dlP0PCqzkXHGq9N74NIwp_k5jCd4dok6AIPzDf32wgiqG-6a82UmpoEIN3rVfhNG4RwFBEAvC0nAq0qSZP3yk6L6X6NwrkA6LY_A8fbZE5AICimiPfJrOD3tDvAMga2N1yPH0CmbEkwQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNpDVQot20JlBBcOEUlsr-NTtTy2gGiFUJH2FtkTG1aChO7j0H_fmSS7y1Zob5Ezefgx9vfZ48-MHUprDcmGRBa8i3C8LiJr0hCJOCCUQ_qTGdqN_PNX9-JOXg3UoJ1wG7dhlbM-se6oiwpojvyYqIqRUknx_flPRKdG0epqe4TGG7ZB0mUU0qUHC8IlkH81kqQCqf3xGMGPwbeIZGkQqrX6XwOY_8dJvhh4-h_Y-xYx8l5TxZtszZcf2bsXOoJb7L7H-7MgK44olBO2pP1L_KYalhN--lhNizH_MbLO-YK7v7zedxudePvEry_Perd8WPIbinEZ0gQDR1TIz0bN9fliK9w2u-uf_z69iNoTFCLoxnKCLmCKLJjgZWZTqwhMQRdUcGC6AZSPQ2xc4ZGTeS3jAMjN0pAo7IxjcF4p8Ymtl1XpdxgvNJavB69s6qTLUpdBpp0AF0OSWS067GhWpDm08uJ0ysVjjjSDij9fFH-HHcxtnxtRjVetTqhm5hYkhF0nVKP7vPWr3AgjDSDOCNoiedO2kEiYEq8BEyGzHbY7q9e89c5xvmhLHbY_v41-RYsltvTVlGwSkuJH_rvKBtsy_m-60kZrgxkS-K3PTXOa5wjBKOEBfFovNbSlLC_fKYcPtQY4yeQjrviyOntf2VsEeKqZA99l65PR1O8hiJq4b7Wn_AOziBzA
  priority: 102
  providerName: ProQuest
Title A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/26404290
https://www.proquest.com/docview/1721944543
https://www.proquest.com/docview/1718078840
https://www.proquest.com/docview/1732815020
https://www.proquest.com/docview/1777992133
https://pubmed.ncbi.nlm.nih.gov/PMC4610471
https://doaj.org/article/93949c242f7a4997ad48261e7cc24c8a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoED4jeFURnBhUMgTezYPiDUbu0GYlM1Uam3yHbsUakkkLYS--95L7-2TtUOXKIoeVHivPfi73P8PhPynmmtUDYk0NaZAPrrLNAq8kEceoByQH-kwmrks_PkdMa-zfl8j7TrdzYvcLWT2uF6UrNy-fHvn6svkPCfkXECZf-0AlCjIPOwnPoAeiSBCXrGur8JUQw8rJYmvWWPUsAJw29yuNUvVfL9uzDn7amTN_qiySPysAGRdFh7_THZc_kT8uCGtOBTcjmkk3beFQVgShFuYkkTnRaLfE2PlsUmW9GTUhvjMmquaFWKG4yc_kW_fz0eXtBFTqc47WWBYw4UgCI9Luv98XV13DMym4x_HJ0GzaIKgU1CtoasUJn0yjsmdaQ54iubWO6NVYm33IU-VCZzQNOcYKG3QNciP-DwfQ6tcZzHz8l-XuTuJaGZUFw667iODDMyMtJKYWJrQjuQWsQ98qF9paltFMdx4YtlCswDPZFee6JH3nW2v2udjZ1WI_RMZ4Ha2NWBorxMm1RLVayYsgA9vNDA54TOGHCogRMWDlqpe-Sw9WvaxluKTFgxxhk89dvuNKQa_j_RuSs2aDNAdX6gxHfZQHjD80Z32gihoEEx3OtFHU5di9pw7BGxFWhbTd4-ky9-VrLgqJwPUOPVf1_5mtwHOMjrEfNDsr8uN-4NQK616ZN7Yi5gKycnfXIwGp9PL_rV8EW_yrR_Buov_Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcUHlvKWAEHDhETWJ7HR8Q2na77NJtVaFW2luwHbus1CZlH0L9U_xGZvLY7aJqb71FyUSJ7Znx99meGUI-cq0Vpg0JtHUmgPk6C7SKfcBCD1AO6E-iMBr5-KTdP-ffR2K0Qf42sTB4rLLxiaWjzgqLa-R7SFUU54Kzr9e_A6wahburTQmNSi2O3M0foGzTL4MujO-nOO4dnh30g7qqQGDbIZ-BWqgs8co7nuhYCwQYtm2FN1a1vRUu9KEymQOe4iQPvQW-EvtIgIMKrXECq0SAy9-CiTdEi5KjJcFjwPeqFKiMqXBvCmBLwV-zaGXSK2sD3AVo_z-XeWui622TxzVCpZ1KpZ6QDZc_JY9u5S18Ri46tNcc6qKAeiliWYyXoqfFOJ_Rg8tink3pt4k2xmXU3NAyzjfYd_qKDgfdzg86zukpnqkZ44IGBRRKu5Pq-nAZevecnN9L374gm3mRu1eEZlKJxFkndGy4SWKT2EQaZk1oo0RL1iKfmy5NbZ3OHKtqXKZAa7D702X3t8iHhex1lcTjTql9HJmFBCbeLm8Uk4u0tuNUMcWVBVzjpQayKHXGgaBFTlq4aRPdIrvNuKa1N5imS91tkfeLx2DHuDmjc1fMUSbC1P_At9fJgO3A_8ZrZaRU0CAG33pZqdOiRQB-EX_A23JF0VaavPokH_8qc45jWn7AMTvrm_eOPOifHQ_T4eDk6DV5COBSVOvvu2RzNpm7NwDgZuZtaTWU_LxvM_0HSftatw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemISF4mPimY4AR8MBD1CS26_hhQt26srIxVYhJfQu2Y2-VtmT0Q9P-Nf467vLRrmjq296i5Krm7Lvz7-f47gj5xLVWWDYk0NaZANbrLNAq9gELPUA5oD-JwmzkHyedw1P-fSRGG-RvkwuDxyqbmFgG6qywuEfeRqqiOBectX19LGLY63-9-hNgByn80tq006hM5MjdXAN9m-4OejDXn-O4f_Br_zCoOwwEthPyGZiIyhKvvOOJjrVAsGE7VnhjVcdb4UIfKpM54CxO8tBb4C6xjwQEq9AaJ7BjBIT_B5KJCH1MjpZkjwH3q8qhMqbC9hSAlwINWLSyAJZ9Au4Ct_-f0by16PWfkK0ardJuZV5PyYbLn5HHt2oYPidnXdpvDnhRQMAUcS3mTtFhMc5ndP-imGdT-m2ijXEZNTe0zPkN9py-pMeDXvcnHed0iOdrxri5QQGR0t6kuj5YpuG9IKf3MrYvyWZe5O41oZlUInHWCR0bbpLYJDaRhlkT2ijRkrXIl2ZIU1uXNscOGxcpUBwc_nQ5_C3ycSF7VRX0uFNqD2dmIYFFuMsbxeQsrX06VUxxZQHjeKmBOEqdcSBrkZMWbtpEt8hOM69pHRmm6dKOW-TD4jH4NH6o0bkr5igTYRsA4N7rZMCP4H3jtTJSKlCIwX-9qsxpoREAYcQi8Gu5YmgrKq8-ycfnZf1xLNEPmGZ7vXrvyUNw0PR4cHL0hjwCnCmqrfgdsjmbzN1bwHIz8650Gkp-37eX_gNN417t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Applying+Point+Clouds+Grabbed+by+Multi-Beam+LIDAR+in+Perceiving+the+Driving+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jian&rft.au=Liang%2C+Huawei&rft.au=Wang%2C+Zhiling&rft.au=Chen%2C+Xiangcheng&rft.date=2015-08-31&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=15&rft.issue=9&rft.spage=21931&rft.epage=21956&rft_id=info:doi/10.3390%2Fs150921931&rft_id=info%3Apmid%2F26404290&rft.externalDocID=PMC4610471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon