A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment
The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 15; no. 9; pp. 21931 - 21956 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.08.2015
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. |
---|---|
AbstractList | The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc. , is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e. , a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. |
Author | Liang, Huawei Liu, Jian Chen, Xiangcheng Wang, Zhiling |
AuthorAffiliation | 1 Department of Automation, University of Science and Technology of China, Hefei 230026, China; E-Mail: chenxgcg@ustc.edu 2 Institute of Applied Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China; E-Mails: hwliang@iim.ac.cn (H.L.); zlwang@hfcas.ac.cn (Z.W.) |
AuthorAffiliation_xml | – name: 1 Department of Automation, University of Science and Technology of China, Hefei 230026, China; E-Mail: chenxgcg@ustc.edu – name: 2 Institute of Applied Technology , Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, China; E-Mails: hwliang@iim.ac.cn (H.L.); zlwang@hfcas.ac.cn (Z.W.) |
Author_xml | – sequence: 1 givenname: Jian surname: Liu fullname: Liu, Jian – sequence: 2 givenname: Huawei surname: Liang fullname: Liang, Huawei – sequence: 3 givenname: Zhiling surname: Wang fullname: Wang, Zhiling – sequence: 4 givenname: Xiangcheng surname: Chen fullname: Chen, Xiangcheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26404290$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltv1DAQhSNURC_wwg9AlnhBSIGx41z8grRsL6y0iArBs-U4k62XxF7sZNH-e5xuW9oKCZ48sr859vGc4-TAOotJ8pLCuywT8D7QHASjIqNPkiPKGU8rxuDgXn2YHIewBmBZllXPkkNWcOBMwFGympFzr3r85fwP0jpPZptNtzN2RS6dsQOZd25sArnwqq6xIfWOfB67waQfUfVkuTidfSXGkkv0Gs12ahuukJz6fX1mt8Y726MdnidPW9UFfHGzniTfz8--zT-lyy8Xi_lsmeoC-JAyEE3VihZ5pZjKcwq5LnTe1loUrc4RWhB1g0ABSw6tptFGS3NUGnSNeZ6dJIu9buPUWm686ZXfSaeMvN5wfiWVH4zuUIpMcKFZFCgVF6JUDa9YQbHUcVNXKmp92GttxrrHRkcbXnUPRB-eWHMlV24reRHfVdIo8OZGwLufI4ZB9iZo7Dpl0Y1B0rIsRZxcnMq_0YxVcc4M_gOlFZRVxSf09SN07UZv4wAiFRPDec6nu1_d93ln8DYlEXi7B7R3IXhs7xAKcoqg_BPBCMMjWJtBDcZNf2S6v7X8BmCo2uA |
CitedBy_id | crossref_primary_10_3390_s21216952 crossref_primary_10_3390_s18113681 crossref_primary_10_1016_j_jpowsour_2016_07_065 crossref_primary_10_3390_app7050457 crossref_primary_10_1541_ieejjia_24005255 crossref_primary_10_3390_info8030093 crossref_primary_10_1016_j_engappai_2021_104406 crossref_primary_10_3390_s19071551 crossref_primary_10_3390_s16010102 crossref_primary_10_3390_rs11242929 crossref_primary_10_3390_s17030594 |
Cites_doi | 10.1109/TPAMI.2006.104 10.1109/ICRA.2011.5979818 10.1002/rob.20256 10.1002/rob.20260 10.1163/016918610X501291 10.1109/ICCP.2009.5284804 10.1049/iet-cta.2009.0032 10.1002/rob.20258 10.1109/TITS.2009.2018961 10.1109/TCSVT.2008.928228 10.1109/IVS.2012.6232303 10.1109/TRA.2004.825269 10.1109/TVT.2014.2321899 10.1109/TGRS.2003.810682 10.1007/s10514-009-9115-1 10.1109/IVS.2007.4290294 10.1109/ICDE.2005.258 10.1109/ICIP.2012.6466890 10.1109/TITS.2004.838221 10.1109/TVT.2007.891426 10.1016/j.isprsjprs.2010.10.005 10.1109/TGRS.2014.2344438 10.1109/IVS.2012.6232119 10.1016/j.infrared.2010.09.006 10.3390/s130101102 10.1109/TITS.2010.2040177 10.1109/ITSC.2011.6083015 10.1109/ICIP.2011.6115883 10.1002/rob.20147 10.1109/CVPR.2008.4587583 10.1016/j.patrec.2010.02.006 10.1002/rob.20255 10.1109/IVS.2010.5548080 10.1007/s10846-013-9889-4 10.1007/BF00133570 10.1109/ROBOT.2007.363041 10.1016/1049-9660(92)90003-L 10.1109/TPAMI.2011.155 10.1109/TVT.2012.2182785 10.1109/ICCP.2014.6936964 10.1002/rob.20252 10.1109/IVS.2009.5164280 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2015 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
Copyright_xml | – notice: Copyright MDPI AG 2015 – notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7TG KL. 7SP 7TB 7U5 8FD FR3 L7M 5PM DOA |
DOI | 10.3390/s150921931 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef Meteorological & Geoastrophysical Abstracts - Academic Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
EndPage | 21956 |
ExternalDocumentID | oai_doaj_org_article_93949c242f7a4997ad48261e7cc24c8a PMC4610471 3835600121 26404290 10_3390_s150921931 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 7TG KL. 7SP 7TB 7U5 8FD FR3 L7M 5PM PUEGO |
ID | FETCH-LOGICAL-c604t-209d8f9fe48a2a55105c6c5fbc96fc5e0f09bde010e740fc1042f15eac0cbe553 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:22 EDT 2025 Thu Aug 21 18:25:53 EDT 2025 Fri Jul 11 08:13:23 EDT 2025 Tue Aug 05 09:05:32 EDT 2025 Fri Jul 11 15:10:10 EDT 2025 Fri Jul 25 05:34:52 EDT 2025 Mon Jul 21 05:49:54 EDT 2025 Tue Jul 01 01:36:15 EDT 2025 Thu Apr 24 22:57:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | dynamic obstacle modeling multi-feature ground segmentation road curb modeling multi-beam LIDAR |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c604t-209d8f9fe48a2a55105c6c5fbc96fc5e0f09bde010e740fc1042f15eac0cbe553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s150921931 |
PMID | 26404290 |
PQID | 1721944543 |
PQPubID | 2032333 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93949c242f7a4997ad48261e7cc24c8a pubmedcentral_primary_oai_pubmedcentral_nih_gov_4610471 proquest_miscellaneous_1777992133 proquest_miscellaneous_1732815020 proquest_miscellaneous_1718078840 proquest_journals_1721944543 pubmed_primary_26404290 crossref_primary_10_3390_s150921931 crossref_citationtrail_10_3390_s150921931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-31 |
PublicationDateYYYYMMDD | 2015-08-31 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2015 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Simon (ref_41) 2010; 4 Williams (ref_44) 1992; 55 Sun (ref_7) 2006; 28 Liu (ref_22) 2013; 13 Yao (ref_24) 2011; 66 Ge (ref_15) 2009; 10 Chen (ref_32) 2014; 76 ref_14 ref_36 ref_13 Yinghua (ref_3) 2004; 5 ref_12 Zhang (ref_26) 2003; 41 ref_11 Jones (ref_16) 2010; 53 ref_10 Bohren (ref_39) 2008; 25 ref_31 Yao (ref_23) 2010; 31 Kelly (ref_9) 2008; 18 ref_18 ref_17 Vaskevicius (ref_29) 2010; 24 Wijesoma (ref_19) 2004; 20 Borcs (ref_25) 2015; 53 Kammel (ref_35) 2008; 25 Pascoal (ref_28) 2015; 64 Kass (ref_43) 1987; 1 Himmelsbach (ref_33) 2008; 25 Urmson (ref_34) 2008; 25 Sivaraman (ref_5) 2010; 11 Dollar (ref_1) 2012; 34 ref_42 ref_40 Montemerlo (ref_37) 2008; 25 ref_2 Kodagoda (ref_21) 2007; 56 ref_27 Petrovskaya (ref_30) 2009; 26 ref_8 Jaehyun (ref_20) 2012; 61 Thrun (ref_38) 2006; 23 ref_4 ref_6 16640257 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):694-711 21808091 - IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):743-61 23325170 - Sensors (Basel). 2013 Jan 16;13(1):1102-20 |
References_xml | – volume: 28 start-page: 694 year: 2006 ident: ref_7 article-title: On-road vehicle detection: A review publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.104 – ident: ref_27 doi: 10.1109/ICRA.2011.5979818 – volume: 25 start-page: 640 year: 2008 ident: ref_33 article-title: Driving with tentacles: Integral structures for sensing and motion publication-title: J. Field Robot. doi: 10.1002/rob.20256 – volume: 25 start-page: 598 year: 2008 ident: ref_39 article-title: Little Ben: The Ben Franklin Racing Team’s entry in the 2007 DARPA Urban Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20260 – volume: 24 start-page: 1169 year: 2010 ident: ref_29 article-title: Efficient Representation in Three-Dimensional Environment Modeling for Planetary Robotic Exploration publication-title: Adv. Robot. doi: 10.1163/016918610X501291 – ident: ref_11 doi: 10.1109/ICCP.2009.5284804 – volume: 4 start-page: 1303 year: 2010 ident: ref_41 article-title: Kalman filtering with state constraints: A survey of linear and nonlinear algorithms publication-title: IET Contr. Theory Appl. doi: 10.1049/iet-cta.2009.0032 – volume: 25 start-page: 569 year: 2008 ident: ref_37 article-title: Junior: The Stanford entry in the Urban Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20258 – volume: 10 start-page: 283 year: 2009 ident: ref_15 article-title: Real-Time Pedestrian Detection and Tracking at Nighttime for Driver-Assistance Systems publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2018961 – volume: 18 start-page: 1163 year: 2008 ident: ref_9 article-title: A framework for evaluating stereo-based pedestrian detection techniques publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2008.928228 – ident: ref_31 doi: 10.1109/IVS.2012.6232303 – ident: ref_42 – volume: 20 start-page: 456 year: 2004 ident: ref_19 article-title: Road-boundary detection and tracking using ladar sensing publication-title: IEEE Trans. Robotics. Autom. doi: 10.1109/TRA.2004.825269 – volume: 64 start-page: 441 year: 2015 ident: ref_28 article-title: Simultaneous Segmentation and Superquadrics Fitting in Laser-Range Data publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2014.2321899 – volume: 41 start-page: 872 year: 2003 ident: ref_26 article-title: A progressive morphological filter for removing nonground measurements from airborne LIDAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.810682 – volume: 26 start-page: 123 year: 2009 ident: ref_30 article-title: Model based vehicle detection and tracking for autonomous urban driving publication-title: Auton. Robot. doi: 10.1007/s10514-009-9115-1 – ident: ref_8 – ident: ref_17 doi: 10.1109/IVS.2007.4290294 – ident: ref_10 doi: 10.1109/ICDE.2005.258 – ident: ref_40 doi: 10.1109/ICIP.2012.6466890 – volume: 5 start-page: 309 year: 2004 ident: ref_3 article-title: Color-based road detection in urban traffic scenes publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2004.838221 – volume: 56 start-page: 478 year: 2007 ident: ref_21 article-title: IMMPDAF approach for road-boundary tracking publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2007.891426 – volume: 66 start-page: 260 year: 2011 ident: ref_24 article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.10.005 – volume: 53 start-page: 1475 year: 2015 ident: ref_25 article-title: Extraction of Vehicle Groups in Airborne Lidar Point Clouds With Two-Level Point Processes publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2344438 – ident: ref_6 doi: 10.1109/IVS.2012.6232119 – volume: 53 start-page: 439 year: 2010 ident: ref_16 article-title: Detection of pedestrians in far-infrared automotive night vision using region-growing and clothing distortion compensation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2010.09.006 – volume: 13 start-page: 1102 year: 2013 ident: ref_22 article-title: A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data publication-title: Sensors doi: 10.3390/s130101102 – volume: 11 start-page: 267 year: 2010 ident: ref_5 article-title: A general active-learning framework for on-road vehicle recognition and tracking publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2010.2040177 – ident: ref_12 doi: 10.1109/ITSC.2011.6083015 – ident: ref_13 doi: 10.1109/ICIP.2011.6115883 – volume: 23 start-page: 661 year: 2006 ident: ref_38 article-title: Stanley: The robot that won the DARPA Grand Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20147 – ident: ref_2 doi: 10.1109/CVPR.2008.4587583 – volume: 31 start-page: 1100 year: 2010 ident: ref_23 article-title: Automatic vehicle extraction from airborne LiDAR data of urban areas aided by geodesic morphology publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.02.006 – volume: 25 start-page: 425 year: 2008 ident: ref_34 article-title: Autonomous driving in urban environments: Boss and the Urban Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20255 – ident: ref_18 doi: 10.1109/IVS.2010.5548080 – volume: 76 start-page: 563 year: 2014 ident: ref_32 article-title: Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9889-4 – volume: 1 start-page: 321 year: 1987 ident: ref_43 article-title: Snakes–Active contour models publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00133570 – ident: ref_4 doi: 10.1109/ROBOT.2007.363041 – volume: 55 start-page: 14 year: 1992 ident: ref_44 article-title: A fast algorithm for active contours and curvature estimation publication-title: Cvgip Image Underst. doi: 10.1016/1049-9660(92)90003-L – volume: 34 start-page: 743 year: 2012 ident: ref_1 article-title: Pedestrian Detection: An Evaluation of the State of the Art publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.155 – volume: 61 start-page: 971 year: 2012 ident: ref_20 article-title: Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2012.2182785 – ident: ref_14 doi: 10.1109/ICCP.2014.6936964 – volume: 25 start-page: 615 year: 2008 ident: ref_35 article-title: Team AnnieWAY’s autonomous system for the 2007 DARPA Urban Challenge publication-title: J. Field Robot. doi: 10.1002/rob.20252 – ident: ref_36 doi: 10.1109/IVS.2009.5164280 – reference: 21808091 - IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):743-61 – reference: 23325170 - Sensors (Basel). 2013 Jan 16;13(1):1102-20 – reference: 16640257 - IEEE Trans Pattern Anal Mach Intell. 2006 May;28(5):694-711 |
SSID | ssj0023338 |
Score | 2.2135882 |
Snippet | The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing... The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc. , is critical for developing... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 21931 |
SubjectTerms | Cameras dynamic obstacle modeling Dynamics Lasers Lidar Mathematical models multi-beam LIDAR multi-feature ground segmentation Obstacles Online Remote sensing road curb modeling Roads Sensors Three dimensional models Tracking Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGkx6Mb9dXMHrx0NgWWOC4PtZH1BijibcGKOgm2jX7OPjvnWm7664xevHW0GkKw9D5PgofhBxwYzTKhkTGeRtBvs4jo9MQsTgAlAP6ozTuRr65bV488qsn8TRx1BeuCavkgSvHHWmmuXaQSII0gM6lyTkg4sRLB4VOldAIct6ITNVUiwHzqsRIGZD6oz7AHg1jkyVT6adU6f8JWn5fITmRctqLZKHGirRV1XGJzPhimcxPKAiukOcWbY-WV1HAnxRRJe5confdTjGgJ6_dYd6n5z1jrc-p_aDljtvo2Js3en152rqnnYLe4eqWDk4tUMCD9LRXXZ99bYJbJY_ts4eTi6g-OyFyzZgPIPh1roIOniuTGoEwyjWdCNbpZnDCxyHWNvfAxrzkcXDAytKQCPgMx856IdgamS26hd8gNJdaKO-8MKnlVqVWOSUtczZ2iTKSNcjhyKWZq4XF8XyL1wwIBro_-3J_g-yPbd8rOY0frY6xZ8YWKIFdFkBgZHVgZH8FRoNsj_o1q8dlP0PCqzkXHGq9N74NIwp_k5jCd4dok6AIPzDf32wgiqG-6a82UmpoEIN3rVfhNG4RwFBEAvC0nAq0qSZP3yk6L6X6NwrkA6LY_A8fbZE5AICimiPfJrOD3tDvAMga2N1yPH0CmbEkwQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXNpDVQot20JlBBcOEUlsr-NTtTy2gGiFUJH2FtkTG1aChO7j0H_fmSS7y1Zob5Ezefgx9vfZ48-MHUprDcmGRBa8i3C8LiJr0hCJOCCUQ_qTGdqN_PNX9-JOXg3UoJ1wG7dhlbM-se6oiwpojvyYqIqRUknx_flPRKdG0epqe4TGG7ZB0mUU0qUHC8IlkH81kqQCqf3xGMGPwbeIZGkQqrX6XwOY_8dJvhh4-h_Y-xYx8l5TxZtszZcf2bsXOoJb7L7H-7MgK44olBO2pP1L_KYalhN--lhNizH_MbLO-YK7v7zedxudePvEry_Perd8WPIbinEZ0gQDR1TIz0bN9fliK9w2u-uf_z69iNoTFCLoxnKCLmCKLJjgZWZTqwhMQRdUcGC6AZSPQ2xc4ZGTeS3jAMjN0pAo7IxjcF4p8Ymtl1XpdxgvNJavB69s6qTLUpdBpp0AF0OSWS067GhWpDm08uJ0ysVjjjSDij9fFH-HHcxtnxtRjVetTqhm5hYkhF0nVKP7vPWr3AgjDSDOCNoiedO2kEiYEq8BEyGzHbY7q9e89c5xvmhLHbY_v41-RYsltvTVlGwSkuJH_rvKBtsy_m-60kZrgxkS-K3PTXOa5wjBKOEBfFovNbSlLC_fKYcPtQY4yeQjrviyOntf2VsEeKqZA99l65PR1O8hiJq4b7Wn_AOziBzA priority: 102 providerName: ProQuest |
Title | A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26404290 https://www.proquest.com/docview/1721944543 https://www.proquest.com/docview/1718078840 https://www.proquest.com/docview/1732815020 https://www.proquest.com/docview/1777992133 https://pubmed.ncbi.nlm.nih.gov/PMC4610471 https://doaj.org/article/93949c242f7a4997ad48261e7cc24c8a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGdoED4jeFURnBhUMgTezYPiDUbu0GYlM1Uam3yHbsUakkkLYS--95L7-2TtUOXKIoeVHivPfi73P8PhPynmmtUDYk0NaZAPrrLNAq8kEceoByQH-kwmrks_PkdMa-zfl8j7TrdzYvcLWT2uF6UrNy-fHvn6svkPCfkXECZf-0AlCjIPOwnPoAeiSBCXrGur8JUQw8rJYmvWWPUsAJw29yuNUvVfL9uzDn7amTN_qiySPysAGRdFh7_THZc_kT8uCGtOBTcjmkk3beFQVgShFuYkkTnRaLfE2PlsUmW9GTUhvjMmquaFWKG4yc_kW_fz0eXtBFTqc47WWBYw4UgCI9Luv98XV13DMym4x_HJ0GzaIKgU1CtoasUJn0yjsmdaQ54iubWO6NVYm33IU-VCZzQNOcYKG3QNciP-DwfQ6tcZzHz8l-XuTuJaGZUFw667iODDMyMtJKYWJrQjuQWsQ98qF9paltFMdx4YtlCswDPZFee6JH3nW2v2udjZ1WI_RMZ4Ha2NWBorxMm1RLVayYsgA9vNDA54TOGHCogRMWDlqpe-Sw9WvaxluKTFgxxhk89dvuNKQa_j_RuSs2aDNAdX6gxHfZQHjD80Z32gihoEEx3OtFHU5di9pw7BGxFWhbTd4-ky9-VrLgqJwPUOPVf1_5mtwHOMjrEfNDsr8uN-4NQK616ZN7Yi5gKycnfXIwGp9PL_rV8EW_yrR_Buov_Q |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcUHlvKWAEHDhETWJ7HR8Q2na77NJtVaFW2luwHbus1CZlH0L9U_xGZvLY7aJqb71FyUSJ7Znx99meGUI-cq0Vpg0JtHUmgPk6C7SKfcBCD1AO6E-iMBr5-KTdP-ffR2K0Qf42sTB4rLLxiaWjzgqLa-R7SFUU54Kzr9e_A6wahburTQmNSi2O3M0foGzTL4MujO-nOO4dnh30g7qqQGDbIZ-BWqgs8co7nuhYCwQYtm2FN1a1vRUu9KEymQOe4iQPvQW-EvtIgIMKrXECq0SAy9-CiTdEi5KjJcFjwPeqFKiMqXBvCmBLwV-zaGXSK2sD3AVo_z-XeWui622TxzVCpZ1KpZ6QDZc_JY9u5S18Ri46tNcc6qKAeiliWYyXoqfFOJ_Rg8tink3pt4k2xmXU3NAyzjfYd_qKDgfdzg86zukpnqkZ44IGBRRKu5Pq-nAZevecnN9L374gm3mRu1eEZlKJxFkndGy4SWKT2EQaZk1oo0RL1iKfmy5NbZ3OHKtqXKZAa7D702X3t8iHhex1lcTjTql9HJmFBCbeLm8Uk4u0tuNUMcWVBVzjpQayKHXGgaBFTlq4aRPdIrvNuKa1N5imS91tkfeLx2DHuDmjc1fMUSbC1P_At9fJgO3A_8ZrZaRU0CAG33pZqdOiRQB-EX_A23JF0VaavPokH_8qc45jWn7AMTvrm_eOPOifHQ_T4eDk6DV5COBSVOvvu2RzNpm7NwDgZuZtaTWU_LxvM_0HSftatw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemISF4mPimY4AR8MBD1CS26_hhQt26srIxVYhJfQu2Y2-VtmT0Q9P-Nf467vLRrmjq296i5Krm7Lvz7-f47gj5xLVWWDYk0NaZANbrLNAq9gELPUA5oD-JwmzkHyedw1P-fSRGG-RvkwuDxyqbmFgG6qywuEfeRqqiOBectX19LGLY63-9-hNgByn80tq006hM5MjdXAN9m-4OejDXn-O4f_Br_zCoOwwEthPyGZiIyhKvvOOJjrVAsGE7VnhjVcdb4UIfKpM54CxO8tBb4C6xjwQEq9AaJ7BjBIT_B5KJCH1MjpZkjwH3q8qhMqbC9hSAlwINWLSyAJZ9Au4Ct_-f0by16PWfkK0ardJuZV5PyYbLn5HHt2oYPidnXdpvDnhRQMAUcS3mTtFhMc5ndP-imGdT-m2ijXEZNTe0zPkN9py-pMeDXvcnHed0iOdrxri5QQGR0t6kuj5YpuG9IKf3MrYvyWZe5O41oZlUInHWCR0bbpLYJDaRhlkT2ijRkrXIl2ZIU1uXNscOGxcpUBwc_nQ5_C3ycSF7VRX0uFNqD2dmIYFFuMsbxeQsrX06VUxxZQHjeKmBOEqdcSBrkZMWbtpEt8hOM69pHRmm6dKOW-TD4jH4NH6o0bkr5igTYRsA4N7rZMCP4H3jtTJSKlCIwX-9qsxpoREAYcQi8Gu5YmgrKq8-ycfnZf1xLNEPmGZ7vXrvyUNw0PR4cHL0hjwCnCmqrfgdsjmbzN1bwHIz8650Gkp-37eX_gNN417t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Applying+Point+Clouds+Grabbed+by+Multi-Beam+LIDAR+in+Perceiving+the+Driving+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jian&rft.au=Liang%2C+Huawei&rft.au=Wang%2C+Zhiling&rft.au=Chen%2C+Xiangcheng&rft.date=2015-08-31&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=15&rft.issue=9&rft.spage=21931&rft.epage=21956&rft_id=info:doi/10.3390%2Fs150921931&rft_id=info%3Apmid%2F26404290&rft.externalDocID=PMC4610471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |