Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks

The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to in...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 13; no. 1; p. 19
Main Authors Guo, Baocheng, DeFaveri, Jacquelin, Sotelo, Graciela, Nair, Abhilash, Merilä, Juha
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.03.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene flow marine fish populations remain poorly understood. We here investigated genome-wide patterns of genetic variability and differentiation in 10 marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing > 30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea.
AbstractList BACKGROUNDThe degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene flow marine fish populations remain poorly understood.RESULTSWe here investigated genome-wide patterns of genetic variability and differentiation in 10 marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing > 30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified.CONCLUSIONSThe patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea.
The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene-flow marine fish populations remain poorly understood. We here investigated genome-wide patterns of genetic variability and differentiation in ten marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing >30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation, in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea.
The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene flow marine fish populations remain poorly understood. We here investigated genome-wide patterns of genetic variability and differentiation in 10 marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing > 30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea.
Background The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial divergence can occur in sites subject to directional selection. Studies of highly mobile marine fish populations provide an opportunity to investigate this kind of heterogeneous genomic differentiation, but most studies to this effect have focused on a relatively low number of genetic markers and/or few populations. Hence, the patterns and extent of genomic divergence in high-gene-flow marine fish populations remain poorly understood. Results We here investigated genome-wide patterns of genetic variability and differentiation in ten marine populations of three-spined stickleback (Gasterosteus aculeatus) distributed across a steep salinity and temperature gradient in the Baltic Sea, by utilizing >30,000 single nucleotide polymorphisms obtained with a pooled RAD-seq approach. We found that genetic diversity and differentiation varied widely across the genome, and identified numerous fairly narrow genomic regions exhibiting signatures of both divergent and balancing selection. Evidence was uncovered for substantial genetic differentiation associated with both salinity and temperature gradients, and many candidate genes associated with local adaptation in the Baltic Sea were identified. Conclusions The patterns of genetic diversity and differentiation, as well as candidate genes associated with adaptation, in Baltic Sea sticklebacks were similar to those observed in earlier comparisons between marine and freshwater populations, suggesting that similar processes may be driving adaptation to brackish and freshwater environments. Taken together, our results provide strong evidence for heterogenic genomic divergence driven by local adaptation in the face of gene flow along an environmental gradient in the post-glacially formed Baltic Sea. Keywords: Gasterosteus aculeatus, RAD-sequencing, SNP, population differentiation, local adaptation, Baltic Sea
ArticleNumber 19
Audience Academic
Author Guo, Baocheng
Sotelo, Graciela
Merilä, Juha
DeFaveri, Jacquelin
Nair, Abhilash
Author_xml – sequence: 1
  givenname: Baocheng
  surname: Guo
  fullname: Guo, Baocheng
– sequence: 2
  givenname: Jacquelin
  surname: DeFaveri
  fullname: DeFaveri, Jacquelin
– sequence: 3
  givenname: Graciela
  surname: Sotelo
  fullname: Sotelo, Graciela
– sequence: 4
  givenname: Abhilash
  surname: Nair
  fullname: Nair, Abhilash
– sequence: 5
  givenname: Juha
  surname: Merilä
  fullname: Merilä, Juha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25857931$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhi1URA_wANygSNzARYonPiU3SKXiUKlSEQVujWNPtqZZO42zK3h7vJtSdRFCyBrZGn__r_F4DsleiAEJeQr0GKCWrxJUDYiSboPRsn5ADkBxKBWlau_eeZ8cpvSd0kooxR6R_UrUQjUMDsi3j3FY9WbyMRQLDHHpbYFr7zBYLLo4FsaZYfJrLJzvOhwxTH6mfSjemH7K_CWaYroaEcs0-ICuSDl73WNr7HV6TB52pk_45HY_Il_evf18-qE8v3h_dnpyXlpJ-VSCNACihbp1TVdXEjqktVJQU-Ea56CVjZWtooJbzgTWVknTNM5wZWTFGWNH5PXsO6zaJTqbCx1Nr4fRL834U0fj9e5N8Fd6Edeac6Bcymzw4tZgjDcrTJNe-mSx703AuEoapMplCdbQjD6f0YXpUfvQxexoN7g-ERy4YJRuqOO_UHk5zF3OP9n5nN8RvNwRZGbCH9PCrFLSZ5ef_p-9-LrLPrvfmrue_J6CDMAM2DGmNGJ3hwDVm0nT86Rpug1GdZ016g-N9dN2MvIrff8P5S-TK9Uf
CitedBy_id crossref_primary_10_1111_mec_14942
crossref_primary_10_3389_fmars_2021_692078
crossref_primary_10_1093_gbe_evz090
crossref_primary_10_1111_mec_13774
crossref_primary_10_1242_jeb_146027
crossref_primary_10_7717_peerj_6806
crossref_primary_10_1002_ece3_5240
crossref_primary_10_3390_genes11010109
crossref_primary_10_1007_s10531_021_02184_w
crossref_primary_10_1038_s41559_020_01341_8
crossref_primary_10_1111_jfb_13145
crossref_primary_10_1111_mec_14782
crossref_primary_10_1002_ece3_5563
crossref_primary_10_1016_j_fishres_2016_07_021
crossref_primary_10_1016_j_ygeno_2020_06_041
crossref_primary_10_1186_s12862_018_1128_y
crossref_primary_10_1111_mec_13657
crossref_primary_10_1111_mec_13811
crossref_primary_10_3389_fgene_2022_958076
crossref_primary_10_1111_mec_15039
crossref_primary_10_3390_genes11070733
crossref_primary_10_1093_gbe_evw268
crossref_primary_10_1093_icesjms_fsy102
crossref_primary_10_1186_s12864_018_4721_y
crossref_primary_10_1093_cz_zow067
crossref_primary_10_1186_s12863_020_00921_8
crossref_primary_10_1534_g3_116_033241
crossref_primary_10_3389_fmars_2020_557146
crossref_primary_10_1016_j_jenvman_2019_109831
crossref_primary_10_1093_icesjms_fsz151
crossref_primary_10_1007_s00227_017_3249_z
crossref_primary_10_1007_s10682_021_10111_2
crossref_primary_10_1186_s12862_018_1311_1
crossref_primary_10_1093_icesjms_fsac073
crossref_primary_10_1071_MF23237
crossref_primary_10_1111_mec_14217
crossref_primary_10_3389_fevo_2021_626442
crossref_primary_10_1002_ece3_9053
crossref_primary_10_3390_insects12121116
crossref_primary_10_1016_j_isci_2023_107851
crossref_primary_10_1016_j_scitotenv_2024_170244
crossref_primary_10_1126_sciadv_aaz1138
crossref_primary_10_1007_s00227_023_04307_z
crossref_primary_10_1111_mec_13805
crossref_primary_10_2478_s11756_018_0038_1
crossref_primary_10_1007_s10646_020_02278_1
crossref_primary_10_1111_jbi_13845
crossref_primary_10_1111_mec_14411
crossref_primary_10_1111_mec_13722
crossref_primary_10_1007_s00227_018_3454_4
crossref_primary_10_1111_evo_13486
crossref_primary_10_1007_s00338_016_1512_2
crossref_primary_10_1111_jfb_13336
crossref_primary_10_3389_fmars_2019_00782
crossref_primary_10_1371_journal_pgen_1005887
crossref_primary_10_1016_j_jenvman_2023_117217
crossref_primary_10_1038_srep23246
crossref_primary_10_1038_s41598_017_02853_3
crossref_primary_10_1093_bfgp_elw006
crossref_primary_10_1093_molbev_msx156
crossref_primary_10_1111_1749_4877_12696
crossref_primary_10_1111_mec_13399
crossref_primary_10_1111_mec_13750
crossref_primary_10_1111_mec_13794
crossref_primary_10_1038_hdy_2017_21
crossref_primary_10_1111_eva_12688
crossref_primary_10_3389_fmars_2018_00225
crossref_primary_10_1111_mec_14442
crossref_primary_10_1016_j_isci_2020_101837
crossref_primary_10_1534_genetics_117_300610
crossref_primary_10_1016_j_rsma_2017_11_001
crossref_primary_10_1007_s12237_017_0234_1
crossref_primary_10_1371_journal_pone_0157809
crossref_primary_10_1016_j_aquatox_2022_106145
crossref_primary_10_1186_s40168_018_0467_7
crossref_primary_10_3389_fmars_2022_1028863
crossref_primary_10_1111_mec_14361
crossref_primary_10_1242_jeb_245798
crossref_primary_10_1146_annurev_genom_111720_081402
crossref_primary_10_1016_j_fishres_2022_106418
crossref_primary_10_1186_s13071_024_06300_x
crossref_primary_10_1002_ecs2_4015
crossref_primary_10_1093_molbev_msaa290
crossref_primary_10_1111_eva_12432
crossref_primary_10_1016_j_tree_2020_07_015
crossref_primary_10_3389_fmicb_2023_1232358
crossref_primary_10_7717_peerj_10270
crossref_primary_10_1002_ece3_9395
crossref_primary_10_1098_rsos_160316
crossref_primary_10_1111_mec_15565
crossref_primary_10_1155_2016_3654093
crossref_primary_10_1111_mec_14591
crossref_primary_10_3389_fevo_2020_611672
crossref_primary_10_1038_s41598_017_01742_z
crossref_primary_10_1080_03949370_2016_1188159
crossref_primary_10_1111_eva_12628
Cites_doi 10.1101/gr.079509.108
10.1073/pnas.0605838103
10.1038/nature10342
10.1038/nrg3522
10.1111/jeb.12168
10.1186/1471-2148-14-156
10.1086/597611
10.1111/mec.12725
10.1111/mec.12322
10.1111/j.1365-294X.2005.02437.x
10.1007/s10531-013-0570-9
10.1111/j.1095-8649.1994.tb01200.x
10.1534/genetics.110.114397
10.1111/j.1558-5646.2007.00103.x
10.1111/jeb.12289
10.1073/pnas.1000939107
10.1111/j.1420-9101.2007.01445.x
10.1111/j.1467-2979.2008.00300.x
10.1111/evo.12055
10.1111/mec.12276
10.1371/journal.pone.0015925
10.1534/genetics.110.114819
10.1111/mec.12896
10.3354/meps242111
10.1073/pnas.1216128109
10.1093/bfgp/elq031
10.1111/ele.12150
10.1371/journal.pone.0019379
10.1111/mec.12430
10.1098/rstb.2011.0245
10.1093/bioinformatics/btq033
10.1146/annurev.ecolsys.38.091206.095646
10.1098/rstb.2011.0247
10.1111/mec.12720
10.1111/1755-0998.12112
10.1111/mec.12934
10.1111/j.1365-294X.2008.03714.x
10.1111/j.1365-294X.2008.03786.x
10.1111/j.1095-8649.2000.tb00748.x
10.1111/j.1095-8649.2006.01274.x
10.1111/j.1558-5646.2011.01247.x
10.1073/pnas.0901264106
10.1111/mec.12182
10.1038/nrg3395
10.1111/j.1365-294X.2008.03946.x
10.1016/j.cub.2011.11.045
10.1038/sj.hdy.6801055
10.1007/s00227-012-1951-4
10.1093/bioinformatics/btr589
10.1111/j.1420-9101.2012.02524.x
10.1111/eva.12042
10.1371/journal.pgen.1000862
10.1534/genetics.108.092221
10.1186/1471-2164-15-867
10.1111/j.1365-294X.2006.03190.x
10.1371/journal.pone.0012467
10.1111/j.1095-8649.1985.tb04309.x
10.1111/mec.12174
10.1111/j.1365-294X.2010.04950.x
10.1111/j.0014-3820.2005.tb01814.x
10.1007/s00436-006-0282-0
10.1016/S0169-5347(02)02478-3
10.1111/mec.12330
10.1111/j.1365-294X.2009.04272.x
10.1111/mec.12753
10.1111/mec.12609
10.1101/gr.092759.109
10.1093/bioinformatics/btp324
10.1111/j.1365-294X.2012.05639.x
10.1111/j.1365-294X.2008.03884.x
10.1186/1742-9994-2-16
10.1038/hdy.2011.81
10.1098/rspb.2010.0985
10.1098/rstb.2011.0260
10.1098/rspb.2011.1552
10.1111/j.1461-0248.2012.01769.x
10.1126/science.1107239
10.1111/j.1365-294X.2012.05680.x
10.1098/rspb.2010.0923
10.1111/j.1558-5646.2009.00886.x
10.1126/science.1209244
10.1534/g3.113.006817
10.1093/genetics/70.3.475
10.1038/nature10944
10.1093/molbev/msq167
10.1007/s13280-010-0129-x
10.1038/nrg3644
10.1111/gec3.12031
10.1111/evo.12097
10.1111/j.1365-294X.2006.02919.x
10.1016/j.tig.2012.03.009
10.1186/1471-2148-9-276
10.1111/j.1558-5646.2011.01269.x
10.1111/mec.12454
10.1093/gbe/evu085
10.1111/j.1365-294X.2012.05509.x
10.1371/journal.pgen.1004696
10.1016/j.tree.2003.08.013
10.1111/j.1467-2979.2008.00299.x
10.1093/bioinformatics/btp352
10.1093/database/bar049
10.1111/j.1365-294X.2004.02112.x
10.1098/rspb.2005.3306
10.1017/S0031182014001814
10.1111/j.1461-0248.2004.00684.x
10.1093/nar/gkl031
10.1111/j.1365-294X.2012.05731.x
10.1073/pnas.0909918107
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Guo et al.; licensee BioMed Central. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Guo et al.; licensee BioMed Central. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
7X8
5PM
DOI 10.1186/s12915-015-0130-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Opposing Viewpoints
Gale in Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geography
EISSN 1741-7007
EndPage 19
ExternalDocumentID PMC4410466
A541453000
25857931
10_1186_s12915_015_0130_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
ID FETCH-LOGICAL-c604t-16a115b18bd9f8261fe08771805d9dd1b69c6b7054c435e8c76a99da47a624333
IEDL.DBID M48
ISSN 1741-7007
IngestDate Thu Aug 21 18:02:37 EDT 2025
Tue Aug 05 11:29:10 EDT 2025
Tue Jun 17 22:04:53 EDT 2025
Tue Jun 10 21:09:56 EDT 2025
Fri Jun 27 05:58:51 EDT 2025
Fri Jun 27 05:28:50 EDT 2025
Mon Jul 21 06:02:09 EDT 2025
Tue Jul 01 02:58:01 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c604t-16a115b18bd9f8261fe08771805d9dd1b69c6b7054c435e8c76a99da47a624333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12915-015-0130-8
PMID 25857931
PQID 1672615390
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4410466
proquest_miscellaneous_1672615390
gale_infotracmisc_A541453000
gale_infotracacademiconefile_A541453000
gale_incontextgauss_ISR_A541453000
gale_incontextgauss_IOV_A541453000
pubmed_primary_25857931
crossref_primary_10_1186_s12915_015_0130_8
crossref_citationtrail_10_1186_s12915_015_0130_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-24
PublicationDateYYYYMMDD 2015-03-24
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References J Catchen (130_CR56) 2013; 22
S Altizer (130_CR92) 2003; 18
T Leinonen (130_CR9) 2008; 21
130_CR117
RJS McCairns (130_CR53) 2011; 20
130_CR115
A Hämmerli (130_CR67) 2002; 242
130_CR119
H Li (130_CR109) 2009; 25
MT Limborg (130_CR35) 2012; 21
H Ojaveer (130_CR97) 2010; 5
J DeFaveri (130_CR33) 2013; 22
NC Kruck (130_CR41) 2013; 13
JW Davey (130_CR72) 2010; 9
DK Fabian (130_CR105) 2012; 21
JF Storz (130_CR17) 2005; 14
R Grosberg (130_CR20) 2001
JA DeWoody (130_CR19) 2000; 56
JM Pujolar (130_CR32) 2014; 23
AP Hendry (130_CR55) 2013; 15
S Via (130_CR81) 2012; 367
BO Karlsen (130_CR40) 2013; 22
R Kofler (130_CR104) 2011; 6
J Hemmer-Hansen (130_CR34) 2007; 99
MW Jacobsen (130_CR79) 2014; 23
JL Feder (130_CR82) 2012; 28
O Seehausen (130_CR83) 2014; 15
KE Lotterhos (130_CR16) 2014; 23
M Lynch (130_CR102) 2014; 6
L Wennerstrom (130_CR71) 2013; 22
N Bluthgen (130_CR116) 2005; 16
J Corander (130_CR29) 2013; 22
JM Cano (130_CR18) 2008; 5
FC Jones (130_CR61) 2012; 22
T Kamiya (130_CR90) 2014; 23
EC Anderson (130_CR103) 2014; 23
PF Colosimo (130_CR46) 2005; 307
AP Michel (130_CR80) 2010; 107
P Nosil (130_CR76) 2009; 18
A Kremer (130_CR7) 2012; 108
L Hauser (130_CR84) 2008; 9
J DeFaveri (130_CR47) 2013; 67
RJS McCairns (130_CR52) 2010; 64
NV Terekhanova (130_CR65) 2014; 10
L Liggins (130_CR42) 2013; 7
PGD Feulner (130_CR58) 2013; 22
M Roesti (130_CR63) 2012; 21
B Arnold (130_CR101) 2013; 22
AM Jackson (130_CR39) 2014; 9
CD Zander (130_CR94) 2007; 100
RM Newman (130_CR89) 2006; 103
130_CR30
JK McKay (130_CR10) 2002; 17
RA Nichols (130_CR88) 2004; 13
PA Hohenlohe (130_CR59) 2012; 367
J DeFaveri (130_CR48) 2013; 26
RD Barrett (130_CR45) 2011; 278
RD Ward (130_CR22) 1994; 44
R Kofler (130_CR110) 2011; 27
RJS McCairns (130_CR51) 2008; 17
JM Akey (130_CR112) 2010; 107
AR Quinlan (130_CR114) 2010; 26
J DeFaveri (130_CR49) 2011; 65
J Marcil (130_CR27) 2006; 273
K Johannesson (130_CR69) 2011; 40
S Lamichhaney (130_CR31) 2012; 109
A Budria (130_CR93) 2014
F Blanquart (130_CR2) 2013; 16
LA Hice (130_CR26) 2012; 15
H Jeffreys (130_CR74) 1961
AM Hancock (130_CR12) 2011; 334
SH Fan (130_CR11) 2012; 367
KB Marchinko (130_CR50) 2007; 61
JA Raeymaekers (130_CR54) 2007; 16
M Krzywinski (130_CR111) 2009; 19
AL Wrange (130_CR68) 2014; 14
SM Flaxman (130_CR78) 2013; 67
JE Pool (130_CR14) 2010; 20
S Sommer (130_CR91) 2005; 2
A Futschik (130_CR100) 2010; 186
AL Ferchaud (130_CR57) 2014; 15
J DeFaveri (130_CR66) 2012; 159
S Yeaman (130_CR77) 2011; 65
M Roesti (130_CR64) 2013; 22
RJ Elshire (130_CR106) 2011; 6
BD Latter (130_CR118) 1972; 70
G Wang (130_CR95) 2014; 5
T Leinonen (130_CR8) 2013; 14
AY Albert (130_CR44) 2008; 62
T Shikano (130_CR37) 2010; 27
HS Makinen (130_CR86) 2008; 17
K Johannesson (130_CR70) 2006; 15
BE Deagle (130_CR96) 2012; 279
DO Conover (130_CR23) 1998; 62
EE Nielsen (130_CR75) 2009; 18
B Star (130_CR99) 2011; 477
M Foll (130_CR113) 2008; 180
DO Conover (130_CR24) 2006; 69
S Mita De (130_CR15) 2013; 22
U Gyllensten (130_CR21) 1985; 26
EE Nielsen (130_CR36) 2009; 9
D Schluter (130_CR98) 2009; 106
M Roesti (130_CR62) 2014; 23
PW Hedrick (130_CR87) 2005; 59
F Blanquart (130_CR1) 2012; 25
MA Beaumont (130_CR85) 2008; 17
KA Selkoe (130_CR43) 2008; 9
PA Hohenlohe (130_CR60) 2010; 6
H Li (130_CR108) 2009; 25
TJ Kawecki (130_CR5) 2004; 7
130_CR107
J Ye (130_CR120) 2006; 34
O Savolainen (130_CR3) 2013; 14
O Savolainen (130_CR6) 2007; 38
FC Jones (130_CR13) 2012; 484
J Hereford (130_CR4) 2009; 173
G Coop (130_CR73) 2010; 185
AGF Teacher (130_CR38) 2013; 6
J DeFaveri (130_CR25) 2014; 27
IR Bradbury (130_CR28) 2010; 277
21134013 - Mol Ecol. 2011 Feb;20(3):486-502
15012755 - Mol Ecol. 2004 Apr;13(4):775-87
22568832 - J Evol Biol. 2012 Jul;25(7):1351-63
19272016 - Am Nat. 2009 May;173(5):579-88
21446396 - Ambio. 2011 Mar;40(2):179-90
16845012 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7
25309574 - Front Genet. 2014 Sep 11;5:312
23634816 - Mol Ecol Resour. 2013 Jul;13(4):715-25
20824189 - PLoS One. 2010;5(9). pii: e12467. doi: 10.1371/journal.pone.0012467
20195501 - PLoS Genet. 2010 Feb;6(2):e1000862
23998762 - Mol Ecol. 2013 Oct;22(20):5098-111
20457907 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9724-9
22201169 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):395-408
21729046 - Evolution. 2011 Jul;65(7):1897-911
24033168 - Evolution. 2013 Sep;67(9):2577-91
21832995 - Nature. 2011 Sep 8;477(7363):207-10
24635356 - Mol Ecol. 2014 Aug;23(16):3944-56
17284219 - Mol Ecol. 2007 Feb;16(4):891-905
19160473 - Mol Ecol. 2008 Aug;17(15):3425-7
24830641 - PLoS One. 2014;9(5):e97508
23134729 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19345-50
24535286 - Nat Rev Genet. 2014 Mar;15(3):176-92
19948077 - BMC Evol Biol. 2009;9:276
5024717 - Genetics. 1972 Mar;70(3):475-90
22694661 - Mol Ecol. 2012 Aug;21(15):3686-703
20080661 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1160-5
18662229 - Mol Ecol. 2008 Sep;17(17):3901-16
21253599 - PLoS One. 2011;6(1):e15925
18780740 - Genetics. 2008 Oct;180(2):977-93
24304095 - Mol Ecol. 2014 Feb;23(3):502-12
18005154 - Evolution. 2008 Jan;62(1):76-85
21644964 - Evolution. 2011 Jun;65(6):1800-7
23797103 - G3 (Bethesda). 2013 Aug;3(8):1273-85
23551379 - Mol Ecol. 2013 Jun;22(11):3179-90
16362912 - Genome Inform. 2005;16(1):106-15
22025480 - Bioinformatics. 2011 Dec 15;27(24):3435-6
16329237 - Evolution. 2005 Aug;59(8):1633-8
22201168 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):385-94
22197244 - Curr Biol. 2012 Jan 10;22(1):83-90
25038588 - BMC Evol Biol. 2014;14:156
24136507 - Nat Rev Genet. 2013 Nov;14(11):807-20
19895556 - Evolution. 2010 Apr 1;64(4):1029-47
16780421 - Mol Ecol. 2006 Jul;15(8):2013-29
24655127 - Mol Ecol. 2014 May;23(9):2178-92
22462779 - Ecol Lett. 2012 Jun;15(6):568-75
18028355 - J Evol Biol. 2008 Jan;21(1):1-17
20591843 - Mol Biol Evol. 2010 Dec;27(12):2775-89
23745145 - Evol Appl. 2013 Apr;6(3):549-67
23718143 - Mol Ecol. 2013 Jun;22(11):2864-83
21976692 - Proc Biol Sci. 2012 Apr 7;279(1732):1277-86
21915150 - Heredity (Edinb). 2012 Apr;108(4):375-85
19143936 - Mol Ecol. 2009 Feb;18(3):375-402
22384978 - Mol Ecol. 2012 Jun;21(12):2852-62
22913798 - Mol Ecol. 2012 Oct;21(19):4748-69
17142324 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19134-9
19541911 - Genome Res. 2009 Sep;19(9):1639-45
23859314 - J Evol Biol. 2013 Aug;26(8):1700-15
25498372 - Parasitology. 2015 Apr;142(5):719-27
21266344 - Brief Funct Genomics. 2010 Dec;9(5-6):416-23
25155907 - Mol Ecol. 2014 Oct;23(19):4785-98
24330503 - J Evol Biol. 2014 Feb;27(2):290-302
22083790 - Database (Oxford). 2011;2011:bar049
22747593 - Mol Ecol. 2013 Feb;22(3):635-49
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
16555790 - Proc Biol Sci. 2006 Jan 22;273(1583):217-23
24033165 - Evolution. 2013 Sep;67(9):2530-46
15790847 - Science. 2005 Mar 25;307(5717):1928-33
23947683 - Mol Ecol. 2013 Sep;22(18):4811-28
15723660 - Mol Ecol. 2005 Mar;14(3):671-88
23601112 - Mol Ecol. 2013 Jun;22(11):3014-27
21980108 - Science. 2011 Oct 7;334(6052):83-6
17492963 - Evolution. 2007 May;61(5):1084-90
21573248 - PLoS One. 2011;6(5):e19379
20685715 - Proc Biol Sci. 2011 Jan 22;278(1703):233-8
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
20067940 - Genome Res. 2010 Mar;20(3):291-300
20516501 - Genetics. 2010 Aug;185(4):1411-23
22481358 - Nature. 2012 Apr 5;484(7392):55-61
25251264 - Mol Ecol. 2014 Nov;23(21):5151-63
20591865 - Proc Biol Sci. 2010 Dec 22;277(1701):3725-34
25299485 - PLoS Genet. 2014 Oct;10(10):e1004696
16242022 - Front Zool. 2005 Oct 20;2:16
23294205 - Mol Ecol. 2013 Mar;22(5):1383-99
19627488 - Mol Ecol. 2009 Aug;18(15):3128-50
23294045 - Mol Ecol. 2013 Jun;22(11):2931-40
17036245 - Parasitol Res. 2007 Jan;100(2):287-97
25286752 - BMC Genomics. 2014;15:867
23848550 - Ecol Lett. 2013 Sep;16(9):1195-205
22201174 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):451-60
18312551 - Mol Ecol. 2008 Aug;17(15):3565-82
24750353 - Mol Ecol. 2014 May;23(10):2514-28
22520730 - Trends Genet. 2012 Jul;28(7):342-50
24787620 - Genome Biol Evol. 2014 May;6(5):1210-8
19528639 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9955-62
17848973 - Heredity (Edinb). 2007 Dec;99(6):592-600
23381120 - Nat Rev Genet. 2013 Mar;14(3):179-90
20457880 - Genetics. 2010 Sep;186(1):207-18
References_xml – volume: 20
  start-page: 291
  year: 2010
  ident: 130_CR14
  publication-title: Genome Res.
  doi: 10.1101/gr.079509.108
– volume: 103
  start-page: 19134
  year: 2006
  ident: 130_CR89
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0605838103
– volume: 477
  start-page: 207
  year: 2011
  ident: 130_CR99
  publication-title: Nature.
  doi: 10.1038/nature10342
– volume: 14
  start-page: 807
  year: 2013
  ident: 130_CR3
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg3522
– volume: 26
  start-page: 1700
  year: 2013
  ident: 130_CR48
  publication-title: J Evol Biol.
  doi: 10.1111/jeb.12168
– volume: 14
  start-page: 156
  year: 2014
  ident: 130_CR68
  publication-title: BMC Evol Biol.
  doi: 10.1186/1471-2148-14-156
– volume: 173
  start-page: 579
  year: 2009
  ident: 130_CR4
  publication-title: Am Nat.
  doi: 10.1086/597611
– volume: 23
  start-page: 2178
  year: 2014
  ident: 130_CR16
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12725
– volume: 22
  start-page: 3014
  year: 2013
  ident: 130_CR64
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12322
– volume: 14
  start-page: 671
  year: 2005
  ident: 130_CR17
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2005.02437.x
– volume: 22
  start-page: 3045
  year: 2013
  ident: 130_CR71
  publication-title: Biodivers Conserv.
  doi: 10.1007/s10531-013-0570-9
– volume: 44
  start-page: 213
  year: 1994
  ident: 130_CR22
  publication-title: J Fish Biol.
  doi: 10.1111/j.1095-8649.1994.tb01200.x
– volume: 186
  start-page: 207
  year: 2010
  ident: 130_CR100
  publication-title: Genetics.
  doi: 10.1534/genetics.110.114397
– volume: 61
  start-page: 1084
  year: 2007
  ident: 130_CR50
  publication-title: Evolution.
  doi: 10.1111/j.1558-5646.2007.00103.x
– volume: 27
  start-page: 290
  year: 2014
  ident: 130_CR25
  publication-title: J Evol Biol.
  doi: 10.1111/jeb.12289
– start-page: 61
  volume-title: Marine Community Ecology
  year: 2001
  ident: 130_CR20
– volume: 107
  start-page: 9724
  year: 2010
  ident: 130_CR80
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1000939107
– volume: 21
  start-page: 1
  year: 2008
  ident: 130_CR9
  publication-title: J Evol Biol.
  doi: 10.1111/j.1420-9101.2007.01445.x
– volume: 9
  start-page: 363
  year: 2008
  ident: 130_CR43
  publication-title: Fish Fish.
  doi: 10.1111/j.1467-2979.2008.00300.x
– volume: 67
  start-page: 2577
  year: 2013
  ident: 130_CR78
  publication-title: Evolution.
  doi: 10.1111/evo.12055
– volume: 22
  start-page: 3179
  year: 2013
  ident: 130_CR101
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12276
– volume: 16
  start-page: 106
  year: 2005
  ident: 130_CR116
  publication-title: Genome Inform.
– ident: 130_CR107
– volume: 5
  start-page: 1
  year: 2008
  ident: 130_CR18
  publication-title: J Integr Field Biol.
– volume: 6
  year: 2011
  ident: 130_CR104
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0015925
– volume: 185
  start-page: 1411
  year: 2010
  ident: 130_CR73
  publication-title: Genetics.
  doi: 10.1534/genetics.110.114819
– volume: 23
  start-page: 4785
  year: 2014
  ident: 130_CR79
  publication-title: Mol Ecol
  doi: 10.1111/mec.12896
– volume: 242
  start-page: 111
  year: 2002
  ident: 130_CR67
  publication-title: Mar Ecol Prog Ser.
  doi: 10.3354/meps242111
– volume: 109
  start-page: 19345
  year: 2012
  ident: 130_CR31
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1216128109
– volume: 9
  start-page: 416
  year: 2010
  ident: 130_CR72
  publication-title: Brief Funct Genomics.
  doi: 10.1093/bfgp/elq031
– volume: 16
  start-page: 1195
  year: 2013
  ident: 130_CR2
  publication-title: Ecol Lett.
  doi: 10.1111/ele.12150
– volume: 6
  year: 2011
  ident: 130_CR106
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0019379
– volume: 22
  start-page: 4811
  year: 2013
  ident: 130_CR33
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12430
– volume: 367
  start-page: 395
  year: 2012
  ident: 130_CR59
  publication-title: Philos T R Soc B.
  doi: 10.1098/rstb.2011.0245
– volume: 26
  start-page: 841
  year: 2010
  ident: 130_CR114
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btq033
– volume: 38
  start-page: 595
  year: 2007
  ident: 130_CR6
  publication-title: Annu Rev Ecol Evol S.
  doi: 10.1146/annurev.ecolsys.38.091206.095646
– volume: 367
  start-page: 385
  year: 2012
  ident: 130_CR11
  publication-title: Philos T R Soc B.
  doi: 10.1098/rstb.2011.0247
– volume: 23
  start-page: 3944
  year: 2014
  ident: 130_CR62
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12720
– volume: 13
  start-page: 715
  year: 2013
  ident: 130_CR41
  publication-title: Mol Ecol Resour.
  doi: 10.1111/1755-0998.12112
– volume: 23
  start-page: 5151
  year: 2014
  ident: 130_CR90
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12934
– volume: 17
  start-page: 3565
  year: 2008
  ident: 130_CR86
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2008.03714.x
– volume: 17
  start-page: 3425
  year: 2008
  ident: 130_CR85
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2008.03786.x
– volume: 56
  start-page: 461
  year: 2000
  ident: 130_CR19
  publication-title: J Fish Biol.
  doi: 10.1111/j.1095-8649.2000.tb00748.x
– volume: 69
  start-page: 21
  year: 2006
  ident: 130_CR24
  publication-title: J Fish Biol.
  doi: 10.1111/j.1095-8649.2006.01274.x
– volume: 65
  start-page: 1800
  year: 2011
  ident: 130_CR49
  publication-title: Evolution.
  doi: 10.1111/j.1558-5646.2011.01247.x
– volume: 106
  start-page: 9955
  year: 2009
  ident: 130_CR98
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0901264106
– volume: 22
  start-page: 1383
  year: 2013
  ident: 130_CR15
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12182
– volume: 14
  start-page: 179
  year: 2013
  ident: 130_CR8
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg3395
– volume: 18
  start-page: 375
  year: 2009
  ident: 130_CR76
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2008.03946.x
– volume: 15
  start-page: 111
  year: 2013
  ident: 130_CR55
  publication-title: Evol Ecol Res.
– volume: 22
  start-page: 83
  year: 2012
  ident: 130_CR61
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2011.11.045
– volume: 62
  start-page: 76
  year: 2008
  ident: 130_CR44
  publication-title: Evolution.
– volume: 99
  start-page: 592
  year: 2007
  ident: 130_CR34
  publication-title: Heredity.
  doi: 10.1038/sj.hdy.6801055
– volume: 9
  year: 2014
  ident: 130_CR39
  publication-title: PloS One.
– volume: 159
  start-page: 1659
  year: 2012
  ident: 130_CR66
  publication-title: Mar Biol.
  doi: 10.1007/s00227-012-1951-4
– volume: 27
  start-page: 3435
  year: 2011
  ident: 130_CR110
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btr589
– volume: 25
  start-page: 1351
  year: 2012
  ident: 130_CR1
  publication-title: J Evol Biol.
  doi: 10.1111/j.1420-9101.2012.02524.x
– volume: 6
  start-page: 549
  year: 2013
  ident: 130_CR38
  publication-title: Evol Appl.
  doi: 10.1111/eva.12042
– volume: 6
  year: 2010
  ident: 130_CR60
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000862
– volume: 180
  start-page: 977
  year: 2008
  ident: 130_CR113
  publication-title: Genetics.
  doi: 10.1534/genetics.108.092221
– volume: 15
  start-page: 867
  year: 2014
  ident: 130_CR57
  publication-title: BMC Genomics.
  doi: 10.1186/1471-2164-15-867
– volume: 16
  start-page: 891
  year: 2007
  ident: 130_CR54
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2006.03190.x
– volume: 5
  year: 2010
  ident: 130_CR97
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0012467
– volume: 26
  start-page: 691
  year: 1985
  ident: 130_CR21
  publication-title: J Fish Biol.
  doi: 10.1111/j.1095-8649.1985.tb04309.x
– volume: 22
  start-page: 2931
  year: 2013
  ident: 130_CR29
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12174
– volume: 20
  start-page: 486
  year: 2011
  ident: 130_CR53
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2010.04950.x
– volume: 59
  start-page: 1633
  year: 2005
  ident: 130_CR87
  publication-title: Evolution.
  doi: 10.1111/j.0014-3820.2005.tb01814.x
– volume: 100
  start-page: 287
  year: 2007
  ident: 130_CR94
  publication-title: Parasitol Res.
  doi: 10.1007/s00436-006-0282-0
– volume: 17
  start-page: 285
  year: 2002
  ident: 130_CR10
  publication-title: QTL and traits. Trends Ecol Evol.
  doi: 10.1016/S0169-5347(02)02478-3
– volume: 22
  start-page: 2864
  year: 2013
  ident: 130_CR56
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12330
– volume: 18
  start-page: 3128
  year: 2009
  ident: 130_CR75
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2009.04272.x
– volume: 23
  start-page: 2514
  year: 2014
  ident: 130_CR32
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12753
– volume: 23
  start-page: 502
  year: 2014
  ident: 130_CR103
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12609
– volume: 19
  start-page: 1639
  year: 2009
  ident: 130_CR111
  publication-title: Genome Res.
  doi: 10.1101/gr.092759.109
– ident: 130_CR117
– volume: 25
  start-page: 1754
  year: 2009
  ident: 130_CR108
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp324
– volume: 21
  start-page: 3686
  year: 2012
  ident: 130_CR35
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2012.05639.x
– volume: 17
  start-page: 3901
  year: 2008
  ident: 130_CR51
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2008.03884.x
– volume: 2
  start-page: 16
  year: 2005
  ident: 130_CR91
  publication-title: Front Zool.
  doi: 10.1186/1742-9994-2-16
– volume: 108
  start-page: 375
  year: 2012
  ident: 130_CR7
  publication-title: Heredity.
  doi: 10.1038/hdy.2011.81
– volume: 277
  start-page: 3725
  year: 2010
  ident: 130_CR28
  publication-title: P Roy Soc B-Biol Sci.
  doi: 10.1098/rspb.2010.0985
– volume: 367
  start-page: 451
  year: 2012
  ident: 130_CR81
  publication-title: Philos T R Soc B.
  doi: 10.1098/rstb.2011.0260
– volume: 279
  start-page: 1277
  year: 2012
  ident: 130_CR96
  publication-title: P Roy Soc B-Biol Sci.
  doi: 10.1098/rspb.2011.1552
– volume: 15
  start-page: 568
  year: 2012
  ident: 130_CR26
  publication-title: Ecol Lett.
  doi: 10.1111/j.1461-0248.2012.01769.x
– volume: 307
  start-page: 1928
  year: 2005
  ident: 130_CR46
  publication-title: Science.
  doi: 10.1126/science.1107239
– volume: 22
  start-page: 635
  year: 2013
  ident: 130_CR58
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2012.05680.x
– volume: 278
  start-page: 233
  year: 2011
  ident: 130_CR45
  publication-title: P Roy Soc B-Biol Sci.
  doi: 10.1098/rspb.2010.0923
– volume: 64
  start-page: 1029
  year: 2010
  ident: 130_CR52
  publication-title: Evolution.
  doi: 10.1111/j.1558-5646.2009.00886.x
– volume: 334
  start-page: 83
  year: 2011
  ident: 130_CR12
  publication-title: Science.
  doi: 10.1126/science.1209244
– ident: 130_CR30
  doi: 10.1534/g3.113.006817
– volume: 70
  start-page: 475
  year: 1972
  ident: 130_CR118
  publication-title: Genetics.
  doi: 10.1093/genetics/70.3.475
– volume: 484
  start-page: 55
  year: 2012
  ident: 130_CR13
  publication-title: Nature.
  doi: 10.1038/nature10944
– volume: 27
  start-page: 2775
  year: 2010
  ident: 130_CR37
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/msq167
– volume: 40
  start-page: 179
  year: 2011
  ident: 130_CR69
  publication-title: Ambio.
  doi: 10.1007/s13280-010-0129-x
– volume: 15
  start-page: 176
  year: 2014
  ident: 130_CR83
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg3644
– volume: 7
  start-page: 173
  year: 2013
  ident: 130_CR42
  publication-title: Geogr Compass.
  doi: 10.1111/gec3.12031
– volume: 67
  start-page: 2530
  year: 2013
  ident: 130_CR47
  publication-title: Evolution.
  doi: 10.1111/evo.12097
– volume: 5
  start-page: 312
  year: 2014
  ident: 130_CR95
  publication-title: Front Genet.
– volume: 15
  start-page: 2013
  year: 2006
  ident: 130_CR70
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2006.02919.x
– volume: 28
  start-page: 342
  year: 2012
  ident: 130_CR82
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2012.03.009
– volume: 9
  start-page: 276
  year: 2009
  ident: 130_CR36
  publication-title: BMC Evol Biol.
  doi: 10.1186/1471-2148-9-276
– volume: 65
  start-page: 1897
  year: 2011
  ident: 130_CR77
  publication-title: Evolution.
  doi: 10.1111/j.1558-5646.2011.01269.x
– volume: 62
  start-page: 477
  year: 1998
  ident: 130_CR23
  publication-title: B Mar Sci.
– volume: 22
  start-page: 5098
  year: 2013
  ident: 130_CR40
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12454
– volume-title: Theory of Probability
  year: 1961
  ident: 130_CR74
– volume: 6
  start-page: 1210
  year: 2014
  ident: 130_CR102
  publication-title: Genome Biol Evol.
  doi: 10.1093/gbe/evu085
– volume: 21
  start-page: 2852
  year: 2012
  ident: 130_CR63
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2012.05509.x
– volume: 10
  year: 2014
  ident: 130_CR65
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004696
– volume: 18
  start-page: 589
  year: 2003
  ident: 130_CR92
  publication-title: Trends Ecol Evol.
  doi: 10.1016/j.tree.2003.08.013
– volume: 9
  start-page: 333
  year: 2008
  ident: 130_CR84
  publication-title: Fish Fish.
  doi: 10.1111/j.1467-2979.2008.00299.x
– volume: 25
  start-page: 2078
  year: 2009
  ident: 130_CR109
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp352
– ident: 130_CR115
  doi: 10.1093/database/bar049
– volume: 13
  start-page: 775
  year: 2004
  ident: 130_CR88
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2004.02112.x
– volume: 273
  start-page: 217
  year: 2006
  ident: 130_CR27
  publication-title: P Roy Soc B-Biol Sci.
  doi: 10.1098/rspb.2005.3306
– ident: 130_CR119
– year: 2014
  ident: 130_CR93
  publication-title: Parasitology
  doi: 10.1017/S0031182014001814
– volume: 7
  start-page: 1225
  year: 2004
  ident: 130_CR5
  publication-title: Ecol Lett.
  doi: 10.1111/j.1461-0248.2004.00684.x
– volume: 34
  start-page: W293
  year: 2006
  ident: 130_CR120
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl031
– volume: 21
  start-page: 4748
  year: 2012
  ident: 130_CR105
  publication-title: Mol Ecol.
  doi: 10.1111/j.1365-294X.2012.05731.x
– volume: 107
  start-page: 1160
  year: 2010
  ident: 130_CR112
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.0909918107
– reference: 19895556 - Evolution. 2010 Apr 1;64(4):1029-47
– reference: 18312551 - Mol Ecol. 2008 Aug;17(15):3565-82
– reference: 20591843 - Mol Biol Evol. 2010 Dec;27(12):2775-89
– reference: 22384978 - Mol Ecol. 2012 Jun;21(12):2852-62
– reference: 22568832 - J Evol Biol. 2012 Jul;25(7):1351-63
– reference: 23998762 - Mol Ecol. 2013 Oct;22(20):5098-111
– reference: 24535286 - Nat Rev Genet. 2014 Mar;15(3):176-92
– reference: 22201169 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):395-408
– reference: 20080661 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1160-5
– reference: 20516501 - Genetics. 2010 Aug;185(4):1411-23
– reference: 5024717 - Genetics. 1972 Mar;70(3):475-90
– reference: 23294045 - Mol Ecol. 2013 Jun;22(11):2931-40
– reference: 21253599 - PLoS One. 2011;6(1):e15925
– reference: 24304095 - Mol Ecol. 2014 Feb;23(3):502-12
– reference: 15723660 - Mol Ecol. 2005 Mar;14(3):671-88
– reference: 16242022 - Front Zool. 2005 Oct 20;2:16
– reference: 23134729 - Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19345-50
– reference: 19143936 - Mol Ecol. 2009 Feb;18(3):375-402
– reference: 23718143 - Mol Ecol. 2013 Jun;22(11):2864-83
– reference: 18662229 - Mol Ecol. 2008 Sep;17(17):3901-16
– reference: 17492963 - Evolution. 2007 May;61(5):1084-90
– reference: 20591865 - Proc Biol Sci. 2010 Dec 22;277(1701):3725-34
– reference: 16780421 - Mol Ecol. 2006 Jul;15(8):2013-29
– reference: 22694661 - Mol Ecol. 2012 Aug;21(15):3686-703
– reference: 16329237 - Evolution. 2005 Aug;59(8):1633-8
– reference: 24330503 - J Evol Biol. 2014 Feb;27(2):290-302
– reference: 23848550 - Ecol Lett. 2013 Sep;16(9):1195-205
– reference: 23551379 - Mol Ecol. 2013 Jun;22(11):3179-90
– reference: 17142324 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19134-9
– reference: 22520730 - Trends Genet. 2012 Jul;28(7):342-50
– reference: 19627488 - Mol Ecol. 2009 Aug;18(15):3128-50
– reference: 24655127 - Mol Ecol. 2014 May;23(9):2178-92
– reference: 19160473 - Mol Ecol. 2008 Aug;17(15):3425-7
– reference: 16845012 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7
– reference: 18780740 - Genetics. 2008 Oct;180(2):977-93
– reference: 20195501 - PLoS Genet. 2010 Feb;6(2):e1000862
– reference: 20824189 - PLoS One. 2010;5(9). pii: e12467. doi: 10.1371/journal.pone.0012467
– reference: 22747593 - Mol Ecol. 2013 Feb;22(3):635-49
– reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
– reference: 20067940 - Genome Res. 2010 Mar;20(3):291-300
– reference: 24033168 - Evolution. 2013 Sep;67(9):2577-91
– reference: 21266344 - Brief Funct Genomics. 2010 Dec;9(5-6):416-23
– reference: 23745145 - Evol Appl. 2013 Apr;6(3):549-67
– reference: 23859314 - J Evol Biol. 2013 Aug;26(8):1700-15
– reference: 16555790 - Proc Biol Sci. 2006 Jan 22;273(1583):217-23
– reference: 18028355 - J Evol Biol. 2008 Jan;21(1):1-17
– reference: 24750353 - Mol Ecol. 2014 May;23(10):2514-28
– reference: 21915150 - Heredity (Edinb). 2012 Apr;108(4):375-85
– reference: 20685715 - Proc Biol Sci. 2011 Jan 22;278(1703):233-8
– reference: 19528639 - Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9955-62
– reference: 23634816 - Mol Ecol Resour. 2013 Jul;13(4):715-25
– reference: 25038588 - BMC Evol Biol. 2014;14:156
– reference: 25309574 - Front Genet. 2014 Sep 11;5:312
– reference: 22083790 - Database (Oxford). 2011;2011:bar049
– reference: 21832995 - Nature. 2011 Sep 8;477(7363):207-10
– reference: 21976692 - Proc Biol Sci. 2012 Apr 7;279(1732):1277-86
– reference: 25498372 - Parasitology. 2015 Apr;142(5):719-27
– reference: 18005154 - Evolution. 2008 Jan;62(1):76-85
– reference: 23947683 - Mol Ecol. 2013 Sep;22(18):4811-28
– reference: 24136507 - Nat Rev Genet. 2013 Nov;14(11):807-20
– reference: 19948077 - BMC Evol Biol. 2009;9:276
– reference: 23294205 - Mol Ecol. 2013 Mar;22(5):1383-99
– reference: 22462779 - Ecol Lett. 2012 Jun;15(6):568-75
– reference: 20457907 - Proc Natl Acad Sci U S A. 2010 May 25;107(21):9724-9
– reference: 17036245 - Parasitol Res. 2007 Jan;100(2):287-97
– reference: 15012755 - Mol Ecol. 2004 Apr;13(4):775-87
– reference: 23381120 - Nat Rev Genet. 2013 Mar;14(3):179-90
– reference: 20457880 - Genetics. 2010 Sep;186(1):207-18
– reference: 21980108 - Science. 2011 Oct 7;334(6052):83-6
– reference: 19541911 - Genome Res. 2009 Sep;19(9):1639-45
– reference: 22201168 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):385-94
– reference: 25155907 - Mol Ecol. 2014 Oct;23(19):4785-98
– reference: 25251264 - Mol Ecol. 2014 Nov;23(21):5151-63
– reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
– reference: 21446396 - Ambio. 2011 Mar;40(2):179-90
– reference: 22201174 - Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):451-60
– reference: 24830641 - PLoS One. 2014;9(5):e97508
– reference: 17284219 - Mol Ecol. 2007 Feb;16(4):891-905
– reference: 21134013 - Mol Ecol. 2011 Feb;20(3):486-502
– reference: 24787620 - Genome Biol Evol. 2014 May;6(5):1210-8
– reference: 25286752 - BMC Genomics. 2014;15:867
– reference: 15790847 - Science. 2005 Mar 25;307(5717):1928-33
– reference: 17848973 - Heredity (Edinb). 2007 Dec;99(6):592-600
– reference: 22913798 - Mol Ecol. 2012 Oct;21(19):4748-69
– reference: 19272016 - Am Nat. 2009 May;173(5):579-88
– reference: 22481358 - Nature. 2012 Apr 5;484(7392):55-61
– reference: 24033165 - Evolution. 2013 Sep;67(9):2530-46
– reference: 16362912 - Genome Inform. 2005;16(1):106-15
– reference: 23797103 - G3 (Bethesda). 2013 Aug;3(8):1273-85
– reference: 22197244 - Curr Biol. 2012 Jan 10;22(1):83-90
– reference: 21644964 - Evolution. 2011 Jun;65(6):1800-7
– reference: 25299485 - PLoS Genet. 2014 Oct;10(10):e1004696
– reference: 21729046 - Evolution. 2011 Jul;65(7):1897-911
– reference: 23601112 - Mol Ecol. 2013 Jun;22(11):3014-27
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 24635356 - Mol Ecol. 2014 Aug;23(16):3944-56
– reference: 21573248 - PLoS One. 2011;6(5):e19379
– reference: 22025480 - Bioinformatics. 2011 Dec 15;27(24):3435-6
SSID ssj0025773
Score 2.434092
Snippet The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but substantial...
Background The degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but...
BACKGROUNDThe degree of genetic differentiation among populations experiencing high levels of gene flow is expected to be low for neutral genomic sites, but...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Adaptation, Physiological - genetics
Analysis
Animals
Biological diversity
Databases, Genetic
Gene Ontology
Genes
Genetic aspects
Genetic Association Studies
Genetics, Population
Genome
Geography
Oceans and Seas
Physiological aspects
Polymorphism, Single Nucleotide - genetics
Restriction Mapping
Salinity
Sequence Analysis, DNA
Smegmamorpha - genetics
Title Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks
URI https://www.ncbi.nlm.nih.gov/pubmed/25857931
https://www.proquest.com/docview/1672615390
https://pubmed.ncbi.nlm.nih.gov/PMC4410466
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELb2Q0i8IH4zGJVBSEhIhjhObOcBoRVtGkgbU0dRxYuxY4dVK2lZUon999wlabWggXhIX3ytmvPZ9118-T5CXtjYB62tYjZ4KFBikbJMBM_iELTwWmredBMeHcvDcfJxkk42yEreqnNgdW1ph3pS44vZ618_L9_Bgn_bLHgt31SQszi2oOElIqY3yTYkJoWCBkfJ-lABgrM5cAYMzpmC3Ngdcl77E7009edmfSVb9Tspr6Smg9vkVocp6V4bBHfIRijvkhutyuTlPfLtZC3SRZGS9cc0p6ETE6WAWan1doG7Hl2ppdTtfNFpSYcW6TnoabC0hmkPrFoALvUU6Z3PZ8HhK_r3yfhg__P7Q9YJK7BcRknNuLQABB3XzmcF1Be8CMgLyHWU-sx77mSWS6cAzeWApoLOlbRZ5m2irIwTIcQDslXOy_CI0CLywkEJyXNnE2e1Uy71cYEHbgqQHd8h0cqPJu9Yx1H8Ymaa6kNL07reRM0lIqN3yKv1VxYt5ca_jJ_j5BiksiixV-a7XVaV-fDpi9lDhfNUwJ7_N6PTUc_oZWdUzOEf5rZ7PwHuEymyepa7PUtYkHlv-NkqUAwOYRdbGebLynCpYgTYGdg8bANnfYcx1G2wV4LDVC-k1gbIA94fKadnDR84INookfLx_7jiCbkZN1EuWJzskq36YhmeAqyq3YBsqokakO3h_vHJaNA8nBg0Cwg-R8OvvwFcJyBN
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+genomic+evidence+for+adaptive+differentiation+in+Baltic+Sea+three-spined+sticklebacks&rft.jtitle=BMC+biology&rft.au=Guo%2C+Baocheng&rft.au=DeFaveri%2C+Jacquelin&rft.au=Sotelo%2C+Graciela&rft.au=Nair%2C+Abhilash&rft.date=2015-03-24&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=13&rft_id=info:doi/10.1186%2Fs12915-015-0130-8&rft.externalDBID=IOV&rft.externalDocID=A541453000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon