One‐pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography
A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide,...
Saved in:
Published in | Journal of separation science Vol. 39; no. 5; pp. 842 - 850 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley-VCH
01.03.2016
Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, ²⁹Si nuclear magnetic resonance spectroscopy and N₂ adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m²/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). |
---|---|
AbstractList | A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, (29) Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2) /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29 Si nuclear magnetic resonance spectroscopy and N 2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m 2 /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln( k ) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized ( N = 120 000). A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, super(29)Si nuclear magnetic resonance spectroscopy and N sub(2) adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m super(2)/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybridmacroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, Si-29 nuclear magnetic resonance spectroscopy and N-2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2)/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phasemode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, ²⁹Si nuclear magnetic resonance spectroscopy and N₂ adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m²/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000). |
Author | Racha, El‐Debs Gay, Pauline Demesmay, Claire Dugas, Vincent |
Author_xml | – sequence: 1 fullname: Racha, El‐Debs – sequence: 2 fullname: Gay, Pauline – sequence: 3 fullname: Dugas, Vincent – sequence: 4 fullname: Demesmay, Claire |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26719150$$D View this record in MEDLINE/PubMed https://hal.science/hal-01356863$$DView record in HAL |
BookMark | eNqFks1u1DAUhS1URNuBLUuwxAYWM1wn_kmW1Qg6oBFdDFXZWU7iTDwk9tROWrLjEXhGngQPKbNg04Vl36vvHF37-BydWGc1Qi8JLAhA8n4XQrlIgDAgIPgTdEY4YfM8JfTkeAZ-is5D2AEQkeXwDJ0mXJA8as5Qd2X175-_9q7HYbR9o4MJ2NVYYavvcWO2Db4zdmxx6WyvbY-bsfCmwsG0plS4c9a1pm9wpatY97rCvcNWHbq3Q-TKxrtO9W7r1b4Zn6OntWqDfvGwz9D1xw9fl6v5-ury0_JiPS85UDpnCWWkLiivFRSJommVVKKu87LMikpltUg4F4XQTBFVlBkrikJBzkR8hIpULE9n6N3k26hW7r3plB-lU0auLtby0AOSMp7x9I5E9u3E7r27HXToZWdCqdtWWe2GIEkGQHPGAB5HhYAsS1lcM_TmP3TnBm_jpf9SkBBgLFKLiSq9C8Hr-jgsAXnIVx7ylcd8o-DVg-1QdLo64v8CjQCdgHvT6vERO_l5s1lSntMom08yE3r94yhT_rvkIhVM3ny5lMnNSnyDTSoPg7-e-Fo5qbbeBHm9ib48_rGEZmmW_gGnv8uV |
CitedBy_id | crossref_primary_10_1039_C9AN01473J crossref_primary_10_1016_j_chroma_2017_05_002 crossref_primary_10_1002_jssc_201801071 crossref_primary_10_1002_jssc_201900634 crossref_primary_10_1002_jssc_202000906 crossref_primary_10_1039_D2CC05568F crossref_primary_10_1002_jssc_201600774 crossref_primary_10_1002_jssc_201600344 crossref_primary_10_1039_C8AN01531G crossref_primary_10_1002_jssc_201601014 crossref_primary_10_1016_j_talanta_2020_121777 crossref_primary_10_1016_j_aca_2017_01_057 crossref_primary_10_1016_j_aca_2018_02_033 |
Cites_doi | 10.1039/C0CS00068J 10.1021/ac702343a 10.1021/cm990369r 10.1002/jssc.201300231 10.1021/ac9000749 10.1016/j.chroma.2014.09.017 10.1016/j.talanta.2012.01.009 10.1002/elps.200900627 10.1021/cm000451i 10.1016/j.chroma.2012.07.071 10.1023/A:1009627216939 10.1039/b207617a 10.1002/elps.201200354 10.1016/j.chroma.2008.08.119 10.1002/jssc.200401816 10.1039/b502870a 10.1007/s00216-013-7026-7 10.1002/jssc.201401264 10.1016/j.chroma.2011.05.090 10.1039/b508415f 10.1002/elps.201400316 10.1002/jssc.200700359 10.1002/jssc.200700304 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X 10.1016/j.chroma.2009.11.019 10.1021/ja00521a016 10.1016/j.chroma.2011.07.048 10.1021/ja025573l 10.1002/jssc.200900147 10.1002/elps.201200344 10.1039/c2cc37974k 10.1039/b903444g 10.1021/cm052776a 10.1002/chem.201403982 10.1351/pac198557040603 10.1016/j.chroma.2014.06.023 10.1002/jssc.201400773 10.1016/j.talanta.2014.11.044 10.1016/j.chroma.2014.06.031 10.1016/j.chroma.2014.12.031 10.1002/jssc.201200084 10.1016/j.chroma.2015.05.073 10.1039/b501833c 10.1023/A:1020770209234 10.1016/j.chroma.2008.03.064 10.1016/j.chroma.2013.02.008 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL NPM AAYXX CITATION 7U5 8FD L7M 7X8 1XC |
DOI | 10.1002/jssc.201501076 |
DatabaseName | AGRIS Istex PubMed CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Technology Research Database PubMed Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-9314 |
EndPage | 850 |
ExternalDocumentID | oai_HAL_hal_01356863v1 3969743651 10_1002_jssc_201501076 26719150 JSSC4694 ark_67375_WNG_2WH7X0S3_5 US201600124838 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EJD F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 UPT VH1 W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WRC WXSBR WYISQ XG1 XPP XV2 YQT ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG NPM AAYXX CITATION 7U5 8FD L7M 7X8 1XC |
ID | FETCH-LOGICAL-c6044-52451fb46fa0b2a43d2d7ff9cc8bda8f72667b7e5a1abc85bbba0957501d1d593 |
IEDL.DBID | DR2 |
ISSN | 1615-9306 |
IngestDate | Tue Oct 15 15:56:27 EDT 2024 Fri Aug 16 06:32:16 EDT 2024 Fri Aug 16 20:38:14 EDT 2024 Thu Oct 10 19:54:57 EDT 2024 Fri Aug 23 03:19:23 EDT 2024 Sat Sep 28 07:58:36 EDT 2024 Sat Aug 24 00:59:56 EDT 2024 Wed Oct 30 10:06:04 EDT 2024 Wed Dec 27 19:11:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Vinyl monoliths Liquid chromatography Hybrid silica monoliths CAPILLARY LIQUID-CHROMATOGRAPHY CEC ENE CLICK CHEMISTRY MESOPORES STATIONARY-PHASE ELECTROCHROMATOGRAPHY COLUMNS FABRICATION STEP SYNTHESIS SEPARATION |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6044-52451fb46fa0b2a43d2d7ff9cc8bda8f72667b7e5a1abc85bbba0957501d1d593 |
Notes | http://dx.doi.org/10.1002/jssc.201501076 ArticleID:JSSC4694 istex:D55691CBDCF4A63D6C391A2EBF8D50CC38062A8F ark:/67375/WNG-2WH7X0S3-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0470-9493 0000-0002-8613-7870 |
PMID | 26719150 |
PQID | 1770021055 |
PQPubID | 105495 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_01356863v1 proquest_miscellaneous_1800495500 proquest_miscellaneous_1770883588 proquest_journals_1770021055 crossref_primary_10_1002_jssc_201501076 pubmed_primary_26719150 wiley_primary_10_1002_jssc_201501076_JSSC4694 istex_primary_ark_67375_WNG_2WH7X0S3_5 fao_agris_US201600124838 |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Journal of separation science |
PublicationTitleAlternate | J. Sep. Science |
PublicationYear | 2016 |
Publisher | Wiley-VCH Blackwell Publishing Ltd Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley-VCH – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | Zhang, Z., Wang, F., Xu, B., Qin, H., Ye, M., Zou, H., J. Chromatogr. A 2012, 1256, 136-143. Roux, R., Puy, G., Demesmay, C., Rocca, J.-L., J. Sep. Sci. 2007, 30, 3035-3042. Marechal, A., Jarrosson, F., Randon, J., Dugas, V., Demesmay, C., J. Chromatogr. A 2015, 1406, 109-117. Nakanishi, K., J. Porous Mater. 1997, 4, 67-112. Kanamori, K., Yonezawa, H., Nakanishi, K., Hirao, K., Jinnai, H., J. Sep. Sci. 2004, 27, 874-886. Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92-98. Nakanishi, K., Kanamori, K., J. Mater. Chem. 2005, 15, 3776-3786. Popp, M., Sulyok, M., Rosenberg, E., J. Sep. Sci. 2007, 30, 2888-2899. Marechal, A., El-Debs, R., Dugas, V., Demesmay, C., J. Sep. Sci. 2013, 36, 2049-2062. Qin, W., Lu, H., Xie, Z., J. Sep. Sci. 2014, 37, 3722-3728. Yang, F., Mao, J., He, X. W., Chen, L. X., Zhang, Y. K., Anal. Bioanal. Chem. 2013, 405, 6639-6648. Wu, M., Wu, R.a., Wang, F., Ren, L., Dong, J., Liu, Z., Zou, H., Anal. Chem. 2009, 81, 3529-3536. Zhu, T., Row, K. H., J. Sep. Sci. 2012, 35, 1294-1302. Bruns, S., Hara, T., Smarsly, B. M., Tallarek, U., J. Chromatogr. A 2011, 1218, 5187-5194. Ou, J., Liu, Z., Wang, H., Lin, H., Dong, J., Zou, H., Electrophoresis 2015, 36, 62-75. Laaniste, A., Marechal, A., El-Debs, R., Randon, J., Dugas, V., Demesmay, C., J. Chromatogr. A 2014, 1355, 296-300. Hara, T., Makino, S., Watanabe, Y., Ikegami, T., Cabrera, K., Smarsly, B., Tanaka, N., J. Chromatogr. A 2010, 1217, 89-98. Rozga-Wijas, K., Chojnowski, J., Scibiorek, M., Fortuniak, W., J. Mater. Chem. 2005, 15, 2383-2392. Ou, J., Lin, H., Zhang, Z., Huang, G., Dong, J., Zou, H., Electrophoresis 2013, 34, 126-140. Chen, M.-L., Zhang, J., Zhang, Z., Yuan, B.-F., Yu, Q.-W., Feng, Y.-Q., J. Chromatogr. A 2013, 1284, 118-125. Göbel, R., Hesemann, P., Friedrich, A., Rothe, R., Schlaad, H., Taubert, A., Chem. Eur. J. 2014, 20, 17579-17589. Stein, A., Melde, B. J., Schroden, R. C., Adv. Mater. 2000, 12, 1403-1419. Kanamori, K., Nakanishi, K., Chem. Soc. Rev. 2011, 40, 754-770. Rahayu, A., Lim, L.W., Takeuchi, T., J. Sep. Sci. 2015, 38, 1109-1116. Marechal, A., Laaniste, A., El-Debs, R., Dugas, V., Demesmay, C., J. Chromatogr. A 2014, 1365, 140-147. Alekseev, S. A., Zaitsev, V. N., Fraissard, J.Chem. Mater. 2006, 18, 1981-1987. Li, L., Colón, L. A., J. Sep. Sci. 2009, 32, 2737-2746. Loy, D. A., Baugher, B. M., Baugher, C. R., Schneider, D. A., Rahimian, K., Chem. Mater. 2000, 12, 3624-3632. Laschober, S., Rosenberg, E., J. Chromatogr. A 2008, 1191, 282-291. Yang, H., Chen, Y., Liu, Y., Nie, L., Yao, S., Electrophoresis 2013, 34, 510-517. Wang, K., Chen, Y., Yang, H., Li, Y., Nie, L., Yao, S., Talanta 2012, 91, 52-59. Lim, M. H., Stein, A., Chem. Mater. 1999, 11, 3285-3295. Roux, R., Jaoudé, M. A., Demesmay, C., Rocca, J. L., J. Chromatogr. A 2008, 1209, 120-127. Xie, Y., Zhang, X., Han, Q., Wan, W., Ding, M., Talanta 2015, 134, 425-434. Igarashi, N., Hashimoto, K., Tatsumi, T., J. Mater. Chem. 2002, 12, 3631-3636. Wu, M., Zhang, H., Wang, Z., Shen, S., Le, X.C., Li, X.-F., Chem. Commun. 2013, 49, 1407-1409. Itagaki, A., Nakanishi, K., Hirao, K., J. Solgel Sci. Technol. 2003, 26, 153-156. Ma, J., Liang, Z., Qiao, X., Deng, Q., Tao, D., Zhang, L., Zhang, Y., Anal. Chem. 2008, 80, 2949-2956. Lin, Z., Tan, X., Yu, R., Lin, J., Yin, X., Zhang, L., Yang, H., J. Chromatogr. A 2014, 1355, 228-237. Feng, R., Tian, Y., Chen, H., Huang, Z., Zeng, Z., Electrophoresis 2010, 31, 1975-1982. Zhang, Z., Lin, H., Ou, J., Qin, H., Wu, R.a., Dong, J., Zou, H., J. Chromatogr. A 2012, 1228, 263-269. Kanamori, K., Nakanishi, K., Hanada, T., Soft Matter 2009, 5, 3106-3113. Colon, H., Zhang, X., Murphy, J. K., Rivera, J. G., Colon, L. A., Chem. Commun. 2005, 22, 2826-2828. Kruk, M., Asefa, T., Jaroniec, M., Ozin, G. A., J. Am. Chem. Soc. 2002, 124, 6383-6392. Sing, K. S. W., Everett, D. H., R.A.W, H. L. M., Pierotti, J., Rouquerol, J., Siemienwska, T., Pure Appl. Chem. 1985, 57, 603-619. Lin, H., Ou, J., Liu, Z., Wang, H., Dong, J., Zou, H., J. Chromatogr. A 2015, 1379, 34-42. 2015; 36 2010; 31 2015; 38 2013; 49 2009; 81 2008; 1191 2013; 405 2004; 27 2002; 12 2011; 40 2012; 1228 2010; 1217 2006; 18 2015; 1379 2014; 1365 2007; 30 2012; 35 1997; 4 2005; 22 2014; 20 2012; 91 2012; 1256 2013; 36 2009; 32 2015; 1406 2000; 12 2013; 34 2002; 124 2015; 134 2013; 1284 2014; 37 1999; 11 2003; 26 2011; 1218 2009; 5 2005; 15 2014; 1355 2008; 80 1980; 102 1985; 57 2008; 1209 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 1217 start-page: 89 year: 2010 end-page: 98 publication-title: J. Chromatogr. A – volume: 35 start-page: 1294 year: 2012 end-page: 1302 publication-title: J. Sep. Sci. – volume: 12 start-page: 1403 year: 2000 end-page: 1419 publication-title: Adv. Mater. – volume: 1365 start-page: 140 year: 2014 end-page: 147 publication-title: J. Chromatogr. A – volume: 37 start-page: 3722 year: 2014 end-page: 3728 publication-title: J. Sep. Sci. – volume: 27 start-page: 874 year: 2004 end-page: 886 publication-title: J. Sep. Sci. – volume: 57 start-page: 603 year: 1985 end-page: 619 publication-title: Pure Appl. Chem. – volume: 405 start-page: 6639 year: 2013 end-page: 6648 publication-title: Anal. Bioanal. Chem. – volume: 1191 start-page: 282 year: 2008 end-page: 291 publication-title: J. Chromatogr. A – volume: 1284 start-page: 118 year: 2013 end-page: 125 publication-title: J. Chromatogr. A – volume: 1406 start-page: 109 year: 2015 end-page: 117 publication-title: J. Chromatogr. A – volume: 15 start-page: 3776 year: 2005 end-page: 3786 publication-title: J. Mater. Chem. – volume: 1218 start-page: 5187 year: 2011 end-page: 5194 publication-title: J. Chromatogr. A – volume: 102 start-page: 92 year: 1980 end-page: 98 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 510 year: 2013 end-page: 517 publication-title: Electrophoresis – volume: 134 start-page: 425 year: 2015 end-page: 434 publication-title: Talanta – volume: 15 start-page: 2383 year: 2005 end-page: 2392 publication-title: J. Mater. Chem. – volume: 1256 start-page: 136 year: 2012 end-page: 143 publication-title: J. Chromatogr. A – volume: 4 start-page: 67 year: 1997 end-page: 112 publication-title: J. Porous Mater. – volume: 91 start-page: 52 year: 2012 end-page: 59 publication-title: Talanta – volume: 32 start-page: 2737 year: 2009 end-page: 2746 publication-title: J. Sep. Sci. – volume: 1379 start-page: 34 year: 2015 end-page: 42 publication-title: J. Chromatogr. A – volume: 30 start-page: 2888 year: 2007 end-page: 2899 publication-title: J. Sep. Sci – volume: 80 start-page: 2949 year: 2008 end-page: 2956 publication-title: Anal. Chem. – volume: 38 start-page: 1109 year: 2015 end-page: 1116 publication-title: J. Sep. Sci. – volume: 1228 start-page: 263 year: 2012 end-page: 269 publication-title: J. Chromatogr. A – volume: 36 start-page: 2049 year: 2013 end-page: 2062 publication-title: J. Sep. Sci. – volume: 26 start-page: 153 year: 2003 end-page: 156 publication-title: J. Solgel Sci. Technol. – volume: 31 start-page: 1975 year: 2010 end-page: 1982 publication-title: Electrophoresis – volume: 11 start-page: 3285 year: 1999 end-page: 3295 publication-title: Chem. Mater. – volume: 12 start-page: 3631 year: 2002 end-page: 3636 publication-title: J. Mater. Chem. – volume: 34 start-page: 126 year: 2013 end-page: 140 publication-title: Electrophoresis – volume: 36 start-page: 62 year: 2015 end-page: 75 publication-title: Electrophoresis – volume: 1355 start-page: 296 year: 2014 end-page: 300 publication-title: J. Chromatogr. A – volume: 81 start-page: 3529 year: 2009 end-page: 3536 publication-title: Anal. Chem. – volume: 30 start-page: 3035 year: 2007 end-page: 3042 publication-title: J. Sep. Sci. – volume: 5 start-page: 3106 year: 2009 end-page: 3113 publication-title: Soft Matter – volume: 20 start-page: 17579 year: 2014 end-page: 17589 publication-title: Chem. Eur. J. – volume: 124 start-page: 6383 year: 2002 end-page: 6392 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 754 year: 2011 end-page: 770 publication-title: Chem. Soc. Rev. – volume: 1209 start-page: 120 year: 2008 end-page: 127 publication-title: J. Chromatogr. A – volume: 18 start-page: 1981 year: 2006 end-page: 1987 publication-title: J.Chem. Mater. – volume: 12 start-page: 3624 year: 2000 end-page: 3632 publication-title: Chem. Mater. – volume: 1355 start-page: 228 year: 2014 end-page: 237 publication-title: J. Chromatogr. A – volume: 49 start-page: 1407 year: 2013 end-page: 1409 publication-title: Chem. Commun. – volume: 22 start-page: 2826 year: 2005 end-page: 2828 publication-title: Chem. Commun. – ident: e_1_2_6_10_1 doi: 10.1039/C0CS00068J – ident: e_1_2_6_16_1 doi: 10.1021/ac702343a – ident: e_1_2_6_13_1 doi: 10.1021/cm990369r – ident: e_1_2_6_29_1 doi: 10.1002/jssc.201300231 – ident: e_1_2_6_35_1 doi: 10.1021/ac9000749 – ident: e_1_2_6_30_1 doi: 10.1016/j.chroma.2014.09.017 – ident: e_1_2_6_22_1 doi: 10.1016/j.talanta.2012.01.009 – ident: e_1_2_6_45_1 doi: 10.1002/elps.200900627 – ident: e_1_2_6_7_1 doi: 10.1021/cm000451i – ident: e_1_2_6_36_1 doi: 10.1016/j.chroma.2012.07.071 – ident: e_1_2_6_5_1 doi: 10.1023/A:1009627216939 – ident: e_1_2_6_15_1 doi: 10.1039/b207617a – ident: e_1_2_6_38_1 doi: 10.1002/elps.201200354 – ident: e_1_2_6_21_1 doi: 10.1016/j.chroma.2008.08.119 – ident: e_1_2_6_6_1 doi: 10.1002/jssc.200401816 – ident: e_1_2_6_19_1 doi: 10.1039/b502870a – ident: e_1_2_6_37_1 doi: 10.1007/s00216-013-7026-7 – ident: e_1_2_6_25_1 doi: 10.1002/jssc.201401264 – ident: e_1_2_6_9_1 doi: 10.1016/j.chroma.2011.05.090 – ident: e_1_2_6_14_1 doi: 10.1039/b508415f – ident: e_1_2_6_4_1 doi: 10.1002/elps.201400316 – ident: e_1_2_6_12_1 doi: 10.1002/jssc.200700359 – ident: e_1_2_6_20_1 doi: 10.1002/jssc.200700304 – ident: e_1_2_6_26_1 doi: 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X – ident: e_1_2_6_42_1 doi: 10.1016/j.chroma.2009.11.019 – ident: e_1_2_6_33_1 doi: 10.1021/ja00521a016 – ident: e_1_2_6_46_1 doi: 10.1016/j.chroma.2011.07.048 – ident: e_1_2_6_44_1 doi: 10.1021/ja025573l – ident: e_1_2_6_41_1 doi: 10.1002/jssc.200900147 – ident: e_1_2_6_3_1 doi: 10.1002/elps.201200344 – ident: e_1_2_6_39_1 doi: 10.1039/c2cc37974k – ident: e_1_2_6_8_1 doi: 10.1039/b903444g – ident: e_1_2_6_34_1 doi: 10.1021/cm052776a – ident: e_1_2_6_23_1 doi: 10.1002/chem.201403982 – ident: e_1_2_6_43_1 doi: 10.1351/pac198557040603 – ident: e_1_2_6_18_1 doi: 10.1016/j.chroma.2014.06.023 – ident: e_1_2_6_24_1 doi: 10.1002/jssc.201400773 – ident: e_1_2_6_27_1 doi: 10.1016/j.talanta.2014.11.044 – ident: e_1_2_6_31_1 doi: 10.1016/j.chroma.2014.06.031 – ident: e_1_2_6_47_1 doi: 10.1016/j.chroma.2014.12.031 – ident: e_1_2_6_2_1 doi: 10.1002/jssc.201200084 – ident: e_1_2_6_32_1 doi: 10.1016/j.chroma.2015.05.073 – ident: e_1_2_6_28_1 doi: 10.1039/b501833c – ident: e_1_2_6_40_1 doi: 10.1023/A:1020770209234 – ident: e_1_2_6_11_1 doi: 10.1016/j.chroma.2008.03.064 – ident: e_1_2_6_17_1 doi: 10.1016/j.chroma.2013.02.008 |
SSID | ssj0017890 |
Score | 2.2542808 |
Snippet | A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid... A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid... A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl... |
SourceID | hal proquest crossref pubmed wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 842 |
SubjectTerms | Analytical chemistry Capillarity Catalysts Chemical Sciences Chemical synthesis Chromatography Density Hybrid silica monoliths Liquid chromatography Nanostructure Nitric acid nitrogen nuclear magnetic resonance spectroscopy porous media scanning electron microscopy Silica silicon Silicon dioxide surface area Synthesis Vinyl monoliths |
Title | One‐pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography |
URI | https://api.istex.fr/ark:/67375/WNG-2WH7X0S3-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.201501076 https://www.ncbi.nlm.nih.gov/pubmed/26719150 https://www.proquest.com/docview/1770021055 https://search.proquest.com/docview/1770883588 https://search.proquest.com/docview/1800495500 https://hal.science/hal-01356863 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPQAHHuXRQKkMQnBKm4cde4_bLcuqgiKxrLo3y3YcdikkZZOtWE78BH4jv4SZZDd0EQIhLjnYEykez3i-ccafCXlidCqlMwkgN5v5TGjrdww80iTKHKRjztaXTbw6TgYjdjTm4wun-Bt-iHbDDT2jXq_RwbUp93-Shr4vS6QgBEADGQxyboexwJquwzctf1SIpzwx44Kw7XcAHK9YG4Nof_31tah0OdMFPCdYGbmJyv78O_i5jmbrcNS_QfRqIE0VyunevDJ79ssvHI__M9Kb5PoSq9JuY1y3yCWXb5ErvdUVcVvk2gU2w9vk4-vcff_67ayoaLnIAViW05IWGdUUoDtFXmR6Ps0XHyiWx0Oso5MFHhej5RQ3Din4A9biTWha_zsCJEyrguYaWz_NQc5OZgXg6yXH9h0y6j9_2xv4y9scfJsEjEHGy3iYGZZkOjCRZnEapSLLOtZKk2qZCYAKwgjHdaiNldwYowH_AaIJ0zDlnfgu2ciL3G0TGsUm1loHLowypi0gJIakNdIBfNHOxh55tppNddaQdqiGnjlSqEzVKtMj2zDZSr-DFVWNhhHy7UHIZjKWHnkMFtC-jzTcg-5LhW0Am3kik_g89MjT2kBaMT07xVI5wdXJ8QsVnQzEOBjGintkZ2VBarlKlCoUos65OXQ_arthDvGnjc5dMW9kJMBkKf8gIzHRg1wz8Mi9xjrbD4oSASk5hx6_trG_KEQdDYc98FF2_x_lH5CrqL2mPG-HbFSzuXsIeK0yu2Sze3B40N-tffMHzPc4-g |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7R9lA48FMoDRQwCMEpbX6cxHusFspS2kViu2pvlu047FJIyma3YjnxCDwjT8JMsgksQiDEJQd7IsXjGc83zvgzwGOtUiGsjhG5mczliTJuR-MjjYPMYjpmTXXZxFE_7g35wWnUVBPSWZiaH6LdcCPPqNZrcnDakN79wRr6riyJgxARDaYw8Qqsoc-HdHvDszctg5RP5zwp58LA7XYQHje8jV6wu_z-UlxayVSBzxHVRq6Ruj_9DoAu49kqIO1fA90Mpa5DOduZTfWO-fwLy-N_jfU6XF3AVbZX29cNuGTzDVjvNrfEbcCVnwgNb8KH17n99uXreTFl5TxHbFmOS1ZkTDFE74yokdnFOJ-_Z1Qhj-GOjeZ0YoyVY9o7ZOgSVI43Ymn1-wjBMJsWLFfU-nGGcmY0KRBiL2i2b8Fw__lxt-cuLnRwTexxjkkvj_xM8zhTng4UD9MgTbKsY4zQqRJZgmgh0YmNlK-0EZHWWiEERFDjp34adcJNWM2L3G4BC0IdKqU86wcZVwZBEifeGmERwShrQgeeNtMpz2veDlkzNAeSlClbZTqwhbMt1VtcVOVwEBDlHkZtLkLhwCM0gfZ9YuLu7R1KakPkHMUiDi98B55UFtKKqckZVcslkTzpv5DBSS859QahjBzYbkxILhaKUvpJUqXdEXY_bLtxDum_jcptMatlBCJlIf4gIyjXw3TTc-B2bZ7tBwVxgll5hD1uZWR_UYg8GAy66Kb8zj_KP4D13vHRoTx82X91Fy6TJutqvW1YnU5m9h7Ct6m-Xznod18DO6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJvHxwMeALTDAIMSesuXDSdzHqVDKGAVRqvXNsh2bdoOkNOlEeeJP4G_kL-EuacOKEAjxkgf7IsXnO9_vnPPPhDxWMuXcqBiQm7YuS6R2WwoeaRxYA-mY0dVlE696cXfADofR8Nwp_pofotlwQ8-o1mt08Elq93-Shp4UBVIQAqCBDCZeIxssBviLsOhtQyDl4zFPTLkgbrst6F7SNnrB_ur7K2FpzcocniMsjdxAbX_-Hf5chbNVPOpcI3I5kroM5XRvVqo9_eUXksf_Gep1cnUBVulBbV03yAWTbZJL7eUdcZvkyjk6w5vk4-vMfP_6bZKXtJhngCyLcUFzSyUF7E6RGJmejbP5B4r18RDs6GiO58VoMcadQwoOgcV4I5pWP48ACtMyp5nE1k8zkNOjaQ4Ae0GyfYsMOs_etbvu4joHV8ceY5Dyssi3isVWeiqQLEyDNLG2pTVXqeQ2AayQqMRE0pdK80gpJQEAAqTxUz-NWuFtsp7lmdkmNAhVKKX0jB9YJjVAJIasNdwAfpFGhw7ZXc6mmNSsHaLmZw4EKlM0ynTINky2kO9hSRWDfoCEexCzGQ-5Qx6BBTTvIw939-BIYBvg5ijmcXjmO-RJZSCNmJyeYq1cEonj3nMRHHeTodcPReSQnaUFicUyUQg_SaqkO4Luh003zCH-tZGZyWe1DAeczPkfZDhmepBseg7Zqq2z-aAgTiAnj6DHrWzsLwoRh_1-G5yU3flH-Qfk4punHXH0ovfyLrmMiqxL9XbIejmdmXuA3Up1v3LPH3eLOk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90pot+synthesis+of+a+new+high+vinyl+content+hybrid+silica+monolith+dedicated+to+nanoliquid+chromatography&rft.jtitle=Journal+of+separation+science&rft.au=Racha%2C+El%E2%80%90Debs&rft.au=Gay%2C+Pauline&rft.au=Dugas%2C+Vincent&rft.au=Demesmay%2C+Claire&rft.date=2016-03-01&rft.issn=1615-9306&rft.eissn=1615-9314&rft.volume=39&rft.issue=5&rft.spage=842&rft.epage=850&rft_id=info:doi/10.1002%2Fjssc.201501076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jssc_201501076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon |