One‐pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography

A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide,...

Full description

Saved in:
Bibliographic Details
Published inJournal of separation science Vol. 39; no. 5; pp. 842 - 850
Main Authors Racha, El‐Debs, Gay, Pauline, Dugas, Vincent, Demesmay, Claire
Format Journal Article
LanguageEnglish
Published Germany Wiley-VCH 01.03.2016
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, ²⁹Si nuclear magnetic resonance spectroscopy and N₂ adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m²/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
AbstractList A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, (29) Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2) /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29 Si nuclear magnetic resonance spectroscopy and N 2 adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m 2 /g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln( k ) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized ( N = 120 000).
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, super(29)Si nuclear magnetic resonance spectroscopy and N sub(2) adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m super(2)/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, 29Si nuclear magnetic resonance spectroscopy and N2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m2/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybridmacroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, Si-29 nuclear magnetic resonance spectroscopy and N-2 adsorption-desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m(2)/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed-phasemode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed-phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid macroporous monolith, by cocondensation of vinyltrimethoxysilane with tetramethoxysilane, was investigated using an unconventional (formamide, nitric acid) porogen/catalyst system. A macroporous hybrid silica monolith with 80% in mass of vinyltrimethoxysilane in the feeding silane solution was obtained and compared to a more conventional low vinyl content hybrid monolith with only of 20% vinyltrimethoxysilane. Monoliths were characterized by scanning electron microscopy, ²⁹Si nuclear magnetic resonance spectroscopy and N₂ adsorption–desorption. About 80% of the vinyl precursor was incorporated in the final materials, leading to 15.9 and 61.5% of Si atoms bonded to vinyl groups for 20% vinyltrimethoxysilane and 80% vinyltrimethoxysilane, respectively. The 80% vinyltrimethoxysilane monolith presents a lower surface area than 20% vinyltrimethoxysilane (159 versus 551 m²/g), which is nevertheless compensated by a higher vinyl surface density. Chromatographic properties were evaluated in reversed‐phase mode. Plots of ln(k) versus percentage of organic modifier were used to assess the reversed‐phase mechanism. Its high content of organic groups leads to high retention properties. Column efficiencies of 170 000 plates/m were measured for this 80% vinyltrimethoxysilane hybrid silica monolith. Long capillary monolithic columns (90 cm) were successfully synthesized (N = 120 000).
Author Racha, El‐Debs
Gay, Pauline
Demesmay, Claire
Dugas, Vincent
Author_xml – sequence: 1
  fullname: Racha, El‐Debs
– sequence: 2
  fullname: Gay, Pauline
– sequence: 3
  fullname: Dugas, Vincent
– sequence: 4
  fullname: Demesmay, Claire
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26719150$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01356863$$DView record in HAL
BookMark eNqFks1u1DAUhS1URNuBLUuwxAYWM1wn_kmW1Qg6oBFdDFXZWU7iTDwk9tROWrLjEXhGngQPKbNg04Vl36vvHF37-BydWGc1Qi8JLAhA8n4XQrlIgDAgIPgTdEY4YfM8JfTkeAZ-is5D2AEQkeXwDJ0mXJA8as5Qd2X175-_9q7HYbR9o4MJ2NVYYavvcWO2Db4zdmxx6WyvbY-bsfCmwsG0plS4c9a1pm9wpatY97rCvcNWHbq3Q-TKxrtO9W7r1b4Zn6OntWqDfvGwz9D1xw9fl6v5-ury0_JiPS85UDpnCWWkLiivFRSJommVVKKu87LMikpltUg4F4XQTBFVlBkrikJBzkR8hIpULE9n6N3k26hW7r3plB-lU0auLtby0AOSMp7x9I5E9u3E7r27HXToZWdCqdtWWe2GIEkGQHPGAB5HhYAsS1lcM_TmP3TnBm_jpf9SkBBgLFKLiSq9C8Hr-jgsAXnIVx7ylcd8o-DVg-1QdLo64v8CjQCdgHvT6vERO_l5s1lSntMom08yE3r94yhT_rvkIhVM3ny5lMnNSnyDTSoPg7-e-Fo5qbbeBHm9ib48_rGEZmmW_gGnv8uV
CitedBy_id crossref_primary_10_1039_C9AN01473J
crossref_primary_10_1016_j_chroma_2017_05_002
crossref_primary_10_1002_jssc_201801071
crossref_primary_10_1002_jssc_201900634
crossref_primary_10_1002_jssc_202000906
crossref_primary_10_1039_D2CC05568F
crossref_primary_10_1002_jssc_201600774
crossref_primary_10_1002_jssc_201600344
crossref_primary_10_1039_C8AN01531G
crossref_primary_10_1002_jssc_201601014
crossref_primary_10_1016_j_talanta_2020_121777
crossref_primary_10_1016_j_aca_2017_01_057
crossref_primary_10_1016_j_aca_2018_02_033
Cites_doi 10.1039/C0CS00068J
10.1021/ac702343a
10.1021/cm990369r
10.1002/jssc.201300231
10.1021/ac9000749
10.1016/j.chroma.2014.09.017
10.1016/j.talanta.2012.01.009
10.1002/elps.200900627
10.1021/cm000451i
10.1016/j.chroma.2012.07.071
10.1023/A:1009627216939
10.1039/b207617a
10.1002/elps.201200354
10.1016/j.chroma.2008.08.119
10.1002/jssc.200401816
10.1039/b502870a
10.1007/s00216-013-7026-7
10.1002/jssc.201401264
10.1016/j.chroma.2011.05.090
10.1039/b508415f
10.1002/elps.201400316
10.1002/jssc.200700359
10.1002/jssc.200700304
10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
10.1016/j.chroma.2009.11.019
10.1021/ja00521a016
10.1016/j.chroma.2011.07.048
10.1021/ja025573l
10.1002/jssc.200900147
10.1002/elps.201200344
10.1039/c2cc37974k
10.1039/b903444g
10.1021/cm052776a
10.1002/chem.201403982
10.1351/pac198557040603
10.1016/j.chroma.2014.06.023
10.1002/jssc.201400773
10.1016/j.talanta.2014.11.044
10.1016/j.chroma.2014.06.031
10.1016/j.chroma.2014.12.031
10.1002/jssc.201200084
10.1016/j.chroma.2015.05.073
10.1039/b501833c
10.1023/A:1020770209234
10.1016/j.chroma.2008.03.064
10.1016/j.chroma.2013.02.008
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
1XC
DOI 10.1002/jssc.201501076
DatabaseName AGRIS
Istex
PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Technology Research Database
PubMed
Technology Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1615-9314
EndPage 850
ExternalDocumentID oai_HAL_hal_01356863v1
3969743651
10_1002_jssc_201501076
26719150
JSSC4694
ark_67375_WNG_2WH7X0S3_5
US201600124838
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EJD
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
UPT
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
1XC
ID FETCH-LOGICAL-c6044-52451fb46fa0b2a43d2d7ff9cc8bda8f72667b7e5a1abc85bbba0957501d1d593
IEDL.DBID DR2
ISSN 1615-9306
IngestDate Tue Oct 15 15:56:27 EDT 2024
Fri Aug 16 06:32:16 EDT 2024
Fri Aug 16 20:38:14 EDT 2024
Thu Oct 10 19:54:57 EDT 2024
Fri Aug 23 03:19:23 EDT 2024
Sat Sep 28 07:58:36 EDT 2024
Sat Aug 24 00:59:56 EDT 2024
Wed Oct 30 10:06:04 EDT 2024
Wed Dec 27 19:11:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Vinyl monoliths
Liquid chromatography
Hybrid silica monoliths
CAPILLARY LIQUID-CHROMATOGRAPHY
CEC
ENE CLICK CHEMISTRY
MESOPORES
STATIONARY-PHASE
ELECTROCHROMATOGRAPHY
COLUMNS
FABRICATION
STEP SYNTHESIS
SEPARATION
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6044-52451fb46fa0b2a43d2d7ff9cc8bda8f72667b7e5a1abc85bbba0957501d1d593
Notes http://dx.doi.org/10.1002/jssc.201501076
ArticleID:JSSC4694
istex:D55691CBDCF4A63D6C391A2EBF8D50CC38062A8F
ark:/67375/WNG-2WH7X0S3-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0470-9493
0000-0002-8613-7870
PMID 26719150
PQID 1770021055
PQPubID 105495
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01356863v1
proquest_miscellaneous_1800495500
proquest_miscellaneous_1770883588
proquest_journals_1770021055
crossref_primary_10_1002_jssc_201501076
pubmed_primary_26719150
wiley_primary_10_1002_jssc_201501076_JSSC4694
istex_primary_ark_67375_WNG_2WH7X0S3_5
fao_agris_US201600124838
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Journal of separation science
PublicationTitleAlternate J. Sep. Science
PublicationYear 2016
Publisher Wiley-VCH
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley-VCH
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References Zhang, Z., Wang, F., Xu, B., Qin, H., Ye, M., Zou, H., J. Chromatogr. A 2012, 1256, 136-143.
Roux, R., Puy, G., Demesmay, C., Rocca, J.-L., J. Sep. Sci. 2007, 30, 3035-3042.
Marechal, A., Jarrosson, F., Randon, J., Dugas, V., Demesmay, C., J. Chromatogr. A 2015, 1406, 109-117.
Nakanishi, K., J. Porous Mater. 1997, 4, 67-112.
Kanamori, K., Yonezawa, H., Nakanishi, K., Hirao, K., Jinnai, H., J. Sep. Sci. 2004, 27, 874-886.
Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92-98.
Nakanishi, K., Kanamori, K., J. Mater. Chem. 2005, 15, 3776-3786.
Popp, M., Sulyok, M., Rosenberg, E., J. Sep. Sci. 2007, 30, 2888-2899.
Marechal, A., El-Debs, R., Dugas, V., Demesmay, C., J. Sep. Sci. 2013, 36, 2049-2062.
Qin, W., Lu, H., Xie, Z., J. Sep. Sci. 2014, 37, 3722-3728.
Yang, F., Mao, J., He, X. W., Chen, L. X., Zhang, Y. K., Anal. Bioanal. Chem. 2013, 405, 6639-6648.
Wu, M., Wu, R.a., Wang, F., Ren, L., Dong, J., Liu, Z., Zou, H., Anal. Chem. 2009, 81, 3529-3536.
Zhu, T., Row, K. H., J. Sep. Sci. 2012, 35, 1294-1302.
Bruns, S., Hara, T., Smarsly, B. M., Tallarek, U., J. Chromatogr. A 2011, 1218, 5187-5194.
Ou, J., Liu, Z., Wang, H., Lin, H., Dong, J., Zou, H., Electrophoresis 2015, 36, 62-75.
Laaniste, A., Marechal, A., El-Debs, R., Randon, J., Dugas, V., Demesmay, C., J. Chromatogr. A 2014, 1355, 296-300.
Hara, T., Makino, S., Watanabe, Y., Ikegami, T., Cabrera, K., Smarsly, B., Tanaka, N., J. Chromatogr. A 2010, 1217, 89-98.
Rozga-Wijas, K., Chojnowski, J., Scibiorek, M., Fortuniak, W., J. Mater. Chem. 2005, 15, 2383-2392.
Ou, J., Lin, H., Zhang, Z., Huang, G., Dong, J., Zou, H., Electrophoresis 2013, 34, 126-140.
Chen, M.-L., Zhang, J., Zhang, Z., Yuan, B.-F., Yu, Q.-W., Feng, Y.-Q., J. Chromatogr. A 2013, 1284, 118-125.
Göbel, R., Hesemann, P., Friedrich, A., Rothe, R., Schlaad, H., Taubert, A., Chem. Eur. J. 2014, 20, 17579-17589.
Stein, A., Melde, B. J., Schroden, R. C., Adv. Mater. 2000, 12, 1403-1419.
Kanamori, K., Nakanishi, K., Chem. Soc. Rev. 2011, 40, 754-770.
Rahayu, A., Lim, L.W., Takeuchi, T., J. Sep. Sci. 2015, 38, 1109-1116.
Marechal, A., Laaniste, A., El-Debs, R., Dugas, V., Demesmay, C., J. Chromatogr. A 2014, 1365, 140-147.
Alekseev, S. A., Zaitsev, V. N., Fraissard, J.Chem. Mater. 2006, 18, 1981-1987.
Li, L., Colón, L. A., J. Sep. Sci. 2009, 32, 2737-2746.
Loy, D. A., Baugher, B. M., Baugher, C. R., Schneider, D. A., Rahimian, K., Chem. Mater. 2000, 12, 3624-3632.
Laschober, S., Rosenberg, E., J. Chromatogr. A 2008, 1191, 282-291.
Yang, H., Chen, Y., Liu, Y., Nie, L., Yao, S., Electrophoresis 2013, 34, 510-517.
Wang, K., Chen, Y., Yang, H., Li, Y., Nie, L., Yao, S., Talanta 2012, 91, 52-59.
Lim, M. H., Stein, A., Chem. Mater. 1999, 11, 3285-3295.
Roux, R., Jaoudé, M. A., Demesmay, C., Rocca, J. L., J. Chromatogr. A 2008, 1209, 120-127.
Xie, Y., Zhang, X., Han, Q., Wan, W., Ding, M., Talanta 2015, 134, 425-434.
Igarashi, N., Hashimoto, K., Tatsumi, T., J. Mater. Chem. 2002, 12, 3631-3636.
Wu, M., Zhang, H., Wang, Z., Shen, S., Le, X.C., Li, X.-F., Chem. Commun. 2013, 49, 1407-1409.
Itagaki, A., Nakanishi, K., Hirao, K., J. Solgel Sci. Technol. 2003, 26, 153-156.
Ma, J., Liang, Z., Qiao, X., Deng, Q., Tao, D., Zhang, L., Zhang, Y., Anal. Chem. 2008, 80, 2949-2956.
Lin, Z., Tan, X., Yu, R., Lin, J., Yin, X., Zhang, L., Yang, H., J. Chromatogr. A 2014, 1355, 228-237.
Feng, R., Tian, Y., Chen, H., Huang, Z., Zeng, Z., Electrophoresis 2010, 31, 1975-1982.
Zhang, Z., Lin, H., Ou, J., Qin, H., Wu, R.a., Dong, J., Zou, H., J. Chromatogr. A 2012, 1228, 263-269.
Kanamori, K., Nakanishi, K., Hanada, T., Soft Matter 2009, 5, 3106-3113.
Colon, H., Zhang, X., Murphy, J. K., Rivera, J. G., Colon, L. A., Chem. Commun. 2005, 22, 2826-2828.
Kruk, M., Asefa, T., Jaroniec, M., Ozin, G. A., J. Am. Chem. Soc. 2002, 124, 6383-6392.
Sing, K. S. W., Everett, D. H., R.A.W, H. L. M., Pierotti, J., Rouquerol, J., Siemienwska, T., Pure Appl. Chem. 1985, 57, 603-619.
Lin, H., Ou, J., Liu, Z., Wang, H., Dong, J., Zou, H., J. Chromatogr. A 2015, 1379, 34-42.
2015; 36
2010; 31
2015; 38
2013; 49
2009; 81
2008; 1191
2013; 405
2004; 27
2002; 12
2011; 40
2012; 1228
2010; 1217
2006; 18
2015; 1379
2014; 1365
2007; 30
2012; 35
1997; 4
2005; 22
2014; 20
2012; 91
2012; 1256
2013; 36
2009; 32
2015; 1406
2000; 12
2013; 34
2002; 124
2015; 134
2013; 1284
2014; 37
1999; 11
2003; 26
2011; 1218
2009; 5
2005; 15
2014; 1355
2008; 80
1980; 102
1985; 57
2008; 1209
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 1217
  start-page: 89
  year: 2010
  end-page: 98
  publication-title: J. Chromatogr. A
– volume: 35
  start-page: 1294
  year: 2012
  end-page: 1302
  publication-title: J. Sep. Sci.
– volume: 12
  start-page: 1403
  year: 2000
  end-page: 1419
  publication-title: Adv. Mater.
– volume: 1365
  start-page: 140
  year: 2014
  end-page: 147
  publication-title: J. Chromatogr. A
– volume: 37
  start-page: 3722
  year: 2014
  end-page: 3728
  publication-title: J. Sep. Sci.
– volume: 27
  start-page: 874
  year: 2004
  end-page: 886
  publication-title: J. Sep. Sci.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  publication-title: Pure Appl. Chem.
– volume: 405
  start-page: 6639
  year: 2013
  end-page: 6648
  publication-title: Anal. Bioanal. Chem.
– volume: 1191
  start-page: 282
  year: 2008
  end-page: 291
  publication-title: J. Chromatogr. A
– volume: 1284
  start-page: 118
  year: 2013
  end-page: 125
  publication-title: J. Chromatogr. A
– volume: 1406
  start-page: 109
  year: 2015
  end-page: 117
  publication-title: J. Chromatogr. A
– volume: 15
  start-page: 3776
  year: 2005
  end-page: 3786
  publication-title: J. Mater. Chem.
– volume: 1218
  start-page: 5187
  year: 2011
  end-page: 5194
  publication-title: J. Chromatogr. A
– volume: 102
  start-page: 92
  year: 1980
  end-page: 98
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 510
  year: 2013
  end-page: 517
  publication-title: Electrophoresis
– volume: 134
  start-page: 425
  year: 2015
  end-page: 434
  publication-title: Talanta
– volume: 15
  start-page: 2383
  year: 2005
  end-page: 2392
  publication-title: J. Mater. Chem.
– volume: 1256
  start-page: 136
  year: 2012
  end-page: 143
  publication-title: J. Chromatogr. A
– volume: 4
  start-page: 67
  year: 1997
  end-page: 112
  publication-title: J. Porous Mater.
– volume: 91
  start-page: 52
  year: 2012
  end-page: 59
  publication-title: Talanta
– volume: 32
  start-page: 2737
  year: 2009
  end-page: 2746
  publication-title: J. Sep. Sci.
– volume: 1379
  start-page: 34
  year: 2015
  end-page: 42
  publication-title: J. Chromatogr. A
– volume: 30
  start-page: 2888
  year: 2007
  end-page: 2899
  publication-title: J. Sep. Sci
– volume: 80
  start-page: 2949
  year: 2008
  end-page: 2956
  publication-title: Anal. Chem.
– volume: 38
  start-page: 1109
  year: 2015
  end-page: 1116
  publication-title: J. Sep. Sci.
– volume: 1228
  start-page: 263
  year: 2012
  end-page: 269
  publication-title: J. Chromatogr. A
– volume: 36
  start-page: 2049
  year: 2013
  end-page: 2062
  publication-title: J. Sep. Sci.
– volume: 26
  start-page: 153
  year: 2003
  end-page: 156
  publication-title: J. Solgel Sci. Technol.
– volume: 31
  start-page: 1975
  year: 2010
  end-page: 1982
  publication-title: Electrophoresis
– volume: 11
  start-page: 3285
  year: 1999
  end-page: 3295
  publication-title: Chem. Mater.
– volume: 12
  start-page: 3631
  year: 2002
  end-page: 3636
  publication-title: J. Mater. Chem.
– volume: 34
  start-page: 126
  year: 2013
  end-page: 140
  publication-title: Electrophoresis
– volume: 36
  start-page: 62
  year: 2015
  end-page: 75
  publication-title: Electrophoresis
– volume: 1355
  start-page: 296
  year: 2014
  end-page: 300
  publication-title: J. Chromatogr. A
– volume: 81
  start-page: 3529
  year: 2009
  end-page: 3536
  publication-title: Anal. Chem.
– volume: 30
  start-page: 3035
  year: 2007
  end-page: 3042
  publication-title: J. Sep. Sci.
– volume: 5
  start-page: 3106
  year: 2009
  end-page: 3113
  publication-title: Soft Matter
– volume: 20
  start-page: 17579
  year: 2014
  end-page: 17589
  publication-title: Chem. Eur. J.
– volume: 124
  start-page: 6383
  year: 2002
  end-page: 6392
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 754
  year: 2011
  end-page: 770
  publication-title: Chem. Soc. Rev.
– volume: 1209
  start-page: 120
  year: 2008
  end-page: 127
  publication-title: J. Chromatogr. A
– volume: 18
  start-page: 1981
  year: 2006
  end-page: 1987
  publication-title: J.Chem. Mater.
– volume: 12
  start-page: 3624
  year: 2000
  end-page: 3632
  publication-title: Chem. Mater.
– volume: 1355
  start-page: 228
  year: 2014
  end-page: 237
  publication-title: J. Chromatogr. A
– volume: 49
  start-page: 1407
  year: 2013
  end-page: 1409
  publication-title: Chem. Commun.
– volume: 22
  start-page: 2826
  year: 2005
  end-page: 2828
  publication-title: Chem. Commun.
– ident: e_1_2_6_10_1
  doi: 10.1039/C0CS00068J
– ident: e_1_2_6_16_1
  doi: 10.1021/ac702343a
– ident: e_1_2_6_13_1
  doi: 10.1021/cm990369r
– ident: e_1_2_6_29_1
  doi: 10.1002/jssc.201300231
– ident: e_1_2_6_35_1
  doi: 10.1021/ac9000749
– ident: e_1_2_6_30_1
  doi: 10.1016/j.chroma.2014.09.017
– ident: e_1_2_6_22_1
  doi: 10.1016/j.talanta.2012.01.009
– ident: e_1_2_6_45_1
  doi: 10.1002/elps.200900627
– ident: e_1_2_6_7_1
  doi: 10.1021/cm000451i
– ident: e_1_2_6_36_1
  doi: 10.1016/j.chroma.2012.07.071
– ident: e_1_2_6_5_1
  doi: 10.1023/A:1009627216939
– ident: e_1_2_6_15_1
  doi: 10.1039/b207617a
– ident: e_1_2_6_38_1
  doi: 10.1002/elps.201200354
– ident: e_1_2_6_21_1
  doi: 10.1016/j.chroma.2008.08.119
– ident: e_1_2_6_6_1
  doi: 10.1002/jssc.200401816
– ident: e_1_2_6_19_1
  doi: 10.1039/b502870a
– ident: e_1_2_6_37_1
  doi: 10.1007/s00216-013-7026-7
– ident: e_1_2_6_25_1
  doi: 10.1002/jssc.201401264
– ident: e_1_2_6_9_1
  doi: 10.1016/j.chroma.2011.05.090
– ident: e_1_2_6_14_1
  doi: 10.1039/b508415f
– ident: e_1_2_6_4_1
  doi: 10.1002/elps.201400316
– ident: e_1_2_6_12_1
  doi: 10.1002/jssc.200700359
– ident: e_1_2_6_20_1
  doi: 10.1002/jssc.200700304
– ident: e_1_2_6_26_1
  doi: 10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X
– ident: e_1_2_6_42_1
  doi: 10.1016/j.chroma.2009.11.019
– ident: e_1_2_6_33_1
  doi: 10.1021/ja00521a016
– ident: e_1_2_6_46_1
  doi: 10.1016/j.chroma.2011.07.048
– ident: e_1_2_6_44_1
  doi: 10.1021/ja025573l
– ident: e_1_2_6_41_1
  doi: 10.1002/jssc.200900147
– ident: e_1_2_6_3_1
  doi: 10.1002/elps.201200344
– ident: e_1_2_6_39_1
  doi: 10.1039/c2cc37974k
– ident: e_1_2_6_8_1
  doi: 10.1039/b903444g
– ident: e_1_2_6_34_1
  doi: 10.1021/cm052776a
– ident: e_1_2_6_23_1
  doi: 10.1002/chem.201403982
– ident: e_1_2_6_43_1
  doi: 10.1351/pac198557040603
– ident: e_1_2_6_18_1
  doi: 10.1016/j.chroma.2014.06.023
– ident: e_1_2_6_24_1
  doi: 10.1002/jssc.201400773
– ident: e_1_2_6_27_1
  doi: 10.1016/j.talanta.2014.11.044
– ident: e_1_2_6_31_1
  doi: 10.1016/j.chroma.2014.06.031
– ident: e_1_2_6_47_1
  doi: 10.1016/j.chroma.2014.12.031
– ident: e_1_2_6_2_1
  doi: 10.1002/jssc.201200084
– ident: e_1_2_6_32_1
  doi: 10.1016/j.chroma.2015.05.073
– ident: e_1_2_6_28_1
  doi: 10.1039/b501833c
– ident: e_1_2_6_40_1
  doi: 10.1023/A:1020770209234
– ident: e_1_2_6_11_1
  doi: 10.1016/j.chroma.2008.03.064
– ident: e_1_2_6_17_1
  doi: 10.1016/j.chroma.2013.02.008
SSID ssj0017890
Score 2.2542808
Snippet A new vinyltrimethoxysilane‐based hybrid silica monolith was developed and used as a reversed‐phase capillary column. The synthesis of this rich vinyl hybrid...
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl hybrid...
A new vinyltrimethoxysilane-based hybrid silica monolith was developed and used as a reversed-phase capillary column. The synthesis of this rich vinyl...
SourceID hal
proquest
crossref
pubmed
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 842
SubjectTerms Analytical chemistry
Capillarity
Catalysts
Chemical Sciences
Chemical synthesis
Chromatography
Density
Hybrid silica monoliths
Liquid chromatography
Nanostructure
Nitric acid
nitrogen
nuclear magnetic resonance spectroscopy
porous media
scanning electron microscopy
Silica
silicon
Silicon dioxide
surface area
Synthesis
Vinyl monoliths
Title One‐pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography
URI https://api.istex.fr/ark:/67375/WNG-2WH7X0S3-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.201501076
https://www.ncbi.nlm.nih.gov/pubmed/26719150
https://www.proquest.com/docview/1770021055
https://search.proquest.com/docview/1770883588
https://search.proquest.com/docview/1800495500
https://hal.science/hal-01356863
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPQAHHuXRQKkMQnBKm4cde4_bLcuqgiKxrLo3y3YcdikkZZOtWE78BH4jv4SZZDd0EQIhLjnYEykez3i-ccafCXlidCqlMwkgN5v5TGjrdww80iTKHKRjztaXTbw6TgYjdjTm4wun-Bt-iHbDDT2jXq_RwbUp93-Shr4vS6QgBEADGQxyboexwJquwzctf1SIpzwx44Kw7XcAHK9YG4Nof_31tah0OdMFPCdYGbmJyv78O_i5jmbrcNS_QfRqIE0VyunevDJ79ssvHI__M9Kb5PoSq9JuY1y3yCWXb5ErvdUVcVvk2gU2w9vk4-vcff_67ayoaLnIAViW05IWGdUUoDtFXmR6Ps0XHyiWx0Oso5MFHhej5RQ3Din4A9biTWha_zsCJEyrguYaWz_NQc5OZgXg6yXH9h0y6j9_2xv4y9scfJsEjEHGy3iYGZZkOjCRZnEapSLLOtZKk2qZCYAKwgjHdaiNldwYowH_AaIJ0zDlnfgu2ciL3G0TGsUm1loHLowypi0gJIakNdIBfNHOxh55tppNddaQdqiGnjlSqEzVKtMj2zDZSr-DFVWNhhHy7UHIZjKWHnkMFtC-jzTcg-5LhW0Am3kik_g89MjT2kBaMT07xVI5wdXJ8QsVnQzEOBjGintkZ2VBarlKlCoUos65OXQ_arthDvGnjc5dMW9kJMBkKf8gIzHRg1wz8Mi9xjrbD4oSASk5hx6_trG_KEQdDYc98FF2_x_lH5CrqL2mPG-HbFSzuXsIeK0yu2Sze3B40N-tffMHzPc4-g
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7R9lA48FMoDRQwCMEpbX6cxHusFspS2kViu2pvlu047FJIyma3YjnxCDwjT8JMsgksQiDEJQd7IsXjGc83zvgzwGOtUiGsjhG5mczliTJuR-MjjYPMYjpmTXXZxFE_7g35wWnUVBPSWZiaH6LdcCPPqNZrcnDakN79wRr6riyJgxARDaYw8Qqsoc-HdHvDszctg5RP5zwp58LA7XYQHje8jV6wu_z-UlxayVSBzxHVRq6Ruj_9DoAu49kqIO1fA90Mpa5DOduZTfWO-fwLy-N_jfU6XF3AVbZX29cNuGTzDVjvNrfEbcCVnwgNb8KH17n99uXreTFl5TxHbFmOS1ZkTDFE74yokdnFOJ-_Z1Qhj-GOjeZ0YoyVY9o7ZOgSVI43Ymn1-wjBMJsWLFfU-nGGcmY0KRBiL2i2b8Fw__lxt-cuLnRwTexxjkkvj_xM8zhTng4UD9MgTbKsY4zQqRJZgmgh0YmNlK-0EZHWWiEERFDjp34adcJNWM2L3G4BC0IdKqU86wcZVwZBEifeGmERwShrQgeeNtMpz2veDlkzNAeSlClbZTqwhbMt1VtcVOVwEBDlHkZtLkLhwCM0gfZ9YuLu7R1KakPkHMUiDi98B55UFtKKqckZVcslkTzpv5DBSS859QahjBzYbkxILhaKUvpJUqXdEXY_bLtxDum_jcptMatlBCJlIf4gIyjXw3TTc-B2bZ7tBwVxgll5hD1uZWR_UYg8GAy66Kb8zj_KP4D13vHRoTx82X91Fy6TJutqvW1YnU5m9h7Ct6m-Xznod18DO6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYJvHxwMeALTDAIMSesuXDSdzHqVDKGAVRqvXNsh2bdoOkNOlEeeJP4G_kL-EuacOKEAjxkgf7IsXnO9_vnPPPhDxWMuXcqBiQm7YuS6R2WwoeaRxYA-mY0dVlE696cXfADofR8Nwp_pofotlwQ8-o1mt08Elq93-Shp4UBVIQAqCBDCZeIxssBviLsOhtQyDl4zFPTLkgbrst6F7SNnrB_ur7K2FpzcocniMsjdxAbX_-Hf5chbNVPOpcI3I5kroM5XRvVqo9_eUXksf_Gep1cnUBVulBbV03yAWTbZJL7eUdcZvkyjk6w5vk4-vMfP_6bZKXtJhngCyLcUFzSyUF7E6RGJmejbP5B4r18RDs6GiO58VoMcadQwoOgcV4I5pWP48ACtMyp5nE1k8zkNOjaQ4Ae0GyfYsMOs_etbvu4joHV8ceY5Dyssi3isVWeiqQLEyDNLG2pTVXqeQ2AayQqMRE0pdK80gpJQEAAqTxUz-NWuFtsp7lmdkmNAhVKKX0jB9YJjVAJIasNdwAfpFGhw7ZXc6mmNSsHaLmZw4EKlM0ynTINky2kO9hSRWDfoCEexCzGQ-5Qx6BBTTvIw939-BIYBvg5ijmcXjmO-RJZSCNmJyeYq1cEonj3nMRHHeTodcPReSQnaUFicUyUQg_SaqkO4Luh003zCH-tZGZyWe1DAeczPkfZDhmepBseg7Zqq2z-aAgTiAnj6DHrWzsLwoRh_1-G5yU3flH-Qfk4punHXH0ovfyLrmMiqxL9XbIejmdmXuA3Up1v3LPH3eLOk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%E2%80%90pot+synthesis+of+a+new+high+vinyl+content+hybrid+silica+monolith+dedicated+to+nanoliquid+chromatography&rft.jtitle=Journal+of+separation+science&rft.au=Racha%2C+El%E2%80%90Debs&rft.au=Gay%2C+Pauline&rft.au=Dugas%2C+Vincent&rft.au=Demesmay%2C+Claire&rft.date=2016-03-01&rft.issn=1615-9306&rft.eissn=1615-9314&rft.volume=39&rft.issue=5&rft.spage=842&rft.epage=850&rft_id=info:doi/10.1002%2Fjssc.201501076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jssc_201501076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon