基于SBWS__GPR预测模型的不确定性多数据流异常检测方法
针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的...
Saved in:
Published in | 计算机应用研究 Vol. 35; no. 2; pp. 381 - 385 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122
2018
江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2018.02.014 |
Cover
Loading…
Abstract | 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正。 |
---|---|
AbstractList | TP391; 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战.因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法.在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正.再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正. 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正。 |
Abstract_FL | The uncertainty of collecting data stream in practical system brings a serious challenge for oudier detection and correction.Based on the characteristic of sliding basic windows sampling (SBWS) and Gaussian process regression (GPR),this paper proposed the outlier detection method of uncertainty multiple data stream based on SBWS_GPR prediction model.By collecting historical data set based on time series and introducing index number,cluster and analysis historical data set and got the mapping relation between the data set and index number.The real-time input data stream obtained was to realize outlier detection and correction by the sliding windqw pattern.And then based on the correlation between the input and output data and the GPR,set up prediction model and compared the real-time output data stream data with the prediction output data stream,to realize outlier detection and correction from two different input and output channels. |
Author | 朱树才;秦宁宁 |
AuthorAffiliation | 江南大学物联网工程学院,江苏无锡214122;江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
AuthorAffiliation_xml | – name: 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122;江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
Author_FL | Zhu Shucai Qin Ningning |
Author_FL_xml | – sequence: 1 fullname: Zhu Shucai – sequence: 2 fullname: Qin Ningning |
Author_xml | – sequence: 1 fullname: 朱树才;秦宁宁 |
BookMark | eNo9j09LAkEAxedgkFpfIjp02W3-7bhzLCkNhCKFjsvMumsuNZZLxN40vInd7OChsII6SRDCJn0cd6Rv0YrR5T14_HiPlwMZ1VIeANsImoQzvhuYzTBUJoIQGYRxy8QQ2SbEJkQ0A7L_-TrIhWEAIcWIwywoJ0-z-ey-un9WdZzSyenPc09P-_p9nDz2F6PePB4sxpNkMtKdt-R1pIcfejDR027yfZfEsX7pLOGHL_053ABrvrgIvc0_z4Pa4UGtWDYqx6Wj4l7FcBmkhi-E5dfrLmHYo5hxLKmFOBGMWpIwH0mOcd3ntistWJDM9qjkxIbE5VQyyV2SBzur2luhfKEaTtC6aat00AnCIIqiYHkbpkJTdGuFuuct1bhupvBVu3kp2pHDCjRdtyghvwMZc2s |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2018.02.014 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Outlier detection of uncertainty muhiple data stream based on SBWS_GPR prediction model |
DocumentTitle_FL | Outlier detection of uncertainty multiple data stream based on SBWS_GPR prediction model |
EndPage | 385 |
ExternalDocumentID | jsjyyyj201802014 674426543 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 江苏省自然科学基金资助项目; 江苏省博士后科研项目; 江苏省“六大人才高峰”计划资助项目 funderid: (61702228); (BK20170198); (1601012A); (DZXX-026) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c604-faa5fddc362e42692b45193a645b36f1b922df98cb507b68e4b93803c94b6b9c3 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:52 EDT 2025 Wed Feb 14 10:09:56 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | 高斯过程回归 不确定性 索引号 滑动窗口 GPR index number 数据流 uncertainty data stream sliding window |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c604-faa5fddc362e42692b45193a645b36f1b922df98cb507b68e4b93803c94b6b9c3 |
Notes | 51-1196/TP uncertainty; data stream; GPR; index number; sliding window The uncertainty of collecting data stream in practical system brings a serious challenge for outlier detection and correction. Based on the characteristic of sliding basic windows sampling (SBWS) and Ganssian process regression (GPR), this paper proposed the outlier detection method of uncertainty multiple data stream based on SBWS_GPR prediction model. By collecting historical data set based on time series and introducing index number, cluster and analysis historical data set and got the mapping relation between the data set and index number. The real-time input data stream obtained was to realize outlier detection and correction by the sliding window pattern. And then based on the correlation between the input and output data and the GPR, set up prediction model and compared the real-time output data stream data with the prediction output data stream, to realize outlier detection and correction from two different input and output channels. |
PageCount | 5 |
ParticipantIDs | wanfang_journals_jsjyyyj201802014 chongqing_primary_674426543 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2018 |
Publisher | 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122 江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 |
Publisher_xml | – name: 江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122 – name: 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.101754 |
Snippet | 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process... TP391; 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战.因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 381 |
SubjectTerms | 不确定性 数据流 滑动窗口 索引号 高斯过程回归 |
Title | 基于SBWS__GPR预测模型的不确定性多数据流异常检测方法 |
URI | http://lib.cqvip.com/qk/93231X/201802/674426543.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201802014 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1Na9RANJQWxIvfYq1Khc4xdTOZSWaOyW62RVDEVuxtyexmW_awVdse2lOV3kq91UMPSlXQUxGkUIs_p5viv_C9l9ltKEWqJ2EZZl_ezPvKznsvm3njOBMtngqjJHdTI9quaImKm0LS4-I_OibzpR-0cXPyo8fB9DPxcE7ODQ2PlN5aWlk2k821M_eV_ItVAQZ2xV2yf2HZwaQAgD7YF1qwMLTnsjFLJNN1FkcsEdiqZCZ-PtOYevKUJZpFnCnBkoDFkqkYO5FikUeDEoKETEeEA6MVUzWEAEKUIA60cBVGqQqLQoIIC9GSxRW6VCPkggTNHFeZ4tRR-EGiPs5QZkNDXxPEZ8XZl_3wmCUKJ0QmQ2IgJPwqiSix1YLYFigL4lQsJNIsHjxk7A_yiD6gUEdp4PcEJUSposCKWnBPnfKDELtq401LDHuob0AEwXVfJ1Y5NZosRDLADAgCUxa8xTXiAPgHgpIoK1LFYJRmmuzFqyUqhKPqJAxJimgClcOr3BMeB3z5_3BVsFRycvganR9YA1svWBSNsb92XnJpvtV7Zr_JsxyvrwNNjhcJTA4I4KuTimriFjuFT5U27yx1VldXO4gEWQseRz_Cw9AD5zQSxbW4fhLXQxhcrvPIsYTSSR6NhyAEJceFJzOCJx44Lun5oaRjHooQTcDFokyJ5fOCM2GFePAnEbD-ysJid_4lRJW0ya_bTrvzpXh09opzySaS41GxKlx1htYWrjmX-4e0jFuffd2Z6n04PDp8218Yfn3cyPc386-7vfebxzsbRwdbx7t7vb2dfP1L7_NOvv0t39rL91_3fr7pHRzkn9YR-d2P_Pv2DWe2nsxWp117eorbDCrCbaepbLdaTQhQM9yuzg0WkvLTQEgDC7BnNOettlZNAxmhCVQmjPZVxW9qYQKjm_5NZ7i72M1uOeOQshkImrwMkknRDMM0MzJTGeQuYZqKlhp1xgZqabwoiuQ0AtA3x43ro859q6iGXTqXGqcNf_scOGPORewXjz_vOMPLr1ayu5AQLJt79nb5DWUixco |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESBWS_GPR%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%E5%A4%9A%E6%95%B0%E6%8D%AE%E6%B5%81%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9C%B1%E6%A0%91%E6%89%8D&rft.au=%E7%A7%A6%E5%AE%81%E5%AE%81&rft.date=2018&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1%2C214122%25%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1214122&rft.issn=1001-3695&rft.volume=35&rft.issue=2&rft.spage=381&rft.epage=385&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2018.02.014&rft.externalDocID=jsjyyyj201802014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |