基于SBWS__GPR预测模型的不确定性多数据流异常检测方法

针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 35; no. 2; pp. 381 - 385
Main Author 朱树才;秦宁宁
Format Journal Article
LanguageChinese
Published 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122 2018
江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2018.02.014

Cover

Loading…
Abstract 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正。
AbstractList TP391; 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战.因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法.在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正.再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正.
针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process regression,GPR)模型的特性,提出了基于SBWS_GPR预测模型的不确定性多数据流的异常检测方法。在基于时间序列采集的历史数据集中,引入索引号,对历史数据集进行聚类,分析数据集与索引号的映射关系,将实时获得的输入数据流通过滑动窗口匹配,实现对单数据流的异常点检测与修正。再利用输入、输出数据间的相关性,基于GPR建立预测模型,比较实时观察的输出数据流与预测模型的输出数据流,最终从输入、输出两种不同通道实现多数据流的异常检测与修正。
Abstract_FL The uncertainty of collecting data stream in practical system brings a serious challenge for oudier detection and correction.Based on the characteristic of sliding basic windows sampling (SBWS) and Gaussian process regression (GPR),this paper proposed the outlier detection method of uncertainty multiple data stream based on SBWS_GPR prediction model.By collecting historical data set based on time series and introducing index number,cluster and analysis historical data set and got the mapping relation between the data set and index number.The real-time input data stream obtained was to realize outlier detection and correction by the sliding windqw pattern.And then based on the correlation between the input and output data and the GPR,set up prediction model and compared the real-time output data stream data with the prediction output data stream,to realize outlier detection and correction from two different input and output channels.
Author 朱树才;秦宁宁
AuthorAffiliation 江南大学物联网工程学院,江苏无锡214122;江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
AuthorAffiliation_xml – name: 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122;江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
Author_FL Zhu Shucai
Qin Ningning
Author_FL_xml – sequence: 1
  fullname: Zhu Shucai
– sequence: 2
  fullname: Qin Ningning
Author_xml – sequence: 1
  fullname: 朱树才;秦宁宁
BookMark eNo9j09LAkEAxedgkFpfIjp02W3-7bhzLCkNhCKFjsvMumsuNZZLxN40vInd7OChsII6SRDCJn0cd6Rv0YrR5T14_HiPlwMZ1VIeANsImoQzvhuYzTBUJoIQGYRxy8QQ2SbEJkQ0A7L_-TrIhWEAIcWIwywoJ0-z-ey-un9WdZzSyenPc09P-_p9nDz2F6PePB4sxpNkMtKdt-R1pIcfejDR027yfZfEsX7pLOGHL_053ABrvrgIvc0_z4Pa4UGtWDYqx6Wj4l7FcBmkhi-E5dfrLmHYo5hxLKmFOBGMWpIwH0mOcd3ntistWJDM9qjkxIbE5VQyyV2SBzur2luhfKEaTtC6aat00AnCIIqiYHkbpkJTdGuFuuct1bhupvBVu3kp2pHDCjRdtyghvwMZc2s
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2018.02.014
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Outlier detection of uncertainty muhiple data stream based on SBWS_GPR prediction model
DocumentTitle_FL Outlier detection of uncertainty multiple data stream based on SBWS_GPR prediction model
EndPage 385
ExternalDocumentID jsjyyyj201802014
674426543
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 江苏省自然科学基金资助项目; 江苏省博士后科研项目; 江苏省“六大人才高峰”计划资助项目
  funderid: (61702228); (BK20170198); (1601012A); (DZXX-026)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c604-faa5fddc362e42692b45193a645b36f1b922df98cb507b68e4b93803c94b6b9c3
ISSN 1001-3695
IngestDate Thu May 29 03:54:52 EDT 2025
Wed Feb 14 10:09:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords 高斯过程回归
不确定性
索引号
滑动窗口
GPR
index number
数据流
uncertainty
data stream
sliding window
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c604-faa5fddc362e42692b45193a645b36f1b922df98cb507b68e4b93803c94b6b9c3
Notes 51-1196/TP
uncertainty; data stream; GPR; index number; sliding window
The uncertainty of collecting data stream in practical system brings a serious challenge for outlier detection and correction. Based on the characteristic of sliding basic windows sampling (SBWS) and Ganssian process regression (GPR), this paper proposed the outlier detection method of uncertainty multiple data stream based on SBWS_GPR prediction model. By collecting historical data set based on time series and introducing index number, cluster and analysis historical data set and got the mapping relation between the data set and index number. The real-time input data stream obtained was to realize outlier detection and correction by the sliding window pattern. And then based on the correlation between the input and output data and the GPR, set up prediction model and compared the real-time output data stream data with the prediction output data stream, to realize outlier detection and correction from two different input and output channels.
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201802014
chongqing_primary_674426543
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2018
Publisher 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122
江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
Publisher_xml – name: 江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122
– name: 江南大学物联网工程学院,江苏无锡,214122%江南大学物联网工程学院,江苏无锡214122
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.101754
Snippet 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战。因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process...
TP391; 针对实际系统中采集的数据流的不确定性,给异常点检测与修正带来了现实挑战.因此,根据滑动基本窗口采样算法(sliding basic windows sampling,SBWB)与高斯过程回归(Gaussian process...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 381
SubjectTerms 不确定性
数据流
滑动窗口
索引号
高斯过程回归
Title 基于SBWS__GPR预测模型的不确定性多数据流异常检测方法
URI http://lib.cqvip.com/qk/93231X/201802/674426543.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201802014
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzR1Na9RANJQWxIvfYq1Khc4xdTOZSWaOyW62RVDEVuxtyexmW_awVdse2lOV3kq91UMPSlXQUxGkUIs_p5viv_C9l9ltKEWqJ2EZZl_ezPvKznsvm3njOBMtngqjJHdTI9quaImKm0LS4-I_OibzpR-0cXPyo8fB9DPxcE7ODQ2PlN5aWlk2k821M_eV_ItVAQZ2xV2yf2HZwaQAgD7YF1qwMLTnsjFLJNN1FkcsEdiqZCZ-PtOYevKUJZpFnCnBkoDFkqkYO5FikUeDEoKETEeEA6MVUzWEAEKUIA60cBVGqQqLQoIIC9GSxRW6VCPkggTNHFeZ4tRR-EGiPs5QZkNDXxPEZ8XZl_3wmCUKJ0QmQ2IgJPwqiSix1YLYFigL4lQsJNIsHjxk7A_yiD6gUEdp4PcEJUSposCKWnBPnfKDELtq401LDHuob0AEwXVfJ1Y5NZosRDLADAgCUxa8xTXiAPgHgpIoK1LFYJRmmuzFqyUqhKPqJAxJimgClcOr3BMeB3z5_3BVsFRycvganR9YA1svWBSNsb92XnJpvtV7Zr_JsxyvrwNNjhcJTA4I4KuTimriFjuFT5U27yx1VldXO4gEWQseRz_Cw9AD5zQSxbW4fhLXQxhcrvPIsYTSSR6NhyAEJceFJzOCJx44Lun5oaRjHooQTcDFokyJ5fOCM2GFePAnEbD-ysJid_4lRJW0ya_bTrvzpXh09opzySaS41GxKlx1htYWrjmX-4e0jFuffd2Z6n04PDp8218Yfn3cyPc386-7vfebxzsbRwdbx7t7vb2dfP1L7_NOvv0t39rL91_3fr7pHRzkn9YR-d2P_Pv2DWe2nsxWp117eorbDCrCbaepbLdaTQhQM9yuzg0WkvLTQEgDC7BnNOettlZNAxmhCVQmjPZVxW9qYQKjm_5NZ7i72M1uOeOQshkImrwMkknRDMM0MzJTGeQuYZqKlhp1xgZqabwoiuQ0AtA3x43ro859q6iGXTqXGqcNf_scOGPORewXjz_vOMPLr1ayu5AQLJt79nb5DWUixco
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESBWS_GPR%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%E5%A4%9A%E6%95%B0%E6%8D%AE%E6%B5%81%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9C%B1%E6%A0%91%E6%89%8D&rft.au=%E7%A7%A6%E5%AE%81%E5%AE%81&rft.date=2018&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1%2C214122%25%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1214122&rft.issn=1001-3695&rft.volume=35&rft.issue=2&rft.spage=381&rft.epage=385&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2018.02.014&rft.externalDocID=jsjyyyj201802014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg