基于属性偏好学习的配电网综合评价方法
为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 3; pp. 785 - 790 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
华北电力大学电气与电子工程学院,北京,102206
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.03.034 |
Cover
Abstract | 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值。 |
---|---|
AbstractList | 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值。 TP181; 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法.依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价.与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性.该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值. |
Abstract_FL | To avoid the over reliance of personal preferences on traditional regional distribution network evaluation and achieve reasonable,accurate attribute weights,this paper proposed a multiple index attribute preference learning based intelligent comprehensive evaluating method for distribution network.The proposed method established the distribution network comprehensive evaluation model under confidence criterion and score criterion,according to the attribute measure theory.Then,it pre-processed the intermediate value indexes by introducing numerical absolute deviation rate.Finally,based on the historical training samples of distribution network,the proposed method calculated the preference weights of indexes by employing supervised random weighted neural network learning model.The paper performed intelligent evaluation of test samples by using the distribution network comprehensive evaluation model and well-trained attribute preference weights.Compared with traditional AHP,PSO-SVM and RWN algorithms,the experimental result analysis demonstrates that the proposed method is feasible,effective and robust,which can achieve a reasonable and objective comprehensive evaluation of target distribution network,and has certain application value on regional distribution network evaluation. |
Author | 谈元鹏 李买林 许刚 |
AuthorAffiliation | 华北电力大学电气与电子工程学院,北京102206 |
AuthorAffiliation_xml | – name: 华北电力大学电气与电子工程学院,北京,102206 |
Author_FL | Xu Gang Tan Yuanpeng Li Mailin |
Author_FL_xml | – sequence: 1 fullname: Tan Yuanpeng – sequence: 2 fullname: Li Mailin – sequence: 3 fullname: Xu Gang |
Author_xml | – sequence: 1 fullname: 谈元鹏 李买林 许刚 |
BookMark | eNo9j0tLw0AcxPdQwbb6JcSDl8T_7iab7lGKLyh46T1kk01N0I0miOSmUMGLL1APHtSLehIREWlrv00e-i2MVISBgeHHDNNANRUpidA8Bp1yxhdDPUgSpWMArFHGTZ0AtnSglYwaqv_n06iRJCGAQTCHOmL53TAbnuavt8XBU354lj-M8-fHbHBf3vS_j07Ky_dyfFGOPvPz46-Xfjb6KK4HxdvVDJryna1Ezv55E3VXlrvtNa2zsbreXupoLgNDo5ZrEJ8Bhla1bBEQ4DHPNziRmFmmINIEi_mCMCmESannYNMkri-FIzkVnDbRwqR231G-o3p2GO3Fqhq0wyRM0zT8PQm0ulihcxPU3YxUbzeo4J042Hbi1GYWJoy3OKY_4H9qHg |
ClassificationCodes | TP181 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.03.034 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Attribute preference learning based comprehensive evaluation method for distribution network |
DocumentTitle_FL | Attribute preference learning based comprehensive evaluation method for distribution network |
EndPage | 790 |
ExternalDocumentID | jsjyyyj201703034 671269891 |
GrantInformation_xml | – fundername: 国家“863”计划资助项目 funderid: (2015AA050203) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c604-37c42f60108695720b0d6df492e1675b2e5076fb26ebb533da1552cfebae93b93 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 10:05:04 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | evaluation preference multiple attribute decision making distribution network evaluation 属性测度 neural networks 评价偏好 神经网络 多属性决策 attribute measure 配电网评价 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c604-37c42f60108695720b0d6df492e1675b2e5076fb26ebb533da1552cfebae93b93 |
Notes | 51-1196/TP Tan Yuanpeng, Li Mailin, Xu Gang (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China) To avoid the over reliance of personal preferences on traditional regional distribution network evaluation and achieve reasonable,accurate attribute weights,this paper proposed a multiple index attribute preference learning based intelligent comprehensive evaluating method for distribution network. The proposed method established the distribution network comprehensive evaluation model under confidence criterion and score criterion,according to the attribute measure theory. Then,it pre-processed the intermediate value indexes by introducing numerical absolute deviation rate. Finally,based on the historical training samples of distribution network,the proposed method calculated the preference weights of indexes by employing supervised random weighted neural network learning model. The paper performed intelligent evaluation of test samples by using the distributi |
PageCount | 6 |
ParticipantIDs | wanfang_journals_jsjyyyj201703034 chongqing_primary_671269891 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 华北电力大学电气与电子工程学院,北京,102206 |
Publisher_xml | – name: 华北电力大学电气与电子工程学院,北京,102206 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.0607703 |
Snippet | ... TP181;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 785 |
SubjectTerms | 多属性决策 属性测度 神经网络 评价偏好 配电网评价 |
Title | 基于属性偏好学习的配电网综合评价方法 |
URI | http://lib.cqvip.com/qk/93231X/201703/671269891.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201703034 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0MpDQjS8ESGAghSXF_bh9aPcvdtTREEVpHSn8z4SUlyAHEVCA1KQaHhJQEEBNECFEEIIJSF_k8vBXzBjO5slQijQrEbj8cx4Zvdm7LM9hEyrosg0z7xGNwo5TFC8bgOyVt1gZaalLEOWZ2a3xTU-e51dnY_mR0bv1k-X9PVMtvbHcyX_41XAgV_xlOw_eLZiCgiAwb_wBA_D81A-pmlEVZsmMU0ZPmWKmMSnCgCOmxhigRjpU9lGIIbWlgFaNOaml6KxR1NBFXRnNFVUAn3LYKA1QgC6KN8ACU2aRqhHpaSppHHb9GKmSaBQxZEnAElIbWHLvdzX0Kc0NqwAUJa-afSP8AkSrdxYGhrPYWJFk2oFEdkkVn5klA1Ra5Ap2_skwLdlzGFGCOSIQZF1LqBDYrlIGH59_cMe9DTvqmlvOdPKptG6sg1gQOvEWJQ5YzvTVjQcxStrJGn41LoDMdgSRy_QOThWoElqfBRV4KIAPoWaAsbbcROQOJX2eC204Oa1kDvLu9jjFnJv1JcmTCARtpCRy0mELal6MNyFiisT7lDATCUANywKc3WvY__7heJLK0urq6tLSAS_8CEbJeOBEH40RsbjpJW097NpGEL9dsUALy7an71i6QFeCxdYDxHiXxUuIj8UkSmuYBMjBo32chCn5xEy7QZx5W9DwFtPFpd7C7cglzNH63plt7dQywLnTpBjbvo2Fdtv8SQZWVs8RY7vlUaZcpHyNOGDN5s7m48Hn1_v3vswuP9k8G578PH9zsbb4av1nw8eDZ9_HW4_G259Hzx9-OPT-s7Wt92XG7tfXpwhc-10rjnbcCVKGhnHvxRFxoIS1zQkKC0CT3s5z0umgsKHmbgOCphu8VIHvNAaJlZ5F288zMpCdwsVahWeJWO95V5xjkyxPAjz3CtLMBzLi0gFudJ-prs5VpzQaoJMVlbo3LQ30XS48AOsAOtPkMvOLh33-7TSOejn84egmSRHEbZrjBfIWP_2neIiZN19fcm9Hb8ASLmivg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B1%9E%E6%80%A7%E5%81%8F%E5%A5%BD%E5%AD%A6%E4%B9%A0%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E7%BB%BC%E5%90%88%E8%AF%84%E4%BB%B7%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%B0%88%E5%85%83%E9%B9%8F&rft.au=%E6%9D%8E%E4%B9%B0%E6%9E%97&rft.au=%E8%AE%B8%E5%88%9A&rft.date=2017&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C102206&rft.issn=1001-3695&rft.volume=34&rft.issue=3&rft.spage=785&rft.epage=790&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.03.034&rft.externalDocID=jsjyyyj201703034 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |