基于属性偏好学习的配电网综合评价方法

为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 3; pp. 785 - 790
Main Author 谈元鹏 李买林 许刚
Format Journal Article
LanguageChinese
Published 华北电力大学电气与电子工程学院,北京,102206 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.03.034

Cover

Abstract 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值。
AbstractList 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法。依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价。与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性。该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值。
TP181; 为了摆脱在传统地区配电网评价方法中对参评人员个人评价偏好的过度依赖,实现合理、精准的属性权重确定,提出了一种基于属性偏好学习的配电网多指标智能综合评价方法.依据属性测度理论,在置信度准则与评分准则下完成对配电网综合评价模型的构造;进而提出数值绝对偏移率指标以实现对中间值指标的数据预处理;最后,应用随机权神经学习方法,通过对配电网历史训练样本进行有监督学习,计算得到指标属性偏好权重,并依据配电网综合评价模型以及计算所得属性偏好权重完成对配电网待测样本的智能综合评价.与传统的AHP、PSO-SVM以及RWN算法的对比仿真实验验证了该方法的精确性与稳定性.该方法实现了合理、客观的配电网综合评价,对地区配电网评价具有一定的实际应用价值.
Abstract_FL To avoid the over reliance of personal preferences on traditional regional distribution network evaluation and achieve reasonable,accurate attribute weights,this paper proposed a multiple index attribute preference learning based intelligent comprehensive evaluating method for distribution network.The proposed method established the distribution network comprehensive evaluation model under confidence criterion and score criterion,according to the attribute measure theory.Then,it pre-processed the intermediate value indexes by introducing numerical absolute deviation rate.Finally,based on the historical training samples of distribution network,the proposed method calculated the preference weights of indexes by employing supervised random weighted neural network learning model.The paper performed intelligent evaluation of test samples by using the distribution network comprehensive evaluation model and well-trained attribute preference weights.Compared with traditional AHP,PSO-SVM and RWN algorithms,the experimental result analysis demonstrates that the proposed method is feasible,effective and robust,which can achieve a reasonable and objective comprehensive evaluation of target distribution network,and has certain application value on regional distribution network evaluation.
Author 谈元鹏 李买林 许刚
AuthorAffiliation 华北电力大学电气与电子工程学院,北京102206
AuthorAffiliation_xml – name: 华北电力大学电气与电子工程学院,北京,102206
Author_FL Xu Gang
Tan Yuanpeng
Li Mailin
Author_FL_xml – sequence: 1
  fullname: Tan Yuanpeng
– sequence: 2
  fullname: Li Mailin
– sequence: 3
  fullname: Xu Gang
Author_xml – sequence: 1
  fullname: 谈元鹏 李买林 许刚
BookMark eNo9j0tLw0AcxPdQwbb6JcSDl8T_7iab7lGKLyh46T1kk01N0I0miOSmUMGLL1APHtSLehIREWlrv00e-i2MVISBgeHHDNNANRUpidA8Bp1yxhdDPUgSpWMArFHGTZ0AtnSglYwaqv_n06iRJCGAQTCHOmL53TAbnuavt8XBU354lj-M8-fHbHBf3vS_j07Ky_dyfFGOPvPz46-Xfjb6KK4HxdvVDJryna1Ezv55E3VXlrvtNa2zsbreXupoLgNDo5ZrEJ8Bhla1bBEQ4DHPNziRmFmmINIEi_mCMCmESannYNMkri-FIzkVnDbRwqR231G-o3p2GO3Fqhq0wyRM0zT8PQm0ulihcxPU3YxUbzeo4J042Hbi1GYWJoy3OKY_4H9qHg
ClassificationCodes TP181
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.03.034
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Attribute preference learning based comprehensive evaluation method for distribution network
DocumentTitle_FL Attribute preference learning based comprehensive evaluation method for distribution network
EndPage 790
ExternalDocumentID jsjyyyj201703034
671269891
GrantInformation_xml – fundername: 国家“863”计划资助项目
  funderid: (2015AA050203)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c604-37c42f60108695720b0d6df492e1675b2e5076fb26ebb533da1552cfebae93b93
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:05:04 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords evaluation preference
multiple attribute decision making
distribution network evaluation
属性测度
neural networks
评价偏好
神经网络
多属性决策
attribute measure
配电网评价
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c604-37c42f60108695720b0d6df492e1675b2e5076fb26ebb533da1552cfebae93b93
Notes 51-1196/TP
Tan Yuanpeng, Li Mailin, Xu Gang (School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China)
To avoid the over reliance of personal preferences on traditional regional distribution network evaluation and achieve reasonable,accurate attribute weights,this paper proposed a multiple index attribute preference learning based intelligent comprehensive evaluating method for distribution network. The proposed method established the distribution network comprehensive evaluation model under confidence criterion and score criterion,according to the attribute measure theory. Then,it pre-processed the intermediate value indexes by introducing numerical absolute deviation rate. Finally,based on the historical training samples of distribution network,the proposed method calculated the preference weights of indexes by employing supervised random weighted neural network learning model. The paper performed intelligent evaluation of test samples by using the distributi
PageCount 6
ParticipantIDs wanfang_journals_jsjyyyj201703034
chongqing_primary_671269891
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 华北电力大学电气与电子工程学院,北京,102206
Publisher_xml – name: 华北电力大学电气与电子工程学院,北京,102206
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0607703
Snippet ...
TP181;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 785
SubjectTerms 多属性决策
属性测度
神经网络
评价偏好
配电网评价
Title 基于属性偏好学习的配电网综合评价方法
URI http://lib.cqvip.com/qk/93231X/201703/671269891.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201703034
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0MpDQjS8ESGAghSXF_bh9aPcvdtTREEVpHSn8z4SUlyAHEVCA1KQaHhJQEEBNECFEEIIJSF_k8vBXzBjO5slQijQrEbj8cx4Zvdm7LM9hEyrosg0z7xGNwo5TFC8bgOyVt1gZaalLEOWZ2a3xTU-e51dnY_mR0bv1k-X9PVMtvbHcyX_41XAgV_xlOw_eLZiCgiAwb_wBA_D81A-pmlEVZsmMU0ZPmWKmMSnCgCOmxhigRjpU9lGIIbWlgFaNOaml6KxR1NBFXRnNFVUAn3LYKA1QgC6KN8ACU2aRqhHpaSppHHb9GKmSaBQxZEnAElIbWHLvdzX0Kc0NqwAUJa-afSP8AkSrdxYGhrPYWJFk2oFEdkkVn5klA1Ra5Ap2_skwLdlzGFGCOSIQZF1LqBDYrlIGH59_cMe9DTvqmlvOdPKptG6sg1gQOvEWJQ5YzvTVjQcxStrJGn41LoDMdgSRy_QOThWoElqfBRV4KIAPoWaAsbbcROQOJX2eC204Oa1kDvLu9jjFnJv1JcmTCARtpCRy0mELal6MNyFiisT7lDATCUANywKc3WvY__7heJLK0urq6tLSAS_8CEbJeOBEH40RsbjpJW097NpGEL9dsUALy7an71i6QFeCxdYDxHiXxUuIj8UkSmuYBMjBo32chCn5xEy7QZx5W9DwFtPFpd7C7cglzNH63plt7dQywLnTpBjbvo2Fdtv8SQZWVs8RY7vlUaZcpHyNOGDN5s7m48Hn1_v3vswuP9k8G578PH9zsbb4av1nw8eDZ9_HW4_G259Hzx9-OPT-s7Wt92XG7tfXpwhc-10rjnbcCVKGhnHvxRFxoIS1zQkKC0CT3s5z0umgsKHmbgOCphu8VIHvNAaJlZ5F288zMpCdwsVahWeJWO95V5xjkyxPAjz3CtLMBzLi0gFudJ-prs5VpzQaoJMVlbo3LQ30XS48AOsAOtPkMvOLh33-7TSOejn84egmSRHEbZrjBfIWP_2neIiZN19fcm9Hb8ASLmivg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B1%9E%E6%80%A7%E5%81%8F%E5%A5%BD%E5%AD%A6%E4%B9%A0%E7%9A%84%E9%85%8D%E7%94%B5%E7%BD%91%E7%BB%BC%E5%90%88%E8%AF%84%E4%BB%B7%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E8%B0%88%E5%85%83%E9%B9%8F&rft.au=%E6%9D%8E%E4%B9%B0%E6%9E%97&rft.au=%E8%AE%B8%E5%88%9A&rft.date=2017&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C102206&rft.issn=1001-3695&rft.volume=34&rft.issue=3&rft.spage=785&rft.epage=790&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.03.034&rft.externalDocID=jsjyyyj201703034
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg