基于MapReduce的top-k高效用模式挖掘算法
高效用模式挖掘被广泛地应用于数据挖掘领域。为了挖掘指定数量的高效用模式,一些基于树结构和效用表结构的top-k高效用挖掘算法被提出,但前者在挖掘过程中产生了大量候选模式,后者在效用模式增长时需要进行多次比较;同时,由于在信息社会,数据量呈爆炸性增长,所以在数据集过大的情况下,挖掘高效用模式需以大量存储空间以及计算开销为代价。为了解决这两个问题,基于MapReduce的top—k高效用模式挖掘算法(TKHUP_MaR)被提出。该算法通过两次扫描数据库,利用三次MapReduce来实现并行top—k高效用模式的挖掘。通过实验表明TKHUP_MaR算法在并行挖掘top—k高效用模式的过程中是有效的。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 10; pp. 2897 - 2900 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
华中师范大学计算机学院,武汉,430079%华中师范大学科技处,武汉,430079
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.10.004 |
Cover
Abstract | 高效用模式挖掘被广泛地应用于数据挖掘领域。为了挖掘指定数量的高效用模式,一些基于树结构和效用表结构的top-k高效用挖掘算法被提出,但前者在挖掘过程中产生了大量候选模式,后者在效用模式增长时需要进行多次比较;同时,由于在信息社会,数据量呈爆炸性增长,所以在数据集过大的情况下,挖掘高效用模式需以大量存储空间以及计算开销为代价。为了解决这两个问题,基于MapReduce的top—k高效用模式挖掘算法(TKHUP_MaR)被提出。该算法通过两次扫描数据库,利用三次MapReduce来实现并行top—k高效用模式的挖掘。通过实验表明TKHUP_MaR算法在并行挖掘top—k高效用模式的过程中是有效的。 |
---|---|
AbstractList | 高效用模式挖掘被广泛地应用于数据挖掘领域。为了挖掘指定数量的高效用模式,一些基于树结构和效用表结构的top-k高效用挖掘算法被提出,但前者在挖掘过程中产生了大量候选模式,后者在效用模式增长时需要进行多次比较;同时,由于在信息社会,数据量呈爆炸性增长,所以在数据集过大的情况下,挖掘高效用模式需以大量存储空间以及计算开销为代价。为了解决这两个问题,基于MapReduce的top—k高效用模式挖掘算法(TKHUP_MaR)被提出。该算法通过两次扫描数据库,利用三次MapReduce来实现并行top—k高效用模式的挖掘。通过实验表明TKHUP_MaR算法在并行挖掘top—k高效用模式的过程中是有效的。 TP301.6; 高效用模式挖掘被广泛地应用于数据挖掘领域.为了挖掘指定数量的高效用模式,一些基于树结构和效用表结构的top-k高效用挖掘算法被提出,但前者在挖掘过程中产生了大量候选模式,后者在效用模式增长时需要进行多次比较;同时,由于在信息社会,数据量呈爆炸性增长,所以在数据集过大的情况下,挖掘高效用模式需以大量存储空间以及计算开销为代价.为了解决这两个问题,基于MapReduce的top-k高效用模式挖掘算法(TKHUP_MaR)被提出.该算法通过两次扫描数据库,利用三次MapReduce来实现并行top-k高效用模式的挖掘.通过实验表明TKHUP_MaR算法在并行挖掘top-k高效用模式的过程中是有效的. |
Abstract_FL | High utility pattern mining has been widely applied in the field of data mining.Some top-k high utility pattern mining algorithms based on tree-like and list-like structures were proposed.However,tree-like algorithms generated a large number of candidates,and comparing operation was costly during the process of utility pattern growth in list-like algorithms.In addition,the amount of information data increased exponentially in information society.Thus,it required memory usage and computational cost in mining process,especially the dataset size was huge.In order to address above issues,this paper proposed top-k high utility pattern mining algorithm based on MapReduce,called TKHUP_MaR.TKHUP_MaR needed to scan database twice and used three MapReduce phases to parallelize top-k high utility pattern mining.The experiment results show that TKHUP_MaR is effective in the process of mining top-k high utility patterns on parallel environment. |
Author | 吴倩 王林平 罗相洲 崔建群 王海 |
AuthorAffiliation | 华中师范大学计算机学院,武汉430079 华中师范大学科技处,武汉430079 |
AuthorAffiliation_xml | – name: 华中师范大学计算机学院,武汉,430079%华中师范大学科技处,武汉,430079 |
Author_FL | Wang Hai Wu Qian Cui Jianqun Wang Linping Luo Xiangzhou |
Author_FL_xml | – sequence: 1 fullname: Wu Qian – sequence: 2 fullname: Wang Linping – sequence: 3 fullname: Luo Xiangzhou – sequence: 4 fullname: Cui Jianqun – sequence: 5 fullname: Wang Hai |
Author_xml | – sequence: 1 fullname: 吴倩 王林平 罗相洲 崔建群 王海 |
BookMark | eNo9j79Lw0AcxW-oYFv9J8TBJfG-d5dLbpTiL6gI0j2cyV1N1EtMLJLdwaHUxWpxEbeC4OJW_HNsiv-FJxWnx3t8eI_XQg2TGYXQJmCXCi62UzcpS-MCxuBQLjyXYPCtdTFmDdT8z1dRqyxTGxIQuInI_GX2NRsdyfxExYNILZ5vr7PcOf9-m9Tju8XDtJ6-zj_v6-FjPZos3p_qj_EaWtHyolTrf9pGvb3dXufA6R7vH3Z2uk7EMXNABEB4ENPIV0pFp4QKn4HQmgviSSkAS0wCiKUG8CXTApTglAjgkVZMBrSNtpa1N9Joafphmg0KYwfDtEyrqkp_D9pbmFl0Y4lGZ5npXyUWzovkUhZVyH0KjFDw6A-lzGHg |
ClassificationCodes | TP301.6 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.10.004 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Top-k high utility pattern mining algorithm based on MapReduce |
DocumentTitle_FL | Top-k high utility pattern mining algorithm based on MapReduce |
EndPage | 2900 |
ExternalDocumentID | jsjyyyj201710004 673142315 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61370108) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c604-1981268d3c7eeecb2397419ff6925aa910a0281daf117a4f91e9632916cfe4a83 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 09:57:30 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | 高效用模式 top-k data mining parallel algorithm 并行算法 high utility pattern 数据挖掘 MapReduce |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c604-1981268d3c7eeecb2397419ff6925aa910a0281daf117a4f91e9632916cfe4a83 |
Notes | 51-1196/TP High utility pattern mining has been widely applied in the field of data mining. Some top-k high utility pattern mining algorithms based on tree-like and list-like structures were proposed. However, tree-like algorithms generated a large number of candidates, and comparing operation was costly during the process of utility pattern growth in list-like algorithms. In addition, the amount of information data increased exponentially in information society. Thus, it required memory usage and computational cost in mining process, especially the dataset size was huge. In order to address above issues, this paper proposed top-k high utility pattern mining algorithm based on MapReduee, called TKHUP_MaR. TKHUP_MaR needed to scan database twice and used three MapReduce phases to parallelize top-k high utility pattern mining. The experiment results show that TKHUP_MaR is effective in the process of mining top-k high utility patterns on parallel environment. data mining; top-k; high utility pattern; MapReduce; pa |
PageCount | 4 |
ParticipantIDs | wanfang_journals_jsjyyyj201710004 chongqing_primary_673142315 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 华中师范大学计算机学院,武汉,430079%华中师范大学科技处,武汉,430079 |
Publisher_xml | – name: 华中师范大学计算机学院,武汉,430079%华中师范大学科技处,武汉,430079 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.0608506 |
Snippet | ... TP301.6;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2897 |
SubjectTerms | MapReduce top-k 并行算法 数据挖掘 高效用模式 |
Title | 基于MapReduce的top-k高效用模式挖掘算法 |
URI | http://lib.cqvip.com/qk/93231X/201710/673142315.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201710004 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLeqTkJc-I8YA1QkfJpaGsdO7GPcpZqQ4ICKtFvlZMmmIrWFdYfuzIEDGhcGExfEbRISF24TJz4La8W34D3HS4NAE3CxrGfn-TnP8fvZeX4m5J5nACPn-H1LIZo8ZVkTL35rcpYD4BWJHxZevo-C9Sf8wYbYqNW-VbyWdidJK93747mS_9Eq0ECveEr2HzRbMgUC5EG_kIKGIf0rHdNYUNWlOqIxx1TGD834MQZjzWgcUgUUPhmNm09prGikqZI0DqgSVEpbzmlkKZBGHjLTHSq7SJEdqgKbie1TIY0gEyJF-7S4sPIU09JYYilyqFRTHSuXwBQaWjQHddqOEimqy51B25k21Rwzsg2Fq1gHBJDaMiw4A0N4yrdles2SgLWm2vYEntZs1dbithHIaCsI1AYZ-a88NRSH1Y2P4oSnm6XRD8wPXGfdNO72RN1wbVcnZVm4ADsDz5SNjfqb8fBVoKzxwDZaZRvo_he2rAcgXxjN0pUxCH0PICnGOVhiYeiJOlmK9JruLkApYLhqkEKG8X8Wi0CM4B9UZl28VhDMSDnrCs8Phb2joMAXHAqLGBtOwHPwxRXS3z9Ldgwesj0abj0DSGRPqA1zM9yqgKneJXLBrYIaUTGkL5Pa3vYVcvH0hpGGMzhXCTv5cPz9eL8c1fP3L-x4_vHpcHbwcv7maHb08eTr69mrt7P9w_nnd7MvB9dIrxv3OutNd8tHMw0wZqYCiBnITT8NsyxLEwYAmXsqzwPFhDGAZg1AYG_T5J4XGp4rLwObwWBVk-YZN9K_TurD0TC7QRqCSRMEhrUlep9meWJ8P8HD03kqpOHeMlkp30B_XARz6Zf6WyZ33Tvpu098pz_YGUyn0wG-RfwPxm-eyWGFnMeaxQbdLVKfPN_NbgNknSR33Jj4CR9jbZk |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMapReduce%E7%9A%84top-k%E9%AB%98%E6%95%88%E7%94%A8%E6%A8%A1%E5%BC%8F%E6%8C%96%E6%8E%98%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%90%B4%E5%80%A9+%E7%8E%8B%E6%9E%97%E5%B9%B3+%E7%BD%97%E7%9B%B8%E6%B4%B2+%E5%B4%94%E5%BB%BA%E7%BE%A4+%E7%8E%8B%E6%B5%B7&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=10&rft.spage=2897&rft.epage=2900&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.10.004&rft.externalDocID=673142315 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |