Emotion recognition while applying cosmetic cream using deep learning from EEG data; cross-subject analysis

We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given b...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 11; p. e0274203
Main Authors Kim, Jieun, Hwang, Dong-Uk, Son, Edwin J., Oh, Sang Hoon, Kim, Whansun, Kim, Youngkyung, Kwon, Gusang
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 10.11.2022
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0274203

Cover

Loading…
Abstract We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.
AbstractList We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.
We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, "like (positive)" and "dislike (negative)", according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, "like (positive)" and "dislike (negative)", according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.
Audience Academic
Author Hwang, Dong-Uk
Son, Edwin J.
Kwon, Gusang
Kim, Youngkyung
Kim, Jieun
Kim, Whansun
Oh, Sang Hoon
AuthorAffiliation 2 AIRISS AI Team, Yuseong-gu, Deajeon, South Korea
Universiti Malaysia Pahang, MALAYSIA
1 Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences, Daejeon, South Korea
3 AMOREPACIFIC R&D Center, Yongin-si, Gyeonggi-do, South Korea
AuthorAffiliation_xml – name: 2 AIRISS AI Team, Yuseong-gu, Deajeon, South Korea
– name: 3 AMOREPACIFIC R&D Center, Yongin-si, Gyeonggi-do, South Korea
– name: Universiti Malaysia Pahang, MALAYSIA
– name: 1 Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences, Daejeon, South Korea
Author_xml – sequence: 1
  givenname: Jieun
  orcidid: 0000-0002-6920-3506
  surname: Kim
  fullname: Kim, Jieun
– sequence: 2
  givenname: Dong-Uk
  surname: Hwang
  fullname: Hwang, Dong-Uk
– sequence: 3
  givenname: Edwin J.
  surname: Son
  fullname: Son, Edwin J.
– sequence: 4
  givenname: Sang Hoon
  surname: Oh
  fullname: Oh, Sang Hoon
– sequence: 5
  givenname: Whansun
  surname: Kim
  fullname: Kim, Whansun
– sequence: 6
  givenname: Youngkyung
  surname: Kim
  fullname: Kim, Youngkyung
– sequence: 7
  givenname: Gusang
  surname: Kwon
  fullname: Kwon, Gusang
BookMark eNqNkm1r1TAUx4tM3IN-A8GCIPqi16Rp-qAgjHGdg8HAp7fhND29N9c0qU2q3m9vulVZxxDJi5wkv_85ycn_ODow1mAUPaVkRVlBX-_sOBjQqz5sr0haZClhD6IjWrE0yUN8cCs-jI6d2xHCWZnnj6JDljPOK1ocRd_WnfXKmnhAaTdGXcc_t0pjDH2v98psYmldh17JWA4IXTy6abNB7GONMJhp1Q62i9fr87gBD28DaJ1L3FjvUPoYwjX3TrnH0cMWtMMn83wSfXm__nz2Ibm8Or84O71MZE6YT1rMgGNNa9oiL2sCDVY5L6qGsqxoZVmGFxUZ0JSktAVEXldZ3TQl5y1HSCk7iZ7d5O21dWLukxNpwTglWVmwQLybibHusJFo_ABa9IPqYNgLC0osT4zaio39Iao8K0s2lXg5Jxjs9xGdF51yErUGg3acaxUpydOAPr-D3n-jmdqARqFMa0NdOSUVp0Wak5JSMlGre6gwGuyUDEZow8ctBa8WgsB4_OU3MDonLj59_H_26uuSfXGL3SJov3VWj5N93BLMbsBrSwzY_m0yJWLy8Z9uiMnHYvZxkL25I5PKw5Q9PFjpf4t_A0VL-u4
CitedBy_id crossref_primary_10_1111_srt_13692
crossref_primary_10_1007_s00238_025_02278_6
crossref_primary_10_1109_ACCESS_2023_3295001
crossref_primary_10_3389_fnins_2024_1509358
crossref_primary_10_3389_fnhum_2024_1443001
crossref_primary_10_1021_acsami_4c03675
crossref_primary_10_3390_cosmetics11040135
crossref_primary_10_1111_ics_12975
Cites_doi 10.3389/fpsyg.2021.653011
10.1007/978-3-319-68600-4_25
10.3390/scipharm84040724
10.1007/978-3-319-70093-9_86
10.1007/s40708-016-0031-9
10.1109/MCI.2021.3061875
10.1371/journal.pone.0130140
10.1016/j.bspc.2017.11.010
10.1109/TAFFC.2017.2712143
10.3390/s20144037
10.1109/SPAC.2017.8304360
10.1109/TAMD.2015.2431497
10.1088/1741-2552/abed81
10.1111/srt.12288
10.1109/TBME.2017.2693157
10.1109/BIBM.2016.7822545
10.1109/IJCNN.2018.8489715
10.1089/acm.2011.0931
10.1609/aaai.v31i2.19105
10.1109/T-AFFC.2011.15
10.1037/0033-295X.110.1.145
10.1080/00224545.1989.9712051
10.3389/fnhum.2014.00893
10.1016/j.asoc.2020.106954
10.1007/BF02686918
10.3389/fnhum.2020.00089
10.1109/ICCV.2017.74
10.1088/1741-2552/ab9842
10.1109/TAFFC.2014.2339834
10.3390/s21155092
10.3390/app11114766
10.1016/j.matcom.2020.04.031
10.3390/s20072034
10.1109/5.726791
10.1111/ics.12223
10.5850/JKSCT.2020.44.4.727
10.1002/jnr.24281
10.1109/IJCNN.2015.7280725
10.1016/j.neuropsychologia.2020.107506
10.1145/3297156.3297177
10.1111/psyp.13199
10.1007/978-3-319-98998-3_10
10.1109/TAFFC.2018.2840973
10.1109/TCDS.2018.2826840
10.1109/TCYB.2018.2797176
10.3390/s19092212
10.3390/s20236719
10.1111/j.1467-2494.1980.tb00237.x
10.1109/BIBM.2017.8217815
10.1109/ICASET.2019.8714373
10.1016/j.neuropsychologia.2014.01.002
10.1111/1467-8721.00003
10.1038/nature14539
10.1109/NER.2015.7146583
10.1109/EMBC.2015.7320065
10.1109/CVPR.2017.195
10.1109/ACCESS.2018.2827023
10.1016/j.homp.2011.06.005
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright: © 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2022 Kim et al 2022 Kim et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright: © 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2022 Kim et al 2022 Kim et al
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOI 10.1371/journal.pone.0274203
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale Science in Context
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
CrossRef

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Emotion recognition while applying cosmetic cream using deep learning from EEG data
EISSN 1932-6203
ExternalDocumentID 2735104873
PMC9648831
A726081103
10_1371_journal_pone_0274203
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: ;
  grantid: NIMS-B22720000
– fundername: ;
– fundername: ;
  grantid: NIMS-B21910000
– fundername: ;
  grantid: HP20C0083
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c603t-fe4a5eb1b1fe58b0ade96579d1347fc8862074a12021faee5b94bdd855f5ea213
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun May 07 16:28:24 EDT 2023
Thu Aug 21 18:39:36 EDT 2025
Fri Jul 11 14:53:41 EDT 2025
Fri Jul 25 10:29:26 EDT 2025
Tue Jun 17 20:57:42 EDT 2025
Tue Jun 10 20:39:25 EDT 2025
Fri Jun 27 04:57:19 EDT 2025
Fri Jun 27 03:38:29 EDT 2025
Thu May 22 21:24:33 EDT 2025
Tue Jul 01 03:23:40 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-fe4a5eb1b1fe58b0ade96579d1347fc8862074a12021faee5b94bdd855f5ea213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6920-3506
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0274203
PMID 36355917
PQID 2735104873
PQPubID 1436336
PageCount e0274203
ParticipantIDs plos_journals_2735104873
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648831
proquest_miscellaneous_2735172062
proquest_journals_2735104873
gale_infotracmisc_A726081103
gale_infotracacademiconefile_A726081103
gale_incontextgauss_ISR_A726081103
gale_incontextgauss_IOV_A726081103
gale_healthsolutions_A726081103
crossref_primary_10_1371_journal_pone_0274203
crossref_citationtrail_10_1371_journal_pone_0274203
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2022
Publisher Public Library of Science
Publisher_xml – name: Public Library of Science
References D. Hoefer (pone.0274203.ref031) 2016; 22
W. L. Zheng (pone.0274203.ref049) 2015; 7
K. Sowndhararajan (pone.0274203.ref028) 2016; 84
P.J. Lang (pone.0274203.ref022) 1997
W. L. Zheng (pone.0274203.ref075) 2018; 49
I. R. Bell (pone.0274203.ref027) 2011; 100
Z. Yin (pone.0274203.ref043) 2017; 11
H. Chao (pone.0274203.ref046) 2019; 19
pone.0274203.ref047
C. A. Andersen (pone.0274203.ref026) 2019; 97
pone.0274203.ref044
pone.0274203.ref002
L. Piho (pone.0274203.ref040) 2018; 11
pone.0274203.ref042
M. Seo (pone.0274203.ref029) 2016
Y. LeCun (pone.0274203.ref065) 1998; 86
X. Zhang (pone.0274203.ref012) 2019; 66
R.B. Iris (pone.0274203.ref025) 2012; 18
J. A. Graham (pone.0274203.ref001) 1980; 2
D. Gabriel (pone.0274203.ref038) 2021; 11
W. Ko (pone.0274203.ref011) 2021; 16
H. Singh (pone.0274203.ref030) 2014; 8
pone.0274203.ref036
pone.0274203.ref033
pone.0274203.ref077
P. Zhong (pone.0274203.ref008) 2020
A. Mehrabian (pone.0274203.ref020) 1996; 14
H. Sung (pone.0274203.ref064) 2021
pone.0274203.ref073
W. L. Zheng (pone.0274203.ref074) 2015; 7
P. Pandey (pone.0274203.ref054) 2019
R. Korichi (pone.0274203.ref006) 2008; 59
pone.0274203.ref071
G. Valenza (pone.0274203.ref032) 2018; 55
R. Jenke (pone.0274203.ref039) 2014; 5
W. Lu (pone.0274203.ref060) 2018; 41
M. V. Valueva (pone.0274203.ref063) 2020; 177
W. Park (pone.0274203.ref034) 2018; 6
A. Raheel (pone.0274203.ref035) 2020; 20
Y. Cimtay (pone.0274203.ref051) 2020; 20
K. Fares (pone.0274203.ref003) 2019; 70
A. Anuse (pone.0274203.ref062) 2016
S. G. Aydin (pone.0274203.ref072) 2016; 3
pone.0274203.ref024
M. Balconi (pone.0274203.ref037) 2021; 12
C. Zhang (pone.0274203.ref066) 2021; 18
Z. Lan (pone.0274203.ref068) 2018; 11
J. Fan (pone.0274203.ref069) 2017; 65
M. H. Hassoun (pone.0274203.ref061) 1995
S. Bach (pone.0274203.ref078) 2015; 10
H. Chao (pone.0274203.ref056) 2019; 19
X. W. Ding (pone.0274203.ref059) 2021
F.M.M. Citron (pone.0274203.ref016) 2014; 56
W. L. Zheng (pone.0274203.ref067) 2017; 10
S. Tortora (pone.0274203.ref014) 2020; 17
S. Koelstra (pone.0274203.ref018) 2011; 3
Y. LeCun (pone.0274203.ref045) 2015; 521
J.A. Russell (pone.0274203.ref019) 2003; 110
Y. Yin (pone.0274203.ref009) 2021; 100
P. Bashivan (pone.0274203.ref010) 2015
pone.0274203.ref015
pone.0274203.ref058
pone.0274203.ref017
S. Koelstra (pone.0274203.ref041) 2011; 3
A. M. Pensé‐Lhéritier (pone.0274203.ref007) 2015; 37
L. Jin (pone.0274203.ref048) 2020; 20
pone.0274203.ref055
H. Yu (pone.0274203.ref005) 2020; 44
pone.0274203.ref013
T. F. Cash (pone.0274203.ref004) 1989; 129
pone.0274203.ref050
L.F. Barrett (pone.0274203.ref021) 1999; 8
N. S. Suhaimi (pone.0274203.ref023) 2020
pone.0274203.ref053
pone.0274203.ref052
F. Wang (pone.0274203.ref076) 2020; 146
T. D. T. Phan (pone.0274203.ref057) 2021; 21
K. Yang (pone.0274203.ref070) 2020; 14
References_xml – volume: 12
  start-page: 673
  year: 2021
  ident: pone.0274203.ref037
  article-title: Touching to Feel: Brain Activity During In-Store Consumer Experience
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2021.653011
– ident: pone.0274203.ref044
  doi: 10.1007/978-3-319-68600-4_25
– volume: 84
  start-page: 724
  issue: 4
  year: 2016
  ident: pone.0274203.ref028
  article-title: Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response
  publication-title: Scientia pharmaceutica
  doi: 10.3390/scipharm84040724
– ident: pone.0274203.ref053
  doi: 10.1007/978-3-319-70093-9_86
– volume: 3
  start-page: 109
  issue: 2
  year: 2016
  ident: pone.0274203.ref072
  article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW
  publication-title: Brain informatics
  doi: 10.1007/s40708-016-0031-9
– volume: 11
  start-page: 19
  year: 2017
  ident: pone.0274203.ref043
  article-title: Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination
  publication-title: Frontiers in neurorobotics
– volume: 70
  start-page: 47
  issue: 1
  year: 2019
  ident: pone.0274203.ref003
  article-title: Relationship Between Cosmetics Use, Self-Esteem, and Self-Perceived Attractiveness Among Lebanese Women
  publication-title: Journal of cosmetic science
– volume: 16
  start-page: 31
  issue: 2
  year: 2021
  ident: pone.0274203.ref011
  article-title: Multi-scale neural network for EEG representation learning in BCI
  publication-title: IEEE Computational Intelligence Magazine
  doi: 10.1109/MCI.2021.3061875
– year: 2015
  ident: pone.0274203.ref010
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv preprint arXiv:1511.06448
– volume: 10
  start-page: e0130140
  issue: 7
  year: 2015
  ident: pone.0274203.ref078
  article-title: On pixel-wise e76xplanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PloS one
  doi: 10.1371/journal.pone.0130140
– volume: 41
  start-page: 152
  year: 2018
  ident: pone.0274203.ref060
  article-title: Feature fusion for imbalanced ECG data analysis
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.11.010
– volume: 10
  start-page: 417
  issue: 3
  year: 2017
  ident: pone.0274203.ref067
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2017.2712143
– ident: pone.0274203.ref002
– volume: 20
  start-page: 4037
  issue: 14
  year: 2020
  ident: pone.0274203.ref035
  article-title: Physiological sensors based emotion recognition while experiencing tactile enhanced multimedia
  publication-title: Sensors
  doi: 10.3390/s20144037
– ident: pone.0274203.ref052
  doi: 10.1109/SPAC.2017.8304360
– volume-title: Fundamentals of artificial neural networks
  year: 1995
  ident: pone.0274203.ref061
– year: 2021
  ident: pone.0274203.ref059
  article-title: Electroencephalogram Emotion Recognition Based on Dispersion Entropy Feature Extraction Using Random Over-Sampling Imbalanced Data Processing
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 97
  volume-title: Attention and Orienting: Sensory and Motivational Processes; Mahwah, N.J., Ed
  year: 1997
  ident: pone.0274203.ref022
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: pone.0274203.ref049
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2015.2431497
– year: 2016
  ident: pone.0274203.ref062
  publication-title: A novel training algorithm for convolutional neural network
– volume: 18
  start-page: 046014
  issue: 4
  year: 2021
  ident: pone.0274203.ref066
  article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abed81
– volume: 59
  start-page: 127
  year: 2008
  ident: pone.0274203.ref006
  article-title: Why women use makeup: Implication of psychological
  publication-title: Journal of cosmetic science
– volume: 22
  start-page: 470
  issue: 4
  year: 2016
  ident: pone.0274203.ref031
  article-title: Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event‐related potentials
  publication-title: Skin Research and Technology
  doi: 10.1111/srt.12288
– volume: 65
  start-page: 43
  issue: 1
  year: 2017
  ident: pone.0274203.ref069
  article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2693157
– ident: pone.0274203.ref055
  doi: 10.1109/BIBM.2016.7822545
– ident: pone.0274203.ref050
  doi: 10.1109/IJCNN.2018.8489715
– volume: 18
  start-page: 445
  year: 2012
  ident: pone.0274203.ref025
  article-title: Multiweek resting EEG cordance change patterns from repeated olfactory activation with two constitutionally salient homeopathic remedies in healthy young adults
  publication-title: J Altern Complement Med.
  doi: 10.1089/acm.2011.0931
– ident: pone.0274203.ref047
  doi: 10.1609/aaai.v31i2.19105
– year: 2020
  ident: pone.0274203.ref008
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Transactions on Affective Computing
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: pone.0274203.ref018
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE transactions on affective computing
  doi: 10.1109/T-AFFC.2011.15
– volume: 110
  start-page: 145
  year: 2003
  ident: pone.0274203.ref019
  article-title: Core affect and the psychological construction of emotion
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.110.1.145
– volume: 129
  start-page: 349
  issue: 3
  year: 1989
  ident: pone.0274203.ref004
  article-title: Effects of cosmetics use on the physical attractiveness and body image of American college women
  publication-title: The Journal of Social Psychology
  doi: 10.1080/00224545.1989.9712051
– volume: 8
  start-page: 893
  year: 2014
  ident: pone.0274203.ref030
  article-title: The brain’s response to pleasant touch: An EEG investigation of tactile caressing
  publication-title: Frontiers in human neuroscience
  doi: 10.3389/fnhum.2014.00893
– volume: 100
  start-page: 106954
  year: 2021
  ident: pone.0274203.ref009
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106954
– volume: 14
  start-page: 261
  issue: 4
  year: 1996
  ident: pone.0274203.ref020
  article-title: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament[J]
  publication-title: Current Psychology
  doi: 10.1007/BF02686918
– volume: 14
  start-page: 89
  year: 2020
  ident: pone.0274203.ref070
  article-title: High gamma band EEG closely related to emotion: evidence from functional network
  publication-title: Frontiers in human neuroscience
  doi: 10.3389/fnhum.2020.00089
– ident: pone.0274203.ref077
  doi: 10.1109/ICCV.2017.74
– volume: 17
  start-page: 046011
  issue: 4
  year: 2020
  ident: pone.0274203.ref014
  article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2552/ab9842
– volume: 5
  start-page: 327
  issue: 3
  year: 2014
  ident: pone.0274203.ref039
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective computing
  doi: 10.1109/TAFFC.2014.2339834
– volume: 21
  start-page: 5092
  issue: 15
  year: 2021
  ident: pone.0274203.ref057
  article-title: EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
  publication-title: Sensors
  doi: 10.3390/s21155092
– volume: 11
  start-page: 4766
  issue: 11
  year: 2021
  ident: pone.0274203.ref038
  article-title: Emotional Effects Induced by the Application of a Cosmetic Product: A Real-Time Electrophysiological Evaluation
  publication-title: Applied Sciences
  doi: 10.3390/app11114766
– volume: 177
  start-page: 232
  year: 2020
  ident: pone.0274203.ref063
  article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
  publication-title: Mathematics and Computers in Simulation
  doi: 10.1016/j.matcom.2020.04.031
– year: 2020
  ident: pone.0274203.ref023
  article-title: EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities
  publication-title: Computational intelligence and neuroscience
– volume: 20
  start-page: 2034
  issue: 7
  year: 2020
  ident: pone.0274203.ref051
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– volume: 3
  start-page: 18
  issue: 1
  year: 2011
  ident: pone.0274203.ref041
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE transactions on affective computing
  doi: 10.1109/T-AFFC.2011.15
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: pone.0274203.ref065
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: pone.0274203.ref074
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Transactions on Autonomous Mental Development
  doi: 10.1109/TAMD.2015.2431497
– volume: 37
  start-page: 465
  issue: 5
  year: 2015
  ident: pone.0274203.ref007
  article-title: Recent developments in the sensorial assessment of cosmetic products: A review
  publication-title: International journal of cosmetic science
  doi: 10.1111/ics.12223
– volume: 44
  start-page: 727
  issue: 4
  year: 2020
  ident: pone.0274203.ref005
  article-title: Effects of the virtual makeup using beauty makeup applications on mood, body satisfaction, and self-esteem among female university students
  publication-title: Journal of the Korean Society of Clothing and Textiles
  doi: 10.5850/JKSCT.2020.44.4.727
– volume: 97
  start-page: 241
  issue: 3
  year: 2019
  ident: pone.0274203.ref026
  article-title: EEG discrimination of perceptually similar tastes
  publication-title: Journal of neuroscience research
  doi: 10.1002/jnr.24281
– ident: pone.0274203.ref033
  doi: 10.1109/IJCNN.2015.7280725
– volume: 146
  start-page: 107506
  year: 2020
  ident: pone.0274203.ref076
  article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2020.107506
– volume: 66
  year: 2019
  ident: pone.0274203.ref012
  article-title: A survey on deep learning based brain computer interface: Recent advances and new frontiers
  publication-title: arXiv preprint arXiv:1905.04149
– ident: pone.0274203.ref017
  doi: 10.1145/3297156.3297177
– start-page: 1
  year: 2021
  ident: pone.0274203.ref064
  article-title: Efficient Model Updating Method for System Identification Using a Convolutional Neural Network
  publication-title: AIAA Journal
– ident: pone.0274203.ref036
– volume: 55
  start-page: e13199
  issue: 10
  year: 2018
  ident: pone.0274203.ref032
  article-title: EEG oscillations during caress‐like affective haptic elicitation
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13199
– ident: pone.0274203.ref024
  doi: 10.1007/978-3-319-98998-3_10
– volume: 11
  start-page: 722
  issue: 4
  year: 2018
  ident: pone.0274203.ref040
  article-title: A mutual information based adaptive windowing of informative EEG for emotion recognition
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2018.2840973
– volume: 11
  start-page: 85
  issue: 1
  year: 2018
  ident: pone.0274203.ref068
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2826840
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: pone.0274203.ref075
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2018.2797176
– volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  ident: pone.0274203.ref056
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
  doi: 10.3390/s19092212
– volume: 19
  start-page: 2212
  issue: 9
  year: 2019
  ident: pone.0274203.ref046
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
  doi: 10.3390/s19092212
– volume: 20
  start-page: 6719
  issue: 23
  year: 2020
  ident: pone.0274203.ref048
  article-title: Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features
  publication-title: Sensors
  doi: 10.3390/s20236719
– volume: 2
  start-page: 77
  issue: 2
  year: 1980
  ident: pone.0274203.ref001
  article-title: Cosmetics considered in the context of physical attractiveness: a review
  publication-title: International journal of cosmetic science
  doi: 10.1111/j.1467-2494.1980.tb00237.x
– ident: pone.0274203.ref015
  doi: 10.1109/BIBM.2017.8217815
– ident: pone.0274203.ref013
  doi: 10.1109/ICASET.2019.8714373
– volume: 56
  start-page: 79
  year: 2014
  ident: pone.0274203.ref016
  article-title: Emotional valence and arousal affect reading in an in-teractive way: Neuroimaging evidence for an approach-withdrawal framework
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2014.01.002
– volume: 8
  start-page: 10
  year: 1999
  ident: pone.0274203.ref021
  article-title: The Structure of Current Affect: Controversies and Emerging Consensus
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/1467-8721.00003
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: pone.0274203.ref045
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– ident: pone.0274203.ref073
  doi: 10.1109/NER.2015.7146583
– ident: pone.0274203.ref042
  doi: 10.1109/EMBC.2015.7320065
– ident: pone.0274203.ref071
– ident: pone.0274203.ref058
  doi: 10.1109/CVPR.2017.195
– year: 2016
  ident: pone.0274203.ref029
  article-title: Influence of binasal and uninasal inhalations of essential oil of Abies koreana twigs on electroencephalographic activity of human
  publication-title: Behavioural neurology
– volume: 6
  start-page: 22324
  year: 2018
  ident: pone.0274203.ref034
  article-title: Gamma EEG correlates of haptic preferences for a dial interface
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2827023
– year: 2019
  ident: pone.0274203.ref054
  article-title: Subject independent emotion recognition from EEG using VMD and deep learning
  publication-title: Journal of King Saud University-Computer and Information Sciences
– volume: 100
  start-page: 203
  issue: 04
  year: 2011
  ident: pone.0274203.ref027
  article-title: Short-term effects of repeated olfactory administration of homeopathic sulphur or pulsatilla on electroencephalographic alpha power in healthy young adults
  publication-title: Homeopathy
  doi: 10.1016/j.homp.2011.06.005
SSID ssj0053866
Score 2.478336
Snippet We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were...
SourceID plos
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0274203
SubjectTerms Accuracy
Analysis
Biology and Life Sciences
Brain research
Classification
Computer and Information Sciences
Consumer behavior
Cosmetics
Deep learning
Electroencephalography
Emotion recognition
Emotional intelligence
Emotions
Feature extraction
Frequencies
Frequency dependence
Influence
Machine learning
Medicine and Health Sciences
Methods
Multimedia
Musical performances
Research and Analysis Methods
Social Sciences
Spatial data
Wavelet transforms
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlIe6pYBBSMDB7SaOnUQcUFVtKUiABBT1FvmVLaJN0mZX_H1mkkkgEgJuK3mSrD0Pz9jfzDD2LHXKmKxUQvoAAUoSJyIPMhIOvXUvIQ7ymCj8_oM-PknenapTOnBrCVY52MTOUPva4Rn5PmyzID7gXsvXzaXArlF4u0otNK6zGxHYYKydnx2OEA_QZa0pXU6m0T5xZ6-pq7DX3VEOrbJoOyKjPGvO63bicU7xkr9tQEe32S3yHPlBz-otdi1Ud9gW6WbLX1AB6Zd32fdl35uHj-gg-P3jDPSf4301JjZxV7cXmL_I0Wu84Ah_X3EfQsOpj8SKY-YJXy7fcESRvuLdBES7sXhyww0VM7nHTo6WXw6PBTVVEE4v5FqUITEKDLSNyqAyuzA-5Fqlucec0tJlEOGAV2GiGDb_0oSgbJ5Y7zOlShVMHMn7bFbBAm4zrnMTB22kVk4lwRhrjQwI-kh9sFpncyaHtS0cVRzHxhfnRXeNlkLk0S9dgRwpiCNzJsanmr7ixj_oHyPbij5vdFTY4iCFUC0D7wYonnYUWO6iQjzNymzatnj78et_EH3-NCF6TkRlDTNxhnIY4O9gGa0J5e6EEpTWTYa3UciGCbXFL_GGJwfB-_Pwk3EYX4oYuSrUG6JJ44WO5yydCOy4jlhLfDpSfTvraornGiy5jHb-_vEH7GaM6R8dDHKXzdZXm_AQnLK1fdRp3k9oADoV
  priority: 102
  providerName: ProQuest
Title Emotion recognition while applying cosmetic cream using deep learning from EEG data; cross-subject analysis
URI https://www.proquest.com/docview/2735104873
https://www.proquest.com/docview/2735172062
https://pubmed.ncbi.nlm.nih.gov/PMC9648831
http://dx.doi.org/10.1371/journal.pone.0274203
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnxoHVsxCAl4SNXEsZ0IITSmdANpAw2K-hY5ttMhuqRbWgH_PXeJExFpE7xEkfxzFJ995zv7Pgh5ITVXKsq5x4wFAyUMQi-2zPc0auuGgR1kMFD49EyczMKPcz7fIm3NVkfA6kbTDutJza6X419Xv98Bw7-tqzZIv-00XpWFHdd3j5j-cxv2JonFHE7D7l4BuFsIF0B3W8_eBuXE9GC1LKueDtr3oPxrS5reJ_ecLkkPm8nfIVu2eEB2HLdW9JVLKf36IfmRNNV6aOcvBO8_L0AiULzBxlAnqsvqEiMaKeqRlxQd4hfUWLuirrLEgmIsCk2SY4p-pW9oPQCv2mR4lkOVS2_yiMymydejE8-VWfC0mLC1l9tQcRDZmZ9bHmUTZWwsuIwNRpnmOgKbB_QM5QegDuTKWp7FYWZMxHnOrQp89pgMCiDgLqEiVoEVigmueWiVyjLFLLqBSGMzIaIhYS1tU-1ykGMpjGVaX6xJsEUa0qU4I6mbkSHxul6rJgfHP_BPcdrSJpK0Y-H0UILxFoG-A4jnNQITYBToYbNQm6pKP3z69h-gL-c90EsHyksYiVYuqgF-BxNr9ZD7PSSwse417-IiawdUpaBXgrwEexJ7tgvv5uZnXTN-FL3mCltuHEYGExEMiewt2I6OmF2831J8v6izjMcCZDvz927_ryfkboDBILVT5D4ZrK839gBUtHU2InfkXMIzOvLxOT0eke33ydnn81F96DGqufIPa2pDgQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoBLRXmoSws1CAQc0m7i2EmEEKrKll36QIK26s04trNFtEkgu6r4U_xGZhInEAkBl94iefLweDyPeL4ZQp5EmisVZ9xjxkKAEgahl1jmexq9dcMgDjIIFD44FJPj8N0pP10iP1osDKZVtjqxVtSm0PiPfAvMLIgPuNfsdfnVw65ReLrattBoxGLPfr-EkK16NX0D6_s0CHbHRzsTz3UV8LQYsbmX2VBx0FCpn1kepyNlbCJ4lBgEVWY6BhcfzKryA7B-mbKWp0mYGhNznnGrAp_Bc6-R6yFjEdbqj3e6lBLQHUI4eB6L_C0nDZtlkdvN-ky0bc3lzJ8zAoPyvKh6Hm4_P_M3g7d7iyw7T5VuN6K1QpZsfpusOF1Q0eeuYPWLO-TLuOkFRLtsJLi-PAN9Q_F8HIFUVBfVBeIlKXqpFxTT7WfUWFtS17diRhHpQsfjtxSzVl_SegJetUjxTxFVrnjKXXJ8Jey-RwY5MHCVUJGowArFBNc8tEqlqWIWk0wiY1Mh4iFhLW-ldhXOsdHGuayP7SKIdBrWSVwR6VZkSLzurrKp8PEP-g1cNtngVDsFIbcjCA1j8KaA4nFNgeU1cszfmalFVcnp-5P_IPr4oUf0zBFlBcxEK4eZgM_Bsl09yvUeJSgJ3RteRSFrJ1TJX9sJ7mwF78_Dj7phfCjm5OW2WDiaKBiJYEiinsB2fMTa5f2R_PNZXcM8EWA5mH__7y_fIDcmRwf7cn96uLdGbgYIPalTMNfJYP5tYR-AQzhPH9a7kJJPV73tfwLQlHff
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJQFwo1CAQc0t3EsZ0IIVTRXboUCoIW7S04trNFtEkgu6r4a_w6ZhInEAkBl94iefLweDyPeL4ZQh5IzZWKMu4xYyFACYPQiy3zPY3eumEQBxkECr85EHtH4as5n6-RHy0WBtMqW51YK2pTaPxHPgIzC-ID7jUbZS4t4t3u9Hn51cMOUnjS2rbTaERk334_g_CtejbbhbV-GATTyeGLPc91GPC0GLOll9lQcdBWqZ9ZHqVjZWwsuIwNAiwzHYG7DyZW-QFYwkxZy9M4TI2JOM-4VYHP4LkXyEX8NOyeIOddsAd6RAgH1WPSHznJ2C6L3G7X56Ntmy5nCp1BGJQnRdXzdvu5mr8Zv-lVcsV5rXSnEbN1smbza2Td6YWKPnbFq59cJ18mTV8g2mUmwfXZMegeimflCKqiuqhOETtJ0WM9pZh6v6DG2pK6HhYLiqgXOpm8pJjB-pTWE_CqVYp_jahyhVRukKNzYfdNMsiBgRuEilgFVigmuOahVSpNFbOYcCKNTYWIhoS1vE20q3aOTTdOkvoIT0LU07AuwRVJ3IoMidfdVTbVPv5Bv4XLljSY1U5ZJDsSwsQIPCuguF9TYKmNHIV2oVZVlczefvwPog_ve0SPHFFWwEy0cvgJ-Bws4dWj3OxRgsLQveENFLJ2QlXya2vBna3g_Xn4XjeMD8X8vNwWK0cjg7EIhkT2BLbjI9Yx74_kn4_reuaxACvC_Ft_f_kWuQQbPnk9O9i_TS4HiEKpszE3yWD5bWXvgG-4TO_Wm5CST-e9638Cda18QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+while+applying+cosmetic+cream+using+deep+learning+from+EEG+data%3B+cross-subject+analysis&rft.jtitle=PloS+one&rft.au=Kim%2C+Jieun&rft.au=Dong-Uk+Hwang&rft.au=Son%2C+Edwin&rft.au=Oh%2C+Sang&rft.date=2022-11-10&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0274203&rft.externalDocID=2735104873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon