Emotion recognition while applying cosmetic cream using deep learning from EEG data; cross-subject analysis
We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given b...
Saved in:
Published in | PloS one Vol. 17; no. 11; p. e0274203 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
10.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0274203 |
Cover
Loading…
Abstract | We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams. |
---|---|
AbstractList | We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, “like (positive)” and “dislike (negative)”, according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams. We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, "like (positive)" and "dislike (negative)", according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams.We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were randomly applied, and they were divided into two classes, "like (positive)" and "dislike (negative)", according to the preference score given by the subject. We extracted frequency features using well-known frequency bands, i.e., alpha, beta and low and high gamma bands, and then we created a matrix including frequency and spatial information of the EEG data. We developed seven CNN-based models: (1) inception-like CNN with four-band merged input, (2) stacked CNN with four-band merged input, (3) stacked CNN with four-band parallel input, and stacked CNN with single-band input of (4) alpha, (5) beta, (6) low gamma, and (7) high gamma. The models were evaluated by the Leave-One-Subject-Out Cross-Validation method. In like/dislike two-class classification, the average accuracies of all subjects were 73.2%, 75.4%, 73.9%, 68.8%, 68.0%, 70.7%, and 69.7%, respectively. We found that the classification performance is higher when using multi-band features than when using single-band feature. This is the first study to apply a CNN-based deep learning method based on EEG data to evaluate preference for cosmetic creams. |
Audience | Academic |
Author | Hwang, Dong-Uk Son, Edwin J. Kwon, Gusang Kim, Youngkyung Kim, Jieun Kim, Whansun Oh, Sang Hoon |
AuthorAffiliation | 2 AIRISS AI Team, Yuseong-gu, Deajeon, South Korea Universiti Malaysia Pahang, MALAYSIA 1 Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences, Daejeon, South Korea 3 AMOREPACIFIC R&D Center, Yongin-si, Gyeonggi-do, South Korea |
AuthorAffiliation_xml | – name: 2 AIRISS AI Team, Yuseong-gu, Deajeon, South Korea – name: 3 AMOREPACIFIC R&D Center, Yongin-si, Gyeonggi-do, South Korea – name: Universiti Malaysia Pahang, MALAYSIA – name: 1 Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences, Daejeon, South Korea |
Author_xml | – sequence: 1 givenname: Jieun orcidid: 0000-0002-6920-3506 surname: Kim fullname: Kim, Jieun – sequence: 2 givenname: Dong-Uk surname: Hwang fullname: Hwang, Dong-Uk – sequence: 3 givenname: Edwin J. surname: Son fullname: Son, Edwin J. – sequence: 4 givenname: Sang Hoon surname: Oh fullname: Oh, Sang Hoon – sequence: 5 givenname: Whansun surname: Kim fullname: Kim, Whansun – sequence: 6 givenname: Youngkyung surname: Kim fullname: Kim, Youngkyung – sequence: 7 givenname: Gusang surname: Kwon fullname: Kwon, Gusang |
BookMark | eNqNkm1r1TAUx4tM3IN-A8GCIPqi16Rp-qAgjHGdg8HAp7fhND29N9c0qU2q3m9vulVZxxDJi5wkv_85ycn_ODow1mAUPaVkRVlBX-_sOBjQqz5sr0haZClhD6IjWrE0yUN8cCs-jI6d2xHCWZnnj6JDljPOK1ocRd_WnfXKmnhAaTdGXcc_t0pjDH2v98psYmldh17JWA4IXTy6abNB7GONMJhp1Q62i9fr87gBD28DaJ1L3FjvUPoYwjX3TrnH0cMWtMMn83wSfXm__nz2Ibm8Or84O71MZE6YT1rMgGNNa9oiL2sCDVY5L6qGsqxoZVmGFxUZ0JSktAVEXldZ3TQl5y1HSCk7iZ7d5O21dWLukxNpwTglWVmwQLybibHusJFo_ABa9IPqYNgLC0osT4zaio39Iao8K0s2lXg5Jxjs9xGdF51yErUGg3acaxUpydOAPr-D3n-jmdqARqFMa0NdOSUVp0Wak5JSMlGre6gwGuyUDEZow8ctBa8WgsB4_OU3MDonLj59_H_26uuSfXGL3SJov3VWj5N93BLMbsBrSwzY_m0yJWLy8Z9uiMnHYvZxkL25I5PKw5Q9PFjpf4t_A0VL-u4 |
CitedBy_id | crossref_primary_10_1111_srt_13692 crossref_primary_10_1007_s00238_025_02278_6 crossref_primary_10_1109_ACCESS_2023_3295001 crossref_primary_10_3389_fnins_2024_1509358 crossref_primary_10_3389_fnhum_2024_1443001 crossref_primary_10_1021_acsami_4c03675 crossref_primary_10_3390_cosmetics11040135 crossref_primary_10_1111_ics_12975 |
Cites_doi | 10.3389/fpsyg.2021.653011 10.1007/978-3-319-68600-4_25 10.3390/scipharm84040724 10.1007/978-3-319-70093-9_86 10.1007/s40708-016-0031-9 10.1109/MCI.2021.3061875 10.1371/journal.pone.0130140 10.1016/j.bspc.2017.11.010 10.1109/TAFFC.2017.2712143 10.3390/s20144037 10.1109/SPAC.2017.8304360 10.1109/TAMD.2015.2431497 10.1088/1741-2552/abed81 10.1111/srt.12288 10.1109/TBME.2017.2693157 10.1109/BIBM.2016.7822545 10.1109/IJCNN.2018.8489715 10.1089/acm.2011.0931 10.1609/aaai.v31i2.19105 10.1109/T-AFFC.2011.15 10.1037/0033-295X.110.1.145 10.1080/00224545.1989.9712051 10.3389/fnhum.2014.00893 10.1016/j.asoc.2020.106954 10.1007/BF02686918 10.3389/fnhum.2020.00089 10.1109/ICCV.2017.74 10.1088/1741-2552/ab9842 10.1109/TAFFC.2014.2339834 10.3390/s21155092 10.3390/app11114766 10.1016/j.matcom.2020.04.031 10.3390/s20072034 10.1109/5.726791 10.1111/ics.12223 10.5850/JKSCT.2020.44.4.727 10.1002/jnr.24281 10.1109/IJCNN.2015.7280725 10.1016/j.neuropsychologia.2020.107506 10.1145/3297156.3297177 10.1111/psyp.13199 10.1007/978-3-319-98998-3_10 10.1109/TAFFC.2018.2840973 10.1109/TCDS.2018.2826840 10.1109/TCYB.2018.2797176 10.3390/s19092212 10.3390/s20236719 10.1111/j.1467-2494.1980.tb00237.x 10.1109/BIBM.2017.8217815 10.1109/ICASET.2019.8714373 10.1016/j.neuropsychologia.2014.01.002 10.1111/1467-8721.00003 10.1038/nature14539 10.1109/NER.2015.7146583 10.1109/EMBC.2015.7320065 10.1109/CVPR.2017.195 10.1109/ACCESS.2018.2827023 10.1016/j.homp.2011.06.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright: © 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2022 Kim et al 2022 Kim et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright: © 2022 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2022 Kim et al 2022 Kim et al |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM |
DOI | 10.1371/journal.pone.0274203 |
DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale Science in Context ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Emotion recognition while applying cosmetic cream using deep learning from EEG data |
EISSN | 1932-6203 |
ExternalDocumentID | 2735104873 PMC9648831 A726081103 10_1371_journal_pone_0274203 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: ; grantid: NIMS-B22720000 – fundername: ; – fundername: ; grantid: NIMS-B21910000 – fundername: ; grantid: HP20C0083 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c603t-fe4a5eb1b1fe58b0ade96579d1347fc8862074a12021faee5b94bdd855f5ea213 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun May 07 16:28:24 EDT 2023 Thu Aug 21 18:39:36 EDT 2025 Fri Jul 11 14:53:41 EDT 2025 Fri Jul 25 10:29:26 EDT 2025 Tue Jun 17 20:57:42 EDT 2025 Tue Jun 10 20:39:25 EDT 2025 Fri Jun 27 04:57:19 EDT 2025 Fri Jun 27 03:38:29 EDT 2025 Thu May 22 21:24:33 EDT 2025 Tue Jul 01 03:23:40 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-fe4a5eb1b1fe58b0ade96579d1347fc8862074a12021faee5b94bdd855f5ea213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-6920-3506 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0274203 |
PMID | 36355917 |
PQID | 2735104873 |
PQPubID | 1436336 |
PageCount | e0274203 |
ParticipantIDs | plos_journals_2735104873 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648831 proquest_miscellaneous_2735172062 proquest_journals_2735104873 gale_infotracmisc_A726081103 gale_infotracacademiconefile_A726081103 gale_incontextgauss_ISR_A726081103 gale_incontextgauss_IOV_A726081103 gale_healthsolutions_A726081103 crossref_primary_10_1371_journal_pone_0274203 crossref_citationtrail_10_1371_journal_pone_0274203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-10 |
PublicationDateYYYYMMDD | 2022-11-10 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2022 |
Publisher | Public Library of Science |
Publisher_xml | – name: Public Library of Science |
References | D. Hoefer (pone.0274203.ref031) 2016; 22 W. L. Zheng (pone.0274203.ref049) 2015; 7 K. Sowndhararajan (pone.0274203.ref028) 2016; 84 P.J. Lang (pone.0274203.ref022) 1997 W. L. Zheng (pone.0274203.ref075) 2018; 49 I. R. Bell (pone.0274203.ref027) 2011; 100 Z. Yin (pone.0274203.ref043) 2017; 11 H. Chao (pone.0274203.ref046) 2019; 19 pone.0274203.ref047 C. A. Andersen (pone.0274203.ref026) 2019; 97 pone.0274203.ref044 pone.0274203.ref002 L. Piho (pone.0274203.ref040) 2018; 11 pone.0274203.ref042 M. Seo (pone.0274203.ref029) 2016 Y. LeCun (pone.0274203.ref065) 1998; 86 X. Zhang (pone.0274203.ref012) 2019; 66 R.B. Iris (pone.0274203.ref025) 2012; 18 J. A. Graham (pone.0274203.ref001) 1980; 2 D. Gabriel (pone.0274203.ref038) 2021; 11 W. Ko (pone.0274203.ref011) 2021; 16 H. Singh (pone.0274203.ref030) 2014; 8 pone.0274203.ref036 pone.0274203.ref033 pone.0274203.ref077 P. Zhong (pone.0274203.ref008) 2020 A. Mehrabian (pone.0274203.ref020) 1996; 14 H. Sung (pone.0274203.ref064) 2021 pone.0274203.ref073 W. L. Zheng (pone.0274203.ref074) 2015; 7 P. Pandey (pone.0274203.ref054) 2019 R. Korichi (pone.0274203.ref006) 2008; 59 pone.0274203.ref071 G. Valenza (pone.0274203.ref032) 2018; 55 R. Jenke (pone.0274203.ref039) 2014; 5 W. Lu (pone.0274203.ref060) 2018; 41 M. V. Valueva (pone.0274203.ref063) 2020; 177 W. Park (pone.0274203.ref034) 2018; 6 A. Raheel (pone.0274203.ref035) 2020; 20 Y. Cimtay (pone.0274203.ref051) 2020; 20 K. Fares (pone.0274203.ref003) 2019; 70 A. Anuse (pone.0274203.ref062) 2016 S. G. Aydin (pone.0274203.ref072) 2016; 3 pone.0274203.ref024 M. Balconi (pone.0274203.ref037) 2021; 12 C. Zhang (pone.0274203.ref066) 2021; 18 Z. Lan (pone.0274203.ref068) 2018; 11 J. Fan (pone.0274203.ref069) 2017; 65 M. H. Hassoun (pone.0274203.ref061) 1995 S. Bach (pone.0274203.ref078) 2015; 10 H. Chao (pone.0274203.ref056) 2019; 19 X. W. Ding (pone.0274203.ref059) 2021 F.M.M. Citron (pone.0274203.ref016) 2014; 56 W. L. Zheng (pone.0274203.ref067) 2017; 10 S. Tortora (pone.0274203.ref014) 2020; 17 S. Koelstra (pone.0274203.ref018) 2011; 3 Y. LeCun (pone.0274203.ref045) 2015; 521 J.A. Russell (pone.0274203.ref019) 2003; 110 Y. Yin (pone.0274203.ref009) 2021; 100 P. Bashivan (pone.0274203.ref010) 2015 pone.0274203.ref015 pone.0274203.ref058 pone.0274203.ref017 S. Koelstra (pone.0274203.ref041) 2011; 3 A. M. Pensé‐Lhéritier (pone.0274203.ref007) 2015; 37 L. Jin (pone.0274203.ref048) 2020; 20 pone.0274203.ref055 H. Yu (pone.0274203.ref005) 2020; 44 pone.0274203.ref013 T. F. Cash (pone.0274203.ref004) 1989; 129 pone.0274203.ref050 L.F. Barrett (pone.0274203.ref021) 1999; 8 N. S. Suhaimi (pone.0274203.ref023) 2020 pone.0274203.ref053 pone.0274203.ref052 F. Wang (pone.0274203.ref076) 2020; 146 T. D. T. Phan (pone.0274203.ref057) 2021; 21 K. Yang (pone.0274203.ref070) 2020; 14 |
References_xml | – volume: 12 start-page: 673 year: 2021 ident: pone.0274203.ref037 article-title: Touching to Feel: Brain Activity During In-Store Consumer Experience publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2021.653011 – ident: pone.0274203.ref044 doi: 10.1007/978-3-319-68600-4_25 – volume: 84 start-page: 724 issue: 4 year: 2016 ident: pone.0274203.ref028 article-title: Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response publication-title: Scientia pharmaceutica doi: 10.3390/scipharm84040724 – ident: pone.0274203.ref053 doi: 10.1007/978-3-319-70093-9_86 – volume: 3 start-page: 109 issue: 2 year: 2016 ident: pone.0274203.ref072 article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW publication-title: Brain informatics doi: 10.1007/s40708-016-0031-9 – volume: 11 start-page: 19 year: 2017 ident: pone.0274203.ref043 article-title: Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination publication-title: Frontiers in neurorobotics – volume: 70 start-page: 47 issue: 1 year: 2019 ident: pone.0274203.ref003 article-title: Relationship Between Cosmetics Use, Self-Esteem, and Self-Perceived Attractiveness Among Lebanese Women publication-title: Journal of cosmetic science – volume: 16 start-page: 31 issue: 2 year: 2021 ident: pone.0274203.ref011 article-title: Multi-scale neural network for EEG representation learning in BCI publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2021.3061875 – year: 2015 ident: pone.0274203.ref010 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv preprint arXiv:1511.06448 – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: pone.0274203.ref078 article-title: On pixel-wise e76xplanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PloS one doi: 10.1371/journal.pone.0130140 – volume: 41 start-page: 152 year: 2018 ident: pone.0274203.ref060 article-title: Feature fusion for imbalanced ECG data analysis publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.11.010 – volume: 10 start-page: 417 issue: 3 year: 2017 ident: pone.0274203.ref067 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2017.2712143 – ident: pone.0274203.ref002 – volume: 20 start-page: 4037 issue: 14 year: 2020 ident: pone.0274203.ref035 article-title: Physiological sensors based emotion recognition while experiencing tactile enhanced multimedia publication-title: Sensors doi: 10.3390/s20144037 – ident: pone.0274203.ref052 doi: 10.1109/SPAC.2017.8304360 – volume-title: Fundamentals of artificial neural networks year: 1995 ident: pone.0274203.ref061 – year: 2021 ident: pone.0274203.ref059 article-title: Electroencephalogram Emotion Recognition Based on Dispersion Entropy Feature Extraction Using Random Over-Sampling Imbalanced Data Processing publication-title: IEEE Transactions on Cognitive and Developmental Systems – start-page: 97 volume-title: Attention and Orienting: Sensory and Motivational Processes; Mahwah, N.J., Ed year: 1997 ident: pone.0274203.ref022 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: pone.0274203.ref049 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2015.2431497 – year: 2016 ident: pone.0274203.ref062 publication-title: A novel training algorithm for convolutional neural network – volume: 18 start-page: 046014 issue: 4 year: 2021 ident: pone.0274203.ref066 article-title: EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/abed81 – volume: 59 start-page: 127 year: 2008 ident: pone.0274203.ref006 article-title: Why women use makeup: Implication of psychological publication-title: Journal of cosmetic science – volume: 22 start-page: 470 issue: 4 year: 2016 ident: pone.0274203.ref031 article-title: Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event‐related potentials publication-title: Skin Research and Technology doi: 10.1111/srt.12288 – volume: 65 start-page: 43 issue: 1 year: 2017 ident: pone.0274203.ref069 article-title: EEG-based affect and workload recognition in a virtual driving environment for ASD intervention publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2693157 – ident: pone.0274203.ref055 doi: 10.1109/BIBM.2016.7822545 – ident: pone.0274203.ref050 doi: 10.1109/IJCNN.2018.8489715 – volume: 18 start-page: 445 year: 2012 ident: pone.0274203.ref025 article-title: Multiweek resting EEG cordance change patterns from repeated olfactory activation with two constitutionally salient homeopathic remedies in healthy young adults publication-title: J Altern Complement Med. doi: 10.1089/acm.2011.0931 – ident: pone.0274203.ref047 doi: 10.1609/aaai.v31i2.19105 – year: 2020 ident: pone.0274203.ref008 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Transactions on Affective Computing – volume: 3 start-page: 18 issue: 1 year: 2011 ident: pone.0274203.ref018 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE transactions on affective computing doi: 10.1109/T-AFFC.2011.15 – volume: 110 start-page: 145 year: 2003 ident: pone.0274203.ref019 article-title: Core affect and the psychological construction of emotion publication-title: Psychol. Rev. doi: 10.1037/0033-295X.110.1.145 – volume: 129 start-page: 349 issue: 3 year: 1989 ident: pone.0274203.ref004 article-title: Effects of cosmetics use on the physical attractiveness and body image of American college women publication-title: The Journal of Social Psychology doi: 10.1080/00224545.1989.9712051 – volume: 8 start-page: 893 year: 2014 ident: pone.0274203.ref030 article-title: The brain’s response to pleasant touch: An EEG investigation of tactile caressing publication-title: Frontiers in human neuroscience doi: 10.3389/fnhum.2014.00893 – volume: 100 start-page: 106954 year: 2021 ident: pone.0274203.ref009 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106954 – volume: 14 start-page: 261 issue: 4 year: 1996 ident: pone.0274203.ref020 article-title: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament[J] publication-title: Current Psychology doi: 10.1007/BF02686918 – volume: 14 start-page: 89 year: 2020 ident: pone.0274203.ref070 article-title: High gamma band EEG closely related to emotion: evidence from functional network publication-title: Frontiers in human neuroscience doi: 10.3389/fnhum.2020.00089 – ident: pone.0274203.ref077 doi: 10.1109/ICCV.2017.74 – volume: 17 start-page: 046011 issue: 4 year: 2020 ident: pone.0274203.ref014 article-title: Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network publication-title: Journal of neural engineering doi: 10.1088/1741-2552/ab9842 – volume: 5 start-page: 327 issue: 3 year: 2014 ident: pone.0274203.ref039 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Transactions on Affective computing doi: 10.1109/TAFFC.2014.2339834 – volume: 21 start-page: 5092 issue: 15 year: 2021 ident: pone.0274203.ref057 article-title: EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels publication-title: Sensors doi: 10.3390/s21155092 – volume: 11 start-page: 4766 issue: 11 year: 2021 ident: pone.0274203.ref038 article-title: Emotional Effects Induced by the Application of a Cosmetic Product: A Real-Time Electrophysiological Evaluation publication-title: Applied Sciences doi: 10.3390/app11114766 – volume: 177 start-page: 232 year: 2020 ident: pone.0274203.ref063 article-title: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2020.04.031 – year: 2020 ident: pone.0274203.ref023 article-title: EEG-Based Emotion Recognition: A State-of-the-Art Review of Current Trends and Opportunities publication-title: Computational intelligence and neuroscience – volume: 20 start-page: 2034 issue: 7 year: 2020 ident: pone.0274203.ref051 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors doi: 10.3390/s20072034 – volume: 3 start-page: 18 issue: 1 year: 2011 ident: pone.0274203.ref041 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE transactions on affective computing doi: 10.1109/T-AFFC.2011.15 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: pone.0274203.ref065 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: pone.0274203.ref074 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on Autonomous Mental Development doi: 10.1109/TAMD.2015.2431497 – volume: 37 start-page: 465 issue: 5 year: 2015 ident: pone.0274203.ref007 article-title: Recent developments in the sensorial assessment of cosmetic products: A review publication-title: International journal of cosmetic science doi: 10.1111/ics.12223 – volume: 44 start-page: 727 issue: 4 year: 2020 ident: pone.0274203.ref005 article-title: Effects of the virtual makeup using beauty makeup applications on mood, body satisfaction, and self-esteem among female university students publication-title: Journal of the Korean Society of Clothing and Textiles doi: 10.5850/JKSCT.2020.44.4.727 – volume: 97 start-page: 241 issue: 3 year: 2019 ident: pone.0274203.ref026 article-title: EEG discrimination of perceptually similar tastes publication-title: Journal of neuroscience research doi: 10.1002/jnr.24281 – ident: pone.0274203.ref033 doi: 10.1109/IJCNN.2015.7280725 – volume: 146 start-page: 107506 year: 2020 ident: pone.0274203.ref076 article-title: Emotion recognition with convolutional neural network and EEG-based EFDMs publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2020.107506 – volume: 66 year: 2019 ident: pone.0274203.ref012 article-title: A survey on deep learning based brain computer interface: Recent advances and new frontiers publication-title: arXiv preprint arXiv:1905.04149 – ident: pone.0274203.ref017 doi: 10.1145/3297156.3297177 – start-page: 1 year: 2021 ident: pone.0274203.ref064 article-title: Efficient Model Updating Method for System Identification Using a Convolutional Neural Network publication-title: AIAA Journal – ident: pone.0274203.ref036 – volume: 55 start-page: e13199 issue: 10 year: 2018 ident: pone.0274203.ref032 article-title: EEG oscillations during caress‐like affective haptic elicitation publication-title: Psychophysiology doi: 10.1111/psyp.13199 – ident: pone.0274203.ref024 doi: 10.1007/978-3-319-98998-3_10 – volume: 11 start-page: 722 issue: 4 year: 2018 ident: pone.0274203.ref040 article-title: A mutual information based adaptive windowing of informative EEG for emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2018.2840973 – volume: 11 start-page: 85 issue: 1 year: 2018 ident: pone.0274203.ref068 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2018.2826840 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: pone.0274203.ref075 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2018.2797176 – volume: 19 start-page: 2212 issue: 9 year: 2019 ident: pone.0274203.ref056 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors doi: 10.3390/s19092212 – volume: 19 start-page: 2212 issue: 9 year: 2019 ident: pone.0274203.ref046 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors doi: 10.3390/s19092212 – volume: 20 start-page: 6719 issue: 23 year: 2020 ident: pone.0274203.ref048 article-title: Interpretable Cross-Subject EEG-Based Emotion Recognition Using Channel-Wise Features publication-title: Sensors doi: 10.3390/s20236719 – volume: 2 start-page: 77 issue: 2 year: 1980 ident: pone.0274203.ref001 article-title: Cosmetics considered in the context of physical attractiveness: a review publication-title: International journal of cosmetic science doi: 10.1111/j.1467-2494.1980.tb00237.x – ident: pone.0274203.ref015 doi: 10.1109/BIBM.2017.8217815 – ident: pone.0274203.ref013 doi: 10.1109/ICASET.2019.8714373 – volume: 56 start-page: 79 year: 2014 ident: pone.0274203.ref016 article-title: Emotional valence and arousal affect reading in an in-teractive way: Neuroimaging evidence for an approach-withdrawal framework publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2014.01.002 – volume: 8 start-page: 10 year: 1999 ident: pone.0274203.ref021 article-title: The Structure of Current Affect: Controversies and Emerging Consensus publication-title: Curr. Dir. Psychol. Sci. doi: 10.1111/1467-8721.00003 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: pone.0274203.ref045 article-title: Deep learning publication-title: nature doi: 10.1038/nature14539 – ident: pone.0274203.ref073 doi: 10.1109/NER.2015.7146583 – ident: pone.0274203.ref042 doi: 10.1109/EMBC.2015.7320065 – ident: pone.0274203.ref071 – ident: pone.0274203.ref058 doi: 10.1109/CVPR.2017.195 – year: 2016 ident: pone.0274203.ref029 article-title: Influence of binasal and uninasal inhalations of essential oil of Abies koreana twigs on electroencephalographic activity of human publication-title: Behavioural neurology – volume: 6 start-page: 22324 year: 2018 ident: pone.0274203.ref034 article-title: Gamma EEG correlates of haptic preferences for a dial interface publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2827023 – year: 2019 ident: pone.0274203.ref054 article-title: Subject independent emotion recognition from EEG using VMD and deep learning publication-title: Journal of King Saud University-Computer and Information Sciences – volume: 100 start-page: 203 issue: 04 year: 2011 ident: pone.0274203.ref027 article-title: Short-term effects of repeated olfactory administration of homeopathic sulphur or pulsatilla on electroencephalographic alpha power in healthy young adults publication-title: Homeopathy doi: 10.1016/j.homp.2011.06.005 |
SSID | ssj0053866 |
Score | 2.478336 |
Snippet | We report a deep learning-based emotion recognition method using EEG data collected while applying cosmetic creams. Four creams with different textures were... |
SourceID | plos pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0274203 |
SubjectTerms | Accuracy Analysis Biology and Life Sciences Brain research Classification Computer and Information Sciences Consumer behavior Cosmetics Deep learning Electroencephalography Emotion recognition Emotional intelligence Emotions Feature extraction Frequencies Frequency dependence Influence Machine learning Medicine and Health Sciences Methods Multimedia Musical performances Research and Analysis Methods Social Sciences Spatial data Wavelet transforms |
SummonAdditionalLinks | – databaseName: Public Health Database dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZguXBBlIe6pYBBSMDB7SaOnUQcUFVtKUiABBT1FvmVLaJN0mZX_H1mkkkgEgJuK3mSrD0Pz9jfzDD2LHXKmKxUQvoAAUoSJyIPMhIOvXUvIQ7ymCj8_oM-PknenapTOnBrCVY52MTOUPva4Rn5PmyzID7gXsvXzaXArlF4u0otNK6zGxHYYKydnx2OEA_QZa0pXU6m0T5xZ6-pq7DX3VEOrbJoOyKjPGvO63bicU7xkr9tQEe32S3yHPlBz-otdi1Ud9gW6WbLX1AB6Zd32fdl35uHj-gg-P3jDPSf4301JjZxV7cXmL_I0Wu84Ah_X3EfQsOpj8SKY-YJXy7fcESRvuLdBES7sXhyww0VM7nHTo6WXw6PBTVVEE4v5FqUITEKDLSNyqAyuzA-5Fqlucec0tJlEOGAV2GiGDb_0oSgbJ5Y7zOlShVMHMn7bFbBAm4zrnMTB22kVk4lwRhrjQwI-kh9sFpncyaHtS0cVRzHxhfnRXeNlkLk0S9dgRwpiCNzJsanmr7ixj_oHyPbij5vdFTY4iCFUC0D7wYonnYUWO6iQjzNymzatnj78et_EH3-NCF6TkRlDTNxhnIY4O9gGa0J5e6EEpTWTYa3UciGCbXFL_GGJwfB-_Pwk3EYX4oYuSrUG6JJ44WO5yydCOy4jlhLfDpSfTvraornGiy5jHb-_vEH7GaM6R8dDHKXzdZXm_AQnLK1fdRp3k9oADoV priority: 102 providerName: ProQuest |
Title | Emotion recognition while applying cosmetic cream using deep learning from EEG data; cross-subject analysis |
URI | https://www.proquest.com/docview/2735104873 https://www.proquest.com/docview/2735172062 https://pubmed.ncbi.nlm.nih.gov/PMC9648831 http://dx.doi.org/10.1371/journal.pone.0274203 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnxoHVsxCAl4SNXEsZ0IITSmdANpAw2K-hY5ttMhuqRbWgH_PXeJExFpE7xEkfxzFJ995zv7Pgh5ITVXKsq5x4wFAyUMQi-2zPc0auuGgR1kMFD49EyczMKPcz7fIm3NVkfA6kbTDutJza6X419Xv98Bw7-tqzZIv-00XpWFHdd3j5j-cxv2JonFHE7D7l4BuFsIF0B3W8_eBuXE9GC1LKueDtr3oPxrS5reJ_ecLkkPm8nfIVu2eEB2HLdW9JVLKf36IfmRNNV6aOcvBO8_L0AiULzBxlAnqsvqEiMaKeqRlxQd4hfUWLuirrLEgmIsCk2SY4p-pW9oPQCv2mR4lkOVS2_yiMymydejE8-VWfC0mLC1l9tQcRDZmZ9bHmUTZWwsuIwNRpnmOgKbB_QM5QegDuTKWp7FYWZMxHnOrQp89pgMCiDgLqEiVoEVigmueWiVyjLFLLqBSGMzIaIhYS1tU-1ykGMpjGVaX6xJsEUa0qU4I6mbkSHxul6rJgfHP_BPcdrSJpK0Y-H0UILxFoG-A4jnNQITYBToYbNQm6pKP3z69h-gL-c90EsHyksYiVYuqgF-BxNr9ZD7PSSwse417-IiawdUpaBXgrwEexJ7tgvv5uZnXTN-FL3mCltuHEYGExEMiewt2I6OmF2831J8v6izjMcCZDvz927_ryfkboDBILVT5D4ZrK839gBUtHU2InfkXMIzOvLxOT0eke33ydnn81F96DGqufIPa2pDgQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoBLRXmoSws1CAQc0m7i2EmEEKrKll36QIK26s04trNFtEkgu6r4U_xGZhInEAkBl94iefLweDyPeL4ZQp5EmisVZ9xjxkKAEgahl1jmexq9dcMgDjIIFD44FJPj8N0pP10iP1osDKZVtjqxVtSm0PiPfAvMLIgPuNfsdfnVw65ReLrattBoxGLPfr-EkK16NX0D6_s0CHbHRzsTz3UV8LQYsbmX2VBx0FCpn1kepyNlbCJ4lBgEVWY6BhcfzKryA7B-mbKWp0mYGhNznnGrAp_Bc6-R6yFjEdbqj3e6lBLQHUI4eB6L_C0nDZtlkdvN-ky0bc3lzJ8zAoPyvKh6Hm4_P_M3g7d7iyw7T5VuN6K1QpZsfpusOF1Q0eeuYPWLO-TLuOkFRLtsJLi-PAN9Q_F8HIFUVBfVBeIlKXqpFxTT7WfUWFtS17diRhHpQsfjtxSzVl_SegJetUjxTxFVrnjKXXJ8Jey-RwY5MHCVUJGowArFBNc8tEqlqWIWk0wiY1Mh4iFhLW-ldhXOsdHGuayP7SKIdBrWSVwR6VZkSLzurrKp8PEP-g1cNtngVDsFIbcjCA1j8KaA4nFNgeU1cszfmalFVcnp-5P_IPr4oUf0zBFlBcxEK4eZgM_Bsl09yvUeJSgJ3RteRSFrJ1TJX9sJ7mwF78_Dj7phfCjm5OW2WDiaKBiJYEiinsB2fMTa5f2R_PNZXcM8EWA5mH__7y_fIDcmRwf7cn96uLdGbgYIPalTMNfJYP5tYR-AQzhPH9a7kJJPV73tfwLQlHff |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJQFwo1CAQc0t3EsZ0IIVTRXboUCoIW7S04trNFtEkgu6r4a_w6ZhInEAkBl94iefLweDyPeL4ZQh5IzZWKMu4xYyFACYPQiy3zPY3eumEQBxkECr85EHtH4as5n6-RHy0WBtMqW51YK2pTaPxHPgIzC-ID7jUbZS4t4t3u9Hn51cMOUnjS2rbTaERk334_g_CtejbbhbV-GATTyeGLPc91GPC0GLOll9lQcdBWqZ9ZHqVjZWwsuIwNAiwzHYG7DyZW-QFYwkxZy9M4TI2JOM-4VYHP4LkXyEX8NOyeIOddsAd6RAgH1WPSHznJ2C6L3G7X56Ntmy5nCp1BGJQnRdXzdvu5mr8Zv-lVcsV5rXSnEbN1smbza2Td6YWKPnbFq59cJ18mTV8g2mUmwfXZMegeimflCKqiuqhOETtJ0WM9pZh6v6DG2pK6HhYLiqgXOpm8pJjB-pTWE_CqVYp_jahyhVRukKNzYfdNMsiBgRuEilgFVigmuOahVSpNFbOYcCKNTYWIhoS1vE20q3aOTTdOkvoIT0LU07AuwRVJ3IoMidfdVTbVPv5Bv4XLljSY1U5ZJDsSwsQIPCuguF9TYKmNHIV2oVZVlczefvwPog_ve0SPHFFWwEy0cvgJ-Bws4dWj3OxRgsLQveENFLJ2QlXya2vBna3g_Xn4XjeMD8X8vNwWK0cjg7EIhkT2BLbjI9Yx74_kn4_reuaxACvC_Ft_f_kWuQQbPnk9O9i_TS4HiEKpszE3yWD5bWXvgG-4TO_Wm5CST-e9638Cda18QQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+while+applying+cosmetic+cream+using+deep+learning+from+EEG+data%3B+cross-subject+analysis&rft.jtitle=PloS+one&rft.au=Kim%2C+Jieun&rft.au=Dong-Uk+Hwang&rft.au=Son%2C+Edwin&rft.au=Oh%2C+Sang&rft.date=2022-11-10&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pone.0274203&rft.externalDocID=2735104873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |