Nucleofection induces transient eIF2α phosphorylation by GCN2 and PERK
Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessit...
Saved in:
Published in | Gene therapy Vol. 20; no. 2; pp. 136 - 142 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. |
---|---|
AbstractList | Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids including DNA, mRNA, and siRNA. Unlike DNA and siRNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined factors important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of delivered nucleic acid. We studied the involvement of 3 ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and protein kinase RNA-activated (PKR)-like ER kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and siRNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. Gene Therapy (2013) 20, 136-142; doi: 10.1038/gt.2012.5; published online 2 February 2012 Keywords: nucleofection; mRNA therapy; eIF2α; PERK; GCN2 Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies.Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2α in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2α was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2α phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2α phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic acids, including DNA, mRNA, and small interfering RNA. Unlike DNA and small interfering RNA, mRNA is subject to rapid degradation, which necessitates instant early translation following mRNA delivery. We examined the factors that are important in translation following nucleofection and observed rapid phosphorylation of eukaryotic initiation factor 2 alpha (eIF2 alpha ) following nucleofection, which occurred in the absence of the delivered nucleic acid. We studied the involvement of three ubiquitous kinases capable of phosphorylating eIF2 alpha in mammalian cells and identified that nucleofection-mediated phosphorylation of eIF2 alpha was dependent on general control non-derepressible 2 (GCN2) and RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) but not PKR. A reduction in translation due to eIF2 alpha phosphorylation was observed post nucleofection, demonstrating functional significance. Understanding the impact of nucleofection on translational machinery has important implications for therapeutics currently under development based on the delivery of mRNA, DNA, and small interfering RNA. Strategies to circumvent eIF2 alpha phosphorylation and other downstream effects of activating GCN2 and PERK will facilitate further advancement of nucleic acid-based therapies. |
Audience | Academic |
Author | Weissman, D Anderson, B R Karikó, K |
AuthorAffiliation | 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA 1 Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA |
AuthorAffiliation_xml | – name: 1 Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA – name: 2 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA |
Author_xml | – sequence: 1 givenname: B R surname: Anderson fullname: Anderson, B R organization: Department of Medicine, University of Pennsylvania – sequence: 2 givenname: K surname: Karikó fullname: Karikó, K organization: Department of Neurosurgery, University of Pennsylvania – sequence: 3 givenname: D surname: Weissman fullname: Weissman, D email: dreww@mail.med.upenn.edu organization: Department of Medicine, University of Pennsylvania |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22301437$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1qFDEYhoNU7Hb1wBuQAUFUmG3-JjM5EcrSroulStXjkMlkZlNmk-0kI-5leSNek5luf3a0BxJCIHm-lzfv9x2BA-usBuAlgjMESXHchBmGCM-yJ2CCaM7SjDJ8ACaQM57mCBeH4Mj7KwghzQv8DBxiTCCiJJ-AxUWvWu1qrYJxNjG26pX2Seik9UbbkOjlGf79K9msnI-727byBiy3yWJ-gRNpq-TL6eWn5-BpLVuvX9yeU_D97PTb_GN6_nmxnJ-cp4pBElLNKNEcEQzrkpQFzeusopLldVFCrnLKUUYKXOW0rkpKKkhkyTWuOc8lp5xQMgUfdrqbvlzrSkWLnWzFpjNr2W2Fk0aMX6xZicb9EITQDPMsCry9Fejcda99EGvjlW5babXrvUCYIxYNZvA_0GIIGtNB9fVf6JXrOxuTEJhRylgB8z2qka0WxtYuWlSDqDiJkWQc0fjJKZg9QsVV6bVRsfO1ifejgnejgsgE_TM0svdeLL9ejtk3e-xKyzasvGv7oal-DL7aD_o-4bvRicDxDlCd877TtVAm3AxHtGtagaAYhlM0QQzDKbIHn_cVd6KPse93rI-MbXT3EOi_8B8cJe19 |
CitedBy_id | crossref_primary_10_1186_s40580_022_00298_7 crossref_primary_10_1021_acs_chemrev_7b00678 crossref_primary_10_1016_j_gene_2015_12_008 crossref_primary_10_1089_dna_2012_1950 crossref_primary_10_1128_JVI_02482_20 crossref_primary_10_1016_j_isci_2022_105519 crossref_primary_10_15252_embr_201642195 crossref_primary_10_1089_hum_2018_145 crossref_primary_10_3390_pharmaceutics13122097 crossref_primary_10_3389_fimmu_2023_1231916 crossref_primary_10_1007_s40820_020_00523_0 crossref_primary_10_1016_j_biomaterials_2022_121510 crossref_primary_10_1007_s00018_016_2409_5 |
Cites_doi | 10.1182/blood-2003-07-2379 10.1128/JVI.01784-07 10.1128/MCB.01030-08 10.1038/mt.2008.200 10.1371/journal.pone.0011756 10.1073/pnas.1008051107 10.1016/j.ymeth.2003.11.009 10.1089/jir.2010.0099 10.1016/S1097-2765(00)00108-8 10.1083/jcb.200308075 10.1016/S1097-2765(01)00265-9 10.1016/j.immuni.2005.06.008 10.1517/14712598.2010.526105 10.1021/bp025560b 10.1016/j.bbrc.2010.02.150 10.1371/journal.pntd.0000928 10.1128/MCB.21.23.7971-7980.2001 10.1074/jbc.M413660200 10.1074/jbc.M110164200 10.1146/annurev.micro.59.031805.133833 10.1016/j.nano.2010.12.010 10.1038/gt.2008.189 10.1126/science.1088547 10.1093/nar/gkr695 10.1073/pnas.0902161106 10.4049/jimmunol.165.8.4710 10.1128/MCB.15.8.4497 10.1073/pnas.0508448102 10.1038/35014014 10.1089/107632702753725003 10.1016/S0960-9822(02)01037-0 10.1093/nar/gkq347 10.1158/0008-5472.CAN-10-2880 10.1038/nature07864 10.1038/nature03076 10.1089/clo.2004.6.211 10.1007/978-3-540-72167-3_11 10.1016/j.joca.2011.01.005 10.1016/S0008-6363(02)00252-3 10.1261/rna.825008 10.1128/AAC.46.11.3447-3455.2002 10.1016/j.bbrc.2004.12.027 10.1016/j.sbi.2010.11.003 10.1016/j.stem.2010.08.012 10.1038/ni847 10.1089/104454902762053882 10.1111/j.0105-2896.2004.00139.x 10.1128/MCB.17.7.4146 10.1038/nrm1618 10.1093/emboj/cdg342 10.1016/S0021-9258(18)89048-2 |
ContentType | Journal Article |
Copyright | Macmillan Publishers Limited 2013 COPYRIGHT 2013 Nature Publishing Group Macmillan Publishers Limited 2013. |
Copyright_xml | – notice: Macmillan Publishers Limited 2013 – notice: COPYRIGHT 2013 Nature Publishing Group – notice: Macmillan Publishers Limited 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
DOI | 10.1038/gt.2012.5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-5462 |
EndPage | 142 |
ExternalDocumentID | PMC3345295 A320591449 22301437 10_1038_gt_2012_5 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R42 HL087688 – fundername: NIDDK NIH HHS grantid: T32DK07748 – fundername: NIDCR NIH HHS grantid: R21 DE019059 – fundername: NIDCR NIH HHS grantid: R21DE019059 – fundername: NHLBI NIH HHS grantid: R42HL87688 – fundername: NIAID NIH HHS grantid: R01 AI050484 – fundername: NIDDK NIH HHS grantid: T32 DK007748 – fundername: NIAID NIH HHS grantid: R01AI50484 |
GroupedDBID | --- -Q- .55 .GJ 0R~ 29H 2WC 36B 39C 4.4 406 53G 5GY 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AACDK AANZL AASML AATNV AAYZH ABAKF ABAWZ ABBRH ABDBE ABDBF ABFSG ABJNI ABLJU ABRTQ ABUWG ABZZP ACAOD ACGFS ACKTT ACMJI ACPRK ACRQY ACSTC ACUHS ACZOJ ADBBV ADFRT AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AIGIU AILAN AIXLP AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 DWQXO E3Z EAD EAP EBC EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IEA IHR IHW INH INR ISR ITC IWAJR JSO JZLTJ KQ8 LK8 M1P M2O M7P N9A NQJWS NXXTH O9- OK1 OVD PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG TUS UDS UKHRP W2D X7M Y6R ~8M AAYXX ACMFV CITATION CGR CUY CVF ECM EIF NPM AEIIB PMFND 3V. 7QP 7TK 7TM 7U9 7XB 8FD 8FK FR3 H94 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c603t-e643e91320fb3b847f5d4a67f8b09c74915382d74fdb43d03ab9e2f997a949343 |
IEDL.DBID | 7X7 |
ISSN | 0969-7128 1476-5462 |
IngestDate | Thu Aug 21 13:31:52 EDT 2025 Fri Jul 11 10:58:28 EDT 2025 Mon Jul 21 11:18:21 EDT 2025 Sat Aug 23 15:01:38 EDT 2025 Tue Jun 17 20:43:20 EDT 2025 Tue Jun 10 20:38:18 EDT 2025 Fri Jun 27 03:38:45 EDT 2025 Thu May 22 21:25:21 EDT 2025 Mon Jul 21 06:06:23 EDT 2025 Tue Jul 01 00:35:35 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Mon Jul 21 06:06:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | eIF2α GCN2 mRNA therapy PERK nucleofection |
Language | English |
License | Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-e643e91320fb3b847f5d4a67f8b09c74915382d74fdb43d03ab9e2f997a949343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3345295 |
PMID | 22301437 |
PQID | 2644668075 |
PQPubID | 34384 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3345295 proquest_miscellaneous_1291613250 proquest_miscellaneous_1285462245 proquest_journals_2644668075 gale_infotracmisc_A320591449 gale_infotracacademiconefile_A320591449 gale_incontextgauss_ISR_A320591449 gale_healthsolutions_A320591449 pubmed_primary_22301437 crossref_citationtrail_10_1038_gt_2012_5 crossref_primary_10_1038_gt_2012_5 springer_journals_10_1038_gt_2012_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Houndmills |
PublicationTitle | Gene therapy |
PublicationTitleAbbrev | Gene Ther |
PublicationTitleAlternate | Gene Ther |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lesterhuis, De Vries, Schreibelt, Schuurhuis, Aarntzen, De Boer (CR34) 2010; 30 Angel, Yanik (CR40) 2010; 5 Daher, Laraki, Singh, Melendez-Pena, Bannwarth, Peters (CR17) 2009; 29 Gilboa, Vieweg (CR33) 2004; 199 Underhill, Coley, Birch, Findlay, Kallmeier, Proud (CR27) 2003; 19 Nallagatla, Toroney, Bevilacqua (CR16) 2011; 21 Blindt, Zeiffer, Krott, Filzmaier, Voss, Hanrath (CR10) 2002; 54 Holcik, Sonenberg (CR15) 2005; 6 Cannon, Weissman (CR13) 2002; 21 Hacein-Bey-Abina, Von Kalle, Schmidt, McCormack, Wulffraat, Leboulch (CR11) 2003; 302 Schacht, Ramirez, Hong, Hirakawa, Feng, Harvey (CR6) 2003; 22 Dever, Dar, Sicheri (CR30) 2007 Deng, Harding, Raught, Gingras, Berlanga, Scheuner (CR24) 2002; 12 Wu, Hu, Wang, Chatterjee, Shi, Kaufman (CR29) 2002; 277 Van De Parre, Martinet, Schrijvers, Herman, De Meyer (CR5) 2005; 327 Hamm, Krott, Breibach, Blindt, Bosserhoff (CR2) 2002; 8 Pindel, Sadler (CR18) 2011; 31 Hinnebusch (CR31) 2005; 59 Van Tendeloo, Van de Velde, Van Driessche, Cools, Anguille, Ladell (CR36) 2010; 107 Birkholz, Hombach, Krug, Reuter, Kershaw, Kampgen (CR38) 2009; 16 Duncan, Hershey (CR49) 1985; 260 Lu, Han, Chen (CR19) 2001; 21 Perche, Benvegnu, Berchel, Lebegue, Pichon, Jaffres (CR35) 2011; 7 Scheuner, Song, McEwen, Liu, Laybutt, Gillespie (CR47) 2001; 7 Ponsaerts, van der Sar, Van Tendeloo, Jorens, Berneman, Singh (CR39) 2004; 6 Coughlin, Vance, Grupp, Vonderheide (CR4) 2004; 103 Vo, Klein, Varlamova, Keller, Yamamoto, Goodman (CR8) 2005; 102 Yakubov, Rechavi, Rozenblatt, Givol (CR44) 2010; 394 Gresch, Engel, Nesic, Tran, England, Hickman (CR1) 2004; 33 Warren, Manos, Ahfeldt, Loh, Li, Lau (CR43) 2010; 7 Anderson, Muramatsu, Nallagatla, Bevilacqua, Sansing, Weissman (CR25) 2010; 38 Zeenko, Wang, Majumder, Komar, Snider, Merrick (CR48) 2008; 14 Kawagishi-Kobayashi, Silverman, Ung, Dever (CR51) 1997; 17 Kariko, Buckstein, Ni, Weissman (CR52) 2005; 23 Kariko, Muramatsu, Welsh, Ludwig, Kato, Akira (CR53) 2008; 16 Kariko, Muramatsu, Ludwig, Weissman (CR26) 2011; 39 Harding, Novoa, Zhang, Zeng, Wek, Schapira (CR21) 2000; 6 Im, Kim (CR45) 2011; 19 Harriague, Bismuth (CR3) 2002; 3 Tesfay, Yin, Gardner, Khoretonenko, Korneeva, Rhoads (CR28) 2008; 82 Sul, Wu, Zeng, Jochems, Lee, Kim (CR42) 2009; 106 Jousse, Oyadomari, Novoa, Lu, Zhang, Harding (CR50) 2003; 163 Wek, Zhu, Wek (CR22) 1995; 15 Bertolotti, Zhang, Hendershot, Harding, Ron (CR20) 2000; 2 Poy, Eliasson, Krutzfeldt, Kuwajima, Ma, Macdonald (CR7) 2004; 432 Mallilankaraman, Shedlock, Bao, Kawalekar, Fagone, Ramanathan (CR46) 2011; 5 Zhao, Moon, Carpenito, Paulos, Liu, Brennan (CR14) 2010; 70 Roy, Paquette, Fortin, Tremblay (CR9) 2002; 46 Jiang, Wek (CR23) 2005; 280 Weissman, Ni, Scales, Dude, Capodici, McGibney (CR12) 2000; 165 Shurin, Gregory, Morris, Malyguine (CR32) 2010; 10 Kaji, Norrby, Paca, Mileikovsky, Mohseni, Woltjen (CR41) 2009; 458 Pascolo (CR37) 2008; 183 N Vo (BFgt20125_CR8) 2005; 102 SA Wek (BFgt20125_CR22) 1995; 15 A Hamm (BFgt20125_CR2) 2002; 8 TE Dever (BFgt20125_CR30) 2007 V Schacht (BFgt20125_CR6) 2003; 22 K Kariko (BFgt20125_CR26) 2011; 39 D Scheuner (BFgt20125_CR47) 2001; 7 SR Nallagatla (BFgt20125_CR16) 2011; 21 J Harriague (BFgt20125_CR3) 2002; 3 C Jousse (BFgt20125_CR50) 2003; 163 WJ Lesterhuis (BFgt20125_CR34) 2010; 30 J Deng (BFgt20125_CR24) 2002; 12 K Mallilankaraman (BFgt20125_CR46) 2011; 5 A Pindel (BFgt20125_CR18) 2011; 31 VF Van Tendeloo (BFgt20125_CR36) 2010; 107 K Birkholz (BFgt20125_CR38) 2009; 16 K Kariko (BFgt20125_CR52) 2005; 23 AG Hinnebusch (BFgt20125_CR31) 2005; 59 M Holcik (BFgt20125_CR15) 2005; 6 VV Zeenko (BFgt20125_CR48) 2008; 14 MZ Tesfay (BFgt20125_CR28) 2008; 82 J Roy (BFgt20125_CR9) 2002; 46 BR Anderson (BFgt20125_CR25) 2010; 38 MF Underhill (BFgt20125_CR27) 2003; 19 GI Im (BFgt20125_CR45) 2011; 19 CM Coughlin (BFgt20125_CR4) 2004; 103 A Bertolotti (BFgt20125_CR20) 2000; 2 S Wu (BFgt20125_CR29) 2002; 277 M Angel (BFgt20125_CR40) 2010; 5 O Gresch (BFgt20125_CR1) 2004; 33 L Warren (BFgt20125_CR43) 2010; 7 MR Shurin (BFgt20125_CR32) 2010; 10 TJ Van De Parre (BFgt20125_CR5) 2005; 327 K Kaji (BFgt20125_CR41) 2009; 458 M Kawagishi-Kobayashi (BFgt20125_CR51) 1997; 17 L Lu (BFgt20125_CR19) 2001; 21 S Hacein-Bey-Abina (BFgt20125_CR11) 2003; 302 R Blindt (BFgt20125_CR10) 2002; 54 G Cannon (BFgt20125_CR13) 2002; 21 MN Poy (BFgt20125_CR7) 2004; 432 E Gilboa (BFgt20125_CR33) 2004; 199 D Weissman (BFgt20125_CR12) 2000; 165 E Yakubov (BFgt20125_CR44) 2010; 394 R Duncan (BFgt20125_CR49) 1985; 260 Y Zhao (BFgt20125_CR14) 2010; 70 S Pascolo (BFgt20125_CR37) 2008; 183 HY Jiang (BFgt20125_CR23) 2005; 280 HP Harding (BFgt20125_CR21) 2000; 6 JY Sul (BFgt20125_CR42) 2009; 106 A Daher (BFgt20125_CR17) 2009; 29 F Perche (BFgt20125_CR35) 2011; 7 K Kariko (BFgt20125_CR53) 2008; 16 P Ponsaerts (BFgt20125_CR39) 2004; 6 |
References_xml | – volume: 103 start-page: 2046 year: 2004 end-page: 2054 ident: CR4 article-title: RNA-transfected CD40-activated B cells induce functional T-cell responses against viral and tumor antigen targets: implications for pediatric immunotherapy publication-title: Blood doi: 10.1182/blood-2003-07-2379 – volume: 82 start-page: 2620 year: 2008 end-page: 2630 ident: CR28 article-title: Alpha/beta interferon inhibits cap-dependent translation of viral but not cellular mRNA by a PKR-independent mechanism publication-title: J Virol doi: 10.1128/JVI.01784-07 – volume: 29 start-page: 254 year: 2009 end-page: 265 ident: CR17 article-title: TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress publication-title: Mol Cell Biol doi: 10.1128/MCB.01030-08 – volume: 16 start-page: 1833 year: 2008 end-page: 1840 ident: CR53 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol Ther doi: 10.1038/mt.2008.200 – volume: 5 start-page: e11756 year: 2010 ident: CR40 article-title: Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins publication-title: PLoS One doi: 10.1371/journal.pone.0011756 – volume: 107 start-page: 13824 year: 2010 end-page: 13829 ident: CR36 article-title: Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1008051107 – volume: 33 start-page: 151 year: 2004 end-page: 163 ident: CR1 article-title: New non-viral method for gene transfer into primary cells publication-title: Methods doi: 10.1016/j.ymeth.2003.11.009 – volume: 31 start-page: 59 year: 2011 end-page: 70 ident: CR18 article-title: The role of protein kinase R in the interferon response publication-title: J Interferon Cytokine Res doi: 10.1089/jir.2010.0099 – volume: 6 start-page: 1099 year: 2000 end-page: 1108 ident: CR21 article-title: Regulated translation initiation controls stress-induced gene expression in mammalian cells publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00108-8 – volume: 163 start-page: 767 year: 2003 end-page: 775 ident: CR50 article-title: Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells publication-title: J Cell Biol doi: 10.1083/jcb.200308075 – volume: 7 start-page: 1165 year: 2001 end-page: 1176 ident: CR47 article-title: Translational control is required for the unfolded protein response and glucose homeostasis publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00265-9 – volume: 23 start-page: 165 year: 2005 end-page: 175 ident: CR52 article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 10 start-page: 1539 year: 2010 end-page: 1553 ident: CR32 article-title: Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.2010.526105 – volume: 19 start-page: 121 year: 2003 end-page: 129 ident: CR27 article-title: Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells publication-title: Biotechnol Prog doi: 10.1021/bp025560b – volume: 394 start-page: 189 year: 2010 end-page: 193 ident: CR44 article-title: Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.02.150 – volume: 5 start-page: e928 year: 2011 ident: CR46 article-title: A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000928 – volume: 21 start-page: 7971 year: 2001 end-page: 7980 ident: CR19 article-title: Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses publication-title: Mol Cell Biol doi: 10.1128/MCB.21.23.7971-7980.2001 – volume: 280 start-page: 14189 year: 2005 end-page: 14202 ident: CR23 article-title: Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition publication-title: J Biol Chem doi: 10.1074/jbc.M413660200 – volume: 277 start-page: 18077 year: 2002 end-page: 18083 ident: CR29 article-title: Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum publication-title: J Biol Chem doi: 10.1074/jbc.M110164200 – volume: 59 start-page: 407 year: 2005 end-page: 450 ident: CR31 article-title: Translational regulation of GCN4 and the general amino acid control of yeast publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.59.031805.133833 – volume: 7 start-page: 445 year: 2011 end-page: 453 ident: CR35 article-title: Enhancement of dendritic cells transfection and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA publication-title: Nanomedicine doi: 10.1016/j.nano.2010.12.010 – volume: 16 start-page: 596 year: 2009 end-page: 604 ident: CR38 article-title: Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer publication-title: Gene Therapy doi: 10.1038/gt.2008.189 – volume: 302 start-page: 415 year: 2003 end-page: 419 ident: CR11 article-title: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 publication-title: Science doi: 10.1126/science.1088547 – volume: 30 start-page: 5091 year: 2010 end-page: 5097 ident: CR34 article-title: Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients publication-title: Anticancer Res – volume: 39 start-page: e142 year: 2011 ident: CR26 article-title: Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr695 – volume: 106 start-page: 7624 year: 2009 end-page: 7629 ident: CR42 article-title: Transcriptome transfer produces a predictable cellular phenotype publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0902161106 – volume: 165 start-page: 4710 year: 2000 end-page: 4717 ident: CR12 article-title: HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human primary immune response publication-title: J Immunol doi: 10.4049/jimmunol.165.8.4710 – volume: 15 start-page: 4497 year: 1995 end-page: 4506 ident: CR22 article-title: The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids publication-title: Mol Cell Biol doi: 10.1128/MCB.15.8.4497 – volume: 102 start-page: 16426 year: 2005 end-page: 16431 ident: CR8 article-title: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508448102 – volume: 2 start-page: 326 year: 2000 end-page: 332 ident: CR20 article-title: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response publication-title: Nat Cell Biol doi: 10.1038/35014014 – volume: 8 start-page: 235 year: 2002 end-page: 245 ident: CR2 article-title: Efficient transfection method for primary cells publication-title: Tissue Eng doi: 10.1089/107632702753725003 – volume: 12 start-page: 1279 year: 2002 end-page: 1286 ident: CR24 article-title: Activation of GCN2 in UV-irradiated cells inhibits translation publication-title: Curr Biol doi: 10.1016/S0960-9822(02)01037-0 – start-page: 319 year: 2007 end-page: 344 ident: CR30 article-title: The eIF2alpha kinases publication-title: Translational Control in Biology and Medicine – volume: 38 start-page: 5884 year: 2010 end-page: 5892 ident: CR25 article-title: Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq347 – volume: 70 start-page: 9053 year: 2010 end-page: 9061 ident: CR14 article-title: Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-2880 – volume: 458 start-page: 771 year: 2009 end-page: 775 ident: CR41 article-title: Virus-free induction of pluripotency and subsequent excision of reprogramming factors publication-title: Nature doi: 10.1038/nature07864 – volume: 432 start-page: 226 year: 2004 end-page: 230 ident: CR7 article-title: A pancreatic islet-specific microRNA regulates insulin secretion publication-title: Nature doi: 10.1038/nature03076 – volume: 6 start-page: 211 year: 2004 end-page: 216 ident: CR39 article-title: Highly efficient mRNA-based gene transfer in feeder-free cultured H9 human embryonic stem cells publication-title: Cloning Stem Cells doi: 10.1089/clo.2004.6.211 – volume: 183 start-page: 221 year: 2008 end-page: 235 ident: CR37 article-title: Vaccination with messenger RNA (mRNA) publication-title: Handb Exp Pharmacol doi: 10.1007/978-3-540-72167-3_11 – volume: 19 start-page: 449 year: 2011 end-page: 457 ident: CR45 article-title: Electroporation-mediated gene transfer of SOX trio to enhance chondrogenesis in adipose stem cells publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2011.01.005 – volume: 260 start-page: 5486 year: 1985 end-page: 5492 ident: CR49 article-title: Regulation of initiation factors during translational repression caused by serum depletion. Abundance, synthesis, and turnover rates publication-title: J Biol Chem – volume: 54 start-page: 630 year: 2002 end-page: 639 ident: CR10 article-title: Upregulation of the cytoskeletal-associated protein Moesin in the neointima of coronary arteries after balloon angioplasty: a new marker of smooth muscle cell migration? publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(02)00252-3 – volume: 14 start-page: 593 year: 2008 end-page: 602 ident: CR48 article-title: An efficient translation system from mammalian cells lacking the translational inhibition caused by eIF2 phosphorylation publication-title: RNA doi: 10.1261/rna.825008 – volume: 46 start-page: 3447 year: 2002 end-page: 3455 ident: CR9 article-title: The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.46.11.3447-3455.2002 – volume: 327 start-page: 356 year: 2005 end-page: 360 ident: CR5 article-title: mRNA but not plasmid DNA is efficiently transfected in murine J774A.1 macrophages publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.12.027 – volume: 21 start-page: 119 year: 2011 end-page: 127 ident: CR16 article-title: Regulation of innate immunity through RNA structure and the protein kinase PKR publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.11.003 – volume: 7 start-page: 618 year: 2010 end-page: 630 ident: CR43 article-title: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 3 start-page: 1090 year: 2002 end-page: 1096 ident: CR3 article-title: Imaging antigen-induced PI3K activation in T cells publication-title: Nat Immunol doi: 10.1038/ni847 – volume: 21 start-page: 953 year: 2002 end-page: 961 ident: CR13 article-title: RNA based vaccines publication-title: DNA Cell Biol doi: 10.1089/104454902762053882 – volume: 199 start-page: 251 year: 2004 end-page: 263 ident: CR33 article-title: Cancer immunotherapy with mRNA-transfected dendritic cells publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2004.00139.x – volume: 17 start-page: 4146 year: 1997 end-page: 4158 ident: CR51 article-title: Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha publication-title: Mol Cell Biol doi: 10.1128/MCB.17.7.4146 – volume: 6 start-page: 318 year: 2005 end-page: 327 ident: CR15 article-title: Translational control in stress and apoptosis publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1618 – volume: 22 start-page: 3546 year: 2003 end-page: 3556 ident: CR6 article-title: T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema publication-title: EMBO J doi: 10.1093/emboj/cdg342 – volume: 7 start-page: 445 year: 2011 ident: BFgt20125_CR35 publication-title: Nanomedicine doi: 10.1016/j.nano.2010.12.010 – volume: 6 start-page: 211 year: 2004 ident: BFgt20125_CR39 publication-title: Cloning Stem Cells doi: 10.1089/clo.2004.6.211 – volume: 163 start-page: 767 year: 2003 ident: BFgt20125_CR50 publication-title: J Cell Biol doi: 10.1083/jcb.200308075 – volume: 22 start-page: 3546 year: 2003 ident: BFgt20125_CR6 publication-title: EMBO J doi: 10.1093/emboj/cdg342 – volume: 103 start-page: 2046 year: 2004 ident: BFgt20125_CR4 publication-title: Blood doi: 10.1182/blood-2003-07-2379 – volume: 302 start-page: 415 year: 2003 ident: BFgt20125_CR11 publication-title: Science doi: 10.1126/science.1088547 – volume: 31 start-page: 59 year: 2011 ident: BFgt20125_CR18 publication-title: J Interferon Cytokine Res doi: 10.1089/jir.2010.0099 – volume: 29 start-page: 254 year: 2009 ident: BFgt20125_CR17 publication-title: Mol Cell Biol doi: 10.1128/MCB.01030-08 – volume: 199 start-page: 251 year: 2004 ident: BFgt20125_CR33 publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2004.00139.x – start-page: 319 volume-title: Translational Control in Biology and Medicine year: 2007 ident: BFgt20125_CR30 – volume: 30 start-page: 5091 year: 2010 ident: BFgt20125_CR34 publication-title: Anticancer Res – volume: 6 start-page: 1099 year: 2000 ident: BFgt20125_CR21 publication-title: Mol Cell doi: 10.1016/S1097-2765(00)00108-8 – volume: 82 start-page: 2620 year: 2008 ident: BFgt20125_CR28 publication-title: J Virol doi: 10.1128/JVI.01784-07 – volume: 165 start-page: 4710 year: 2000 ident: BFgt20125_CR12 publication-title: J Immunol doi: 10.4049/jimmunol.165.8.4710 – volume: 15 start-page: 4497 year: 1995 ident: BFgt20125_CR22 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.8.4497 – volume: 5 start-page: e928 year: 2011 ident: BFgt20125_CR46 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0000928 – volume: 38 start-page: 5884 year: 2010 ident: BFgt20125_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq347 – volume: 21 start-page: 7971 year: 2001 ident: BFgt20125_CR19 publication-title: Mol Cell Biol doi: 10.1128/MCB.21.23.7971-7980.2001 – volume: 5 start-page: e11756 year: 2010 ident: BFgt20125_CR40 publication-title: PLoS One doi: 10.1371/journal.pone.0011756 – volume: 14 start-page: 593 year: 2008 ident: BFgt20125_CR48 publication-title: RNA doi: 10.1261/rna.825008 – volume: 432 start-page: 226 year: 2004 ident: BFgt20125_CR7 publication-title: Nature doi: 10.1038/nature03076 – volume: 54 start-page: 630 year: 2002 ident: BFgt20125_CR10 publication-title: Cardiovasc Res doi: 10.1016/S0008-6363(02)00252-3 – volume: 2 start-page: 326 year: 2000 ident: BFgt20125_CR20 publication-title: Nat Cell Biol doi: 10.1038/35014014 – volume: 39 start-page: e142 year: 2011 ident: BFgt20125_CR26 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr695 – volume: 59 start-page: 407 year: 2005 ident: BFgt20125_CR31 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.59.031805.133833 – volume: 183 start-page: 221 year: 2008 ident: BFgt20125_CR37 publication-title: Handb Exp Pharmacol doi: 10.1007/978-3-540-72167-3_11 – volume: 23 start-page: 165 year: 2005 ident: BFgt20125_CR52 publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 70 start-page: 9053 year: 2010 ident: BFgt20125_CR14 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-10-2880 – volume: 102 start-page: 16426 year: 2005 ident: BFgt20125_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508448102 – volume: 19 start-page: 449 year: 2011 ident: BFgt20125_CR45 publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2011.01.005 – volume: 277 start-page: 18077 year: 2002 ident: BFgt20125_CR29 publication-title: J Biol Chem doi: 10.1074/jbc.M110164200 – volume: 16 start-page: 596 year: 2009 ident: BFgt20125_CR38 publication-title: Gene Therapy doi: 10.1038/gt.2008.189 – volume: 17 start-page: 4146 year: 1997 ident: BFgt20125_CR51 publication-title: Mol Cell Biol doi: 10.1128/MCB.17.7.4146 – volume: 7 start-page: 1165 year: 2001 ident: BFgt20125_CR47 publication-title: Mol Cell doi: 10.1016/S1097-2765(01)00265-9 – volume: 3 start-page: 1090 year: 2002 ident: BFgt20125_CR3 publication-title: Nat Immunol doi: 10.1038/ni847 – volume: 280 start-page: 14189 year: 2005 ident: BFgt20125_CR23 publication-title: J Biol Chem doi: 10.1074/jbc.M413660200 – volume: 46 start-page: 3447 year: 2002 ident: BFgt20125_CR9 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.46.11.3447-3455.2002 – volume: 21 start-page: 953 year: 2002 ident: BFgt20125_CR13 publication-title: DNA Cell Biol doi: 10.1089/104454902762053882 – volume: 458 start-page: 771 year: 2009 ident: BFgt20125_CR41 publication-title: Nature doi: 10.1038/nature07864 – volume: 10 start-page: 1539 year: 2010 ident: BFgt20125_CR32 publication-title: Expert Opin Biol Ther doi: 10.1517/14712598.2010.526105 – volume: 21 start-page: 119 year: 2011 ident: BFgt20125_CR16 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2010.11.003 – volume: 6 start-page: 318 year: 2005 ident: BFgt20125_CR15 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1618 – volume: 8 start-page: 235 year: 2002 ident: BFgt20125_CR2 publication-title: Tissue Eng doi: 10.1089/107632702753725003 – volume: 33 start-page: 151 year: 2004 ident: BFgt20125_CR1 publication-title: Methods doi: 10.1016/j.ymeth.2003.11.009 – volume: 327 start-page: 356 year: 2005 ident: BFgt20125_CR5 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2004.12.027 – volume: 7 start-page: 618 year: 2010 ident: BFgt20125_CR43 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 260 start-page: 5486 year: 1985 ident: BFgt20125_CR49 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)89048-2 – volume: 16 start-page: 1833 year: 2008 ident: BFgt20125_CR53 publication-title: Mol Ther doi: 10.1038/mt.2008.200 – volume: 394 start-page: 189 year: 2010 ident: BFgt20125_CR44 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.02.150 – volume: 106 start-page: 7624 year: 2009 ident: BFgt20125_CR42 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0902161106 – volume: 107 start-page: 13824 year: 2010 ident: BFgt20125_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1008051107 – volume: 19 start-page: 121 year: 2003 ident: BFgt20125_CR27 publication-title: Biotechnol Prog doi: 10.1021/bp025560b – volume: 12 start-page: 1279 year: 2002 ident: BFgt20125_CR24 publication-title: Curr Biol doi: 10.1016/S0960-9822(02)01037-0 |
SSID | ssj0004782 |
Score | 2.1422877 |
Snippet | Nucleofection permits efficient transfection even with difficult cell types such as primary and non-dividing cells, and is used to deliver various nucleic... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136 |
SubjectTerms | 631/154/51/391 631/1647/2300 631/250/516 Animals Biomedical and Life Sciences Biomedicine Biotechnology Cell Biology Cell Line Deoxyribonucleic acid DNA DNA binding proteins Drug development eIF-2 kinase eIF-2 Kinase - genetics eIF-2 Kinase - metabolism Endoplasmic reticulum Eukaryotic Initiation Factor-2 - genetics Eukaryotic Initiation Factor-2 - metabolism Gene Expression Gene Therapy Human Genetics Humans Initiation factor eIF-2 Initiation factor eIF-2α Kinases Mammalian cells Messenger RNA Mice mRNA Nanotechnology nucleic acids original-article Phosphorylation Physiological aspects Protein kinase Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism siRNA Transfection Transfection - methods Translation |
Title | Nucleofection induces transient eIF2α phosphorylation by GCN2 and PERK |
URI | https://link.springer.com/article/10.1038/gt.2012.5 https://www.ncbi.nlm.nih.gov/pubmed/22301437 https://www.proquest.com/docview/2644668075 https://www.proquest.com/docview/1285462245 https://www.proquest.com/docview/1291613250 https://pubmed.ncbi.nlm.nih.gov/PMC3345295 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRCXivJqoBTzkOASyMZ2HJ-qstptC-qqWqi0NysPp0VCydJkD_1Z_BF-EzOOkyUL6iG5eBLH47FnnJn5hpC3yiRg1Rruw9lD-hxsZB_kRvnSum1GsBsKTHA-m0UnF_zzQizcD7fahVV2e6LdqPMqw3_kH1FxRxFC5x4uf_pYNQq9q66Exl2yjdBlGNIlF3KdFyltsSiw0qFz6LtDFmJw6MM4ylH4QQz00eau_Jda2gyZ3PCbWnU0fUB2nB1Jj9qJ3yV3TPmQ3DtznvJH5HiGQMVVG2lVUjh5wxzWtEHVhCmQ1JxOw9-_6PKqquG6vmlj4mh6Q4_Hs5AmZU7PJ_Mvj8nFdPJtfOK7ogl-FgWs8Q2YGEZhYnSRshR0TyFynkSyiNNAZZIr3OLCXPIiTznLA5akyoSFUjJRXDHOnpCtsirNHqEsikTOBJacisGq4rHgRcBZFioJz2WxR953rNOZQxTHwhY_tPVss1hfNhq5rIVHXvekyxZG439EL5H_us0A7ZeePoLBCAUnPwWvsRQIXFFiZMxlsqprffp1PiB654iKCj4nS1yiAQwKsa4GlPsDSlhZ2bC5EwTtVnat13LokVd9Mz6J0WqlqVa1HmFaagTG0a00YJjDNInAI09b2eo5AyYbwi5Kj8iB1PUEiAk-bCm_X1lscMbQkw79vunkc_3p_zD82e0DfE7uh7b4Bwbv7JOt5nplXoAJ1qQHdp3BPR6PDsj2p8nsfP4HSGcuJw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIJeEO8GCl1egovB8e7a3gNCpSRNSBNVoZV6W_xYt0jIDnUilD-FxB_hNzHjR4ID6q2HnHbseMez8_DMfAPwQpkAvVojLIw9PEugj2yh3CjLK9I2HdSGkhqcR2O3fyI-ncrTDfhZ98JQWWWtEwtFHWcRfSN_S4bbdQk69_30u0VToyi7Wo_QKMViaBY_MGTL3w0-4vt96Ti97vF-36qmCliRa_OZZdAGG0Wdw0nIQ1TOiYxF4HqJH9oq8oQiHeDEnkjiUPDY5kGojJMo5QVKKC443vcabAqOoUwLNj90x0eTVSemV4ynwrgAt4u7rbGMOIaZVLnZcd7IhgVctwN_GcL1Is21TG1hAHu34GblubK9UtRuw4ZJ78D1UZWbvwsHY4JGzsrarpRhrI9Sk7MZGUNqumRm0HN-_2LT8yzH38WirMJj4YId7I8dFqQxO-pOhvfg5EoYeh9aaZaabWDcdWXMJQ258tGPE74UiS145CgPr4v8NryuWaejCsOcRml800Uunfv6bKaJy1q24dmSdFoCd_yPaJf4r8ue0-Vh13u4Gakw1lR4m4KCoDJSqsU5C-Z5rgefJw2iVxVRkuHjREHV2oCbInStBuVOgxLPctRcrgVBV7ok1yvJb8PT5TJdSfVxqcnmue5QI6yL7tilNBgK4GuSdhselLK15Aw6iQT06LXBa0jdkoBQyJsr6dfzAo2cc8rd4_8-r-Vz9ej_MPzh5RvchRv949GhPhyMh49gyylGj1Dp0A60Zhdz8xgdwFn4pDp1DL5c9UH_A76caNs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKVHFBvDEUurwEF9PEu-vNHhCq2qYNoVFVqJTb4se6RUJ2qB2hfBZXPoJvYsav4IB66yGnHTue8Tw9L4CX2gbo1VrhYuyhXIE-sot8o11Vpm36qA0lNTgfTfzDU_FhKqdr8KvphaGyykYnloo6ziL6Rr5Nhtv3aXTudlKXRRzvDd_Pvru0QYoyrc06jYpFxnbxA8O3_N1oD9_1K88b7n_ePXTrDQNu5Pd44Vq0x1ZTF3ES8hAVdSJjEfgqGYQ9HSmhSR94sRJJHAoe93gQauslWqtAC80Fx_teg-uKyz7JmJqqZU-mKhdVYYSAiCPezVQjjgEn1XD2vbeyYwtXLcJfJnG1XHMlZ1uawuEtuFn7sGynYrrbsGbTO7BxVGfp78LBhIYkZ1WVV8ow6kf-yVlBZpHaL5kdDb3fP9nsPMvxd7Go6vFYuGAHuxOPBWnMjvdPxvfg9ErIeR_W0yy1D4Fx35cxl7TuaoAenRhIkfQEjzyt8Lpo4MCbhnQmqqeZ01KNb6bMqvOBOSsMUdlIB563oLNqhMf_gLaI_qbqPm3F3uwgMlJj1KnxNiUEDc1Iif3Ognmem9Gnkw7Q6xooyfBxoqBuckCkaM5WB3KzA4lSHXWPG0YwtVbJzVIGHHjWHtOVVCmX2myemz61xPromF0Kg0EBvibZc-BBxVstZdBdpJGPygHV4boWgOaRd0_Sr-flXHLOKYuP__ui4c_lo_9D8EeXI7gFGyje5uNoMn4MN7xyBwnVEG3CenExt0_QEyzCp6XIMfhy1TL-B6d1a6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleofection+induces+transient+eIF2%CE%B1+phosphorylation+by+GCN2+and+PERK&rft.jtitle=Gene+therapy&rft.au=Anderson%2C+B+R&rft.au=Karik%C3%B3%2C+K&rft.au=Weissman%2C+D&rft.date=2013-02-01&rft.eissn=1476-5462&rft.volume=20&rft.issue=2&rft.spage=136&rft_id=info:doi/10.1038%2Fgt.2012.5&rft_id=info%3Apmid%2F22301437&rft.externalDocID=22301437 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-7128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-7128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-7128&client=summon |