Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses

Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to sati...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 16; no. 1; pp. 47 - 11
Main Authors Kapelner, Tamás, Vujaklija, Ivan, Jiang, Ning, Negro, Francesco, Aszmann, Oskar C., Principe, Jose, Farina, Dario
Format Journal Article
LanguageEnglish
Published London BioMed Central 05.04.2019
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1743-0003
1743-0003
DOI10.1186/s12984-019-0516-x

Cover

Loading…
Abstract Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R 2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
AbstractList Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Abstract Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R 2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R 2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. The regression approach using neural features outperformed regression on classic global EMG features (average R.sup.2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R.sup.2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Keywords: Prosthesis control, EMG decomposition, Neural information, Motor units
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.BACKGROUNDCurrent myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.METHODSWe recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).RESULTSThe regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.CONCLUSIONSThese results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. The regression approach using neural features outperformed regression on classic global EMG features (average R for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.
ArticleNumber 47
Audience Academic
Author Kapelner, Tamás
Negro, Francesco
Jiang, Ning
Principe, Jose
Vujaklija, Ivan
Aszmann, Oskar C.
Farina, Dario
Author_xml – sequence: 1
  givenname: Tamás
  surname: Kapelner
  fullname: Kapelner, Tamás
  organization: Institute of Neurorehabilitation Systems, University Medical Center Göttingen
– sequence: 2
  givenname: Ivan
  surname: Vujaklija
  fullname: Vujaklija, Ivan
  organization: Department of Electrical Engineering and Automation, Aalto University
– sequence: 3
  givenname: Ning
  surname: Jiang
  fullname: Jiang, Ning
  organization: Department of Systems Design Engineering, University of Waterloo
– sequence: 4
  givenname: Francesco
  surname: Negro
  fullname: Negro, Francesco
  organization: Department of Clinical and Experimental Sciences, University of Brescia
– sequence: 5
  givenname: Oskar C.
  surname: Aszmann
  fullname: Aszmann, Oskar C.
  organization: Christian Doppler Laboratory for Restoration of Extremity Function and Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
– sequence: 6
  givenname: Jose
  surname: Principe
  fullname: Principe, Jose
  organization: Department of Electrical and Computer Engineering, University of Florida
– sequence: 7
  givenname: Dario
  orcidid: 0000-0002-7394-9474
  surname: Farina
  fullname: Farina, Dario
  email: d.farina@imperial.ac.uk
  organization: Department of Bioengineering, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30953528$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9ggS2zYpNjxY-INUlXxqFQJFrC2HPs64yGJBzvTln_PHaa0nQqQF7Z8v3Ose32Oq4MpTVBVLxk9ZaxVbwtrdCtqynRNJVP1zZPqiC0Eryml_ODB-bA6LmWFB0GleFYdcqoll017VHVfMvjo5jj15DrHMpPvcYLRztEVEnIayZjmlMlmijPxsbilzT2QOY6oQAJL8xKIS9Oc00BSIBbNroCscypYKVCeV0-DHQq8uN1Pqm8f3n89_1Rffv54cX52WTtF-Vw74b0AoQF8sI2G0DIOLHRUOqZBab7oGuAtbbX02nrW2aAVQBBeeweq5SfVxc7XJ7sy6xxHm3-aZKP5fZFyb2zGvgYw3oJtZKNAMyVaFbpOcGpbrRedkoE36PVu57XedCOgP7Znhz3T_coUl6ZPV0YJyRrF0eDNrUFOPzZQZjPi8GAY7ARpU0zTUKFaJYVE9PUjdJU2ecJRIcWYYDgIfU_1FhuIU0j4rtuamjPZcqa5WiikTv9C4fIwRvwkCBHv9wSvHjZ61-GfhCDAdoDDDy0Zwh3CqNmm0OxSaDCFZptCc4OaxSONizNGahsSG4f_KpudsuArUw_5fhb_Fv0C0hryZw
CitedBy_id crossref_primary_10_1109_TBME_2023_3234642
crossref_primary_10_1109_TNSRE_2022_3171394
crossref_primary_10_1109_TNSRE_2023_3260209
crossref_primary_10_1088_1741_2552_abd461
crossref_primary_10_1088_1741_2552_ac35ac
crossref_primary_10_1109_TBME_2023_3340019
crossref_primary_10_1109_JBHI_2020_3002329
crossref_primary_10_1109_TBME_2021_3056930
crossref_primary_10_3389_fnbot_2021_734525
crossref_primary_10_1139_apnm_2023_0354
crossref_primary_10_1016_j_bspc_2022_104303
crossref_primary_10_1109_TNSRE_2023_3326065
crossref_primary_10_1007_s00521_021_05743_y
crossref_primary_10_1186_s12938_022_01030_6
crossref_primary_10_1007_s42235_023_00407_0
crossref_primary_10_1038_s41598_020_62773_7
crossref_primary_10_3390_app11104678
crossref_primary_10_3390_s19235227
crossref_primary_10_1016_j_bspc_2019_101733
crossref_primary_10_1109_JBHI_2020_3041861
crossref_primary_10_1152_japplphysiol_00603_2024
crossref_primary_10_1016_j_bspc_2024_107399
crossref_primary_10_1016_j_cmpb_2022_107250
crossref_primary_10_1109_TBME_2020_2989311
crossref_primary_10_1109_LRA_2021_3060400
crossref_primary_10_3390_biomimetics8030328
crossref_primary_10_1109_TNSRE_2023_3336543
crossref_primary_10_1109_TBME_2020_3006508
crossref_primary_10_1109_JBHI_2021_3135575
crossref_primary_10_1186_s12984_024_01345_6
crossref_primary_10_3389_fneur_2020_572069
crossref_primary_10_3390_life12040483
crossref_primary_10_1088_1741_2552_abf186
crossref_primary_10_1088_1741_2552_abeead
crossref_primary_10_1088_1741_2552_acae0b
crossref_primary_10_1109_TCYB_2023_3290825
crossref_primary_10_1016_j_compbiomed_2021_104353
crossref_primary_10_1109_TNSRE_2020_2967901
crossref_primary_10_1109_TBME_2021_3102947
crossref_primary_10_1109_JBHI_2022_3210019
crossref_primary_10_1016_j_jelekin_2024_102873
crossref_primary_10_1038_s41597_023_02114_1
crossref_primary_10_1080_00140139_2023_2172213
crossref_primary_10_1109_TBME_2022_3153448
crossref_primary_10_1016_j_apergo_2021_103456
crossref_primary_10_1109_ACCESS_2020_3015761
crossref_primary_10_1109_TNSRE_2022_3215246
crossref_primary_10_1088_1741_2552_ac5f1b
crossref_primary_10_1038_s41598_023_36490_w
crossref_primary_10_1152_japplphysiol_00043_2021
crossref_primary_10_1093_nsr_nwad048
crossref_primary_10_3390_s20164581
Cites_doi 10.1109/10.204774
10.1109/TNSRE.2008.2006207
10.1109/TBME.2008.2008171
10.1523/JNEUROSCI.0830-06.2006
10.1016/j.biomaterials.2004.06.025
10.1109/MLSP.2012.6349712
10.1007/978-3-030-01845-0_34
10.1016/0166-2236(94)90064-7
10.1186/s12984-018-0363-1
10.1109/NER.2015.7146707
10.1109/JPROC.2015.2498665
10.1113/JP271748
10.1186/1743-0003-9-42
10.1109/TNSRE.2013.2287383
10.1007/BF00337255
10.1109/TSP.2007.896108
10.2147/ORR.S71468
10.1016/0304-3940(91)90867-S
10.1126/science.126.3287.1345
10.1109/TNSRE.2011.2163529
10.1152/jn.00555.2014
10.1113/JP273662
10.1152/jn.00855.2010
10.1016/j.clinph.2009.10.040
10.1109/TNSRE.2014.2305520
10.3389/fnbot.2017.00007
10.1152/jn.00793.2001
10.1109/TNSRE.2007.891391
10.1016/0924-980X(95)00188-Q
10.1016/S1058-2746(98)90003-9
10.1109/NER.2015.7146702
10.1123/jab.20.4.367
10.1088/1741-2560/13/2/026027
10.1016/j.bios.2010.05.010
10.1109/TNSRE.2013.2247631
10.1038/s41551-016-0025
10.1152/jn.01060.2010
10.1109/TNSRE.2017.2766360
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12984-019-0516-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Healthcare Administration Database (NC LIVE)
Medical Database
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database




MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 11
ExternalDocumentID oai_doaj_org_article_daea2526e916486fbb430a8997b65f32
PMC6451263
A583193676
30953528
10_1186_s12984_019_0516_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Christian Doppler Forschungsgesellschaft
  funderid: http://dx.doi.org/10.13039/501100006012
– fundername: European Research Council ()
  grantid: 267888; 737570
– fundername: Deutscher Akademischer Austauschdienst
  funderid: http://dx.doi.org/10.13039/501100001655
– fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 702491
  funderid: http://dx.doi.org/10.13039/100010665
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 072169
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: ;
– fundername: ;
  grantid: 702491
– fundername: ;
  grantid: 267888; 737570
– fundername: ;
  grantid: 072169
GroupedDBID ---
0R~
29L
2QV
2WC
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c603t-c4dd4e49eedfa29ef813e1fb05c19e6937b2e380895d9ad1baf96eef4d9dce683
IEDL.DBID M48
ISSN 1743-0003
IngestDate Wed Aug 27 00:51:32 EDT 2025
Thu Aug 21 18:04:22 EDT 2025
Thu Sep 04 19:56:35 EDT 2025
Fri Jul 25 19:31:56 EDT 2025
Tue Jun 17 21:37:36 EDT 2025
Tue Jun 10 20:47:28 EDT 2025
Thu Jan 02 22:58:34 EST 2025
Thu Apr 24 22:55:38 EDT 2025
Tue Jul 01 02:19:57 EDT 2025
Sat Sep 06 07:18:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EMG decomposition
Motor units
Neural information
Prosthesis control
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-c4dd4e49eedfa29ef813e1fb05c19e6937b2e380895d9ad1baf96eef4d9dce683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7394-9474
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-019-0516-x
PMID 30953528
PQID 2211418139
PQPubID 55356
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_daea2526e916486fbb430a8997b65f32
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451263
proquest_miscellaneous_2204686545
proquest_journals_2211418139
gale_infotracmisc_A583193676
gale_infotracacademiconefile_A583193676
pubmed_primary_30953528
crossref_primary_10_1186_s12984_019_0516_x
crossref_citationtrail_10_1186_s12984_019_0516_x
springer_journals_10_1186_s12984_019_0516_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-05
PublicationDateYYYYMMDD 2019-04-05
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-05
  day: 05
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAbbrev J NeuroEngineering Rehabil
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References CJ Luca De (516_CR27) 2002; 87
516_CR1
T Boretius (516_CR39) 2010; 26
516_CR2
CJ Luca De (516_CR23) 2011; 105
516_CR3
516_CR29
516_CR28
516_CR26
516_CR25
516_CR43
516_CR20
516_CR41
Y Masakado (516_CR35) 1995; 97
V Glaser (516_CR42) 2013; 21
516_CR8
D Farina (516_CR24) 2011; 105
516_CR9
516_CR4
N Lago (516_CR40) 2005; 26
516_CR5
516_CR7
516_CR19
516_CR18
516_CR17
JM Hahne (516_CR6) 2014; 22
cr-split#-516_CR10.1
516_CR16
N Kakuda (516_CR21) 1991; 122
CJ Luca De (516_CR22) 2015; 113
516_CR38
cr-split#-516_CR10.2
516_CR15
516_CR37
516_CR14
516_CR36
516_CR13
516_CR12
516_CR34
516_CR11
516_CR33
516_CR32
516_CR31
516_CR30
References_xml – ident: 516_CR3
  doi: 10.1109/10.204774
– ident: 516_CR41
  doi: 10.1109/TNSRE.2008.2006207
– ident: 516_CR17
  doi: 10.1109/TBME.2008.2008171
– ident: 516_CR31
  doi: 10.1523/JNEUROSCI.0830-06.2006
– volume: 26
  start-page: 2021
  issue: 14
  year: 2005
  ident: 516_CR40
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2004.06.025
– ident: 516_CR1
– ident: 516_CR19
  doi: 10.1109/MLSP.2012.6349712
– ident: 516_CR28
– ident: #cr-split#-516_CR10.1
  doi: 10.1007/978-3-030-01845-0_34
– ident: 516_CR26
  doi: 10.1016/0166-2236(94)90064-7
– ident: 516_CR7
  doi: 10.1186/s12984-018-0363-1
– ident: 516_CR43
– ident: 516_CR16
  doi: 10.1109/NER.2015.7146707
– ident: 516_CR14
  doi: 10.1109/JPROC.2015.2498665
– ident: 516_CR25
  doi: 10.1113/JP271748
– ident: 516_CR4
  doi: 10.1186/1743-0003-9-42
– ident: 516_CR5
  doi: 10.1109/TNSRE.2013.2287383
– ident: 516_CR11
  doi: 10.1007/BF00337255
– ident: 516_CR12
  doi: 10.1109/TSP.2007.896108
– ident: 516_CR2
  doi: 10.2147/ORR.S71468
– volume: 122
  start-page: 237
  issue: 2
  year: 1991
  ident: 516_CR21
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(91)90867-S
– ident: 516_CR34
  doi: 10.1126/science.126.3287.1345
– ident: 516_CR8
  doi: 10.1109/TNSRE.2011.2163529
– volume: 113
  start-page: 1941
  issue: 6
  year: 2015
  ident: 516_CR22
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00555.2014
– ident: 516_CR20
  doi: 10.1113/JP273662
– volume: 105
  start-page: 981
  issue: 2
  year: 2011
  ident: 516_CR24
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00855.2010
– ident: 516_CR13
  doi: 10.1016/j.clinph.2009.10.040
– volume: 22
  start-page: 269
  issue: 2
  year: 2014
  ident: 516_CR6
  publication-title: IEEE Trans Neural Syst Rehabil Eng [Internet]
  doi: 10.1109/TNSRE.2014.2305520
– ident: 516_CR29
– ident: 516_CR37
  doi: 10.3389/fnbot.2017.00007
– volume: 87
  start-page: 2200
  issue: 4
  year: 2002
  ident: 516_CR27
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00793.2001
– ident: 516_CR18
  doi: 10.1109/TNSRE.2007.891391
– volume: 97
  start-page: 290
  issue: 6
  year: 1995
  ident: 516_CR35
  publication-title: Electroencephalogr Clin Neurophysiol Mot Control
  doi: 10.1016/0924-980X(95)00188-Q
– ident: 516_CR32
  doi: 10.1016/S1058-2746(98)90003-9
– ident: 516_CR9
  doi: 10.1109/NER.2015.7146702
– ident: #cr-split#-516_CR10.2
– ident: 516_CR33
  doi: 10.1123/jab.20.4.367
– ident: 516_CR38
  doi: 10.1088/1741-2560/13/2/026027
– volume: 26
  start-page: 62
  issue: 1
  year: 2010
  ident: 516_CR39
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2010.05.010
– volume: 21
  start-page: 949
  issue: 6
  year: 2013
  ident: 516_CR42
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2247631
– ident: 516_CR15
  doi: 10.1038/s41551-016-0025
– ident: 516_CR30
– volume: 105
  start-page: 983
  issue: 2
  year: 2011
  ident: 516_CR23
  publication-title: J Neurophysiol
  doi: 10.1152/jn.01060.2010
– ident: 516_CR36
  doi: 10.1109/TNSRE.2017.2766360
SSID ssj0034054
Score 2.4587464
Snippet Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis...
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands....
Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis...
Abstract Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 47
SubjectTerms Active control
Adult
Algorithms
Artificial Limbs
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Decomposition
Degrees of freedom
Density
Discharge
Electrodes
Electromyography
Electromyography - methods
EMG decomposition
Female
Health aspects
Humans
Interference
Internet
Kinematics
Male
Model testing
Motion capture
Motor units
Motors
Movement - physiology
Myoelectric control
Myoelectricity
Neural information
Neurology
Neurons
Neurosciences
Pattern recognition
Predictive control
Prostheses
Prostheses and implants
Prosthesis control
Prosthetics
Regression
Regression analysis
Rehabilitation Medicine
Signal Processing, Computer-Assisted
Time domain analysis
User satisfaction
Wrist
Wrist Joint - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kD6IPVs-vrVUi-AHK0t3NR5PHKpYiKEVa6FtIdpNWlL1ye4f9853ZzZ63FfXF181kSWYmv5mQyS8AL6TXVa2ly40vYi6assx105g8BoeQiQ2ID1Rt8VkdnYqPZ_Js46kvqgkb6IEHxe01LrhKVipgHiO0it4LXjjcJex7JSPv0Rdj3riZGjCYYxoi0hlmqdVeh1FNU7WFydEJVX41iUI9Wf_vkLwRk67XS147NO1j0eFduJOSSHYwDP4e3AjtDG5vUAvO4OandGg-g5ebTMLsZKARYK_YlwlJ9wy2j5PNRpn74I8X9BsqjWY_CA7YN_xlz_LaMbqZwtDS8wVbITAwuuBLvEuBLempsHOUwCZMMFmqh2fzyFyPr-ySLptchC50D-D08MPJ-6M8vcqQ16rgy7wWTSOCMBhco6tMiLrkoYy-kHVpgsJ0x1eB60Ib2RjXlN5Fo0KIojGoQKX5Q9hq5214DKwSXtbS-SB0EEoZXQsfMAHUMRqOG8sMitFKtk7aoJczvtt-66KVHQxr0bCWDGuvMniz7nI58HX8TfgdmX4tSFTb_Qd0QJsc0P7LATN4TY5jCRBwcLVL9xpwikStZQ-kRpgjYrwMdieSuJDrafPoejYBSWcr3KALzMK4yeD5upl6UnFcG-YrkimE0gpz4QweDZ66nhInPkFZ6Qz2Jz48mfO0pf160dOMK4HJoOIZvB29_dew_qjSnf-h0idwq-rXKi5ZuQtby8UqPMXcb-mf9cv8J7wMV8k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEB_0CqIffJyv1SoRfIBl6T6SNPkkrbQUwVJKC_0Wkt2kFeX2vL3D_vnO7GWvtxX7dTO7bDKT30ySyW8A3gunikoJm2qXhZTXeZ6qutZp8BYhExsQHyjb4kgenvFv5-I8bri1Ma2yx8QOqOumoj3y7QJXKhzdUam_TH-nVDWKTldjCY27sIEQrMQINvb2j45PeiwuMRzh8SwzV3K7Re-mKOtCp2iMMr0aeKOOtP9faF7zTTfzJm8cnnY-6eAxPIzBJNtdav8J3PGTMTxYoxgcw73v8fB8DB_WGYXZ6ZJOgH1kJwOy7jE8Oo6662Wegjue0WcoRZr9IVhgP_GTHdtry-iGCkONNzO2QIBgdNGX-Jc8m1PJsAuUwCYMNFnMi2dNYLbDWTalSyeXvvXtMzg72D_9epjG6gxpJbNynla8rrnnGp1ssIX2AXXj8-AyUeXaSwx7XOFLlSktam3r3NmgpfeB1xoHUKryOYwmzcS_BFZwJyphnefKcym1qrjzGAiqEHSJC8wEsl5LpoqjQRU0fpluCaOkWSrWoGINKdZcJfB59cp0ydtxm_AeqX4lSJTb3YNmdmHiDDa19bYQhfQYUHMlg3O8zCwuV3ecFKEsEvhEhmMIGPDnKhvvN2AXiWLL7AqFcEcEeQlsDiRxQlfD5t70TASU1lybfwLvVs30JiXJTXyzIJmMSyUxJk7gxdJSV10qiVdQFCqBnYEND_o8bJn8uOzoxiXHoFCWCWz11n79W_8d0le3d-I13C-6WYiTUWzCaD5b-DcY3c3d2ziF_wLGrlDM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9UwFD_IBNEPPq6PVadE8AFKsW0eSz7O4RiCMmSDfQtJm2zi6B2396J_vue06fV2PsCvzUloch75hXPyC8AL6XVVa-ly44uYi6Ysc900Jo_BYcjEBowPVG3xWR2eiI-n8jSRRdNdmM38fanVuw73I011EiZH81E5wsXrkmjGKC-r9segyxF3iJS0_GO3ybbTs_P_HoM3NqGrBZJXsqT95nNwF24n1Mj2BjXfg2uhncGtDS7BGdz4lLLkM3i5SR3MjgfeAPaKfZmwcs_gzlFS0ihzH_zRgoahWmj2nfyffcMhe1rXjtFVFIaqnS_YCiMBoxu9RLQU2JLeBjtDCWxCRMlSATybR-b6gMou6XbJeehC9wBODj4c7x_m6RmGvFYFX-a1aBoRhMHdNLrKhKhLHsroC1mXJijEN74KXBfayMa4pvQuGhVCFI3BBVSaP4Stdt6GbWCV8LKWzgehg1DK6Fr4gIhPx2g4niQzKEYt2TqtBj2VcWH7s4pWdlCsRcVaUqz9kcGbdZfLgaDjX8LvSfVrQeLW7j-gydnkqrZxwVWyUgGRs9Aqei944fBcuuuVjLzK4DUZjqUIgD9Xu3SRAadIXFp2T2qMa8SEl8HORBI9t542j6ZnU-TobIUncoGwi5sMnq-bqSdVw7VhviKZQiitEPxm8Giw1PWUOBEIykpnsDux4cmcpy3t1_OeV1wJRH-KZ_B2tPZfv_XXJX38X9JP4GbVOyX6ptyBreViFZ4iqlv6Z70__wQpNEiK
  priority: 102
  providerName: Springer Nature
Title Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses
URI https://link.springer.com/article/10.1186/s12984-019-0516-x
https://www.ncbi.nlm.nih.gov/pubmed/30953528
https://www.proquest.com/docview/2211418139
https://www.proquest.com/docview/2204686545
https://pubmed.ncbi.nlm.nih.gov/PMC6451263
https://doaj.org/article/daea2526e916486fbb430a8997b65f32
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZbxMxEB6VVkLwwBGuhRIZiUMCLexhO_YDQm3UUCG1iqpG6ptl79otokpKDlH-PTOb3ZAthSdeIiUer9ae63M8_gzwUjiVFUrYWLskxLxM01iVpY6DtxgysQHjA1VbHMr9Ef9yIk42oLneqp7A2bVLO7pPajQ9f3_5_ecndPiPlcMr-WGGOUtRLYWO0cRkjJByCxOTJCM_4KtNhRyxCa83Nq_t1kpNFYP_n3F6LVFdLaK8spNaJajBPbhTI0u2szSF-7Dhxx24vcY32IGbB_VOegderdMLs-MltwB7zY5azN0duDusFdnIPAA3nNJjqF6a_aAYwb7hIyvq1xmj4yoM1T-ZsgVGC0anfomMybM53R92ihLYhKiT1UXybBKYrYIuu6ATKGd-5mcPYTTYO-7vx_VVDXEhk3weF7wsuecaM26wmfZBpblPg0tEkWovEQO5zOcqUVqU2paps0FL7wMvNU6gVPkj2BxPxv4JsIw7UQjrPFeeS6lVwZ1HVKhC0DmuNiNIGi2Zop4Nuk7j3FTrGSXNUrEGFWtIseYygrerLhdLEo9_Ce-S6leCxL9d_TCZnpranU1pvc1EJj2ia65kcI7nicW1a89JEfIsgjdkOIbsFl-usPVhBxwi8W2ZHaEw9hFbXgTbLUn07qLd3JieaZzDZLhq5wjNch3Bi1Uz9aSKubGfLEgm4VJJBMgRPF5a6mpIOZEMikxF0GvZcGvM7Zbx17OKe1xyRIgyj-BdY-2_X-uvU_r0f0zpM7iVVb6KLiu2YXM-XfjnCAjnrgs3eic9_FSDz13Y2t07HB7ht77sd6u_WLpVGPgF_SFk5w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8cCxXoICRKEigqDls135AqBzLlh6qqq3UNxMnTotAm2Wzq5Y_xW9kJsd2U0Tf-rozseLM-JvxevwNwEthVZQqkfjaBrnPszD0VZZpP3cJQiYKEB-o2mJXDg7410NxuAR_2rswVFbZYmIF1FmR0n_kaxHuVDiGo1i_H__yqWsUna62LTRqt9hyv09wy1a-2_yE9l2Nov7n4ceB33QV8FMZxFM_5VnGHdcYHPIk0i7HMV2Y20CkoXYSw7WNXKwCpUWmkyy0Sa6lcznPdJY6qWIc9wpc5XGsiatf9b-0yB9j8sObk9NQybUSY6miGg_to-tL_7QT-6oWAf8GgoVIeL5K89xRbRUB-3fgVpO6so3a1-7Ckhv14OYCoWEPru00R_U9WF3kL2bDmryAvWL7HWrwHtzeazyl1bkHdm9Cw1BBNjshEGI_cMiKW7ZkdB-GoX8VEzZDOGJ0rZjYnhybUoOyI9RAEaa1rKnCZ0XOkgrV2ZiuuBy70pX34eBSrPYAlkfFyD0CFnErUpFYx5XjUmqVcusw7VR5rmPcznoQtFYyafM1qF_HT1NtmJQ0tWENGtaQYc2pB2_mj4xrlpCLlD-Q6eeKRPBd_VBMjkyDFyZLXBKJSDpM37mSubU8DhLcHK9bKfI48uA1OY4hGMKXS5PmNgVOkQi9zIZQCK5Ex-fBSkcT4SPtilvXMw18leZssXnwYi6mJ6kkb-SKGekEXCqJGbgHD2tPnU8pJhZDESkP1js-3JlzVzL6flyRm0uOKaiMPXjbevvZa_33kz6-eBLP4fpguLNttjd3t57AjahakbgwxQosTycz9xTzyql9Vi1mBt8uGz3-AgZEjvY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB6hrrSCB45yBRYwEocEijaH7bUfy1EtBVYV7Er7ZsWJvYtAbdW0gp_PTOKUZjkkXuOxFXsOf5ZnPgM8EVZlpRJFrG3iY16laayqSsfeFRgysQHjA2VbHMnDEz45FafhndO6y3bvriTbmgZiaZqt9heVb11cyf0adylF2RM6RqOSMYLIHSURPQxgZzSafJ50wThHPMLDZeYfO_a2o4a1__fYvLU5XUycvHB72mxK4-twNaBJNmrVfwMuudkQrmxxDA5h92O4PR_C021KYXbc8gmwZ-xTj617CNemQXmdzE2w0yUNQznS7DvFBfYVh2zoXmtGJSoMVT5fsjVGCEaVvkTA5NiK3gw7QwlsQqTJQmI8m3tWNIGWLajq5NzVrr4FJ-O3x68P4_A8Q1zKJF_FJa8q7rjGXdYXmXZepblLvU1EmWonEffYzOUqUVpUuqhSW3gtnfO80riAUuW3YTCbz9xdYBm3ohSFdVw5LqVWJbcOkaDyXud4wowg6bRkyrAa9ITGN9OcYZQ0rWINKtaQYs2PCF5suixa4o5_Cb8i1W8EiXO7-TBfnpngwqYqXJGJTDpE1FxJby3PkwLPqwdWCp9nETwnwzEUGfDnyiIUOOAUiWPLjITCeEcMeRHs9STRo8t-c2d6JkSU2mR4UucIx3IdweNNM_WkLLmZm69JJuFSSQTFEdxpLXUzpZyIBUWmIjjo2XBvzv2W2Zfzhm9cckSFMo_gZWftv37rr0t677-kH8Hu9M3YfHh39P4-XM4a_0Q3FXswWC3X7gECv5V9GJz7J8o4VSU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+wrist+kinematics+from+motor+unit+discharge+timings+for+the+control+of+active+prostheses&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Tam%C3%A1s+Kapelner&rft.au=Ivan+Vujaklija&rft.au=Ning+Jiang&rft.au=Francesco+Negro&rft.date=2019-04-05&rft.pub=BMC&rft.eissn=1743-0003&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs12984-019-0516-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_daea2526e916486fbb430a8997b65f32
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon