Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses
Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to sati...
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 16; no. 1; pp. 47 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
05.04.2019
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1743-0003 1743-0003 |
DOI | 10.1186/s12984-019-0516-x |
Cover
Loading…
Abstract | Background
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.
Methods
We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.
Results
The regression approach using neural features outperformed regression on classic global EMG features (average
R
2
for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).
Conclusions
These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. |
---|---|
AbstractList | Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Abstract Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R 2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R 2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. The regression approach using neural features outperformed regression on classic global EMG features (average R.sup.2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. Methods We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. Results The regression approach using neural features outperformed regression on classic global EMG features (average R.sup.2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). Conclusions These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Keywords: Prosthesis control, EMG decomposition, Neural information, Motor units Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.BACKGROUNDCurrent myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG.We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.METHODSWe recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated.The regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).RESULTSThe regression approach using neural features outperformed regression on classic global EMG features (average R2 for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52).These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control.CONCLUSIONSThese results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands. With this approach, only a fraction of the available information content of the EMG is used and the resulting control fails to satisfy the majority of users. In this study, we predict joint angles of the three degrees of freedom of the wrist from motor unit discharge timings identified by decomposition of high-density surface EMG. We recorded wrist kinematics and high-density surface EMG signals from six able-bodied individuals and one patient with limb deficiency while they performed movements of three degrees of freedom of the wrist at three different speeds. We compared the performance of linear regression to predict the observed individual wrist joint angles from, either traditional time domain features of the interference EMG or from motor unit discharge timings (which we termed neural features) obtained by EMG decomposition. In addition, we propose and test a simple model-based dimensionality reduction, based on the physiological notion that the discharge timings of motor units are partly correlated. The regression approach using neural features outperformed regression on classic global EMG features (average R for neural features 0.77 and 0.64, for able-bodied subjects and patients, respectively; for time-domain features 0.70 and 0.52). These results indicate that the use of neural information extracted from EMG decomposition can advance man-machine interfacing for prosthesis control. |
ArticleNumber | 47 |
Audience | Academic |
Author | Kapelner, Tamás Negro, Francesco Jiang, Ning Principe, Jose Vujaklija, Ivan Aszmann, Oskar C. Farina, Dario |
Author_xml | – sequence: 1 givenname: Tamás surname: Kapelner fullname: Kapelner, Tamás organization: Institute of Neurorehabilitation Systems, University Medical Center Göttingen – sequence: 2 givenname: Ivan surname: Vujaklija fullname: Vujaklija, Ivan organization: Department of Electrical Engineering and Automation, Aalto University – sequence: 3 givenname: Ning surname: Jiang fullname: Jiang, Ning organization: Department of Systems Design Engineering, University of Waterloo – sequence: 4 givenname: Francesco surname: Negro fullname: Negro, Francesco organization: Department of Clinical and Experimental Sciences, University of Brescia – sequence: 5 givenname: Oskar C. surname: Aszmann fullname: Aszmann, Oskar C. organization: Christian Doppler Laboratory for Restoration of Extremity Function and Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna – sequence: 6 givenname: Jose surname: Principe fullname: Principe, Jose organization: Department of Electrical and Computer Engineering, University of Florida – sequence: 7 givenname: Dario orcidid: 0000-0002-7394-9474 surname: Farina fullname: Farina, Dario email: d.farina@imperial.ac.uk organization: Department of Bioengineering, Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30953528$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9ggS2zYpNjxY-INUlXxqFQJFrC2HPs64yGJBzvTln_PHaa0nQqQF7Z8v3Ose32Oq4MpTVBVLxk9ZaxVbwtrdCtqynRNJVP1zZPqiC0Eryml_ODB-bA6LmWFB0GleFYdcqoll017VHVfMvjo5jj15DrHMpPvcYLRztEVEnIayZjmlMlmijPxsbilzT2QOY6oQAJL8xKIS9Oc00BSIBbNroCscypYKVCeV0-DHQq8uN1Pqm8f3n89_1Rffv54cX52WTtF-Vw74b0AoQF8sI2G0DIOLHRUOqZBab7oGuAtbbX02nrW2aAVQBBeeweq5SfVxc7XJ7sy6xxHm3-aZKP5fZFyb2zGvgYw3oJtZKNAMyVaFbpOcGpbrRedkoE36PVu57XedCOgP7Znhz3T_coUl6ZPV0YJyRrF0eDNrUFOPzZQZjPi8GAY7ARpU0zTUKFaJYVE9PUjdJU2ecJRIcWYYDgIfU_1FhuIU0j4rtuamjPZcqa5WiikTv9C4fIwRvwkCBHv9wSvHjZ61-GfhCDAdoDDDy0Zwh3CqNmm0OxSaDCFZptCc4OaxSONizNGahsSG4f_KpudsuArUw_5fhb_Fv0C0hryZw |
CitedBy_id | crossref_primary_10_1109_TBME_2023_3234642 crossref_primary_10_1109_TNSRE_2022_3171394 crossref_primary_10_1109_TNSRE_2023_3260209 crossref_primary_10_1088_1741_2552_abd461 crossref_primary_10_1088_1741_2552_ac35ac crossref_primary_10_1109_TBME_2023_3340019 crossref_primary_10_1109_JBHI_2020_3002329 crossref_primary_10_1109_TBME_2021_3056930 crossref_primary_10_3389_fnbot_2021_734525 crossref_primary_10_1139_apnm_2023_0354 crossref_primary_10_1016_j_bspc_2022_104303 crossref_primary_10_1109_TNSRE_2023_3326065 crossref_primary_10_1007_s00521_021_05743_y crossref_primary_10_1186_s12938_022_01030_6 crossref_primary_10_1007_s42235_023_00407_0 crossref_primary_10_1038_s41598_020_62773_7 crossref_primary_10_3390_app11104678 crossref_primary_10_3390_s19235227 crossref_primary_10_1016_j_bspc_2019_101733 crossref_primary_10_1109_JBHI_2020_3041861 crossref_primary_10_1152_japplphysiol_00603_2024 crossref_primary_10_1016_j_bspc_2024_107399 crossref_primary_10_1016_j_cmpb_2022_107250 crossref_primary_10_1109_TBME_2020_2989311 crossref_primary_10_1109_LRA_2021_3060400 crossref_primary_10_3390_biomimetics8030328 crossref_primary_10_1109_TNSRE_2023_3336543 crossref_primary_10_1109_TBME_2020_3006508 crossref_primary_10_1109_JBHI_2021_3135575 crossref_primary_10_1186_s12984_024_01345_6 crossref_primary_10_3389_fneur_2020_572069 crossref_primary_10_3390_life12040483 crossref_primary_10_1088_1741_2552_abf186 crossref_primary_10_1088_1741_2552_abeead crossref_primary_10_1088_1741_2552_acae0b crossref_primary_10_1109_TCYB_2023_3290825 crossref_primary_10_1016_j_compbiomed_2021_104353 crossref_primary_10_1109_TNSRE_2020_2967901 crossref_primary_10_1109_TBME_2021_3102947 crossref_primary_10_1109_JBHI_2022_3210019 crossref_primary_10_1016_j_jelekin_2024_102873 crossref_primary_10_1038_s41597_023_02114_1 crossref_primary_10_1080_00140139_2023_2172213 crossref_primary_10_1109_TBME_2022_3153448 crossref_primary_10_1016_j_apergo_2021_103456 crossref_primary_10_1109_ACCESS_2020_3015761 crossref_primary_10_1109_TNSRE_2022_3215246 crossref_primary_10_1088_1741_2552_ac5f1b crossref_primary_10_1038_s41598_023_36490_w crossref_primary_10_1152_japplphysiol_00043_2021 crossref_primary_10_1093_nsr_nwad048 crossref_primary_10_3390_s20164581 |
Cites_doi | 10.1109/10.204774 10.1109/TNSRE.2008.2006207 10.1109/TBME.2008.2008171 10.1523/JNEUROSCI.0830-06.2006 10.1016/j.biomaterials.2004.06.025 10.1109/MLSP.2012.6349712 10.1007/978-3-030-01845-0_34 10.1016/0166-2236(94)90064-7 10.1186/s12984-018-0363-1 10.1109/NER.2015.7146707 10.1109/JPROC.2015.2498665 10.1113/JP271748 10.1186/1743-0003-9-42 10.1109/TNSRE.2013.2287383 10.1007/BF00337255 10.1109/TSP.2007.896108 10.2147/ORR.S71468 10.1016/0304-3940(91)90867-S 10.1126/science.126.3287.1345 10.1109/TNSRE.2011.2163529 10.1152/jn.00555.2014 10.1113/JP273662 10.1152/jn.00855.2010 10.1016/j.clinph.2009.10.040 10.1109/TNSRE.2014.2305520 10.3389/fnbot.2017.00007 10.1152/jn.00793.2001 10.1109/TNSRE.2007.891391 10.1016/0924-980X(95)00188-Q 10.1016/S1058-2746(98)90003-9 10.1109/NER.2015.7146702 10.1123/jab.20.4.367 10.1088/1741-2560/13/2/026027 10.1016/j.bios.2010.05.010 10.1109/TNSRE.2013.2247631 10.1038/s41551-016-0025 10.1152/jn.01060.2010 10.1109/TNSRE.2017.2766360 |
ContentType | Journal Article |
Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s12984-019-0516-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection ProQuest Healthcare Administration Database (NC LIVE) Medical Database Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_daea2526e916486fbb430a8997b65f32 PMC6451263 A583193676 30953528 10_1186_s12984_019_0516_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Christian Doppler Forschungsgesellschaft funderid: http://dx.doi.org/10.13039/501100006012 – fundername: European Research Council () grantid: 267888; 737570 – fundername: Deutscher Akademischer Austauschdienst funderid: http://dx.doi.org/10.13039/501100001655 – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 702491 funderid: http://dx.doi.org/10.13039/100010665 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: 072169 funderid: http://dx.doi.org/10.13039/501100000038 – fundername: ; – fundername: ; grantid: 702491 – fundername: ; grantid: 267888; 737570 – fundername: ; grantid: 072169 |
GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c603t-c4dd4e49eedfa29ef813e1fb05c19e6937b2e380895d9ad1baf96eef4d9dce683 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Wed Aug 27 00:51:32 EDT 2025 Thu Aug 21 18:04:22 EDT 2025 Thu Sep 04 19:56:35 EDT 2025 Fri Jul 25 19:31:56 EDT 2025 Tue Jun 17 21:37:36 EDT 2025 Tue Jun 10 20:47:28 EDT 2025 Thu Jan 02 22:58:34 EST 2025 Thu Apr 24 22:55:38 EDT 2025 Tue Jul 01 02:19:57 EDT 2025 Sat Sep 06 07:18:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | EMG decomposition Motor units Neural information Prosthesis control |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-c4dd4e49eedfa29ef813e1fb05c19e6937b2e380895d9ad1baf96eef4d9dce683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7394-9474 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-019-0516-x |
PMID | 30953528 |
PQID | 2211418139 |
PQPubID | 55356 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_daea2526e916486fbb430a8997b65f32 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451263 proquest_miscellaneous_2204686545 proquest_journals_2211418139 gale_infotracmisc_A583193676 gale_infotracacademiconefile_A583193676 pubmed_primary_30953528 crossref_primary_10_1186_s12984_019_0516_x crossref_citationtrail_10_1186_s12984_019_0516_x springer_journals_10_1186_s12984_019_0516_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-05 |
PublicationDateYYYYMMDD | 2019-04-05 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAbbrev | J NeuroEngineering Rehabil |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2019 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | CJ Luca De (516_CR27) 2002; 87 516_CR1 T Boretius (516_CR39) 2010; 26 516_CR2 CJ Luca De (516_CR23) 2011; 105 516_CR3 516_CR29 516_CR28 516_CR26 516_CR25 516_CR43 516_CR20 516_CR41 Y Masakado (516_CR35) 1995; 97 V Glaser (516_CR42) 2013; 21 516_CR8 D Farina (516_CR24) 2011; 105 516_CR9 516_CR4 N Lago (516_CR40) 2005; 26 516_CR5 516_CR7 516_CR19 516_CR18 516_CR17 JM Hahne (516_CR6) 2014; 22 cr-split#-516_CR10.1 516_CR16 N Kakuda (516_CR21) 1991; 122 CJ Luca De (516_CR22) 2015; 113 516_CR38 cr-split#-516_CR10.2 516_CR15 516_CR37 516_CR14 516_CR36 516_CR13 516_CR12 516_CR34 516_CR11 516_CR33 516_CR32 516_CR31 516_CR30 |
References_xml | – ident: 516_CR3 doi: 10.1109/10.204774 – ident: 516_CR41 doi: 10.1109/TNSRE.2008.2006207 – ident: 516_CR17 doi: 10.1109/TBME.2008.2008171 – ident: 516_CR31 doi: 10.1523/JNEUROSCI.0830-06.2006 – volume: 26 start-page: 2021 issue: 14 year: 2005 ident: 516_CR40 publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2004.06.025 – ident: 516_CR1 – ident: 516_CR19 doi: 10.1109/MLSP.2012.6349712 – ident: 516_CR28 – ident: #cr-split#-516_CR10.1 doi: 10.1007/978-3-030-01845-0_34 – ident: 516_CR26 doi: 10.1016/0166-2236(94)90064-7 – ident: 516_CR7 doi: 10.1186/s12984-018-0363-1 – ident: 516_CR43 – ident: 516_CR16 doi: 10.1109/NER.2015.7146707 – ident: 516_CR14 doi: 10.1109/JPROC.2015.2498665 – ident: 516_CR25 doi: 10.1113/JP271748 – ident: 516_CR4 doi: 10.1186/1743-0003-9-42 – ident: 516_CR5 doi: 10.1109/TNSRE.2013.2287383 – ident: 516_CR11 doi: 10.1007/BF00337255 – ident: 516_CR12 doi: 10.1109/TSP.2007.896108 – ident: 516_CR2 doi: 10.2147/ORR.S71468 – volume: 122 start-page: 237 issue: 2 year: 1991 ident: 516_CR21 publication-title: Neurosci Lett doi: 10.1016/0304-3940(91)90867-S – ident: 516_CR34 doi: 10.1126/science.126.3287.1345 – ident: 516_CR8 doi: 10.1109/TNSRE.2011.2163529 – volume: 113 start-page: 1941 issue: 6 year: 2015 ident: 516_CR22 publication-title: J Neurophysiol doi: 10.1152/jn.00555.2014 – ident: 516_CR20 doi: 10.1113/JP273662 – volume: 105 start-page: 981 issue: 2 year: 2011 ident: 516_CR24 publication-title: J Neurophysiol doi: 10.1152/jn.00855.2010 – ident: 516_CR13 doi: 10.1016/j.clinph.2009.10.040 – volume: 22 start-page: 269 issue: 2 year: 2014 ident: 516_CR6 publication-title: IEEE Trans Neural Syst Rehabil Eng [Internet] doi: 10.1109/TNSRE.2014.2305520 – ident: 516_CR29 – ident: 516_CR37 doi: 10.3389/fnbot.2017.00007 – volume: 87 start-page: 2200 issue: 4 year: 2002 ident: 516_CR27 publication-title: J Neurophysiol doi: 10.1152/jn.00793.2001 – ident: 516_CR18 doi: 10.1109/TNSRE.2007.891391 – volume: 97 start-page: 290 issue: 6 year: 1995 ident: 516_CR35 publication-title: Electroencephalogr Clin Neurophysiol Mot Control doi: 10.1016/0924-980X(95)00188-Q – ident: 516_CR32 doi: 10.1016/S1058-2746(98)90003-9 – ident: 516_CR9 doi: 10.1109/NER.2015.7146702 – ident: #cr-split#-516_CR10.2 – ident: 516_CR33 doi: 10.1123/jab.20.4.367 – ident: 516_CR38 doi: 10.1088/1741-2560/13/2/026027 – volume: 26 start-page: 62 issue: 1 year: 2010 ident: 516_CR39 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2010.05.010 – volume: 21 start-page: 949 issue: 6 year: 2013 ident: 516_CR42 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2247631 – ident: 516_CR15 doi: 10.1038/s41551-016-0025 – ident: 516_CR30 – volume: 105 start-page: 983 issue: 2 year: 2011 ident: 516_CR23 publication-title: J Neurophysiol doi: 10.1152/jn.01060.2010 – ident: 516_CR36 doi: 10.1109/TNSRE.2017.2766360 |
SSID | ssj0034054 |
Score | 2.4587464 |
Snippet | Background
Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis... Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis commands.... Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into prosthesis... Abstract Background Current myoelectric control algorithms for active prostheses map time- and frequency-domain features of the interference EMG signal into... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 47 |
SubjectTerms | Active control Adult Algorithms Artificial Limbs Biomechanical Phenomena Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Decomposition Degrees of freedom Density Discharge Electrodes Electromyography Electromyography - methods EMG decomposition Female Health aspects Humans Interference Internet Kinematics Male Model testing Motion capture Motor units Motors Movement - physiology Myoelectric control Myoelectricity Neural information Neurology Neurons Neurosciences Pattern recognition Predictive control Prostheses Prostheses and implants Prosthesis control Prosthetics Regression Regression analysis Rehabilitation Medicine Signal Processing, Computer-Assisted Time domain analysis User satisfaction Wrist Wrist Joint - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kD6IPVs-vrVUi-AHK0t3NR5PHKpYiKEVa6FtIdpNWlL1ye4f9853ZzZ63FfXF181kSWYmv5mQyS8AL6TXVa2ly40vYi6assx105g8BoeQiQ2ID1Rt8VkdnYqPZ_Js46kvqgkb6IEHxe01LrhKVipgHiO0it4LXjjcJex7JSPv0Rdj3riZGjCYYxoi0hlmqdVeh1FNU7WFydEJVX41iUI9Wf_vkLwRk67XS147NO1j0eFduJOSSHYwDP4e3AjtDG5vUAvO4OandGg-g5ebTMLsZKARYK_YlwlJ9wy2j5PNRpn74I8X9BsqjWY_CA7YN_xlz_LaMbqZwtDS8wVbITAwuuBLvEuBLempsHOUwCZMMFmqh2fzyFyPr-ySLptchC50D-D08MPJ-6M8vcqQ16rgy7wWTSOCMBhco6tMiLrkoYy-kHVpgsJ0x1eB60Ib2RjXlN5Fo0KIojGoQKX5Q9hq5214DKwSXtbS-SB0EEoZXQsfMAHUMRqOG8sMitFKtk7aoJczvtt-66KVHQxr0bCWDGuvMniz7nI58HX8TfgdmX4tSFTb_Qd0QJsc0P7LATN4TY5jCRBwcLVL9xpwikStZQ-kRpgjYrwMdieSuJDrafPoejYBSWcr3KALzMK4yeD5upl6UnFcG-YrkimE0gpz4QweDZ66nhInPkFZ6Qz2Jz48mfO0pf160dOMK4HJoOIZvB29_dew_qjSnf-h0idwq-rXKi5ZuQtby8UqPMXcb-mf9cv8J7wMV8k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEB_0CqIffJyv1SoRfIBl6T6SNPkkrbQUwVJKC_0Wkt2kFeX2vL3D_vnO7GWvtxX7dTO7bDKT30ySyW8A3gunikoJm2qXhZTXeZ6qutZp8BYhExsQHyjb4kgenvFv5-I8bri1Ma2yx8QOqOumoj3y7QJXKhzdUam_TH-nVDWKTldjCY27sIEQrMQINvb2j45PeiwuMRzh8SwzV3K7Re-mKOtCp2iMMr0aeKOOtP9faF7zTTfzJm8cnnY-6eAxPIzBJNtdav8J3PGTMTxYoxgcw73v8fB8DB_WGYXZ6ZJOgH1kJwOy7jE8Oo6662Wegjue0WcoRZr9IVhgP_GTHdtry-iGCkONNzO2QIBgdNGX-Jc8m1PJsAuUwCYMNFnMi2dNYLbDWTalSyeXvvXtMzg72D_9epjG6gxpJbNynla8rrnnGp1ssIX2AXXj8-AyUeXaSwx7XOFLlSktam3r3NmgpfeB1xoHUKryOYwmzcS_BFZwJyphnefKcym1qrjzGAiqEHSJC8wEsl5LpoqjQRU0fpluCaOkWSrWoGINKdZcJfB59cp0ydtxm_AeqX4lSJTb3YNmdmHiDDa19bYQhfQYUHMlg3O8zCwuV3ecFKEsEvhEhmMIGPDnKhvvN2AXiWLL7AqFcEcEeQlsDiRxQlfD5t70TASU1lybfwLvVs30JiXJTXyzIJmMSyUxJk7gxdJSV10qiVdQFCqBnYEND_o8bJn8uOzoxiXHoFCWCWz11n79W_8d0le3d-I13C-6WYiTUWzCaD5b-DcY3c3d2ziF_wLGrlDM priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9UwFD_IBNEPPq6PVadE8AFKsW0eSz7O4RiCMmSDfQtJm2zi6B2396J_vue06fV2PsCvzUloch75hXPyC8AL6XVVa-ly44uYi6Ysc900Jo_BYcjEBowPVG3xWR2eiI-n8jSRRdNdmM38fanVuw73I011EiZH81E5wsXrkmjGKC-r9segyxF3iJS0_GO3ybbTs_P_HoM3NqGrBZJXsqT95nNwF24n1Mj2BjXfg2uhncGtDS7BGdz4lLLkM3i5SR3MjgfeAPaKfZmwcs_gzlFS0ihzH_zRgoahWmj2nfyffcMhe1rXjtFVFIaqnS_YCiMBoxu9RLQU2JLeBjtDCWxCRMlSATybR-b6gMou6XbJeehC9wBODj4c7x_m6RmGvFYFX-a1aBoRhMHdNLrKhKhLHsroC1mXJijEN74KXBfayMa4pvQuGhVCFI3BBVSaP4Stdt6GbWCV8LKWzgehg1DK6Fr4gIhPx2g4niQzKEYt2TqtBj2VcWH7s4pWdlCsRcVaUqz9kcGbdZfLgaDjX8LvSfVrQeLW7j-gydnkqrZxwVWyUgGRs9Aqei944fBcuuuVjLzK4DUZjqUIgD9Xu3SRAadIXFp2T2qMa8SEl8HORBI9t542j6ZnU-TobIUncoGwi5sMnq-bqSdVw7VhviKZQiitEPxm8Giw1PWUOBEIykpnsDux4cmcpy3t1_OeV1wJRH-KZ_B2tPZfv_XXJX38X9JP4GbVOyX6ptyBreViFZ4iqlv6Z70__wQpNEiK priority: 102 providerName: Springer Nature |
Title | Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses |
URI | https://link.springer.com/article/10.1186/s12984-019-0516-x https://www.ncbi.nlm.nih.gov/pubmed/30953528 https://www.proquest.com/docview/2211418139 https://www.proquest.com/docview/2204686545 https://pubmed.ncbi.nlm.nih.gov/PMC6451263 https://doaj.org/article/daea2526e916486fbb430a8997b65f32 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZbxMxEB6VVkLwwBGuhRIZiUMCLexhO_YDQm3UUCG1iqpG6ptl79otokpKDlH-PTOb3ZAthSdeIiUer9ae63M8_gzwUjiVFUrYWLskxLxM01iVpY6DtxgysQHjA1VbHMr9Ef9yIk42oLneqp7A2bVLO7pPajQ9f3_5_ecndPiPlcMr-WGGOUtRLYWO0cRkjJByCxOTJCM_4KtNhRyxCa83Nq_t1kpNFYP_n3F6LVFdLaK8spNaJajBPbhTI0u2szSF-7Dhxx24vcY32IGbB_VOegderdMLs-MltwB7zY5azN0duDusFdnIPAA3nNJjqF6a_aAYwb7hIyvq1xmj4yoM1T-ZsgVGC0anfomMybM53R92ihLYhKiT1UXybBKYrYIuu6ATKGd-5mcPYTTYO-7vx_VVDXEhk3weF7wsuecaM26wmfZBpblPg0tEkWovEQO5zOcqUVqU2paps0FL7wMvNU6gVPkj2BxPxv4JsIw7UQjrPFeeS6lVwZ1HVKhC0DmuNiNIGi2Zop4Nuk7j3FTrGSXNUrEGFWtIseYygrerLhdLEo9_Ce-S6leCxL9d_TCZnpranU1pvc1EJj2ia65kcI7nicW1a89JEfIsgjdkOIbsFl-usPVhBxwi8W2ZHaEw9hFbXgTbLUn07qLd3JieaZzDZLhq5wjNch3Bi1Uz9aSKubGfLEgm4VJJBMgRPF5a6mpIOZEMikxF0GvZcGvM7Zbx17OKe1xyRIgyj-BdY-2_X-uvU_r0f0zpM7iVVb6KLiu2YXM-XfjnCAjnrgs3eic9_FSDz13Y2t07HB7ht77sd6u_WLpVGPgF_SFk5w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VInE8cCxXoICRKEigqDls135AqBzLlh6qqq3UNxMnTotAm2Wzq5Y_xW9kJsd2U0Tf-rozseLM-JvxevwNwEthVZQqkfjaBrnPszD0VZZpP3cJQiYKEB-o2mJXDg7410NxuAR_2rswVFbZYmIF1FmR0n_kaxHuVDiGo1i_H__yqWsUna62LTRqt9hyv09wy1a-2_yE9l2Nov7n4ceB33QV8FMZxFM_5VnGHdcYHPIk0i7HMV2Y20CkoXYSw7WNXKwCpUWmkyy0Sa6lcznPdJY6qWIc9wpc5XGsiatf9b-0yB9j8sObk9NQybUSY6miGg_to-tL_7QT-6oWAf8GgoVIeL5K89xRbRUB-3fgVpO6so3a1-7Ckhv14OYCoWEPru00R_U9WF3kL2bDmryAvWL7HWrwHtzeazyl1bkHdm9Cw1BBNjshEGI_cMiKW7ZkdB-GoX8VEzZDOGJ0rZjYnhybUoOyI9RAEaa1rKnCZ0XOkgrV2ZiuuBy70pX34eBSrPYAlkfFyD0CFnErUpFYx5XjUmqVcusw7VR5rmPcznoQtFYyafM1qF_HT1NtmJQ0tWENGtaQYc2pB2_mj4xrlpCLlD-Q6eeKRPBd_VBMjkyDFyZLXBKJSDpM37mSubU8DhLcHK9bKfI48uA1OY4hGMKXS5PmNgVOkQi9zIZQCK5Ex-fBSkcT4SPtilvXMw18leZssXnwYi6mJ6kkb-SKGekEXCqJGbgHD2tPnU8pJhZDESkP1js-3JlzVzL6flyRm0uOKaiMPXjbevvZa_33kz6-eBLP4fpguLNttjd3t57AjahakbgwxQosTycz9xTzyql9Vi1mBt8uGz3-AgZEjvY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB6hrrSCB45yBRYwEocEijaH7bUfy1EtBVYV7Er7ZsWJvYtAbdW0gp_PTOKUZjkkXuOxFXsOf5ZnPgM8EVZlpRJFrG3iY16laayqSsfeFRgysQHjA2VbHMnDEz45FafhndO6y3bvriTbmgZiaZqt9heVb11cyf0adylF2RM6RqOSMYLIHSURPQxgZzSafJ50wThHPMLDZeYfO_a2o4a1__fYvLU5XUycvHB72mxK4-twNaBJNmrVfwMuudkQrmxxDA5h92O4PR_C021KYXbc8gmwZ-xTj617CNemQXmdzE2w0yUNQznS7DvFBfYVh2zoXmtGJSoMVT5fsjVGCEaVvkTA5NiK3gw7QwlsQqTJQmI8m3tWNIGWLajq5NzVrr4FJ-O3x68P4_A8Q1zKJF_FJa8q7rjGXdYXmXZepblLvU1EmWonEffYzOUqUVpUuqhSW3gtnfO80riAUuW3YTCbz9xdYBm3ohSFdVw5LqVWJbcOkaDyXud4wowg6bRkyrAa9ITGN9OcYZQ0rWINKtaQYs2PCF5suixa4o5_Cb8i1W8EiXO7-TBfnpngwqYqXJGJTDpE1FxJby3PkwLPqwdWCp9nETwnwzEUGfDnyiIUOOAUiWPLjITCeEcMeRHs9STRo8t-c2d6JkSU2mR4UucIx3IdweNNM_WkLLmZm69JJuFSSQTFEdxpLXUzpZyIBUWmIjjo2XBvzv2W2Zfzhm9cckSFMo_gZWftv37rr0t677-kH8Hu9M3YfHh39P4-XM4a_0Q3FXswWC3X7gECv5V9GJz7J8o4VSU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+wrist+kinematics+from+motor+unit+discharge+timings+for+the+control+of+active+prostheses&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Tam%C3%A1s+Kapelner&rft.au=Ivan+Vujaklija&rft.au=Ning+Jiang&rft.au=Francesco+Negro&rft.date=2019-04-05&rft.pub=BMC&rft.eissn=1743-0003&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1186%2Fs12984-019-0516-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_daea2526e916486fbb430a8997b65f32 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |