Mapping and correcting the influence of gaze position on pupil size measurements

Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and i...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 48; no. 2; pp. 510 - 527
Main Authors Hayes, Taylor R., Petrov, Alexander A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1554-3528
1554-351X
1554-3528
DOI10.3758/s13428-015-0588-x

Cover

Loading…
Abstract Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE) —the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.
AbstractList Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE) —the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.
Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE) -- the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.
Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)-the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)-the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.
Author Hayes, Taylor R.
Petrov, Alexander A.
AuthorAffiliation 1 Department of Psychology, Ohio State University, Columbus, OH 43210, USA
AuthorAffiliation_xml – name: 1 Department of Psychology, Ohio State University, Columbus, OH 43210, USA
Author_xml – sequence: 1
  givenname: Taylor R.
  surname: Hayes
  fullname: Hayes, Taylor R.
  email: taylor.r.hayes@gmail.com
  organization: Department of Psychology, Ohio State University
– sequence: 2
  givenname: Alexander A.
  surname: Petrov
  fullname: Petrov, Alexander A.
  organization: Department of Psychology, Ohio State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25953668$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrFTEYhoNU7EV_gBsZcNPNaO6XjSClXqDSLnQdMjnfnKbMJGMyI7W_vhlOLceCQiD5kuf9LnmP0UFMERB6TfA7poR-XwjjVLeYiBYLrdvbZ-iICMFbJqg-2DsfouNSbjBmmhL-Ah1SYQSTUh-hq29umkLcNi5uGp9yBj-v4XwNTYj9sED00KS-2bo7aKZUwhxSbOqalikMTQn1egRXlgwjxLm8RM97NxR49bCfoB-fzr-ffWkvLj9_Pft40XqJ2dx67rVz0CneeRDaUE9NDxJox5gETahnPdFm4wRQLH3HHDeGkY46Sbn0mp2gD7u809KNsPG1dnaDnXIYXf5tkwv275cYru02_bJcMkWlqQlOHxLk9HOBMtsxFA_D4CKkpViiDDMYK8Ur-vYJepOWHOt4KyWV1syoSr3Z7-ixlT-fXQGyA3xOpWToHxGC7Wqo3Rlqq6F2NdTeVo16ovFhdqsHdagw_FdJd8pSq8Qt5L2m_ym6Bwswtq0
CitedBy_id crossref_primary_10_1017_S0272263117000195
crossref_primary_10_1371_journal_pone_0261463
crossref_primary_10_3758_s13428_016_0833_y
crossref_primary_10_1080_20445911_2021_1967366
crossref_primary_10_1111_ejn_16201
crossref_primary_10_1016_j_cognition_2023_105470
crossref_primary_10_1016_j_chb_2020_106385
crossref_primary_10_1016_j_neuropsychologia_2019_107217
crossref_primary_10_3758_s13414_023_02793_3
crossref_primary_10_1101_lm_053781_123
crossref_primary_10_3758_s13428_020_01490_5
crossref_primary_10_1523_JNEUROSCI_1315_17_2017
crossref_primary_10_1145_3530798
crossref_primary_10_1371_journal_pone_0272349
crossref_primary_10_1177_09567976231179378
crossref_primary_10_3758_s13428_017_1007_2
crossref_primary_10_1007_s00426_021_01568_5
crossref_primary_10_1038_s41597_021_00959_y
crossref_primary_10_1523_ENEURO_0243_22_2023
crossref_primary_10_1016_j_ijpsycho_2020_05_010
crossref_primary_10_1371_journal_pone_0272070
crossref_primary_10_1016_j_ijpsycho_2021_03_003
crossref_primary_10_1523_JNEUROSCI_0240_23_2023
crossref_primary_10_1162_jocn_a_02025
crossref_primary_10_3758_s13428_022_01938_w
crossref_primary_10_1080_13803395_2019_1646214
crossref_primary_10_1016_j_ijpsycho_2019_07_002
crossref_primary_10_3389_fnhum_2020_571893
crossref_primary_10_1109_TLT_2023_3326473
crossref_primary_10_1117_1_JMI_10_2_025503
crossref_primary_10_1002_aur_2818
crossref_primary_10_3389_fcogn_2024_1425005
crossref_primary_10_1111_psyp_12964
crossref_primary_10_1016_j_bandl_2021_105010
crossref_primary_10_1038_s41598_024_58480_2
crossref_primary_10_1371_journal_pone_0230775
crossref_primary_10_2139_ssrn_4170482
crossref_primary_10_3758_s13428_018_1075_y
crossref_primary_10_1016_j_tins_2022_05_003
crossref_primary_10_1155_2024_2210991
crossref_primary_10_3758_s13428_024_02590_2
crossref_primary_10_1016_j_neuropsychologia_2025_109117
crossref_primary_10_1017_S1930297500006720
crossref_primary_10_1038_s41598_020_67593_3
crossref_primary_10_1016_j_bandl_2020_104791
crossref_primary_10_1044_2017_JSLHR_L_16_0158
crossref_primary_10_1523_JNEUROSCI_0575_24_2024
crossref_primary_10_1044_2023_JSLHR_22_00596
crossref_primary_10_1111_psyp_14119
crossref_primary_10_1016_j_brat_2020_103576
crossref_primary_10_3389_fnins_2021_676220
crossref_primary_10_1017_S1355617722000224
crossref_primary_10_3758_s13428_024_02529_7
crossref_primary_10_3758_s13428_022_01957_7
crossref_primary_10_1167_jov_20_7_5
crossref_primary_10_1007_s00426_024_01939_8
crossref_primary_10_3389_fpsyg_2022_959638
crossref_primary_10_3758_s13428_024_02587_x
crossref_primary_10_1016_j_neuroimage_2018_11_029
crossref_primary_10_1162_jocn_a_02296
crossref_primary_10_3389_fnagi_2023_1147079
crossref_primary_10_1162_jocn_a_02172
crossref_primary_10_1080_17470218_2017_1307861
crossref_primary_10_3758_s13428_021_01657_8
crossref_primary_10_1038_s41598_023_41357_1
crossref_primary_10_3390_vision9010018
crossref_primary_10_1016_j_cortex_2021_01_014
crossref_primary_10_3389_fnhum_2021_755383
crossref_primary_10_7717_peerj_3783
crossref_primary_10_3758_s13428_021_01759_3
crossref_primary_10_1007_s00213_024_06540_w
crossref_primary_10_1167_jovi_20_3_3
crossref_primary_10_1038_s41598_022_05280_1
crossref_primary_10_1111_infa_12294
crossref_primary_10_3389_fpsyg_2019_01792
crossref_primary_10_1177_0956797620958638
crossref_primary_10_1007_s00182_019_00673_5
crossref_primary_10_1016_j_biopsycho_2021_108046
crossref_primary_10_1080_0361073X_2023_2286872
crossref_primary_10_1126_sciadv_abi9979
crossref_primary_10_1038_s41562_023_01729_z
crossref_primary_10_3758_s13428_023_02098_1
crossref_primary_10_1038_s41598_024_52486_6
crossref_primary_10_1038_s41598_024_70895_5
crossref_primary_10_1038_s41598_021_96643_7
crossref_primary_10_1016_j_neuron_2020_10_029
crossref_primary_10_1016_j_visres_2021_03_011
crossref_primary_10_3758_s13428_021_01762_8
crossref_primary_10_1097_AUD_0000000000001599
crossref_primary_10_1016_j_neuropsychologia_2022_108190
crossref_primary_10_1167_jov_20_9_1
crossref_primary_10_3758_s13428_023_02292_1
crossref_primary_10_1038_s41598_024_59302_1
crossref_primary_10_1111_psyp_12801
crossref_primary_10_3758_s13428_021_01780_6
crossref_primary_10_1177_2331216519832483
crossref_primary_10_1111_ejn_16306
crossref_primary_10_1016_j_ijdrr_2022_102971
crossref_primary_10_1098_rsos_240606
crossref_primary_10_1167_jov_21_7_6
crossref_primary_10_1177_1094428117744882
crossref_primary_10_1016_j_cognition_2024_105815
crossref_primary_10_1111_ejn_15453
crossref_primary_10_3758_s13415_023_01096_2
crossref_primary_10_1098_rspb_2022_0405
crossref_primary_10_1016_j_visres_2020_03_008
crossref_primary_10_3758_s13428_021_01717_z
crossref_primary_10_1152_jn_00205_2019
crossref_primary_10_1523_ENEURO_0122_21_2021
crossref_primary_10_1523_JNEUROSCI_1171_18_2018
crossref_primary_10_3389_fpsyg_2024_1345619
crossref_primary_10_1111_ejn_15508
crossref_primary_10_1038_s41598_019_47961_4
crossref_primary_10_1016_j_eswa_2019_06_032
crossref_primary_10_3389_fpsyg_2021_702538
crossref_primary_10_1111_psyp_14035
crossref_primary_10_1177_23312165231206925
crossref_primary_10_1177_23312165241306091
crossref_primary_10_3390_jintelligence10040107
crossref_primary_10_1111_psyp_14392
crossref_primary_10_1080_13506285_2024_2347605
crossref_primary_10_1152_jn_00964_2015
crossref_primary_10_1111_cogs_12682
crossref_primary_10_1016_j_poetic_2020_101526
crossref_primary_10_1097_AUD_0000000000001214
crossref_primary_10_1177_2331216518800869
Cites_doi 10.1146/annurev.neuro.28.061604.135709
10.1037/0033-2909.91.2.276
10.1016/S1071-5819(03)00017-X
10.1038/nn.3130
10.1111/j.1469-8986.1982.tb02540.x
10.1016/j.ijpsycho.2007.04.004
10.1016/0160-5402(86)90002-1
10.1097/00006324-197808000-00008
10.3758/s13428-011-0109-5
10.2174/157015908785777229
10.1002/9781118887486
10.1126/science.143.3611.1190
10.1016/j.ijpsycho.2010.01.006
10.1111/j.1469-8986.2007.00606.x
10.1167/13.6.3
10.1016/0042-6989(62)90021-4
10.1037/h0078820
10.3758/BF03328444
10.1117/12.529999
10.1167/14.4.1
10.1111/j.1469-8986.2010.01069.x
10.1136/bjo.32.6.347
10.3758/s13428-013-0327-0
10.1111/j.1469-8986.2011.01226.x
ContentType Journal Article
Copyright Psychonomic Society, Inc. 2015
Copyright Springer Science & Business Media Jun 2016
Copyright_xml – notice: Psychonomic Society, Inc. 2015
– notice: Copyright Springer Science & Business Media Jun 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
5PM
DOI 10.3758/s13428-015-0588-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 527
ExternalDocumentID PMC4637269
4089463941
25953668
10_3758_s13428_015_0588_x
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R21 EY022745
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
ABRTQ
K9.
7X8
5PM
ID FETCH-LOGICAL-c603t-c4c8aaeb74bce5892c29fe6e2b336e812c3f189da5e206cb3a49931b2a6246c83
IEDL.DBID U2A
ISSN 1554-3528
1554-351X
IngestDate Thu Aug 21 13:29:56 EDT 2025
Fri Jul 11 10:25:53 EDT 2025
Fri Jul 25 07:56:51 EDT 2025
Wed Feb 19 02:40:51 EST 2025
Thu Apr 24 23:02:10 EDT 2025
Tue Jul 01 01:05:51 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Eye tracking
Pupil foreshortening error
Pupillometry
Artificial eye
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-c4c8aaeb74bce5892c29fe6e2b336e812c3f189da5e206cb3a49931b2a6246c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.3758/s13428-015-0588-x.pdf
PMID 25953668
PQID 1796788397
PQPubID 976348
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4637269
proquest_miscellaneous_1793900774
proquest_journals_1796788397
pubmed_primary_25953668
crossref_primary_10_3758_s13428_015_0588_x
crossref_citationtrail_10_3758_s13428_015_0588_x
springer_journals_10_3758_s13428_015_0588_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References SR Research (2010). Eyelink 1000 users manual, version 1.5.2. Mississauga, ON : SR Research Ltd.
MurphyPRRobertsonIHBalstersJHO’ConnellRGPupillometry and P3 index of locus coeruleus noradrenergic arousal function in humansPsychophysiology201148111531154210.1111/j.1469-8986.2011.01226.x
SamuelsERSzabadiEFunctional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function Part I: Principles of functional organizationCurrent Neuropharmacology20086323525310.2174/157015908785777229195067232687936
SensoMotoric Instruments (2009). iView X User’s Manual, Version 2.4. Boston, MA : Senso Motoric Instruments GmbH.
Tobii Technology (2011). Tobii T60 & T120 User Manual, Revision 4. Danderyd, SE : Tobii Technology AB.
HessEHPoltJMPupil size in relation to mental activity during simple problem-solvingScience196414336111190119210.1126/science.143.3611.119017833905
MurphyPRO’ConnellRGO’SullivanMRobertsonIHBalstersJHPupil diameter covaries with bold activity in human locus coeruleusHuman Brain Mapping, Advance online publication2014
KlingnerJTverskyBHanrahanPEffects of visual and verbal presentation on cognitive load in vigilance, memory and arithmetic tasksPsychophysiology201148332333210.1111/j.1469-8986.2010.01069.x20718934
Miller, N.R., & Newman, N.J. (2005). Walsh & Hoyt’s clinical neuro-ophthalmology: Volume one (6th ed.)Philadelphia, PA: Lippincott Williams & Wilkins.
BeattyJLucero-WagonerBCacioppoJ TTassinaryL GBerntsonG GThe Pupillary SystemHandbook of Psychophysiology(2nd ed2000USACambridge University Press142162
VõMLJacobsAMKuchinkeLHofmannMConradMSchachtAThe coupling of emotion and cognition in the eye: introducing the pupil old/new effectPsychophysiology200845113014017910733
SpringKHStilesWSApparent shape and size of the pupil viewed obliquelyBritish Journal of Ophthalmology19483234735410.1136/bjo.32.6.34718170457510837
Aston-JonesGCohenJAn integrative theory of locus Coeruleus-norepinephrine function: adaptive gain and optimal performanceAnnual Review of Neuroscience20052840345010.1146/annurev.neuro.28.061604.13570916022602
LoewenfeldIThe pupil: anatomy, physiology and clinical applications1993DetroitMI: Wayne State University Press
MathurAGehrmannJAtchisonDAPupil shape as viewed along the horizontal visual fieldJournal of Vision20131361810.1167/13.6.3
Atchison, D., & Smith, G. (2000). Optics of the human eye. Oxford, UK: Butterworth-Heinemann.
EinhäuserWKochCCarterOLPupil dilation betrays the timing of decisionsFrontiers in Human Neuroscience201041819
BeattyJTask-evoked pupillary responses, processing load, and the structure of processing resourcesPsychological Bulletin198291227629210.1037/0033-2909.91.2.2767071262
JustMACarpenterPAThe intensity dimension of thought: pupillometric indices of sentence processingCanadian Journal of Experimental Psychology199347231033910.1037/h00788208364533
Tobii Technology (2008). Tobii X60 & X120 User Manual, Revision 3. Danderyd, SE : Tobii Technology AB.
DodgsonNAVariation and extrema of human interpupillary distanceStereoscopic Displays and Virtual Reality Systems XI20045291364610.1117/12.529999
KossMPupillary dilation as an index of central nervous system α2-adrenoceptor activationJournal of Pharmacological Methods198615111910.1016/0160-5402(86)90002-12869190
PartalaTSurakkaVPupil size variation as an indication of affective processingInternational Journal of Human-Computer Studies20035918519810.1016/S1071-5819(03)00017-X
EverittBSDunnGApplied multivariate analysis2001New YorkOxford University Press10.1002/9781118887486
Kuchinke, L., Võ, M.L., Hofmann, M., & Jacobs, A.M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(132–140).
GaglBHawelkaSHutzlerFSystematic influence of gaze position on pupil size measurement: analysis and correctionBehavior Research Methods20114341171118110.3758/s13428-011-0109-5216379433218283
PreuschoffKMariusBEinhäuserWPupil dilation signals surprise: evidence for noradrenaline’s role in decision-makingFrontiers in Neuroscience20115115112
Hayes, T.R., & Petrov, A.A. (2015). Learning is in the eye of the beholder: phasic pupil diameter decreases during perceptual learning. (Manuscript submitted for publication).
NassarMRRumseyKMWilsonRCParikhKHeaslyBGoldJIRational regulation of learning dynamics by pupil-linked arousal systemsNature Neuroscience20121571040104610.1038/nn.3130226604793386464
AlnaesDSneveMHEspesethTEndestadTvan de PavertSHPLaengBPupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and locus coeruleusJournal of Vision201414412010.1167/14.4.124692319
Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.
AgrestiAAnalysis of ordinal categorical data1984New YorkJohn Wiley and Sons
JenningsJACharmanWNOptical image quality in the peripheral retinaAmerican Journal of Optometry and Physiological Optics197855858259010.1097/00006324-197808000-00008742649
RaisigSWelkeTHagendorfHMeerEvanderI spy with my little eye: detection of temporal violations in event sequences and the pupillary responseInternational Journal of Psychophysiology2010761810.1016/j.ijpsycho.2010.01.00620093148
TorgersonWSTheory and Methods of Scaling1958New YorkWiley
BrissonJMainvilleMMaillouxDBeaulieuCSerresJSiroisSPupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackersBehavior Research Methods2013451322133110.3758/s13428-013-0327-023468182
ForsythDAPonceJComputer vision: A modern approach20112ndUpper Saddle RiverNJ: Prentice Hall
BeattyJPhasic not tonic pupillary responses vary with auditory vigilance performancePsychophysiology198219216717210.1111/j.1469-8986.1982.tb02540.x7071295
HolmqvistKNyströmMAnderssonRDewhurstRJarodzkaHWeijerJvandeEye tracking: A comprehensive guide to methods and measures2011OxfordOxford University Press
Tobii Technology AB (2010). Tobii eye tracking: an introduction to eye tracking and Tobii eye trackers. (white paper). Retrieved from http://www.tobii.com/eye-tracking-research/global/library/white-papers/tobii-eye-tracking-white-paper/.
BeattyJKahnemanDPupillary changes in two memory tasksPsychonomic Science1966537137210.3758/BF03328444
JayBSThe effective pupillary area at varying perimetric anglesVision Research1962141842410.1016/0042-6989(62)90021-4
PR Murphy (588_CR28) 2014
ML Võ (588_CR42) 2008; 45
J Beatty (588_CR6) 1982; 91
EH Hess (588_CR16) 1964; 143
K Holmqvist (588_CR17) 2011
DA Forsyth (588_CR13) 2011
BS Everitt (588_CR12) 2001
S Raisig (588_CR33) 2010; 76
G Aston-Jones (588_CR3) 2005; 28
588_CR40
A Mathur (588_CR26) 2013; 13
J Klingner (588_CR22) 2011; 48
MR Nassar (588_CR30) 2012; 15
KH Spring (588_CR36) 1948; 32
588_CR27
B Gagl (588_CR14) 2011; 43
588_CR21
T Partala (588_CR31) 2003; 59
J Beatty (588_CR5) 1982; 19
588_CR24
J Beatty (588_CR7) 1966; 5
A Agresti (588_CR1) 1984
588_CR4
J Beatty (588_CR8) 2000
MA Just (588_CR20) 1993; 47
W Einhäuser (588_CR11) 2010; 4
PR Murphy (588_CR29) 2011; 48
I Loewenfeld (588_CR25) 1993
K Preuschoff (588_CR32) 2011; 5
D Alnaes (588_CR2) 2014; 14
BS Jay (588_CR18) 1962; 1
J Brisson (588_CR9) 2013; 45
M Koss (588_CR23) 1986; 15
JA Jennings (588_CR19) 1978; 55
588_CR15
588_CR37
588_CR39
588_CR38
ER Samuels (588_CR34) 2008; 6
NA Dodgson (588_CR10) 2004; 5291
588_CR35
WS Torgerson (588_CR41) 1958
17532075 - Int J Psychophysiol. 2007 Aug;65(2):132-40
23648308 - J Vis. 2013 May 06;13(6):null
21994487 - Front Neurosci. 2011 Sep 30;5:115
22660479 - Nat Neurosci. 2012 Jun 03;15(7):1040-6
23468182 - Behav Res Methods. 2013 Dec;45(4):1322-31
7071262 - Psychol Bull. 1982 Mar;91(2):276-92
2869190 - J Pharmacol Methods. 1986 Feb;15(1):1-19
17833905 - Science. 1964 Mar 13;143(3611):1190-2
19506723 - Curr Neuropharmacol. 2008 Sep;6(3):235-53
17910733 - Psychophysiology. 2008 Jan;45(1):130-40
21762458 - Psychophysiology. 2011 Nov;48(11):1532-43
24692319 - J Vis. 2014 Apr 01;14(4):null
8364533 - Can J Exp Psychol. 1993 Jun;47(2):310-39
20093148 - Int J Psychophysiol. 2010 Apr;76(1):1-8
742649 - Am J Optom Physiol Opt. 1978 Aug;55(8):582-90
20204145 - Front Hum Neurosci. 2010 Feb 26;4:18
18170457 - Br J Ophthalmol. 1948 Jun;32(6):347-54
7071295 - Psychophysiology. 1982 Mar;19(2):167-72
20718934 - Psychophysiology. 2011 Mar;48(3):323-32
24510607 - Hum Brain Mapp. 2014 Aug;35(8):4140-54
21637943 - Behav Res Methods. 2011 Dec;43(4):1171-81
16022602 - Annu Rev Neurosci. 2005;28:403-50
References_xml – reference: BeattyJKahnemanDPupillary changes in two memory tasksPsychonomic Science1966537137210.3758/BF03328444
– reference: SensoMotoric Instruments (2009). iView X User’s Manual, Version 2.4. Boston, MA : Senso Motoric Instruments GmbH.
– reference: AgrestiAAnalysis of ordinal categorical data1984New YorkJohn Wiley and Sons
– reference: TorgersonWSTheory and Methods of Scaling1958New YorkWiley
– reference: KlingnerJTverskyBHanrahanPEffects of visual and verbal presentation on cognitive load in vigilance, memory and arithmetic tasksPsychophysiology201148332333210.1111/j.1469-8986.2010.01069.x20718934
– reference: SpringKHStilesWSApparent shape and size of the pupil viewed obliquelyBritish Journal of Ophthalmology19483234735410.1136/bjo.32.6.34718170457510837
– reference: BeattyJTask-evoked pupillary responses, processing load, and the structure of processing resourcesPsychological Bulletin198291227629210.1037/0033-2909.91.2.2767071262
– reference: BeattyJPhasic not tonic pupillary responses vary with auditory vigilance performancePsychophysiology198219216717210.1111/j.1469-8986.1982.tb02540.x7071295
– reference: Hayes, T.R., & Petrov, A.A. (2015). Learning is in the eye of the beholder: phasic pupil diameter decreases during perceptual learning. (Manuscript submitted for publication).
– reference: JayBSThe effective pupillary area at varying perimetric anglesVision Research1962141842410.1016/0042-6989(62)90021-4
– reference: BrissonJMainvilleMMaillouxDBeaulieuCSerresJSiroisSPupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackersBehavior Research Methods2013451322133110.3758/s13428-013-0327-023468182
– reference: DodgsonNAVariation and extrema of human interpupillary distanceStereoscopic Displays and Virtual Reality Systems XI20045291364610.1117/12.529999
– reference: Kuchinke, L., Võ, M.L., Hofmann, M., & Jacobs, A.M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(132–140).
– reference: MurphyPRRobertsonIHBalstersJHO’ConnellRGPupillometry and P3 index of locus coeruleus noradrenergic arousal function in humansPsychophysiology201148111531154210.1111/j.1469-8986.2011.01226.x
– reference: MathurAGehrmannJAtchisonDAPupil shape as viewed along the horizontal visual fieldJournal of Vision20131361810.1167/13.6.3
– reference: PartalaTSurakkaVPupil size variation as an indication of affective processingInternational Journal of Human-Computer Studies20035918519810.1016/S1071-5819(03)00017-X
– reference: Tobii Technology (2008). Tobii X60 & X120 User Manual, Revision 3. Danderyd, SE : Tobii Technology AB.
– reference: VõMLJacobsAMKuchinkeLHofmannMConradMSchachtAThe coupling of emotion and cognition in the eye: introducing the pupil old/new effectPsychophysiology200845113014017910733
– reference: Miller, N.R., & Newman, N.J. (2005). Walsh & Hoyt’s clinical neuro-ophthalmology: Volume one (6th ed.)Philadelphia, PA: Lippincott Williams & Wilkins.
– reference: BeattyJLucero-WagonerBCacioppoJ TTassinaryL GBerntsonG GThe Pupillary SystemHandbook of Psychophysiology(2nd ed2000USACambridge University Press142162
– reference: KossMPupillary dilation as an index of central nervous system α2-adrenoceptor activationJournal of Pharmacological Methods198615111910.1016/0160-5402(86)90002-12869190
– reference: Tobii Technology (2011). Tobii T60 & T120 User Manual, Revision 4. Danderyd, SE : Tobii Technology AB.
– reference: EverittBSDunnGApplied multivariate analysis2001New YorkOxford University Press10.1002/9781118887486
– reference: RaisigSWelkeTHagendorfHMeerEvanderI spy with my little eye: detection of temporal violations in event sequences and the pupillary responseInternational Journal of Psychophysiology2010761810.1016/j.ijpsycho.2010.01.00620093148
– reference: Atchison, D., & Smith, G. (2000). Optics of the human eye. Oxford, UK: Butterworth-Heinemann.
– reference: NassarMRRumseyKMWilsonRCParikhKHeaslyBGoldJIRational regulation of learning dynamics by pupil-linked arousal systemsNature Neuroscience20121571040104610.1038/nn.3130226604793386464
– reference: LoewenfeldIThe pupil: anatomy, physiology and clinical applications1993DetroitMI: Wayne State University Press
– reference: PreuschoffKMariusBEinhäuserWPupil dilation signals surprise: evidence for noradrenaline’s role in decision-makingFrontiers in Neuroscience20115115112
– reference: AlnaesDSneveMHEspesethTEndestadTvan de PavertSHPLaengBPupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and locus coeruleusJournal of Vision201414412010.1167/14.4.124692319
– reference: SR Research (2010). Eyelink 1000 users manual, version 1.5.2. Mississauga, ON : SR Research Ltd.
– reference: GaglBHawelkaSHutzlerFSystematic influence of gaze position on pupil size measurement: analysis and correctionBehavior Research Methods20114341171118110.3758/s13428-011-0109-5216379433218283
– reference: JustMACarpenterPAThe intensity dimension of thought: pupillometric indices of sentence processingCanadian Journal of Experimental Psychology199347231033910.1037/h00788208364533
– reference: HessEHPoltJMPupil size in relation to mental activity during simple problem-solvingScience196414336111190119210.1126/science.143.3611.119017833905
– reference: MurphyPRO’ConnellRGO’SullivanMRobertsonIHBalstersJHPupil diameter covaries with bold activity in human locus coeruleusHuman Brain Mapping, Advance online publication2014
– reference: JenningsJACharmanWNOptical image quality in the peripheral retinaAmerican Journal of Optometry and Physiological Optics197855858259010.1097/00006324-197808000-00008742649
– reference: HolmqvistKNyströmMAnderssonRDewhurstRJarodzkaHWeijerJvandeEye tracking: A comprehensive guide to methods and measures2011OxfordOxford University Press
– reference: ForsythDAPonceJComputer vision: A modern approach20112ndUpper Saddle RiverNJ: Prentice Hall
– reference: Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall.
– reference: EinhäuserWKochCCarterOLPupil dilation betrays the timing of decisionsFrontiers in Human Neuroscience201041819
– reference: SamuelsERSzabadiEFunctional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function Part I: Principles of functional organizationCurrent Neuropharmacology20086323525310.2174/157015908785777229195067232687936
– reference: Aston-JonesGCohenJAn integrative theory of locus Coeruleus-norepinephrine function: adaptive gain and optimal performanceAnnual Review of Neuroscience20052840345010.1146/annurev.neuro.28.061604.13570916022602
– reference: Tobii Technology AB (2010). Tobii eye tracking: an introduction to eye tracking and Tobii eye trackers. (white paper). Retrieved from http://www.tobii.com/eye-tracking-research/global/library/white-papers/tobii-eye-tracking-white-paper/.
– volume: 28
  start-page: 403
  year: 2005
  ident: 588_CR3
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.28.061604.135709
– volume: 91
  start-page: 276
  issue: 2
  year: 1982
  ident: 588_CR6
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.91.2.276
– ident: 588_CR15
– ident: 588_CR40
– volume: 59
  start-page: 185
  year: 2003
  ident: 588_CR31
  publication-title: International Journal of Human-Computer Studies
  doi: 10.1016/S1071-5819(03)00017-X
– volume-title: Eye tracking: A comprehensive guide to methods and measures
  year: 2011
  ident: 588_CR17
– volume: 15
  start-page: 1040
  issue: 7
  year: 2012
  ident: 588_CR30
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3130
– ident: 588_CR4
– volume: 19
  start-page: 167
  issue: 2
  year: 1982
  ident: 588_CR5
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1982.tb02540.x
– volume-title: Computer vision: A modern approach
  year: 2011
  ident: 588_CR13
– ident: 588_CR24
  doi: 10.1016/j.ijpsycho.2007.04.004
– volume: 15
  start-page: 1
  issue: 1
  year: 1986
  ident: 588_CR23
  publication-title: Journal of Pharmacological Methods
  doi: 10.1016/0160-5402(86)90002-1
– volume-title: The pupil: anatomy, physiology and clinical applications
  year: 1993
  ident: 588_CR25
– volume: 55
  start-page: 582
  issue: 8
  year: 1978
  ident: 588_CR19
  publication-title: American Journal of Optometry and Physiological Optics
  doi: 10.1097/00006324-197808000-00008
– ident: 588_CR38
– volume: 43
  start-page: 1171
  issue: 4
  year: 2011
  ident: 588_CR14
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-011-0109-5
– ident: 588_CR35
– volume-title: Theory and Methods of Scaling
  year: 1958
  ident: 588_CR41
– volume: 6
  start-page: 235
  issue: 3
  year: 2008
  ident: 588_CR34
  publication-title: Current Neuropharmacology
  doi: 10.2174/157015908785777229
– ident: 588_CR37
– volume-title: Applied multivariate analysis
  year: 2001
  ident: 588_CR12
  doi: 10.1002/9781118887486
– volume: 143
  start-page: 1190
  issue: 3611
  year: 1964
  ident: 588_CR16
  publication-title: Science
  doi: 10.1126/science.143.3611.1190
– volume: 76
  start-page: 1
  year: 2010
  ident: 588_CR33
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2010.01.006
– volume: 45
  start-page: 130
  issue: 1
  year: 2008
  ident: 588_CR42
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00606.x
– volume: 13
  start-page: 1
  issue: 6
  year: 2013
  ident: 588_CR26
  publication-title: Journal of Vision
  doi: 10.1167/13.6.3
– volume: 1
  start-page: 418
  year: 1962
  ident: 588_CR18
  publication-title: Vision Research
  doi: 10.1016/0042-6989(62)90021-4
– volume: 47
  start-page: 310
  issue: 2
  year: 1993
  ident: 588_CR20
  publication-title: Canadian Journal of Experimental Psychology
  doi: 10.1037/h0078820
– volume: 5
  start-page: 371
  year: 1966
  ident: 588_CR7
  publication-title: Psychonomic Science
  doi: 10.3758/BF03328444
– volume: 5291
  start-page: 36
  year: 2004
  ident: 588_CR10
  publication-title: Stereoscopic Displays and Virtual Reality Systems XI
  doi: 10.1117/12.529999
– ident: 588_CR27
– volume: 14
  start-page: 1
  issue: 4
  year: 2014
  ident: 588_CR2
  publication-title: Journal of Vision
  doi: 10.1167/14.4.1
– volume: 4
  start-page: 1
  issue: 18
  year: 2010
  ident: 588_CR11
  publication-title: Frontiers in Human Neuroscience
– volume: 48
  start-page: 323
  issue: 3
  year: 2011
  ident: 588_CR22
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01069.x
– year: 2014
  ident: 588_CR28
  publication-title: Human Brain Mapping, Advance online publication
– volume: 32
  start-page: 347
  year: 1948
  ident: 588_CR36
  publication-title: British Journal of Ophthalmology
  doi: 10.1136/bjo.32.6.347
– ident: 588_CR21
– volume: 45
  start-page: 1322
  year: 2013
  ident: 588_CR9
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-013-0327-0
– volume-title: Analysis of ordinal categorical data
  year: 1984
  ident: 588_CR1
– ident: 588_CR39
– volume: 48
  start-page: 1531
  issue: 11
  year: 2011
  ident: 588_CR29
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2011.01226.x
– volume: 5
  start-page: 1
  issue: 115
  year: 2011
  ident: 588_CR32
  publication-title: Frontiers in Neuroscience
– start-page: 142
  volume-title: Handbook of Psychophysiology(2nd ed
  year: 2000
  ident: 588_CR8
– reference: 21994487 - Front Neurosci. 2011 Sep 30;5:115
– reference: 17910733 - Psychophysiology. 2008 Jan;45(1):130-40
– reference: 20093148 - Int J Psychophysiol. 2010 Apr;76(1):1-8
– reference: 20718934 - Psychophysiology. 2011 Mar;48(3):323-32
– reference: 20204145 - Front Hum Neurosci. 2010 Feb 26;4:18
– reference: 2869190 - J Pharmacol Methods. 1986 Feb;15(1):1-19
– reference: 24692319 - J Vis. 2014 Apr 01;14(4):null
– reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50
– reference: 21637943 - Behav Res Methods. 2011 Dec;43(4):1171-81
– reference: 18170457 - Br J Ophthalmol. 1948 Jun;32(6):347-54
– reference: 17833905 - Science. 1964 Mar 13;143(3611):1190-2
– reference: 24510607 - Hum Brain Mapp. 2014 Aug;35(8):4140-54
– reference: 21762458 - Psychophysiology. 2011 Nov;48(11):1532-43
– reference: 7071295 - Psychophysiology. 1982 Mar;19(2):167-72
– reference: 742649 - Am J Optom Physiol Opt. 1978 Aug;55(8):582-90
– reference: 8364533 - Can J Exp Psychol. 1993 Jun;47(2):310-39
– reference: 17532075 - Int J Psychophysiol. 2007 Aug;65(2):132-40
– reference: 19506723 - Curr Neuropharmacol. 2008 Sep;6(3):235-53
– reference: 23648308 - J Vis. 2013 May 06;13(6):null
– reference: 23468182 - Behav Res Methods. 2013 Dec;45(4):1322-31
– reference: 22660479 - Nat Neurosci. 2012 Jun 03;15(7):1040-6
– reference: 7071262 - Psychol Bull. 1982 Mar;91(2):276-92
SSID ssj0038214
Score 2.5344596
Snippet Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 510
SubjectTerms Behavioral Science and Psychology
Cognitive Psychology
Data collection
Eye Movements - physiology
Eyes & eyesight
Fixation, Ocular
Humans
Mean square errors
Models, Biological
Psychology
Pupil - physiology
Size
Title Mapping and correcting the influence of gaze position on pupil size measurements
URI https://link.springer.com/article/10.3758/s13428-015-0588-x
https://www.ncbi.nlm.nih.gov/pubmed/25953668
https://www.proquest.com/docview/1796788397
https://www.proquest.com/docview/1793900774
https://pubmed.ncbi.nlm.nih.gov/PMC4637269
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6Cc8klNH1FTWo20FOCqLUvSUdT4piWhBxqcE9iX3IMrmwiG9L--s7qlbpOAgWdpFk9ZnZnvtHMzgB8yqW1UaxdqJJch9yKNEw1CsTqXFX1pqz0-52vb-R4wr9OxbTZx1222e5tSLLS1N6vRFD7uYwY99WUIxEOBN4NgeO-8K47TuIJHbbqlyU04nX48ulh2wZoB1XuJkf-EyGtDM_oFRw2iJEMaxEfwZ4rXsNBp7h-vYHba-WrLMyIKiwxvt2G8cnMBLEdmbdNSMgyJzP125E2TYvgsdqs5gtSzvH0z8efheVbmIwuv38Zh02nhNDIAVuHhptEKadjro0TSUoNTXMnHdWMSYc23LA8SlKrhKMDaTRT6OiwSFMlKZcmYe-gVywLdwwE7T-KVWkc5jj1cTMbcSe0j_XaOGEBDFr2ZaYpI-67WSwydCc8x7Oa4xlyPPMczx4COO-GrOoaGi8Rn7YyyZrlVGaoNdCoIpaLAzjrLuNC8NENVbjlpqJhqa9OxAN4X4uwexr6eIJJmQQQbwm3I_BFtrevFPO7qtg2lyymMg3gop0Gf73Wcx_x4b-oT-AAYZisE9BOobe-37iPCHXWug_7w6sf3y771RT_Awy0_LA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcCgXVFoKKS9X4tQq6sZ2HOeIEGhpWdQDK3Gz_ApdiWZXza4E_HrGeZUtFAkpp2Scx4w9801mPANwWAjnksz4WMvCxNyleZwbFIgzha7rTTkR9juPLsRwzL9fpVftPu6qy3bvQpK1pg5-JYLab1XCeKimnKTxIMW7IXBcRSwgQx7XmB516pdJmvAmfPn8sGUD9ARVPk2O_CdCWhue03ew3iJGctSIeAPe-PI9rPWK6-4D_BzpUGXhmujSERvabdiQzEwQ25FJ14SETAtyre896dK0CB6zxWxyQ6oJnv7992dhtQnj05PL42HcdkqIrRiweWy5lVp7k3FjfSpzamleeOGpYUx4tOGWFYnMnU49HQhrmEZHhyWGakG5sJJ9hJVyWvptIGj_Uaza4DDPaYibuYT71IRYr8ski2DQsU_Ztox46GZxo9CdCBxXDccVclwFjqvbCL70Q2ZNDY2XiHc7mah2OVUKtQYaVcRyWQSf-8u4EEJ0Q5d-uqhpWB6qE_EIthoR9k9DHy9lQsgIsiXh9gShyPbylXLyqy62zQXLqMgj-NpNg0ev9b-P-PQq6gN4O7wcnavzs4sfO7CGkEw0yWi7sDL_s_B7CHvmZr-e5g8uA_4P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VICEuqKU8UigYiRMoYmM7TnJcUVa0PMSBlbhZfgVWotlVsyvR_vqO86LLAlKlnJJxHjP2-HNm_A3AYS6sjRLtQpXmOuQ2zsJMo0GszlXFN2WF3-98dS3Oh_zHXXzX1Dkt22z3NiRZ72nwLE3F9GRicz_EGQLckzJi3DMrR3HYi_HOCCKX0RtHvlsPab91xSylEa9Dma83m5-MFhDmYqLki2hpNQkNPsJagx5Jvzb3J_jginVY7ZzY789wc6U848I9UYUlxpfeMD6xmSDOI6O2IAkZ5-Re_XGkTdkieExmk9EjKUd4-ufzj8NyA4aDs9vT87CpmhAa0WPT0HCTKuV0wrVxcZpRQ7PcCUc1Y8LhfG5YHqWZVbGjPWE0U7joYZGmSlAuTMo2YakYF24bCGIBNLHS2Mxx6mNoNuIu1j7ua5OUBdBr1SdNQynuK1s8SlxaeI3LWuMSNS69xuVTAEddk0nNp_Ge8G5rE9kMrVKiB8EJFnFdEsBBdxkHhY90qMKNZ5UMyzxTEQ9gqzZh9zRc78VMiDSAZM64nYAn3J6_UoweKuJtLlhCRRbAcdsN_nmttz7iy39J78PKzbeBvPx-fbEDq4jORJ2XtgtL018z9xUR0FTvVb38L2beAlo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+and+correcting+the+influence+of+gaze+position+on+pupil+size+measurements&rft.jtitle=Behavior+research+methods&rft.au=Hayes%2C+Taylor+R.&rft.au=Petrov%2C+Alexander+A.&rft.date=2016-06-01&rft.issn=1554-351X&rft.eissn=1554-3528&rft.volume=48&rft.issue=2&rft.spage=510&rft.epage=527&rft_id=info:doi/10.3758%2Fs13428-015-0588-x&rft_id=info%3Apmid%2F25953668&rft.externalDocID=PMC4637269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon