Mapping and correcting the influence of gaze position on pupil size measurements
Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and i...
Saved in:
Published in | Behavior research methods Vol. 48; no. 2; pp. 510 - 527 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1554-3528 1554-351X 1554-3528 |
DOI | 10.3758/s13428-015-0588-x |
Cover
Loading…
Abstract | Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is
pupil foreshortening error (PFE)
—the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. |
---|---|
AbstractList | Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is
pupil foreshortening error (PFE)
—the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE) -- the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)-the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface.Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be recorded inexpensively and non-invasively by many commonly used video-based eye-tracking cameras. Despite the relative ease of data collection and increasing prevalence of pupil data in the cognitive literature, researchers often underestimate the methodological challenges associated with controlling for confounds that can result in misinterpretation of their data. One serious confound that is often not properly controlled is pupil foreshortening error (PFE)-the foreshortening of the pupil image as the eye rotates away from the camera. Here we systematically map PFE using an artificial eye model and then apply a geometric model correction. Three artificial eyes with different fixed pupil sizes were used to systematically measure changes in pupil size as a function of gaze position with a desktop EyeLink 1000 tracker. A grid-based map of pupil measurements was recorded with each artificial eye across three experimental layouts of the eye-tracking camera and display. Large, systematic deviations in pupil size were observed across all nine maps. The measured PFE was corrected by a geometric model that expressed the foreshortening of the pupil area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis. The model reduced the root mean squared error of pupil measurements by 82.5 % when the model parameters were pre-set to the physical layout dimensions, and by 97.5 % when they were optimized to fit the empirical error surface. |
Author | Hayes, Taylor R. Petrov, Alexander A. |
AuthorAffiliation | 1 Department of Psychology, Ohio State University, Columbus, OH 43210, USA |
AuthorAffiliation_xml | – name: 1 Department of Psychology, Ohio State University, Columbus, OH 43210, USA |
Author_xml | – sequence: 1 givenname: Taylor R. surname: Hayes fullname: Hayes, Taylor R. email: taylor.r.hayes@gmail.com organization: Department of Psychology, Ohio State University – sequence: 2 givenname: Alexander A. surname: Petrov fullname: Petrov, Alexander A. organization: Department of Psychology, Ohio State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25953668$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrFTEYhoNU7EV_gBsZcNPNaO6XjSClXqDSLnQdMjnfnKbMJGMyI7W_vhlOLceCQiD5kuf9LnmP0UFMERB6TfA7poR-XwjjVLeYiBYLrdvbZ-iICMFbJqg-2DsfouNSbjBmmhL-Ah1SYQSTUh-hq29umkLcNi5uGp9yBj-v4XwNTYj9sED00KS-2bo7aKZUwhxSbOqalikMTQn1egRXlgwjxLm8RM97NxR49bCfoB-fzr-ffWkvLj9_Pft40XqJ2dx67rVz0CneeRDaUE9NDxJox5gETahnPdFm4wRQLH3HHDeGkY46Sbn0mp2gD7u809KNsPG1dnaDnXIYXf5tkwv275cYru02_bJcMkWlqQlOHxLk9HOBMtsxFA_D4CKkpViiDDMYK8Ur-vYJepOWHOt4KyWV1syoSr3Z7-ixlT-fXQGyA3xOpWToHxGC7Wqo3Rlqq6F2NdTeVo16ovFhdqsHdagw_FdJd8pSq8Qt5L2m_ym6Bwswtq0 |
CitedBy_id | crossref_primary_10_1017_S0272263117000195 crossref_primary_10_1371_journal_pone_0261463 crossref_primary_10_3758_s13428_016_0833_y crossref_primary_10_1080_20445911_2021_1967366 crossref_primary_10_1111_ejn_16201 crossref_primary_10_1016_j_cognition_2023_105470 crossref_primary_10_1016_j_chb_2020_106385 crossref_primary_10_1016_j_neuropsychologia_2019_107217 crossref_primary_10_3758_s13414_023_02793_3 crossref_primary_10_1101_lm_053781_123 crossref_primary_10_3758_s13428_020_01490_5 crossref_primary_10_1523_JNEUROSCI_1315_17_2017 crossref_primary_10_1145_3530798 crossref_primary_10_1371_journal_pone_0272349 crossref_primary_10_1177_09567976231179378 crossref_primary_10_3758_s13428_017_1007_2 crossref_primary_10_1007_s00426_021_01568_5 crossref_primary_10_1038_s41597_021_00959_y crossref_primary_10_1523_ENEURO_0243_22_2023 crossref_primary_10_1016_j_ijpsycho_2020_05_010 crossref_primary_10_1371_journal_pone_0272070 crossref_primary_10_1016_j_ijpsycho_2021_03_003 crossref_primary_10_1523_JNEUROSCI_0240_23_2023 crossref_primary_10_1162_jocn_a_02025 crossref_primary_10_3758_s13428_022_01938_w crossref_primary_10_1080_13803395_2019_1646214 crossref_primary_10_1016_j_ijpsycho_2019_07_002 crossref_primary_10_3389_fnhum_2020_571893 crossref_primary_10_1109_TLT_2023_3326473 crossref_primary_10_1117_1_JMI_10_2_025503 crossref_primary_10_1002_aur_2818 crossref_primary_10_3389_fcogn_2024_1425005 crossref_primary_10_1111_psyp_12964 crossref_primary_10_1016_j_bandl_2021_105010 crossref_primary_10_1038_s41598_024_58480_2 crossref_primary_10_1371_journal_pone_0230775 crossref_primary_10_2139_ssrn_4170482 crossref_primary_10_3758_s13428_018_1075_y crossref_primary_10_1016_j_tins_2022_05_003 crossref_primary_10_1155_2024_2210991 crossref_primary_10_3758_s13428_024_02590_2 crossref_primary_10_1016_j_neuropsychologia_2025_109117 crossref_primary_10_1017_S1930297500006720 crossref_primary_10_1038_s41598_020_67593_3 crossref_primary_10_1016_j_bandl_2020_104791 crossref_primary_10_1044_2017_JSLHR_L_16_0158 crossref_primary_10_1523_JNEUROSCI_0575_24_2024 crossref_primary_10_1044_2023_JSLHR_22_00596 crossref_primary_10_1111_psyp_14119 crossref_primary_10_1016_j_brat_2020_103576 crossref_primary_10_3389_fnins_2021_676220 crossref_primary_10_1017_S1355617722000224 crossref_primary_10_3758_s13428_024_02529_7 crossref_primary_10_3758_s13428_022_01957_7 crossref_primary_10_1167_jov_20_7_5 crossref_primary_10_1007_s00426_024_01939_8 crossref_primary_10_3389_fpsyg_2022_959638 crossref_primary_10_3758_s13428_024_02587_x crossref_primary_10_1016_j_neuroimage_2018_11_029 crossref_primary_10_1162_jocn_a_02296 crossref_primary_10_3389_fnagi_2023_1147079 crossref_primary_10_1162_jocn_a_02172 crossref_primary_10_1080_17470218_2017_1307861 crossref_primary_10_3758_s13428_021_01657_8 crossref_primary_10_1038_s41598_023_41357_1 crossref_primary_10_3390_vision9010018 crossref_primary_10_1016_j_cortex_2021_01_014 crossref_primary_10_3389_fnhum_2021_755383 crossref_primary_10_7717_peerj_3783 crossref_primary_10_3758_s13428_021_01759_3 crossref_primary_10_1007_s00213_024_06540_w crossref_primary_10_1167_jovi_20_3_3 crossref_primary_10_1038_s41598_022_05280_1 crossref_primary_10_1111_infa_12294 crossref_primary_10_3389_fpsyg_2019_01792 crossref_primary_10_1177_0956797620958638 crossref_primary_10_1007_s00182_019_00673_5 crossref_primary_10_1016_j_biopsycho_2021_108046 crossref_primary_10_1080_0361073X_2023_2286872 crossref_primary_10_1126_sciadv_abi9979 crossref_primary_10_1038_s41562_023_01729_z crossref_primary_10_3758_s13428_023_02098_1 crossref_primary_10_1038_s41598_024_52486_6 crossref_primary_10_1038_s41598_024_70895_5 crossref_primary_10_1038_s41598_021_96643_7 crossref_primary_10_1016_j_neuron_2020_10_029 crossref_primary_10_1016_j_visres_2021_03_011 crossref_primary_10_3758_s13428_021_01762_8 crossref_primary_10_1097_AUD_0000000000001599 crossref_primary_10_1016_j_neuropsychologia_2022_108190 crossref_primary_10_1167_jov_20_9_1 crossref_primary_10_3758_s13428_023_02292_1 crossref_primary_10_1038_s41598_024_59302_1 crossref_primary_10_1111_psyp_12801 crossref_primary_10_3758_s13428_021_01780_6 crossref_primary_10_1177_2331216519832483 crossref_primary_10_1111_ejn_16306 crossref_primary_10_1016_j_ijdrr_2022_102971 crossref_primary_10_1098_rsos_240606 crossref_primary_10_1167_jov_21_7_6 crossref_primary_10_1177_1094428117744882 crossref_primary_10_1016_j_cognition_2024_105815 crossref_primary_10_1111_ejn_15453 crossref_primary_10_3758_s13415_023_01096_2 crossref_primary_10_1098_rspb_2022_0405 crossref_primary_10_1016_j_visres_2020_03_008 crossref_primary_10_3758_s13428_021_01717_z crossref_primary_10_1152_jn_00205_2019 crossref_primary_10_1523_ENEURO_0122_21_2021 crossref_primary_10_1523_JNEUROSCI_1171_18_2018 crossref_primary_10_3389_fpsyg_2024_1345619 crossref_primary_10_1111_ejn_15508 crossref_primary_10_1038_s41598_019_47961_4 crossref_primary_10_1016_j_eswa_2019_06_032 crossref_primary_10_3389_fpsyg_2021_702538 crossref_primary_10_1111_psyp_14035 crossref_primary_10_1177_23312165231206925 crossref_primary_10_1177_23312165241306091 crossref_primary_10_3390_jintelligence10040107 crossref_primary_10_1111_psyp_14392 crossref_primary_10_1080_13506285_2024_2347605 crossref_primary_10_1152_jn_00964_2015 crossref_primary_10_1111_cogs_12682 crossref_primary_10_1016_j_poetic_2020_101526 crossref_primary_10_1097_AUD_0000000000001214 crossref_primary_10_1177_2331216518800869 |
Cites_doi | 10.1146/annurev.neuro.28.061604.135709 10.1037/0033-2909.91.2.276 10.1016/S1071-5819(03)00017-X 10.1038/nn.3130 10.1111/j.1469-8986.1982.tb02540.x 10.1016/j.ijpsycho.2007.04.004 10.1016/0160-5402(86)90002-1 10.1097/00006324-197808000-00008 10.3758/s13428-011-0109-5 10.2174/157015908785777229 10.1002/9781118887486 10.1126/science.143.3611.1190 10.1016/j.ijpsycho.2010.01.006 10.1111/j.1469-8986.2007.00606.x 10.1167/13.6.3 10.1016/0042-6989(62)90021-4 10.1037/h0078820 10.3758/BF03328444 10.1117/12.529999 10.1167/14.4.1 10.1111/j.1469-8986.2010.01069.x 10.1136/bjo.32.6.347 10.3758/s13428-013-0327-0 10.1111/j.1469-8986.2011.01226.x |
ContentType | Journal Article |
Copyright | Psychonomic Society, Inc. 2015 Copyright Springer Science & Business Media Jun 2016 |
Copyright_xml | – notice: Psychonomic Society, Inc. 2015 – notice: Copyright Springer Science & Business Media Jun 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TK K9. 7X8 5PM |
DOI | 10.3758/s13428-015-0588-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Docstoc MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1554-3528 |
EndPage | 527 |
ExternalDocumentID | PMC4637269 4089463941 25953668 10_3758_s13428_015_0588_x |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R21 EY022745 |
GroupedDBID | --- -55 -5G -BR -DZ -EM -ET -~C -~X 0-V 06D 0R~ 0VY 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 5GY 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJNI ABJOX ABJUD ABKCH ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHQT ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFFNX AFKRA AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BAWUL BENPR BGNMA BPHCQ BVXVI C1A CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO E3Z EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ3 GQ6 GQ7 GUQSH H13 HF~ HMCUK HMJXF HRMNR HVGLF HZ~ H~9 IAO IHR IKXTQ INH IPY IRVIT ITC ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M1P M2M M2O M2R M4Y MVM N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9J OHT OK1 P2P P9L PADUT PF- PQQKQ PROAC PSQYO PSYQQ PT4 R9I RIG ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TR2 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VFIZW VXZ W48 WH7 WK8 XJT XOL XSW Z7R Z7S Z7W Z81 Z83 Z88 Z8N Z92 ZMTXR ZOVNA ZUP AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 4T- 7TK ABRTQ K9. 7X8 5PM |
ID | FETCH-LOGICAL-c603t-c4c8aaeb74bce5892c29fe6e2b336e812c3f189da5e206cb3a49931b2a6246c83 |
IEDL.DBID | U2A |
ISSN | 1554-3528 1554-351X |
IngestDate | Thu Aug 21 13:29:56 EDT 2025 Fri Jul 11 10:25:53 EDT 2025 Fri Jul 25 07:56:51 EDT 2025 Wed Feb 19 02:40:51 EST 2025 Thu Apr 24 23:02:10 EDT 2025 Tue Jul 01 01:05:51 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Eye tracking Pupil foreshortening error Pupillometry Artificial eye |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-c4c8aaeb74bce5892c29fe6e2b336e812c3f189da5e206cb3a49931b2a6246c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/content/pdf/10.3758/s13428-015-0588-x.pdf |
PMID | 25953668 |
PQID | 1796788397 |
PQPubID | 976348 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4637269 proquest_miscellaneous_1793900774 proquest_journals_1796788397 pubmed_primary_25953668 crossref_primary_10_3758_s13428_015_0588_x crossref_citationtrail_10_3758_s13428_015_0588_x springer_journals_10_3758_s13428_015_0588_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Behavior research methods |
PublicationTitleAbbrev | Behav Res |
PublicationTitleAlternate | Behav Res Methods |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | SR Research (2010). Eyelink 1000 users manual, version 1.5.2. Mississauga, ON : SR Research Ltd. MurphyPRRobertsonIHBalstersJHO’ConnellRGPupillometry and P3 index of locus coeruleus noradrenergic arousal function in humansPsychophysiology201148111531154210.1111/j.1469-8986.2011.01226.x SamuelsERSzabadiEFunctional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function Part I: Principles of functional organizationCurrent Neuropharmacology20086323525310.2174/157015908785777229195067232687936 SensoMotoric Instruments (2009). iView X User’s Manual, Version 2.4. Boston, MA : Senso Motoric Instruments GmbH. Tobii Technology (2011). Tobii T60 & T120 User Manual, Revision 4. Danderyd, SE : Tobii Technology AB. HessEHPoltJMPupil size in relation to mental activity during simple problem-solvingScience196414336111190119210.1126/science.143.3611.119017833905 MurphyPRO’ConnellRGO’SullivanMRobertsonIHBalstersJHPupil diameter covaries with bold activity in human locus coeruleusHuman Brain Mapping, Advance online publication2014 KlingnerJTverskyBHanrahanPEffects of visual and verbal presentation on cognitive load in vigilance, memory and arithmetic tasksPsychophysiology201148332333210.1111/j.1469-8986.2010.01069.x20718934 Miller, N.R., & Newman, N.J. (2005). Walsh & Hoyt’s clinical neuro-ophthalmology: Volume one (6th ed.)Philadelphia, PA: Lippincott Williams & Wilkins. BeattyJLucero-WagonerBCacioppoJ TTassinaryL GBerntsonG GThe Pupillary SystemHandbook of Psychophysiology(2nd ed2000USACambridge University Press142162 VõMLJacobsAMKuchinkeLHofmannMConradMSchachtAThe coupling of emotion and cognition in the eye: introducing the pupil old/new effectPsychophysiology200845113014017910733 SpringKHStilesWSApparent shape and size of the pupil viewed obliquelyBritish Journal of Ophthalmology19483234735410.1136/bjo.32.6.34718170457510837 Aston-JonesGCohenJAn integrative theory of locus Coeruleus-norepinephrine function: adaptive gain and optimal performanceAnnual Review of Neuroscience20052840345010.1146/annurev.neuro.28.061604.13570916022602 LoewenfeldIThe pupil: anatomy, physiology and clinical applications1993DetroitMI: Wayne State University Press MathurAGehrmannJAtchisonDAPupil shape as viewed along the horizontal visual fieldJournal of Vision20131361810.1167/13.6.3 Atchison, D., & Smith, G. (2000). Optics of the human eye. Oxford, UK: Butterworth-Heinemann. EinhäuserWKochCCarterOLPupil dilation betrays the timing of decisionsFrontiers in Human Neuroscience201041819 BeattyJTask-evoked pupillary responses, processing load, and the structure of processing resourcesPsychological Bulletin198291227629210.1037/0033-2909.91.2.2767071262 JustMACarpenterPAThe intensity dimension of thought: pupillometric indices of sentence processingCanadian Journal of Experimental Psychology199347231033910.1037/h00788208364533 Tobii Technology (2008). Tobii X60 & X120 User Manual, Revision 3. Danderyd, SE : Tobii Technology AB. DodgsonNAVariation and extrema of human interpupillary distanceStereoscopic Displays and Virtual Reality Systems XI20045291364610.1117/12.529999 KossMPupillary dilation as an index of central nervous system α2-adrenoceptor activationJournal of Pharmacological Methods198615111910.1016/0160-5402(86)90002-12869190 PartalaTSurakkaVPupil size variation as an indication of affective processingInternational Journal of Human-Computer Studies20035918519810.1016/S1071-5819(03)00017-X EverittBSDunnGApplied multivariate analysis2001New YorkOxford University Press10.1002/9781118887486 Kuchinke, L., Võ, M.L., Hofmann, M., & Jacobs, A.M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(132–140). GaglBHawelkaSHutzlerFSystematic influence of gaze position on pupil size measurement: analysis and correctionBehavior Research Methods20114341171118110.3758/s13428-011-0109-5216379433218283 PreuschoffKMariusBEinhäuserWPupil dilation signals surprise: evidence for noradrenaline’s role in decision-makingFrontiers in Neuroscience20115115112 Hayes, T.R., & Petrov, A.A. (2015). Learning is in the eye of the beholder: phasic pupil diameter decreases during perceptual learning. (Manuscript submitted for publication). NassarMRRumseyKMWilsonRCParikhKHeaslyBGoldJIRational regulation of learning dynamics by pupil-linked arousal systemsNature Neuroscience20121571040104610.1038/nn.3130226604793386464 AlnaesDSneveMHEspesethTEndestadTvan de PavertSHPLaengBPupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and locus coeruleusJournal of Vision201414412010.1167/14.4.124692319 Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall. AgrestiAAnalysis of ordinal categorical data1984New YorkJohn Wiley and Sons JenningsJACharmanWNOptical image quality in the peripheral retinaAmerican Journal of Optometry and Physiological Optics197855858259010.1097/00006324-197808000-00008742649 RaisigSWelkeTHagendorfHMeerEvanderI spy with my little eye: detection of temporal violations in event sequences and the pupillary responseInternational Journal of Psychophysiology2010761810.1016/j.ijpsycho.2010.01.00620093148 TorgersonWSTheory and Methods of Scaling1958New YorkWiley BrissonJMainvilleMMaillouxDBeaulieuCSerresJSiroisSPupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackersBehavior Research Methods2013451322133110.3758/s13428-013-0327-023468182 ForsythDAPonceJComputer vision: A modern approach20112ndUpper Saddle RiverNJ: Prentice Hall BeattyJPhasic not tonic pupillary responses vary with auditory vigilance performancePsychophysiology198219216717210.1111/j.1469-8986.1982.tb02540.x7071295 HolmqvistKNyströmMAnderssonRDewhurstRJarodzkaHWeijerJvandeEye tracking: A comprehensive guide to methods and measures2011OxfordOxford University Press Tobii Technology AB (2010). Tobii eye tracking: an introduction to eye tracking and Tobii eye trackers. (white paper). Retrieved from http://www.tobii.com/eye-tracking-research/global/library/white-papers/tobii-eye-tracking-white-paper/. BeattyJKahnemanDPupillary changes in two memory tasksPsychonomic Science1966537137210.3758/BF03328444 JayBSThe effective pupillary area at varying perimetric anglesVision Research1962141842410.1016/0042-6989(62)90021-4 PR Murphy (588_CR28) 2014 ML Võ (588_CR42) 2008; 45 J Beatty (588_CR6) 1982; 91 EH Hess (588_CR16) 1964; 143 K Holmqvist (588_CR17) 2011 DA Forsyth (588_CR13) 2011 BS Everitt (588_CR12) 2001 S Raisig (588_CR33) 2010; 76 G Aston-Jones (588_CR3) 2005; 28 588_CR40 A Mathur (588_CR26) 2013; 13 J Klingner (588_CR22) 2011; 48 MR Nassar (588_CR30) 2012; 15 KH Spring (588_CR36) 1948; 32 588_CR27 B Gagl (588_CR14) 2011; 43 588_CR21 T Partala (588_CR31) 2003; 59 J Beatty (588_CR5) 1982; 19 588_CR24 J Beatty (588_CR7) 1966; 5 A Agresti (588_CR1) 1984 588_CR4 J Beatty (588_CR8) 2000 MA Just (588_CR20) 1993; 47 W Einhäuser (588_CR11) 2010; 4 PR Murphy (588_CR29) 2011; 48 I Loewenfeld (588_CR25) 1993 K Preuschoff (588_CR32) 2011; 5 D Alnaes (588_CR2) 2014; 14 BS Jay (588_CR18) 1962; 1 J Brisson (588_CR9) 2013; 45 M Koss (588_CR23) 1986; 15 JA Jennings (588_CR19) 1978; 55 588_CR15 588_CR37 588_CR39 588_CR38 ER Samuels (588_CR34) 2008; 6 NA Dodgson (588_CR10) 2004; 5291 588_CR35 WS Torgerson (588_CR41) 1958 17532075 - Int J Psychophysiol. 2007 Aug;65(2):132-40 23648308 - J Vis. 2013 May 06;13(6):null 21994487 - Front Neurosci. 2011 Sep 30;5:115 22660479 - Nat Neurosci. 2012 Jun 03;15(7):1040-6 23468182 - Behav Res Methods. 2013 Dec;45(4):1322-31 7071262 - Psychol Bull. 1982 Mar;91(2):276-92 2869190 - J Pharmacol Methods. 1986 Feb;15(1):1-19 17833905 - Science. 1964 Mar 13;143(3611):1190-2 19506723 - Curr Neuropharmacol. 2008 Sep;6(3):235-53 17910733 - Psychophysiology. 2008 Jan;45(1):130-40 21762458 - Psychophysiology. 2011 Nov;48(11):1532-43 24692319 - J Vis. 2014 Apr 01;14(4):null 8364533 - Can J Exp Psychol. 1993 Jun;47(2):310-39 20093148 - Int J Psychophysiol. 2010 Apr;76(1):1-8 742649 - Am J Optom Physiol Opt. 1978 Aug;55(8):582-90 20204145 - Front Hum Neurosci. 2010 Feb 26;4:18 18170457 - Br J Ophthalmol. 1948 Jun;32(6):347-54 7071295 - Psychophysiology. 1982 Mar;19(2):167-72 20718934 - Psychophysiology. 2011 Mar;48(3):323-32 24510607 - Hum Brain Mapp. 2014 Aug;35(8):4140-54 21637943 - Behav Res Methods. 2011 Dec;43(4):1171-81 16022602 - Annu Rev Neurosci. 2005;28:403-50 |
References_xml | – reference: BeattyJKahnemanDPupillary changes in two memory tasksPsychonomic Science1966537137210.3758/BF03328444 – reference: SensoMotoric Instruments (2009). iView X User’s Manual, Version 2.4. Boston, MA : Senso Motoric Instruments GmbH. – reference: AgrestiAAnalysis of ordinal categorical data1984New YorkJohn Wiley and Sons – reference: TorgersonWSTheory and Methods of Scaling1958New YorkWiley – reference: KlingnerJTverskyBHanrahanPEffects of visual and verbal presentation on cognitive load in vigilance, memory and arithmetic tasksPsychophysiology201148332333210.1111/j.1469-8986.2010.01069.x20718934 – reference: SpringKHStilesWSApparent shape and size of the pupil viewed obliquelyBritish Journal of Ophthalmology19483234735410.1136/bjo.32.6.34718170457510837 – reference: BeattyJTask-evoked pupillary responses, processing load, and the structure of processing resourcesPsychological Bulletin198291227629210.1037/0033-2909.91.2.2767071262 – reference: BeattyJPhasic not tonic pupillary responses vary with auditory vigilance performancePsychophysiology198219216717210.1111/j.1469-8986.1982.tb02540.x7071295 – reference: Hayes, T.R., & Petrov, A.A. (2015). Learning is in the eye of the beholder: phasic pupil diameter decreases during perceptual learning. (Manuscript submitted for publication). – reference: JayBSThe effective pupillary area at varying perimetric anglesVision Research1962141842410.1016/0042-6989(62)90021-4 – reference: BrissonJMainvilleMMaillouxDBeaulieuCSerresJSiroisSPupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackersBehavior Research Methods2013451322133110.3758/s13428-013-0327-023468182 – reference: DodgsonNAVariation and extrema of human interpupillary distanceStereoscopic Displays and Virtual Reality Systems XI20045291364610.1117/12.529999 – reference: Kuchinke, L., Võ, M.L., Hofmann, M., & Jacobs, A.M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65(132–140). – reference: MurphyPRRobertsonIHBalstersJHO’ConnellRGPupillometry and P3 index of locus coeruleus noradrenergic arousal function in humansPsychophysiology201148111531154210.1111/j.1469-8986.2011.01226.x – reference: MathurAGehrmannJAtchisonDAPupil shape as viewed along the horizontal visual fieldJournal of Vision20131361810.1167/13.6.3 – reference: PartalaTSurakkaVPupil size variation as an indication of affective processingInternational Journal of Human-Computer Studies20035918519810.1016/S1071-5819(03)00017-X – reference: Tobii Technology (2008). Tobii X60 & X120 User Manual, Revision 3. Danderyd, SE : Tobii Technology AB. – reference: VõMLJacobsAMKuchinkeLHofmannMConradMSchachtAThe coupling of emotion and cognition in the eye: introducing the pupil old/new effectPsychophysiology200845113014017910733 – reference: Miller, N.R., & Newman, N.J. (2005). Walsh & Hoyt’s clinical neuro-ophthalmology: Volume one (6th ed.)Philadelphia, PA: Lippincott Williams & Wilkins. – reference: BeattyJLucero-WagonerBCacioppoJ TTassinaryL GBerntsonG GThe Pupillary SystemHandbook of Psychophysiology(2nd ed2000USACambridge University Press142162 – reference: KossMPupillary dilation as an index of central nervous system α2-adrenoceptor activationJournal of Pharmacological Methods198615111910.1016/0160-5402(86)90002-12869190 – reference: Tobii Technology (2011). Tobii T60 & T120 User Manual, Revision 4. Danderyd, SE : Tobii Technology AB. – reference: EverittBSDunnGApplied multivariate analysis2001New YorkOxford University Press10.1002/9781118887486 – reference: RaisigSWelkeTHagendorfHMeerEvanderI spy with my little eye: detection of temporal violations in event sequences and the pupillary responseInternational Journal of Psychophysiology2010761810.1016/j.ijpsycho.2010.01.00620093148 – reference: Atchison, D., & Smith, G. (2000). Optics of the human eye. Oxford, UK: Butterworth-Heinemann. – reference: NassarMRRumseyKMWilsonRCParikhKHeaslyBGoldJIRational regulation of learning dynamics by pupil-linked arousal systemsNature Neuroscience20121571040104610.1038/nn.3130226604793386464 – reference: LoewenfeldIThe pupil: anatomy, physiology and clinical applications1993DetroitMI: Wayne State University Press – reference: PreuschoffKMariusBEinhäuserWPupil dilation signals surprise: evidence for noradrenaline’s role in decision-makingFrontiers in Neuroscience20115115112 – reference: AlnaesDSneveMHEspesethTEndestadTvan de PavertSHPLaengBPupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and locus coeruleusJournal of Vision201414412010.1167/14.4.124692319 – reference: SR Research (2010). Eyelink 1000 users manual, version 1.5.2. Mississauga, ON : SR Research Ltd. – reference: GaglBHawelkaSHutzlerFSystematic influence of gaze position on pupil size measurement: analysis and correctionBehavior Research Methods20114341171118110.3758/s13428-011-0109-5216379433218283 – reference: JustMACarpenterPAThe intensity dimension of thought: pupillometric indices of sentence processingCanadian Journal of Experimental Psychology199347231033910.1037/h00788208364533 – reference: HessEHPoltJMPupil size in relation to mental activity during simple problem-solvingScience196414336111190119210.1126/science.143.3611.119017833905 – reference: MurphyPRO’ConnellRGO’SullivanMRobertsonIHBalstersJHPupil diameter covaries with bold activity in human locus coeruleusHuman Brain Mapping, Advance online publication2014 – reference: JenningsJACharmanWNOptical image quality in the peripheral retinaAmerican Journal of Optometry and Physiological Optics197855858259010.1097/00006324-197808000-00008742649 – reference: HolmqvistKNyströmMAnderssonRDewhurstRJarodzkaHWeijerJvandeEye tracking: A comprehensive guide to methods and measures2011OxfordOxford University Press – reference: ForsythDAPonceJComputer vision: A modern approach20112ndUpper Saddle RiverNJ: Prentice Hall – reference: Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice Hall. – reference: EinhäuserWKochCCarterOLPupil dilation betrays the timing of decisionsFrontiers in Human Neuroscience201041819 – reference: SamuelsERSzabadiEFunctional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function Part I: Principles of functional organizationCurrent Neuropharmacology20086323525310.2174/157015908785777229195067232687936 – reference: Aston-JonesGCohenJAn integrative theory of locus Coeruleus-norepinephrine function: adaptive gain and optimal performanceAnnual Review of Neuroscience20052840345010.1146/annurev.neuro.28.061604.13570916022602 – reference: Tobii Technology AB (2010). Tobii eye tracking: an introduction to eye tracking and Tobii eye trackers. (white paper). Retrieved from http://www.tobii.com/eye-tracking-research/global/library/white-papers/tobii-eye-tracking-white-paper/. – volume: 28 start-page: 403 year: 2005 ident: 588_CR3 publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.28.061604.135709 – volume: 91 start-page: 276 issue: 2 year: 1982 ident: 588_CR6 publication-title: Psychological Bulletin doi: 10.1037/0033-2909.91.2.276 – ident: 588_CR15 – ident: 588_CR40 – volume: 59 start-page: 185 year: 2003 ident: 588_CR31 publication-title: International Journal of Human-Computer Studies doi: 10.1016/S1071-5819(03)00017-X – volume-title: Eye tracking: A comprehensive guide to methods and measures year: 2011 ident: 588_CR17 – volume: 15 start-page: 1040 issue: 7 year: 2012 ident: 588_CR30 publication-title: Nature Neuroscience doi: 10.1038/nn.3130 – ident: 588_CR4 – volume: 19 start-page: 167 issue: 2 year: 1982 ident: 588_CR5 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1982.tb02540.x – volume-title: Computer vision: A modern approach year: 2011 ident: 588_CR13 – ident: 588_CR24 doi: 10.1016/j.ijpsycho.2007.04.004 – volume: 15 start-page: 1 issue: 1 year: 1986 ident: 588_CR23 publication-title: Journal of Pharmacological Methods doi: 10.1016/0160-5402(86)90002-1 – volume-title: The pupil: anatomy, physiology and clinical applications year: 1993 ident: 588_CR25 – volume: 55 start-page: 582 issue: 8 year: 1978 ident: 588_CR19 publication-title: American Journal of Optometry and Physiological Optics doi: 10.1097/00006324-197808000-00008 – ident: 588_CR38 – volume: 43 start-page: 1171 issue: 4 year: 2011 ident: 588_CR14 publication-title: Behavior Research Methods doi: 10.3758/s13428-011-0109-5 – ident: 588_CR35 – volume-title: Theory and Methods of Scaling year: 1958 ident: 588_CR41 – volume: 6 start-page: 235 issue: 3 year: 2008 ident: 588_CR34 publication-title: Current Neuropharmacology doi: 10.2174/157015908785777229 – ident: 588_CR37 – volume-title: Applied multivariate analysis year: 2001 ident: 588_CR12 doi: 10.1002/9781118887486 – volume: 143 start-page: 1190 issue: 3611 year: 1964 ident: 588_CR16 publication-title: Science doi: 10.1126/science.143.3611.1190 – volume: 76 start-page: 1 year: 2010 ident: 588_CR33 publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2010.01.006 – volume: 45 start-page: 130 issue: 1 year: 2008 ident: 588_CR42 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00606.x – volume: 13 start-page: 1 issue: 6 year: 2013 ident: 588_CR26 publication-title: Journal of Vision doi: 10.1167/13.6.3 – volume: 1 start-page: 418 year: 1962 ident: 588_CR18 publication-title: Vision Research doi: 10.1016/0042-6989(62)90021-4 – volume: 47 start-page: 310 issue: 2 year: 1993 ident: 588_CR20 publication-title: Canadian Journal of Experimental Psychology doi: 10.1037/h0078820 – volume: 5 start-page: 371 year: 1966 ident: 588_CR7 publication-title: Psychonomic Science doi: 10.3758/BF03328444 – volume: 5291 start-page: 36 year: 2004 ident: 588_CR10 publication-title: Stereoscopic Displays and Virtual Reality Systems XI doi: 10.1117/12.529999 – ident: 588_CR27 – volume: 14 start-page: 1 issue: 4 year: 2014 ident: 588_CR2 publication-title: Journal of Vision doi: 10.1167/14.4.1 – volume: 4 start-page: 1 issue: 18 year: 2010 ident: 588_CR11 publication-title: Frontiers in Human Neuroscience – volume: 48 start-page: 323 issue: 3 year: 2011 ident: 588_CR22 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01069.x – year: 2014 ident: 588_CR28 publication-title: Human Brain Mapping, Advance online publication – volume: 32 start-page: 347 year: 1948 ident: 588_CR36 publication-title: British Journal of Ophthalmology doi: 10.1136/bjo.32.6.347 – ident: 588_CR21 – volume: 45 start-page: 1322 year: 2013 ident: 588_CR9 publication-title: Behavior Research Methods doi: 10.3758/s13428-013-0327-0 – volume-title: Analysis of ordinal categorical data year: 1984 ident: 588_CR1 – ident: 588_CR39 – volume: 48 start-page: 1531 issue: 11 year: 2011 ident: 588_CR29 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2011.01226.x – volume: 5 start-page: 1 issue: 115 year: 2011 ident: 588_CR32 publication-title: Frontiers in Neuroscience – start-page: 142 volume-title: Handbook of Psychophysiology(2nd ed year: 2000 ident: 588_CR8 – reference: 21994487 - Front Neurosci. 2011 Sep 30;5:115 – reference: 17910733 - Psychophysiology. 2008 Jan;45(1):130-40 – reference: 20093148 - Int J Psychophysiol. 2010 Apr;76(1):1-8 – reference: 20718934 - Psychophysiology. 2011 Mar;48(3):323-32 – reference: 20204145 - Front Hum Neurosci. 2010 Feb 26;4:18 – reference: 2869190 - J Pharmacol Methods. 1986 Feb;15(1):1-19 – reference: 24692319 - J Vis. 2014 Apr 01;14(4):null – reference: 16022602 - Annu Rev Neurosci. 2005;28:403-50 – reference: 21637943 - Behav Res Methods. 2011 Dec;43(4):1171-81 – reference: 18170457 - Br J Ophthalmol. 1948 Jun;32(6):347-54 – reference: 17833905 - Science. 1964 Mar 13;143(3611):1190-2 – reference: 24510607 - Hum Brain Mapp. 2014 Aug;35(8):4140-54 – reference: 21762458 - Psychophysiology. 2011 Nov;48(11):1532-43 – reference: 7071295 - Psychophysiology. 1982 Mar;19(2):167-72 – reference: 742649 - Am J Optom Physiol Opt. 1978 Aug;55(8):582-90 – reference: 8364533 - Can J Exp Psychol. 1993 Jun;47(2):310-39 – reference: 17532075 - Int J Psychophysiol. 2007 Aug;65(2):132-40 – reference: 19506723 - Curr Neuropharmacol. 2008 Sep;6(3):235-53 – reference: 23648308 - J Vis. 2013 May 06;13(6):null – reference: 23468182 - Behav Res Methods. 2013 Dec;45(4):1322-31 – reference: 22660479 - Nat Neurosci. 2012 Jun 03;15(7):1040-6 – reference: 7071262 - Psychol Bull. 1982 Mar;91(2):276-92 |
SSID | ssj0038214 |
Score | 2.5344596 |
Snippet | Pupil size is correlated with a wide variety of important cognitive variables and is increasingly being used by cognitive scientists. Pupil data can be... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 510 |
SubjectTerms | Behavioral Science and Psychology Cognitive Psychology Data collection Eye Movements - physiology Eyes & eyesight Fixation, Ocular Humans Mean square errors Models, Biological Psychology Pupil - physiology Size |
Title | Mapping and correcting the influence of gaze position on pupil size measurements |
URI | https://link.springer.com/article/10.3758/s13428-015-0588-x https://www.ncbi.nlm.nih.gov/pubmed/25953668 https://www.proquest.com/docview/1796788397 https://www.proquest.com/docview/1793900774 https://pubmed.ncbi.nlm.nih.gov/PMC4637269 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6Cc8klNH1FTWo20FOCqLUvSUdT4piWhBxqcE9iX3IMrmwiG9L--s7qlbpOAgWdpFk9ZnZnvtHMzgB8yqW1UaxdqJJch9yKNEw1CsTqXFX1pqz0-52vb-R4wr9OxbTZx1222e5tSLLS1N6vRFD7uYwY99WUIxEOBN4NgeO-8K47TuIJHbbqlyU04nX48ulh2wZoB1XuJkf-EyGtDM_oFRw2iJEMaxEfwZ4rXsNBp7h-vYHba-WrLMyIKiwxvt2G8cnMBLEdmbdNSMgyJzP125E2TYvgsdqs5gtSzvH0z8efheVbmIwuv38Zh02nhNDIAVuHhptEKadjro0TSUoNTXMnHdWMSYc23LA8SlKrhKMDaTRT6OiwSFMlKZcmYe-gVywLdwwE7T-KVWkc5jj1cTMbcSe0j_XaOGEBDFr2ZaYpI-67WSwydCc8x7Oa4xlyPPMczx4COO-GrOoaGi8Rn7YyyZrlVGaoNdCoIpaLAzjrLuNC8NENVbjlpqJhqa9OxAN4X4uwexr6eIJJmQQQbwm3I_BFtrevFPO7qtg2lyymMg3gop0Gf73Wcx_x4b-oT-AAYZisE9BOobe-37iPCHXWug_7w6sf3y771RT_Awy0_LA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcCgXVFoKKS9X4tQq6sZ2HOeIEGhpWdQDK3Gz_ApdiWZXza4E_HrGeZUtFAkpp2Scx4w9801mPANwWAjnksz4WMvCxNyleZwbFIgzha7rTTkR9juPLsRwzL9fpVftPu6qy3bvQpK1pg5-JYLab1XCeKimnKTxIMW7IXBcRSwgQx7XmB516pdJmvAmfPn8sGUD9ARVPk2O_CdCWhue03ew3iJGctSIeAPe-PI9rPWK6-4D_BzpUGXhmujSERvabdiQzEwQ25FJ14SETAtyre896dK0CB6zxWxyQ6oJnv7992dhtQnj05PL42HcdkqIrRiweWy5lVp7k3FjfSpzamleeOGpYUx4tOGWFYnMnU49HQhrmEZHhyWGakG5sJJ9hJVyWvptIGj_Uaza4DDPaYibuYT71IRYr8ski2DQsU_Ztox46GZxo9CdCBxXDccVclwFjqvbCL70Q2ZNDY2XiHc7mah2OVUKtQYaVcRyWQSf-8u4EEJ0Q5d-uqhpWB6qE_EIthoR9k9DHy9lQsgIsiXh9gShyPbylXLyqy62zQXLqMgj-NpNg0ev9b-P-PQq6gN4O7wcnavzs4sfO7CGkEw0yWi7sDL_s_B7CHvmZr-e5g8uA_4P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VICEuqKU8UigYiRMoYmM7TnJcUVa0PMSBlbhZfgVWotlVsyvR_vqO86LLAlKlnJJxHjP2-HNm_A3AYS6sjRLtQpXmOuQ2zsJMo0GszlXFN2WF3-98dS3Oh_zHXXzX1Dkt22z3NiRZ72nwLE3F9GRicz_EGQLckzJi3DMrR3HYi_HOCCKX0RtHvlsPab91xSylEa9Dma83m5-MFhDmYqLki2hpNQkNPsJagx5Jvzb3J_jginVY7ZzY789wc6U848I9UYUlxpfeMD6xmSDOI6O2IAkZ5-Re_XGkTdkieExmk9EjKUd4-ufzj8NyA4aDs9vT87CpmhAa0WPT0HCTKuV0wrVxcZpRQ7PcCUc1Y8LhfG5YHqWZVbGjPWE0U7joYZGmSlAuTMo2YakYF24bCGIBNLHS2Mxx6mNoNuIu1j7ua5OUBdBr1SdNQynuK1s8SlxaeI3LWuMSNS69xuVTAEddk0nNp_Ge8G5rE9kMrVKiB8EJFnFdEsBBdxkHhY90qMKNZ5UMyzxTEQ9gqzZh9zRc78VMiDSAZM64nYAn3J6_UoweKuJtLlhCRRbAcdsN_nmttz7iy39J78PKzbeBvPx-fbEDq4jORJ2XtgtL018z9xUR0FTvVb38L2beAlo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+and+correcting+the+influence+of+gaze+position+on+pupil+size+measurements&rft.jtitle=Behavior+research+methods&rft.au=Hayes%2C+Taylor+R.&rft.au=Petrov%2C+Alexander+A.&rft.date=2016-06-01&rft.issn=1554-351X&rft.eissn=1554-3528&rft.volume=48&rft.issue=2&rft.spage=510&rft.epage=527&rft_id=info:doi/10.3758%2Fs13428-015-0588-x&rft_id=info%3Apmid%2F25953668&rft.externalDocID=PMC4637269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon |