Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014

Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxid...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 380; no. 2215; p. 20210022
Main Authors Varner, Ruth K, Crill, Patrick M, Frolking, Steve, McCalley, Carmody K, Burke, Sophia A, Chanton, Jeffrey P, Holmes, M Elizabeth, Saleska, Scott, Palace, Michael W
Format Journal Article
LanguageEnglish
Published England The Royal Society Publishing 24.01.2022
The Royal Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO ) and methane (CH ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO and CH exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.
AbstractList Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2  and CH 4  exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.
Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO ) and methane (CH ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO and CH exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'.
Author Varner, Ruth K
McCalley, Carmody K
Crill, Patrick M
Burke, Sophia A
Saleska, Scott
Palace, Michael W
Holmes, M Elizabeth
Chanton, Jeffrey P
Frolking, Steve
AuthorAffiliation Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
AuthorAffiliation_xml – name: Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
– name: Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
Author_xml – sequence: 1
  givenname: Ruth K
  orcidid: 0000-0002-3571-6629
  surname: Varner
  fullname: Varner, Ruth K
  organization: Department of Physical Geography, Stockholm University, Stockholm, Sweden
– sequence: 2
  givenname: Patrick M
  surname: Crill
  fullname: Crill, Patrick M
  organization: Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
– sequence: 3
  givenname: Steve
  surname: Frolking
  fullname: Frolking, Steve
  organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
– sequence: 4
  givenname: Carmody K
  surname: McCalley
  fullname: McCalley, Carmody K
  organization: Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
– sequence: 5
  givenname: Sophia A
  surname: Burke
  fullname: Burke, Sophia A
  organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
– sequence: 6
  givenname: Jeffrey P
  surname: Chanton
  fullname: Chanton, Jeffrey P
  organization: Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306-4350, USA
– sequence: 7
  givenname: M Elizabeth
  surname: Holmes
  fullname: Holmes, M Elizabeth
  organization: Division of Science and Math, Tallahassee Community College, 444 Appleyard Drive, Tallahassee, FL 32304, USA
– sequence: 8
  givenname: Scott
  surname: Saleska
  fullname: Saleska, Scott
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
– sequence: 9
  givenname: Michael W
  surname: Palace
  fullname: Palace, Michael W
  organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34865532$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1856519$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-204395$$DView record from Swedish Publication Index
BookMark eNpVkUuPFSEQRokZ4zx069IQ1_aVgobu3phMxmcyRhMfcUcYuujG9IUJMHdyf4j_V9qrE2cFSZ36quCckqMQAxLyFNgG2NC_TLmYDWccNoxx_oCcQNtBwwfFj-pdqLaRTPw4Jqc5_2QMQEn-iByLtldSCn5Cfn3GtDUuxVxomc0tHZPfYaB2NmHCTH2g835McYnTnpow0h1OWEzxsTJxh6kSNqHJSEsyFulkMsWtz7kS-U-HXfzWFKQuJuvDtEZ-KTGNZqlzPvpUKyluKQwdoyVSzqB9TB46s2R88vc8I9_evvl68b65_PTuw8X5ZWMVE6URXQ8gnL2Czg3gEMXYsd71wDtuhTKS8bbrpVMjWmslMCZ67A0oZlxFrTgjLw65-Ravb670daqrpr2OxuvX_vu5jmnS-UZz1opBVvzVAa_sFkeLob55udd1vxL8rKe4071qFbRQA54fAup3e52tL2hnG0NAWzT0UkkYKrQ5QLZayQnd3QBgepWuV-l6la5X6bXh2f9r3eH_LIvfR1ys7w
CitedBy_id crossref_primary_10_3389_frsen_2023_1095275
crossref_primary_10_5194_tc_18_1773_2024
crossref_primary_10_1111_gcb_16936
crossref_primary_10_1088_1748_9326_ad3565
crossref_primary_10_5194_tc_18_1443_2024
crossref_primary_10_1029_2023JG007638
crossref_primary_10_1029_2023JG007837
crossref_primary_10_5194_bg_20_4221_2023
crossref_primary_10_1016_j_fmre_2024_05_002
crossref_primary_10_1128_msystems_00698_23
crossref_primary_10_1111_gcb_16894
crossref_primary_10_3390_rs14030444
crossref_primary_10_5194_bg_21_2571_2024
Cites_doi 10.1016/j.ecolmodel.2009.06.047
10.3390/rs10091498
10.1029/2004GB002238
10.1038/364794a0
10.1016/j.polar.2018.11.008
10.1002/2016GL071930
10.1038/s41561-019-0526-0
10.1002/jgrg.20103
10.1038/s41598-018-27770-x
10.1088/1748-9326/9/8/085004
10.2307/3544151
10.1007/s10584-013-0730-7
10.1029/2003GL018680
10.1073/pnas.1813305116
10.1016/0304-3770(93)90040-4
10.1016/0304-3770(91)90024-Y
10.1111/j.1365-2486.2005.01042.x
10.1073/pnas.1719903115
10.2307/1551870
10.1002/lno.11645
10.1139/as-2016-0008
10.1002/lno.10335
10.1016/j.quascirev.2020.106596
10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
10.1002/ppp.626
10.1111/j.1365-2486.2007.01339.x
10.1038/ngeo2654
10.1029/2009GL042064
10.1029/2019JG005094
10.1029/2018JG004786
10.1073/pnas.1916387117
10.1029/2004GL020358
10.1038/366051a0
10.1007/s10021-011-9504-0
10.1029/91JD01027
10.1038/s41558-019-0662-y
10.1038/ngeo2578
10.1029/2020JG006038
10.1139/a11-014
10.1007/s10584-012-0445-1
10.3402/polar.v21i1.6473
10.1002/rse2.140
10.1038/ncomms13043
10.3390/rs8120979
10.1088/1748-9326/9/8/085003
10.1016/j.soilbio.2011.09.005
10.1029/2011JG001819
10.1029/2010JG001635
10.1111/j.1365-2486.2006.01267.x
ContentType Journal Article
Copyright 2021 The Authors. 2021
Copyright_xml – notice: 2021 The Authors. 2021
CorporateAuthor Isogenie Project Coordinators
Univ. of New Hampshire, Durham, NH (United States)
CorporateAuthor_xml – sequence: 0
  name: Isogenie Project Coordinators
– sequence: 0
  name: Univ. of New Hampshire, Durham, NH (United States)
– name: Isogenie Project Coordinators
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
OIOZB
OTOTI
5PM
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOI 10.1098/rsta.2021.0022
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Physics
Environmental Sciences
DocumentTitleAlternate Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
EISSN 1471-2962
ExternalDocumentID oai_DiVA_org_su_204395
1856519
10_1098_rsta_2021_0022
34865532
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: NNX17AK10G
– fundername: ;
  grantid: DE-SC0004632; DE-SC0010580; DE-SC0016440
– fundername: ;
  grantid: 2007-4547; 2013-5562; 2019-05764
– fundername: ;
  grantid: DBI-2022070; DEB-1802825; EAR-1063037; EF-1241037
GroupedDBID ---
-~X
0R~
18M
2WC
4.4
5VS
AACGO
AANCE
ABFAN
ABPLY
ABTLG
ABYWD
ACGFO
ACIWK
ACMTB
ACNCT
ACQIA
ACTMH
ADBBV
AEUPB
AFVYC
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
BTFSW
CGR
CUY
CVF
DIK
EBS
ECM
EIF
F5P
H13
HH5
HZ~
JLS
JSG
KQ8
MRS
MV1
NPM
NSAHA
O9-
OK1
OP1
P2P
RHF
RRY
TN5
TR2
V1E
W8F
XSW
YNT
~02
AAYXX
CITATION
OIOZB
OTOTI
5PM
29O
79B
ABAVF
ABBHK
ABEFU
ABXSQ
ADACV
ADODI
ADTPV
ADULT
AELPN
AEXZC
AFFNX
AJZGM
AOWAS
AQVQM
AS~
BGBPD
CAG
COF
D8T
DCCCD
DG7
DOOOF
DQDLB
DSRWC
ECEWR
EJD
FEDTE
HGD
HQ3
HQ6
HTVGU
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JMS
JPM
JSODD
JST
K-O
RNS
ROL
SA0
ZZAVC
ID FETCH-LOGICAL-c603t-378113fcb17f91fee3d708f81272c36a5024785f6deccc510038e8a160af3d7c3
ISSN 1364-503X
1471-2962
IngestDate Tue Oct 01 22:39:30 EDT 2024
Tue Sep 17 20:58:42 EDT 2024
Thu Dec 05 06:34:44 EST 2024
Fri Dec 06 06:01:32 EST 2024
Sat Sep 28 08:27:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2215
Keywords methane
remote sensing
radiative forcing
permafrost
Arctic
landcover
Language English
License Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603t-378113fcb17f91fee3d708f81272c36a5024785f6deccc510038e8a160af3d7c3
Notes SC0004632; SC0010580; SC0016440
USDOE Office of Science (SC), Biological and Environmental Research (BER)
One contribution of 10 to a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5678433.
IsoGenie Project Coordinators (Those coordinating the IsoGenie Project during the period when this research was primarily accomplished): S. R. Saleska9, V. I. Rich10, P. M. Crill4, J. P. Chanton7, G. W. Tyson11, R. K. Varner1,2, M. Tfaily9, M. Sullivan10, S. Frolking1, C. Li1.
ORCID 0000-0002-3571-6629
0000000235716629
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8646141
PMID 34865532
ParticipantIDs swepub_primary_oai_DiVA_org_su_204395
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646141
osti_scitechconnect_1856519
crossref_primary_10_1098_rsta_2021_0022
pubmed_primary_34865532
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
PublicationTitleAlternate Philos Trans A Math Phys Eng Sci
PublicationYear 2022
Publisher The Royal Society Publishing
The Royal Society
Publisher_xml – sequence: 0
  name: The Royal Society Publishing
– name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_53_2
Whiting GJ (e_1_3_6_7_2) 2001; 53
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_55_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_57_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_46_2
e_1_3_6_52_2
e_1_3_6_31_2
e_1_3_6_54_2
e_1_3_6_10_2
e_1_3_6_50_2
Malmer N (e_1_3_6_29_2) 2005; 11
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_56_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_58_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
Marcek HAM (e_1_3_6_22_2) 2021; 126
Sonesson M (e_1_3_6_32_2) 1980; 30
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_17_2
  doi: 10.1016/j.ecolmodel.2009.06.047
– ident: e_1_3_6_12_2
  doi: 10.3390/rs10091498
– ident: e_1_3_6_19_2
  doi: 10.1029/2004GB002238
– ident: e_1_3_6_53_2
  doi: 10.1038/364794a0
– ident: e_1_3_6_25_2
– ident: e_1_3_6_3_2
  doi: 10.1016/j.polar.2018.11.008
– ident: e_1_3_6_58_2
  doi: 10.1002/2016GL071930
– ident: e_1_3_6_56_2
  doi: 10.1038/s41561-019-0526-0
– ident: e_1_3_6_24_2
  doi: 10.1002/jgrg.20103
– ident: e_1_3_6_36_2
  doi: 10.1038/s41598-018-27770-x
– ident: e_1_3_6_5_2
  doi: 10.1088/1748-9326/9/8/085004
– volume: 53
  start-page: 521
  year: 2001
  ident: e_1_3_6_7_2
  article-title: Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration: Greenhouse carbon balance of wetlands
  publication-title: Tellus B
  contributor:
    fullname: Whiting GJ
– volume: 30
  start-page: 113
  year: 1980
  ident: e_1_3_6_32_2
  article-title: Plant communities of the Stordalen Mire: a comparison between numerical and non-numerical classification methods
  publication-title: Ecol. Bull.
  contributor:
    fullname: Sonesson M
– ident: e_1_3_6_34_2
  doi: 10.2307/3544151
– ident: e_1_3_6_52_2
  doi: 10.1007/s10584-013-0730-7
– ident: e_1_3_6_2_2
  doi: 10.1029/2003GL018680
– ident: e_1_3_6_45_2
  doi: 10.1073/pnas.1813305116
– ident: e_1_3_6_49_2
  doi: 10.1016/0304-3770(93)90040-4
– ident: e_1_3_6_50_2
  doi: 10.1016/0304-3770(91)90024-Y
– volume: 11
  start-page: 1895
  year: 2005
  ident: e_1_3_6_29_2
  article-title: Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.01042.x
  contributor:
    fullname: Malmer N
– ident: e_1_3_6_9_2
– ident: e_1_3_6_43_2
  doi: 10.1073/pnas.1719903115
– ident: e_1_3_6_10_2
  doi: 10.2307/1551870
– ident: e_1_3_6_21_2
  doi: 10.1002/lno.11645
– ident: e_1_3_6_11_2
  doi: 10.1139/as-2016-0008
– ident: e_1_3_6_20_2
  doi: 10.1002/lno.10335
– ident: e_1_3_6_27_2
  doi: 10.1016/j.quascirev.2020.106596
– ident: e_1_3_6_46_2
  doi: 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2
– ident: e_1_3_6_31_2
  doi: 10.1002/ppp.626
– ident: e_1_3_6_26_2
  doi: 10.1111/j.1365-2486.2007.01339.x
– ident: e_1_3_6_47_2
  doi: 10.1038/ngeo2654
– ident: e_1_3_6_30_2
  doi: 10.1029/2009GL042064
– ident: e_1_3_6_37_2
  doi: 10.1029/2019JG005094
– ident: e_1_3_6_23_2
  doi: 10.1029/2018JG004786
– ident: e_1_3_6_28_2
  doi: 10.1073/pnas.1916387117
– ident: e_1_3_6_40_2
– ident: e_1_3_6_4_2
  doi: 10.1029/2004GL020358
– ident: e_1_3_6_39_2
  doi: 10.1038/366051a0
– ident: e_1_3_6_6_2
  doi: 10.1007/s10021-011-9504-0
– ident: e_1_3_6_18_2
  doi: 10.1029/91JD01027
– ident: e_1_3_6_15_2
  doi: 10.1038/s41558-019-0662-y
– ident: e_1_3_6_48_2
  doi: 10.1038/ngeo2578
– volume: 126
  start-page: e2020JG006038
  year: 2021
  ident: e_1_3_6_22_2
  article-title: Continuous dynamics of dissolved methane over 2 years and its carbon isotopes (δ13C, Δ14C) in a small Arctic lake in the Mackenzie Delta
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2020JG006038
  contributor:
    fullname: Marcek HAM
– ident: e_1_3_6_44_2
  doi: 10.1139/a11-014
– ident: e_1_3_6_38_2
– ident: e_1_3_6_35_2
– ident: e_1_3_6_8_2
  doi: 10.1007/s10584-012-0445-1
– ident: e_1_3_6_16_2
  doi: 10.3402/polar.v21i1.6473
– ident: e_1_3_6_13_2
  doi: 10.1002/rse2.140
– ident: e_1_3_6_54_2
  doi: 10.1038/ncomms13043
– ident: e_1_3_6_14_2
  doi: 10.3390/rs8120979
– ident: e_1_3_6_51_2
  doi: 10.1088/1748-9326/9/8/085003
– ident: e_1_3_6_57_2
– ident: e_1_3_6_42_2
  doi: 10.1016/j.soilbio.2011.09.005
– ident: e_1_3_6_41_2
  doi: 10.1029/2011JG001819
– ident: e_1_3_6_55_2
  doi: 10.1029/2010JG001635
– ident: e_1_3_6_33_2
  doi: 10.1111/j.1365-2486.2006.01267.x
SSID ssj0011652
Score 2.5008283
Snippet Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground...
SourceID swepub
pubmedcentral
osti
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 20210022
SubjectTerms Arctic
Carbon Dioxide
Ecosystem
ENVIRONMENTAL SCIENCES
Hydrology
landcover
Methane
Permafrost
radiative forcing
remote sensing
Title Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
URI https://www.ncbi.nlm.nih.gov/pubmed/34865532
https://www.osti.gov/servlets/purl/1856519
https://pubmed.ncbi.nlm.nih.gov/PMC8646141
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-204395
Volume 380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2IiR4QGx8rAyQH0CAonRxPpz0cRpME1PRENu0tyhN7K4apChJQeV_8H-513acZuxh8FKlSZw0vT6-18459xLyKgkKmRWRRDVO5IaRnLoZLuQXADwhwSUmU9Q7Tz7xo7Pw40V0sbG5s8ZaWjbTUf7rRl3J_1gV9oFdUSX7D5a1F4UdsA32hU-wMHzeysYnOKxK1G1A_Jj9dIoKxy4j5lVE18tVUXVZln6IWcsuzJG6CWdg0FgLrBQBAJ9ltYP132rFjlOKt69zCGlVYvDcqF--wCwdWcilM4HhUutT2Dj2MIoFPx-uh7snbaEE1RWarjZ53XIT9PJFyx3FFxaqvsgIBzGYxDtq_X9ic8uq8gRmOUZv468UXVJFx7h0O1U4zyqj6UEyv3M8sm9dKpPJW1cpuHIm9tAh_GdXptiLKvvWrV4eYO2ZlaHKfFsUq_aKZuXERwqKqwXbZrAPeOhGnqpHDL5Q7wNn7frjvocIdLEpAwXf1wLUv5yPN0ZBBQqSRnA7hmt1fudmW2rBNe9rOZGaDZCk2D7F9im23yR3MMUjVoU4_ty9H2Nc1ZKyT2DTkSZ7_fv3wq0B9Mf5Wqh1nQbcS5arAqzTh-SBmRnRfd3Nt8iGKLfJ_bV8mfCt6wj1Nrmr2Mu4tWU8VE3fmjTq7x6R3x06KKKDanRQgw46L6lFB4VeRDt0UIUO2qKDKnRQQAe16FAtDDqoQQde0qKDIjooooMiOmizoIiOx-Ts8MPpwZFripC4OfeCBhxwwlgg8ymL5ZhJIYIi9hIJcXHs5wHPIghy4ySSvIDBMAcP5wWJSDLGvUzCqXnwhAzKRSl2CA0LLxlzxuNCxiH3_EwyTEeYeSKOZcjkkLxpbZV-17lm0pt7xZDsoilTgBSmes6RE5c3KcTeHGZkQ_JUG9ZeJQhRfx5Au7hncnsCJpnvHynnlyrZfMJDiODZkLzWnaPX5P38fD9dVLO0XqZKZB89u_Uz7JJ7HSifk0FTLcULCPCb6UvV1_8AC4wA8A
link.rule.ids 230,314,780,784,885,27924,27925
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permafrost+thaw+driven+changes+in+hydrology+and+vegetation+cover+increase+trace+gas+emissions+and+climate+forcing+in+Stordalen+Mire+from+1970+to+2014&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Varner%2C+Ruth+K.&rft.au=Crill%2C+Patrick+M.&rft.au=Frolking%2C+Steve&rft.au=McCalley%2C+Carmody+K.&rft.date=2022-01-24&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=380&rft.issue=2215&rft_id=info:doi/10.1098%2Frsta.2021.0022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsta_2021_0022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon