Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014
Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxid...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 380; no. 2215; p. 20210022 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society Publishing
24.01.2022
The Royal Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO
) and methane (CH
) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO
and CH
exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH
. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'. |
---|---|
AbstractList | Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales.
This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’. Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO 2 ) and methane (CH 4 ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO 2 and CH 4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH 4 . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’. Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO2) and methane (CH4) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO2 and CH4 exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH4. These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground microbial and geochemical processes, affecting production, consumption and net emission rates of climate forcing trace gases. Net carbon dioxide (CO ) and methane (CH ) fluxes determine the radiative forcing contribution from these climate-sensitive ecosystems. Permafrost peatlands may be a mosaic of dry frozen hummocks, semi-thawed or perched sphagnum dominated areas, wet permafrost-free sedge dominated sites and open water ponds. We revisited estimates of climate forcing made for 1970 and 2000 for Stordalen Mire in northern Sweden and found the trend of increasing forcing continued into 2014. The Mire continued to transition from dry permafrost to sedge and open water areas, increasing by 100% and 35%, respectively, over the 45-year period, causing the net radiative forcing of Stordalen Mire to shift from negative to positive. This trend is driven by transitioning vegetation community composition, improved estimates of annual CO and CH exchange and a 22% increase in the IPCC's 100-year global warming potential (GWP_100) value for CH . These results indicate that discontinuous permafrost ecosystems, while still remaining a net overall sink of C, can become a positive feedback to climate change on decadal timescales. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 2)'. |
Author | Varner, Ruth K McCalley, Carmody K Crill, Patrick M Burke, Sophia A Saleska, Scott Palace, Michael W Holmes, M Elizabeth Chanton, Jeffrey P Frolking, Steve |
AuthorAffiliation | Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA |
AuthorAffiliation_xml | – name: Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia – name: Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA |
Author_xml | – sequence: 1 givenname: Ruth K orcidid: 0000-0002-3571-6629 surname: Varner fullname: Varner, Ruth K organization: Department of Physical Geography, Stockholm University, Stockholm, Sweden – sequence: 2 givenname: Patrick M surname: Crill fullname: Crill, Patrick M organization: Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden – sequence: 3 givenname: Steve surname: Frolking fullname: Frolking, Steve organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA – sequence: 4 givenname: Carmody K surname: McCalley fullname: McCalley, Carmody K organization: Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA – sequence: 5 givenname: Sophia A surname: Burke fullname: Burke, Sophia A organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA – sequence: 6 givenname: Jeffrey P surname: Chanton fullname: Chanton, Jeffrey P organization: Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306-4350, USA – sequence: 7 givenname: M Elizabeth surname: Holmes fullname: Holmes, M Elizabeth organization: Division of Science and Math, Tallahassee Community College, 444 Appleyard Drive, Tallahassee, FL 32304, USA – sequence: 8 givenname: Scott surname: Saleska fullname: Saleska, Scott organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA – sequence: 9 givenname: Michael W surname: Palace fullname: Palace, Michael W organization: Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34865532$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1856519$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-204395$$DView record from Swedish Publication Index |
BookMark | eNpVkUuPFSEQRokZ4zx069IQ1_aVgobu3phMxmcyRhMfcUcYuujG9IUJMHdyf4j_V9qrE2cFSZ36quCckqMQAxLyFNgG2NC_TLmYDWccNoxx_oCcQNtBwwfFj-pdqLaRTPw4Jqc5_2QMQEn-iByLtldSCn5Cfn3GtDUuxVxomc0tHZPfYaB2NmHCTH2g835McYnTnpow0h1OWEzxsTJxh6kSNqHJSEsyFulkMsWtz7kS-U-HXfzWFKQuJuvDtEZ-KTGNZqlzPvpUKyluKQwdoyVSzqB9TB46s2R88vc8I9_evvl68b65_PTuw8X5ZWMVE6URXQ8gnL2Czg3gEMXYsd71wDtuhTKS8bbrpVMjWmslMCZ67A0oZlxFrTgjLw65-Ravb670daqrpr2OxuvX_vu5jmnS-UZz1opBVvzVAa_sFkeLob55udd1vxL8rKe4071qFbRQA54fAup3e52tL2hnG0NAWzT0UkkYKrQ5QLZayQnd3QBgepWuV-l6la5X6bXh2f9r3eH_LIvfR1ys7w |
CitedBy_id | crossref_primary_10_3389_frsen_2023_1095275 crossref_primary_10_5194_tc_18_1773_2024 crossref_primary_10_1111_gcb_16936 crossref_primary_10_1088_1748_9326_ad3565 crossref_primary_10_5194_tc_18_1443_2024 crossref_primary_10_1029_2023JG007638 crossref_primary_10_1029_2023JG007837 crossref_primary_10_5194_bg_20_4221_2023 crossref_primary_10_1016_j_fmre_2024_05_002 crossref_primary_10_1128_msystems_00698_23 crossref_primary_10_1111_gcb_16894 crossref_primary_10_3390_rs14030444 crossref_primary_10_5194_bg_21_2571_2024 |
Cites_doi | 10.1016/j.ecolmodel.2009.06.047 10.3390/rs10091498 10.1029/2004GB002238 10.1038/364794a0 10.1016/j.polar.2018.11.008 10.1002/2016GL071930 10.1038/s41561-019-0526-0 10.1002/jgrg.20103 10.1038/s41598-018-27770-x 10.1088/1748-9326/9/8/085004 10.2307/3544151 10.1007/s10584-013-0730-7 10.1029/2003GL018680 10.1073/pnas.1813305116 10.1016/0304-3770(93)90040-4 10.1016/0304-3770(91)90024-Y 10.1111/j.1365-2486.2005.01042.x 10.1073/pnas.1719903115 10.2307/1551870 10.1002/lno.11645 10.1139/as-2016-0008 10.1002/lno.10335 10.1016/j.quascirev.2020.106596 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2 10.1002/ppp.626 10.1111/j.1365-2486.2007.01339.x 10.1038/ngeo2654 10.1029/2009GL042064 10.1029/2019JG005094 10.1029/2018JG004786 10.1073/pnas.1916387117 10.1029/2004GL020358 10.1038/366051a0 10.1007/s10021-011-9504-0 10.1029/91JD01027 10.1038/s41558-019-0662-y 10.1038/ngeo2578 10.1029/2020JG006038 10.1139/a11-014 10.1007/s10584-012-0445-1 10.3402/polar.v21i1.6473 10.1002/rse2.140 10.1038/ncomms13043 10.3390/rs8120979 10.1088/1748-9326/9/8/085003 10.1016/j.soilbio.2011.09.005 10.1029/2011JG001819 10.1029/2010JG001635 10.1111/j.1365-2486.2006.01267.x |
ContentType | Journal Article |
Copyright | 2021 The Authors. 2021 |
Copyright_xml | – notice: 2021 The Authors. 2021 |
CorporateAuthor | Isogenie Project Coordinators Univ. of New Hampshire, Durham, NH (United States) |
CorporateAuthor_xml | – sequence: 0 name: Isogenie Project Coordinators – sequence: 0 name: Univ. of New Hampshire, Durham, NH (United States) – name: Isogenie Project Coordinators |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION OIOZB OTOTI 5PM ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
DOI | 10.1098/rsta.2021.0022 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Physics Environmental Sciences |
DocumentTitleAlternate | Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014 |
EISSN | 1471-2962 |
ExternalDocumentID | oai_DiVA_org_su_204395 1856519 10_1098_rsta_2021_0022 34865532 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: NNX17AK10G – fundername: ; grantid: DE-SC0004632; DE-SC0010580; DE-SC0016440 – fundername: ; grantid: 2007-4547; 2013-5562; 2019-05764 – fundername: ; grantid: DBI-2022070; DEB-1802825; EAR-1063037; EF-1241037 |
GroupedDBID | --- -~X 0R~ 18M 2WC 4.4 5VS AACGO AANCE ABFAN ABPLY ABTLG ABYWD ACGFO ACIWK ACMTB ACNCT ACQIA ACTMH ADBBV AEUPB AFVYC ALMA_UNASSIGNED_HOLDINGS ALMYZ BTFSW CGR CUY CVF DIK EBS ECM EIF F5P H13 HH5 HZ~ JLS JSG KQ8 MRS MV1 NPM NSAHA O9- OK1 OP1 P2P RHF RRY TN5 TR2 V1E W8F XSW YNT ~02 AAYXX CITATION OIOZB OTOTI 5PM 29O 79B ABAVF ABBHK ABEFU ABXSQ ADACV ADODI ADTPV ADULT AELPN AEXZC AFFNX AJZGM AOWAS AQVQM AS~ BGBPD CAG COF D8T DCCCD DG7 DOOOF DQDLB DSRWC ECEWR EJD FEDTE HGD HQ3 HQ6 HTVGU IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JMS JPM JSODD JST K-O RNS ROL SA0 ZZAVC |
ID | FETCH-LOGICAL-c603t-378113fcb17f91fee3d708f81272c36a5024785f6deccc510038e8a160af3d7c3 |
ISSN | 1364-503X 1471-2962 |
IngestDate | Tue Oct 01 22:39:30 EDT 2024 Tue Sep 17 20:58:42 EDT 2024 Thu Dec 05 06:34:44 EST 2024 Fri Dec 06 06:01:32 EST 2024 Sat Sep 28 08:27:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2215 |
Keywords | methane remote sensing radiative forcing permafrost Arctic landcover |
Language | English |
License | Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c603t-378113fcb17f91fee3d708f81272c36a5024785f6deccc510038e8a160af3d7c3 |
Notes | SC0004632; SC0010580; SC0016440 USDOE Office of Science (SC), Biological and Environmental Research (BER) One contribution of 10 to a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’. Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.5678433. IsoGenie Project Coordinators (Those coordinating the IsoGenie Project during the period when this research was primarily accomplished): S. R. Saleska9, V. I. Rich10, P. M. Crill4, J. P. Chanton7, G. W. Tyson11, R. K. Varner1,2, M. Tfaily9, M. Sullivan10, S. Frolking1, C. Li1. |
ORCID | 0000-0002-3571-6629 0000000235716629 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8646141 |
PMID | 34865532 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_204395 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8646141 osti_scitechconnect_1856519 crossref_primary_10_1098_rsta_2021_0022 pubmed_primary_34865532 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-24 |
PublicationDateYYYYMMDD | 2022-01-24 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
PublicationTitleAlternate | Philos Trans A Math Phys Eng Sci |
PublicationYear | 2022 |
Publisher | The Royal Society Publishing The Royal Society |
Publisher_xml | – sequence: 0 name: The Royal Society Publishing – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_53_2 Whiting GJ (e_1_3_6_7_2) 2001; 53 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_55_2 e_1_3_6_15_2 e_1_3_6_36_2 e_1_3_6_57_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_46_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_54_2 e_1_3_6_10_2 e_1_3_6_50_2 Malmer N (e_1_3_6_29_2) 2005; 11 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_39_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_56_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_58_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 Marcek HAM (e_1_3_6_22_2) 2021; 126 Sonesson M (e_1_3_6_32_2) 1980; 30 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_17_2 doi: 10.1016/j.ecolmodel.2009.06.047 – ident: e_1_3_6_12_2 doi: 10.3390/rs10091498 – ident: e_1_3_6_19_2 doi: 10.1029/2004GB002238 – ident: e_1_3_6_53_2 doi: 10.1038/364794a0 – ident: e_1_3_6_25_2 – ident: e_1_3_6_3_2 doi: 10.1016/j.polar.2018.11.008 – ident: e_1_3_6_58_2 doi: 10.1002/2016GL071930 – ident: e_1_3_6_56_2 doi: 10.1038/s41561-019-0526-0 – ident: e_1_3_6_24_2 doi: 10.1002/jgrg.20103 – ident: e_1_3_6_36_2 doi: 10.1038/s41598-018-27770-x – ident: e_1_3_6_5_2 doi: 10.1088/1748-9326/9/8/085004 – volume: 53 start-page: 521 year: 2001 ident: e_1_3_6_7_2 article-title: Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration: Greenhouse carbon balance of wetlands publication-title: Tellus B contributor: fullname: Whiting GJ – volume: 30 start-page: 113 year: 1980 ident: e_1_3_6_32_2 article-title: Plant communities of the Stordalen Mire: a comparison between numerical and non-numerical classification methods publication-title: Ecol. Bull. contributor: fullname: Sonesson M – ident: e_1_3_6_34_2 doi: 10.2307/3544151 – ident: e_1_3_6_52_2 doi: 10.1007/s10584-013-0730-7 – ident: e_1_3_6_2_2 doi: 10.1029/2003GL018680 – ident: e_1_3_6_45_2 doi: 10.1073/pnas.1813305116 – ident: e_1_3_6_49_2 doi: 10.1016/0304-3770(93)90040-4 – ident: e_1_3_6_50_2 doi: 10.1016/0304-3770(91)90024-Y – volume: 11 start-page: 1895 year: 2005 ident: e_1_3_6_29_2 article-title: Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.01042.x contributor: fullname: Malmer N – ident: e_1_3_6_9_2 – ident: e_1_3_6_43_2 doi: 10.1073/pnas.1719903115 – ident: e_1_3_6_10_2 doi: 10.2307/1551870 – ident: e_1_3_6_21_2 doi: 10.1002/lno.11645 – ident: e_1_3_6_11_2 doi: 10.1139/as-2016-0008 – ident: e_1_3_6_20_2 doi: 10.1002/lno.10335 – ident: e_1_3_6_27_2 doi: 10.1016/j.quascirev.2020.106596 – ident: e_1_3_6_46_2 doi: 10.1579/0044-7447(2006)35[190:WDTCPO]2.0.CO;2 – ident: e_1_3_6_31_2 doi: 10.1002/ppp.626 – ident: e_1_3_6_26_2 doi: 10.1111/j.1365-2486.2007.01339.x – ident: e_1_3_6_47_2 doi: 10.1038/ngeo2654 – ident: e_1_3_6_30_2 doi: 10.1029/2009GL042064 – ident: e_1_3_6_37_2 doi: 10.1029/2019JG005094 – ident: e_1_3_6_23_2 doi: 10.1029/2018JG004786 – ident: e_1_3_6_28_2 doi: 10.1073/pnas.1916387117 – ident: e_1_3_6_40_2 – ident: e_1_3_6_4_2 doi: 10.1029/2004GL020358 – ident: e_1_3_6_39_2 doi: 10.1038/366051a0 – ident: e_1_3_6_6_2 doi: 10.1007/s10021-011-9504-0 – ident: e_1_3_6_18_2 doi: 10.1029/91JD01027 – ident: e_1_3_6_15_2 doi: 10.1038/s41558-019-0662-y – ident: e_1_3_6_48_2 doi: 10.1038/ngeo2578 – volume: 126 start-page: e2020JG006038 year: 2021 ident: e_1_3_6_22_2 article-title: Continuous dynamics of dissolved methane over 2 years and its carbon isotopes (δ13C, Δ14C) in a small Arctic lake in the Mackenzie Delta publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2020JG006038 contributor: fullname: Marcek HAM – ident: e_1_3_6_44_2 doi: 10.1139/a11-014 – ident: e_1_3_6_38_2 – ident: e_1_3_6_35_2 – ident: e_1_3_6_8_2 doi: 10.1007/s10584-012-0445-1 – ident: e_1_3_6_16_2 doi: 10.3402/polar.v21i1.6473 – ident: e_1_3_6_13_2 doi: 10.1002/rse2.140 – ident: e_1_3_6_54_2 doi: 10.1038/ncomms13043 – ident: e_1_3_6_14_2 doi: 10.3390/rs8120979 – ident: e_1_3_6_51_2 doi: 10.1088/1748-9326/9/8/085003 – ident: e_1_3_6_57_2 – ident: e_1_3_6_42_2 doi: 10.1016/j.soilbio.2011.09.005 – ident: e_1_3_6_41_2 doi: 10.1029/2011JG001819 – ident: e_1_3_6_55_2 doi: 10.1029/2010JG001635 – ident: e_1_3_6_33_2 doi: 10.1111/j.1365-2486.2006.01267.x |
SSID | ssj0011652 |
Score | 2.5008283 |
Snippet | Permafrost thaw increases active layer thickness, changes landscape hydrology and influences vegetation species composition. These changes alter belowground... |
SourceID | swepub pubmedcentral osti crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 20210022 |
SubjectTerms | Arctic Carbon Dioxide Ecosystem ENVIRONMENTAL SCIENCES Hydrology landcover Methane Permafrost radiative forcing remote sensing |
Title | Permafrost thaw driven changes in hydrology and vegetation cover increase trace gas emissions and climate forcing in Stordalen Mire from 1970 to 2014 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34865532 https://www.osti.gov/servlets/purl/1856519 https://pubmed.ncbi.nlm.nih.gov/PMC8646141 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-204395 |
Volume | 380 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2IiR4QGx8rAyQH0CAonRxPpz0cRpME1PRENu0tyhN7K4apChJQeV_8H-513acZuxh8FKlSZw0vT6-18459xLyKgkKmRWRRDVO5IaRnLoZLuQXADwhwSUmU9Q7Tz7xo7Pw40V0sbG5s8ZaWjbTUf7rRl3J_1gV9oFdUSX7D5a1F4UdsA32hU-wMHzeysYnOKxK1G1A_Jj9dIoKxy4j5lVE18tVUXVZln6IWcsuzJG6CWdg0FgLrBQBAJ9ltYP132rFjlOKt69zCGlVYvDcqF--wCwdWcilM4HhUutT2Dj2MIoFPx-uh7snbaEE1RWarjZ53XIT9PJFyx3FFxaqvsgIBzGYxDtq_X9ic8uq8gRmOUZv468UXVJFx7h0O1U4zyqj6UEyv3M8sm9dKpPJW1cpuHIm9tAh_GdXptiLKvvWrV4eYO2ZlaHKfFsUq_aKZuXERwqKqwXbZrAPeOhGnqpHDL5Q7wNn7frjvocIdLEpAwXf1wLUv5yPN0ZBBQqSRnA7hmt1fudmW2rBNe9rOZGaDZCk2D7F9im23yR3MMUjVoU4_ty9H2Nc1ZKyT2DTkSZ7_fv3wq0B9Mf5Wqh1nQbcS5arAqzTh-SBmRnRfd3Nt8iGKLfJ_bV8mfCt6wj1Nrmr2Mu4tWU8VE3fmjTq7x6R3x06KKKDanRQgw46L6lFB4VeRDt0UIUO2qKDKnRQQAe16FAtDDqoQQde0qKDIjooooMiOmizoIiOx-Ts8MPpwZFripC4OfeCBhxwwlgg8ymL5ZhJIYIi9hIJcXHs5wHPIghy4ySSvIDBMAcP5wWJSDLGvUzCqXnwhAzKRSl2CA0LLxlzxuNCxiH3_EwyTEeYeSKOZcjkkLxpbZV-17lm0pt7xZDsoilTgBSmes6RE5c3KcTeHGZkQ_JUG9ZeJQhRfx5Au7hncnsCJpnvHynnlyrZfMJDiODZkLzWnaPX5P38fD9dVLO0XqZKZB89u_Uz7JJ7HSifk0FTLcULCPCb6UvV1_8AC4wA8A |
link.rule.ids | 230,314,780,784,885,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Permafrost+thaw+driven+changes+in+hydrology+and+vegetation+cover+increase+trace+gas+emissions+and+climate+forcing+in+Stordalen+Mire+from+1970+to+2014&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+A%3A+Mathematical%2C+physical%2C+and+engineering+sciences&rft.au=Varner%2C+Ruth+K.&rft.au=Crill%2C+Patrick+M.&rft.au=Frolking%2C+Steve&rft.au=McCalley%2C+Carmody+K.&rft.date=2022-01-24&rft.issn=1364-503X&rft.eissn=1471-2962&rft.volume=380&rft.issue=2215&rft_id=info:doi/10.1098%2Frsta.2021.0022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rsta_2021_0022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-503X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-503X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-503X&client=summon |