Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions
California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are availa...
Saved in:
Published in | Energy policy Vol. 44; pp. 52 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.05.2012
Elsevier Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0301-4215 1873-6777 |
DOI | 10.1016/j.enpol.2012.01.013 |
Cover
Abstract | California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions?
We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability.
These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required.
► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%. |
---|---|
AbstractList | California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. [PUBLICATIONABSTRACT] California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. All rights reserved, Elsevier California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. ► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%. California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. [PUBLICATION ABSTRACT] |
Author | Leighty, Wayne Ogden, Joan M. Yang, Christopher |
Author_xml | – sequence: 1 givenname: Wayne surname: Leighty fullname: Leighty, Wayne email: WayneLeighty@gmail.com – sequence: 2 givenname: Joan M. surname: Ogden fullname: Ogden, Joan M. email: jmogden@ucdavis.edu – sequence: 3 givenname: Christopher surname: Yang fullname: Yang, Christopher email: ccyang@ucdavis.edu |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25754881$$DView record in Pascal Francis |
BookMark | eNqNksuKFDEUhgsZwZ7RJ3BhEAQ31SaV-8KFNI4KIy4c1yGTnOpKU5OUSXXDPIGvbWp6UJiFLRwIHL7_5D-X8-YspghN85LgNcFEvNutIU5pXHeYdGtMatAnzYooSVshpTxrVphi0rKO8GfNeSk7jDFTmq2aX1-ThzHELZqzjSXMIcWCQkTzAGhjx9CnHINFY9gOc-v38x06wBDcCAUVcHPKaE7IuiHAAZAHmFAGv3d_6yxlp5Rnu6TQNgPEIe0LoK0tCG5DKQv6vHna27HAi4f3orm-_Hi9-dxeffv0ZfPhqnUC07nt6A1hRHvhQfc32nNuubbWe6GYBE6FdKxz3EoLvbaKCqV7yTmVUtQkoRfN22PZKaefeyizqQYcjKONUE2Zrg4GC6kIPokSIQnDiil-GsVEai6F1v-BYqwZY3Qx8PoRukv7HOt0jKacdYp0okJvHiBbnB37Om0XiplyuLX5znRccqbU0jg9ci6nUjL0fxCCF3_C7Mz9DZnlhgwmNWhV6UcqF46LrGsN4wntq6O2t8nYba6ufnyvgKgdSqIJq8T7IwF14YcA2RQXIDrwIdfTMj6Ff_7wG1jv71U |
CODEN | ENPYAC |
CitedBy_id | crossref_primary_10_1016_j_trd_2016_05_011 crossref_primary_10_1016_j_scs_2020_102030 crossref_primary_10_1016_j_eist_2016_08_002 crossref_primary_10_1016_j_tra_2019_03_002 crossref_primary_10_1016_j_apr_2020_08_034 crossref_primary_10_1016_j_enpol_2014_04_044 crossref_primary_10_3141_2467_16 crossref_primary_10_1016_j_rser_2016_02_013 crossref_primary_10_1016_j_apenergy_2017_05_054 crossref_primary_10_1016_j_enpol_2012_05_006 crossref_primary_10_1016_j_tej_2020_106878 crossref_primary_10_1016_j_tra_2015_04_030 crossref_primary_10_3390_atmos10110660 crossref_primary_10_1016_j_apenergy_2016_08_045 crossref_primary_10_1016_j_rser_2014_07_005 crossref_primary_10_1016_j_jclepro_2017_06_207 crossref_primary_10_1080_15568318_2016_1276651 crossref_primary_10_1016_j_ijepes_2013_05_016 crossref_primary_10_1016_j_enpol_2016_08_018 crossref_primary_10_1016_j_scitotenv_2017_03_171 crossref_primary_10_1111_jiec_12170 crossref_primary_10_1016_j_energy_2019_04_212 crossref_primary_10_1088_1748_9326_ab7c89 crossref_primary_10_1016_j_trd_2017_07_031 crossref_primary_10_1016_j_tranpol_2016_11_003 crossref_primary_10_1016_j_enpol_2016_10_027 crossref_primary_10_1016_j_techfore_2015_07_017 crossref_primary_10_1016_j_jth_2021_101142 crossref_primary_10_1038_s41560_020_00740_2 crossref_primary_10_1016_j_trd_2019_10_017 crossref_primary_10_1016_j_enpol_2014_12_006 crossref_primary_10_1016_j_tra_2020_08_008 crossref_primary_10_1016_j_rser_2016_12_052 crossref_primary_10_1016_j_trd_2018_06_008 crossref_primary_10_1016_j_jpowsour_2015_01_029 crossref_primary_10_1016_j_enpol_2016_02_031 crossref_primary_10_1080_09537325_2014_944148 crossref_primary_10_1016_j_enpol_2015_11_016 crossref_primary_10_1016_j_rser_2017_03_114 crossref_primary_10_1021_es4015635 crossref_primary_10_1016_j_trd_2018_05_010 |
Cites_doi | 10.1016/j.enpol.2009.08.038 10.1016/j.trd.2008.12.002 10.1016/j.energy.2009.10.006 10.1021/es802651r 10.1126/science.171.3977.1212 10.1073/pnas.0404500101 10.1017/CBO9780511546013 10.1126/science.1151861 10.1016/j.enpol.2008.03.029 10.1038/379240a0 10.1021/es8005805 10.1021/es1037707 10.1021/es801032b 10.1016/j.trd.2008.11.010 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS Copyright Elsevier Science Ltd. May 2012 |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright Elsevier Science Ltd. May 2012 |
DBID | FBQ AAYXX CITATION IQODW 7SP 7TA 7TB 7TQ 8BJ 8FD DHY DON F28 FQK FR3 H8D JBE JG9 KR7 L7M 7ST 7TV 7U6 C1K SOI 7SU 7S9 L.6 |
DOI | 10.1016/j.enpol.2012.01.013 |
DatabaseName | AGRIS CrossRef Pascal-Francis Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International PAIS International (Ovid) ANTE: Abstracts in New Technology & Engineering International Bibliography of the Social Sciences Engineering Research Database Aerospace Database International Bibliography of the Social Sciences Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Civil Engineering Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts PAIS International Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File Pollution Abstracts Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database International Bibliography of the Social Sciences (IBSS) AGRICOLA Pollution Abstracts Materials Research Database |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Environmental Sciences Applied Sciences |
EISSN | 1873-6777 |
EndPage | 67 |
ExternalDocumentID | 2616509211 25754881 10_1016_j_enpol_2012_01_013 US201600071914 S030142151200016X |
Genre | Feature |
GeographicLocations | California United States North America America United States--US USA, California |
GeographicLocations_xml | – name: California – name: United States--US – name: USA, California |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEYQN AFKWA AFODL AFRAH AFTJW AFXIZ AGHFR AGTHC AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLECG BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ H~9 IHE IXIXF J1W JARJE KCYFY KOM LY6 LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSF SSJ SSO SSR SSZ T5K TAE TN5 U5U WH7 WUQ ZY4 ~02 ~G- ABPIF FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SP 7TA 7TB 7TQ 8BJ 8FD DHY DON EFKBS F28 FQK FR3 H8D JBE JG9 KR7 L7M 7ST 7TV 7U6 C1K SOI 7SU 7S9 L.6 |
ID | FETCH-LOGICAL-c603t-23b1419d6de9fb9d55a59aadd6847e5367c42c5a7aef9a83689f75537765a713 |
IEDL.DBID | AIKHN |
ISSN | 0301-4215 |
IngestDate | Thu Sep 04 19:51:14 EDT 2025 Fri Sep 05 00:07:16 EDT 2025 Fri Sep 05 10:09:44 EDT 2025 Thu Sep 04 17:23:02 EDT 2025 Sun Sep 07 13:48:47 EDT 2025 Wed Apr 02 07:13:30 EDT 2025 Tue Jul 01 02:47:09 EDT 2025 Thu Apr 24 22:51:36 EDT 2025 Wed Dec 27 19:14:44 EST 2023 Fri Feb 23 02:34:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Advanced vehicles Alternative fuels Low-carbon future Script Pollution control Pollution prevention Lightweight vehicle Biofuel Electric vehicle Market penetration Pollutant emission Long term Modeling 2050 Case study Road transportation Greenhouse gas Environment impact Technological change |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-23b1419d6de9fb9d55a59aadd6847e5367c42c5a7aef9a83689f75537765a713 |
Notes | http://dx.doi.org/10.1016/j.enpol.2012.01.013 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 935428126 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2000067810 proquest_miscellaneous_1671408485 proquest_miscellaneous_1017957699 proquest_miscellaneous_1000944430 proquest_journals_935428126 pascalfrancis_primary_25754881 crossref_primary_10_1016_j_enpol_2012_01_013 crossref_citationtrail_10_1016_j_enpol_2012_01_013 fao_agris_US201600071914 elsevier_sciencedirect_doi_10_1016_j_enpol_2012_01_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Energy policy |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Science Ltd |
References | California Air Resources Board (CARB)(2008a) California Greenhouse Gas Emission Inventory California Public Utilities Commission (CPUC) (2008) Decision 08-10-037, October 16 Kromer, M.A. and J.B. Heywood (2007) Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. In: S.A. Laboratory (ed). MIT, Cambridge, MA, p. 153. California Department of Finance (CDF) (2007) Population Projections by Race/Ethnicity, Gender and Age for California and Its Counties 2000–2050, July California Air Resources Board (CARB) (2009b) Mobile Source Emissions Inventory, EMFAC Model Creyts, Jon, Derkach, Anton, Nyquist Scott, Ostrowski Ken and Stephenson Jack (2007) Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost? McKinsey & Company U.S. Greenhouse Gas Abatement Mapping Initiative, Executive Report Wigley, Richels, Edmonds (bib64) 1996; 379 United States Environmental Protection Agency (USEPA) (2006) Light-Duty Automotive Technology and Fuel Economy Trends: 1975 through 2006, Office of Transportation and Air Quality, EPA420-R-06-011. Zhang, Qi (2007) A study of diesel vehicle diffusion in Europe: calibration and analysis of a consumer acceptance and adoption model. In: 25th International Conference of the System Dynamics Society, Conference Proceedings, July 29–Aug 2, Boston, MA California Air Resources Board (CARB) (2009c) Proposed Regulation to Implement the Low Carbon Fuel Standard, Staff Report: Initial Statement of Reasons, Vol. 1, March 5, 2009 McCollum, Yang (bib48) 2009; 37 O'Connor (bib69) 2008 California Public Utilities Commission (CPUC) (2009) California Renewables Portfolio Standard website Moving Toward Sustainability, OECD Publishing, Paris, France. Thomas, C.E. (Sandy) (2008) Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. National Hydrogen Association Annual Meeting, Sacramento, California, March 31 (revised June 24, 2008). Kaya, Y. (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. In: Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris. Lutsey, Sperling (bib47) 2009; 14 McCollum, D. (2011) Achieving long-term energy, transport and climate objectives: multi-dimensional scenario analysis and modeling within a systems level framework. Ph.D. Dissertation in Transportation Technology and Policy. Davis, University of California, Davis. Argonne National Laboratory (2009) “VISION 2008 AEO Base Case Expanded,” VISION Model, downloaded from Electric Power Research Institute (EPRI) (bib71) 2008 Brandt, Farrell (bib3) 2008 California Air Resourced Board (CARB) (2008c) Comparison of Greenhouse Gas Reductions Under CAFE Standards and ARB Regulations Adopted Pursuant to AB1493, Technical Assessment, January 2. International Energy Agency (IEA) (2008) Energy Technology Perspectives: Scenarios and Strategies to 2050, OECD Publishing, Nov. 6, Paris, France, ISBN 978-92-64-04142-4. National Research Council (NRC) (bib56) 2008 California Air Resources Board (CARB) (2008b) Climate Change Scoping Plan: a framework for change, Pursuant to AB 32, the California Global Warming Solutions Act of 2006, December California Air Resources Board (CARB) (2010) Updated Economic Analysis of California’s Climate Change Scoping Plan, Staff Report to the Air Resources Board, Sacramento. . California Environmental Protection Agency (CalEPA) (bib5) 2006 Leighty, W.W. (2010) Deep reductions in greenhouse gas emissions from the California transportation sector: dynamics in vehicle fleet and energy supply transitions to achieve 80% reduction in emissions from 1990 levels by 2050. Research Report UCD-ITS-RR-10-27, Institute of Transportation Studies, University of California, Davis. Kromer, Bandivadekar, Evans (bib43) 2010; 35 Perlack, Wright, Turhollow, Graham, Stokes, Erbach (bib59) 2005 Sutherland, Ian J. (2010) US Light Duty Transportation Greenhouse Gas Reduction, GM Research & Development Center Publication, April. California Air Resources Board (CARB) (2004), Statewide Commercial Harbor Craft Survey: Final Report, in Emissions Assessment Branch, Sacramento, CA. California Air Resources Board (CARB) (2007) State Alternative Fuels Plan, Final Commission Report, publication #CEC-600-2007-011-CMF National Academies (bib54) 2010 Yang, McCollum, McCarthy, Leighty (bib65) 2009; 14D Delucchi, M. (2008) Lifecycle analysis of GHG emissions from biofuels. In: STEPS Research Symposium. University of California, Davis. Farrell, Alexander E., Sperling, Daniel (2007) A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis—Final Report, University of California, May 30. National Research Council (NRC) (bib55) 2002 Ehrlich, Holdren (bib22) 1971; 171 Greencar Congress (2008) “European Automobile Production Grows by 5.3% in 2007; Diesel Accounts for 53.3% of New Car Registrations,” International Energy Agency (IEA) (2009) Transport, Energy and CO National Academies (bib52) 2004 Yeh, Farrell, Plevin, Sanstad, Weyant (bib66) 2008; 42 Executive Order S-3-05, signed on June 1, 2005 by Governor Arnold Schwarzenegger Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Synthesis Report, p. 66 Searchinger, Heimlich, Houghton, Dong, Elobeid, Fabiosa, Tokgoz, Hayes, Yu (bib60) 2008 Hooks, Matthew, and Michael Jackson (2007) AB 1007 scenarios: hydrogen fuel cell vehicles, TIAX LLC, May 24. Jenkins (bib40) 2006 Melaina, Webster (bib51) 2011; 45 Bandivadekar, Cheah, Evans, Groode, Heywood, Kasseris, Kromer, Weiss (bib2) 2008; 36 Grimes-Casey, Keoleian, Willcox (bib32) 2009; 43 Emissions: The Full Portfolio. Discussion Paper, Palo Alto, CA ICF (bib35) 2010 Jackson, Michael (2007) AB 1007 Scenarios: Ethanol implementation scenarios, TIAX, LLC, May 30. McCollum, D. Yeh, S. Yang, C. and Ogden, J. Deep Greenhouse gas reduction scenarios for California – strategic implications from the CA-TIMES Energy-Economic Systems Model, Energy Strategy Reviews, in press. California Air Resources Board (CARB) (2008d) Comparison of Greenhouse Gas Reductions for the United States and Canada under U.S. CAFE Standards and California Air Resources Board Greenhouse Gas Regulations, Enhanced Technical Assessment, February 25. Parker, Nathan C. (2011) Modeling future biofuel supply chains using spatially explicit infrastructure optimization. Research Report UCD-ITS-RR-11-04, Institute of Transportation Studies, University of California, Davis. Ewing (bib27) 2007 Leighty, W.W., C. Yang, J. Ogden (2007) “Advanced ICE Vehicles: an assessment of the technologies for next generation vehicles,” Advanced Energy Pathways (AEP) Project, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies, Public Interest Energy Research (PIER) Program, California Energy Commission. Busch (bib4) 2009 Electric Power Research Institute (EPRI) (2007a) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions. EPRI, Palo Alto, CA, 2007. 1015325. Electric Power Research Institute (EPRI) (2007b) The Power to Reduce CO Hayhoe, Katharine, et al.. (2004). Emissions pathways, climate change, and impacts on California. Proceedings National Academies of Science, August 24, 101(34) 12422–12427. Greene, David L. (2007) Integrated analysis of market transformation scenarios with HyTrans, ORNL/TM-2007/094, Oak Ridge National Laboratory, Oak Ridge, TN, June. NRDC, 2004. Growing Energy: How Biofuels Can Help End America’s Oil Dependence. National Resources Defense Council. Plotkin, Singh (bib68) 2009 Grahn, Azar, Williander, Anderson, Mueller, Wallington (bib29) 2009; 43 California Air Resources Board (CARB) (2009a) 2009 Zero Emission Vehicle (ZEV) Review White Paper: Summary of Staff’s Preliminary Assessment of the Need for Revisions to the Zero Emission Vehicle Regulation, Attachment B: 2050 Greenhouse Gas Emissions Analysis: Staff Modeling in Support of the Zero Emission Vehicle Regulation National Academies (bib53) 2009 10.1016/j.enpol.2012.01.013_bib8 10.1016/j.enpol.2012.01.013_bib9 10.1016/j.enpol.2012.01.013_bib6 10.1016/j.enpol.2012.01.013_bib7 National Research Council (NRC) (10.1016/j.enpol.2012.01.013_bib56) 2008 McCollum (10.1016/j.enpol.2012.01.013_bib48) 2009; 37 10.1016/j.enpol.2012.01.013_bib28 10.1016/j.enpol.2012.01.013_bib24 10.1016/j.enpol.2012.01.013_bib25 10.1016/j.enpol.2012.01.013_bib26 10.1016/j.enpol.2012.01.013_bib20 National Research Council (NRC) (10.1016/j.enpol.2012.01.013_bib55) 2002 10.1016/j.enpol.2012.01.013_bib21 10.1016/j.enpol.2012.01.013_bib67 10.1016/j.enpol.2012.01.013_bib1 10.1016/j.enpol.2012.01.013_bib61 10.1016/j.enpol.2012.01.013_bib62 10.1016/j.enpol.2012.01.013_bib63 O'Connor (10.1016/j.enpol.2012.01.013_bib69) 2008 Ewing (10.1016/j.enpol.2012.01.013_bib27) 2007 Lutsey (10.1016/j.enpol.2012.01.013_bib47) 2009; 14 Kromer (10.1016/j.enpol.2012.01.013_bib43) 2010; 35 10.1016/j.enpol.2012.01.013_bib39 Melaina (10.1016/j.enpol.2012.01.013_bib51) 2011; 45 Plotkin (10.1016/j.enpol.2012.01.013_bib68) 2009 National Academies (10.1016/j.enpol.2012.01.013_bib52) 2004 Grahn (10.1016/j.enpol.2012.01.013_bib29) 2009; 43 10.1016/j.enpol.2012.01.013_bib36 10.1016/j.enpol.2012.01.013_bib37 Yang (10.1016/j.enpol.2012.01.013_bib65) 2009; 14D 10.1016/j.enpol.2012.01.013_bib38 10.1016/j.enpol.2012.01.013_bib31 10.1016/j.enpol.2012.01.013_bib33 10.1016/j.enpol.2012.01.013_bib34 Perlack (10.1016/j.enpol.2012.01.013_bib59) 2005 California Environmental Protection Agency (CalEPA) (10.1016/j.enpol.2012.01.013_bib5) 2006 10.1016/j.enpol.2012.01.013_bib30 Jenkins (10.1016/j.enpol.2012.01.013_bib40) 2006 National Academies (10.1016/j.enpol.2012.01.013_bib54) 2010 Busch (10.1016/j.enpol.2012.01.013_bib4) 2009 Searchinger (10.1016/j.enpol.2012.01.013_bib60) 2008 Grimes-Casey (10.1016/j.enpol.2012.01.013_bib32) 2009; 43 National Academies (10.1016/j.enpol.2012.01.013_bib53) 2009 10.1016/j.enpol.2012.01.013_bib46 Wigley (10.1016/j.enpol.2012.01.013_bib64) 1996; 379 10.1016/j.enpol.2012.01.013_bib49 10.1016/j.enpol.2012.01.013_bib42 10.1016/j.enpol.2012.01.013_bib44 ICF (10.1016/j.enpol.2012.01.013_bib35) 2010 Yeh (10.1016/j.enpol.2012.01.013_bib66) 2008; 42 10.1016/j.enpol.2012.01.013_bib41 Brandt (10.1016/j.enpol.2012.01.013_bib3) 2008 Ehrlich (10.1016/j.enpol.2012.01.013_bib22) 1971; 171 Electric Power Research Institute (EPRI) (10.1016/j.enpol.2012.01.013_bib71) 2008 10.1016/j.enpol.2012.01.013_bib17 10.1016/j.enpol.2012.01.013_bib18 10.1016/j.enpol.2012.01.013_bib19 10.1016/j.enpol.2012.01.013_bib13 10.1016/j.enpol.2012.01.013_bib57 Bandivadekar (10.1016/j.enpol.2012.01.013_bib2) 2008; 36 10.1016/j.enpol.2012.01.013_bib14 10.1016/j.enpol.2012.01.013_bib58 10.1016/j.enpol.2012.01.013_bib15 10.1016/j.enpol.2012.01.013_bib10 10.1016/j.enpol.2012.01.013_bib11 10.1016/j.enpol.2012.01.013_bib12 10.1016/j.enpol.2012.01.013_bib50 |
References_xml | – reference: Sutherland, Ian J. (2010) US Light Duty Transportation Greenhouse Gas Reduction, GM Research & Development Center Publication, April. – volume: 45 start-page: 3865 year: 2011 end-page: 3871 ident: bib51 article-title: Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector publication-title: Environmental Science and Technology – reference: NRDC, 2004. Growing Energy: How Biofuels Can Help End America’s Oil Dependence. National Resources Defense Council. – reference: Delucchi, M. (2008) Lifecycle analysis of GHG emissions from biofuels. In: STEPS Research Symposium. University of California, Davis. – reference: Farrell, Alexander E., Sperling, Daniel (2007) A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis—Final Report, University of California, May 30. – reference: Hayhoe, Katharine, et al.. (2004). Emissions pathways, climate change, and impacts on California. Proceedings National Academies of Science, August 24, 101(34) 12422–12427. – reference: Zhang, Qi (2007) A study of diesel vehicle diffusion in Europe: calibration and analysis of a consumer acceptance and adoption model. In: 25th International Conference of the System Dynamics Society, Conference Proceedings, July 29–Aug 2, Boston, MA, – reference: California Air Resources Board (CARB) (2009c) Proposed Regulation to Implement the Low Carbon Fuel Standard, Staff Report: Initial Statement of Reasons, Vol. 1, March 5, 2009, – year: 2009 ident: bib53 article-title: Transitions to Alternative Transportation Technologies—A Focus on Hydrogen – reference: Greene, David L. (2007) Integrated analysis of market transformation scenarios with HyTrans, ORNL/TM-2007/094, Oak Ridge National Laboratory, Oak Ridge, TN, June. – year: 2006 ident: bib5 article-title: Climate Action Team Report to Governor Schwarzenegger and the California Legislature – reference: Leighty, W.W. (2010) Deep reductions in greenhouse gas emissions from the California transportation sector: dynamics in vehicle fleet and energy supply transitions to achieve 80% reduction in emissions from 1990 levels by 2050. Research Report UCD-ITS-RR-10-27, Institute of Transportation Studies, University of California, Davis. – reference: Kromer, M.A. and J.B. Heywood (2007) Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. In: S.A. Laboratory (ed). MIT, Cambridge, MA, p. 153. – year: 2008 ident: bib3 publication-title: Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions, U.o.C.E.I. (UCEI), Editor – reference: Hooks, Matthew, and Michael Jackson (2007) AB 1007 scenarios: hydrogen fuel cell vehicles, TIAX LLC, May 24. – reference: California Public Utilities Commission (CPUC) (2008) Decision 08-10-037, October 16, – reference: McCollum, D. Yeh, S. Yang, C. and Ogden, J. Deep Greenhouse gas reduction scenarios for California – strategic implications from the CA-TIMES Energy-Economic Systems Model, Energy Strategy Reviews, in press. – reference: California Air Resources Board (CARB) (2009a) 2009 Zero Emission Vehicle (ZEV) Review White Paper: Summary of Staff’s Preliminary Assessment of the Need for Revisions to the Zero Emission Vehicle Regulation, Attachment B: 2050 Greenhouse Gas Emissions Analysis: Staff Modeling in Support of the Zero Emission Vehicle Regulation, – reference: Greencar Congress (2008) “European Automobile Production Grows by 5.3% in 2007; Diesel Accounts for 53.3% of New Car Registrations,” – volume: 36 start-page: 2754 year: 2008 end-page: 2760 ident: bib2 article-title: Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet publication-title: Energy Policy – year: 2008 ident: bib60 article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change publication-title: Sciencexpress – reference: California Air Resources Board (CARB) (2010) Updated Economic Analysis of California’s Climate Change Scoping Plan, Staff Report to the Air Resources Board, Sacramento. – volume: 14 start-page: 222 year: 2009 end-page: 229 ident: bib47 article-title: Greenhouse gas mitigation supply curve for the United States for transport versus other sectors publication-title: Transportation Research Part D – reference: Executive Order S-3-05, signed on June 1, 2005 by Governor Arnold Schwarzenegger, – year: 2010 ident: bib35 article-title: Modeling of Greenhouse Gas Reduction Measures to Support the Implementation of the California Global Warming Solutions Act (AB32): Energy 2020 Model Inputs and Assumptions – reference: United States Environmental Protection Agency (USEPA) (2006) Light-Duty Automotive Technology and Fuel Economy Trends: 1975 through 2006, Office of Transportation and Air Quality, EPA420-R-06-011. – year: 2010 ident: bib54 article-title: Transitions to Alternative Transportation Technologies—Plug-in Hybrid Electric Vehicles – reference: Kaya, Y. (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. In: Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris. – reference: Thomas, C.E. (Sandy) (2008) Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. National Hydrogen Association Annual Meeting, Sacramento, California, March 31 (revised June 24, 2008). – year: 2004 ident: bib52 article-title: The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs – reference: : Moving Toward Sustainability, OECD Publishing, Paris, France. – year: 2008 ident: bib56 publication-title: Water Implications of Biofuels Production in the United States – volume: 379 start-page: 240 year: 1996 end-page: 243 ident: bib64 article-title: Economic and environmental choices in the stabilization of atmospheric CO publication-title: Nature – volume: 35 start-page: 387 year: 2010 end-page: 397 ident: bib43 article-title: Long-term greenhouse gas emission and petroleum reduction goals: evolutionary pathways for the light-duty vehicle sector publication-title: Energy – year: 2002 ident: bib55 publication-title: Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards – year: 2006 ident: bib40 publication-title: A Roadmap for the Development of Biomass in California – reference: International Energy Agency (IEA) (2008) Energy Technology Perspectives: Scenarios and Strategies to 2050, OECD Publishing, Nov. 6, Paris, France, ISBN 978-92-64-04142-4. – reference: International Energy Agency (IEA) (2009) Transport, Energy and CO – year: 2009 ident: bib68 article-title: Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses – volume: 171 start-page: 1212 year: 1971 end-page: 1217 ident: bib22 article-title: Impact of population growth publication-title: Science – reference: Parker, Nathan C. (2011) Modeling future biofuel supply chains using spatially explicit infrastructure optimization. Research Report UCD-ITS-RR-11-04, Institute of Transportation Studies, University of California, Davis. – reference: California Air Resources Board (CARB) (2007) State Alternative Fuels Plan, Final Commission Report, publication #CEC-600-2007-011-CMF, – reference: California Air Resources Board (CARB)(2008a) California Greenhouse Gas Emission Inventory, – reference: Electric Power Research Institute (EPRI) (2007b) The Power to Reduce CO – reference: Emissions: The Full Portfolio. Discussion Paper, Palo Alto, CA, – year: 2008 ident: bib71 article-title: The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid publication-title: Technical Update 1016905 – reference: California Department of Finance (CDF) (2007) Population Projections by Race/Ethnicity, Gender and Age for California and Its Counties 2000–2050, July, – reference: Jackson, Michael (2007) AB 1007 Scenarios: Ethanol implementation scenarios, TIAX, LLC, May 30. – reference: California Air Resources Board (CARB) (2009b) Mobile Source Emissions Inventory, EMFAC Model, – volume: 37 start-page: 5580 year: 2009 end-page: 5596 ident: bib48 article-title: Achieving deep reductions in U.S. transport greenhouse gas emissions: scenario analysis and policy implications publication-title: Energy Policy – reference: McCollum, D. (2011) Achieving long-term energy, transport and climate objectives: multi-dimensional scenario analysis and modeling within a systems level framework. Ph.D. Dissertation in Transportation Technology and Policy. Davis, University of California, Davis. – volume: 14D start-page: 147 year: 2009 end-page: 156 ident: bib65 article-title: Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: a case study in California publication-title: Transportation Research Part D – year: 2005 ident: bib59 article-title: Biomass as a Feedstock for a Bioenergy and Bioprocessing Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Joint Study sponsored by USDOE and USDA. Oak Ridge National Laboratory publication-title: Oak Ridge – volume: 42 start-page: 8202 year: 2008 end-page: 8210 ident: bib66 article-title: Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model publication-title: Environmental Science and Technology – year: 2009 ident: bib4 article-title: Climate Policy and Economic Growth in California: A Comparative Analysis of Different Economic Impact Projections – reference: . – reference: Electric Power Research Institute (EPRI) (2007a) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions. EPRI, Palo Alto, CA, 2007. 1015325. – volume: 43 start-page: 585 year: 2009 end-page: 590 ident: bib32 article-title: Carbon emission targets for driving sustainable mobility with US light-duty vehicles publication-title: Environmental Science and Technology – reference: Leighty, W.W., C. Yang, J. Ogden (2007) “Advanced ICE Vehicles: an assessment of the technologies for next generation vehicles,” Advanced Energy Pathways (AEP) Project, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies, Public Interest Energy Research (PIER) Program, California Energy Commission. – year: 2008 ident: bib69 article-title: Vehicle technology assessment: plug-in hybrid electric vehicles (PHEV). In: Technology Assessment for Advanced Energy Pathways Project for California Energy Commission PIER Project – reference: Creyts, Jon, Derkach, Anton, Nyquist Scott, Ostrowski Ken and Stephenson Jack (2007) Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost? McKinsey & Company U.S. Greenhouse Gas Abatement Mapping Initiative, Executive Report, – reference: California Public Utilities Commission (CPUC) (2009) California Renewables Portfolio Standard website, – reference: Argonne National Laboratory (2009) “VISION 2008 AEO Base Case Expanded,” VISION Model, downloaded from – reference: California Air Resources Board (CARB) (2008b) Climate Change Scoping Plan: a framework for change, Pursuant to AB 32, the California Global Warming Solutions Act of 2006, December, – reference: California Air Resourced Board (CARB) (2008c) Comparison of Greenhouse Gas Reductions Under CAFE Standards and ARB Regulations Adopted Pursuant to AB1493, Technical Assessment, January 2. – reference: California Air Resources Board (CARB) (2004), Statewide Commercial Harbor Craft Survey: Final Report, in Emissions Assessment Branch, Sacramento, CA. – reference: California Air Resources Board (CARB) (2008d) Comparison of Greenhouse Gas Reductions for the United States and Canada under U.S. CAFE Standards and California Air Resources Board Greenhouse Gas Regulations, Enhanced Technical Assessment, February 25. – volume: 43 start-page: 3365 year: 2009 end-page: 3371 ident: bib29 article-title: Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO publication-title: Environmental Science and Technology – reference: Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Synthesis Report, p. 66, – year: 2007 ident: bib27 publication-title: Growing Cooler: The Evidence on Urban Development and Climate Change – volume: 37 start-page: 5580 issue: 12 year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib48 article-title: Achieving deep reductions in U.S. transport greenhouse gas emissions: scenario analysis and policy implications publication-title: Energy Policy doi: 10.1016/j.enpol.2009.08.038 – ident: 10.1016/j.enpol.2012.01.013_bib11 – ident: 10.1016/j.enpol.2012.01.013_bib34 – ident: 10.1016/j.enpol.2012.01.013_bib15 – ident: 10.1016/j.enpol.2012.01.013_bib63 – ident: 10.1016/j.enpol.2012.01.013_bib7 – volume: 14 start-page: 222 issue: 3 year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib47 article-title: Greenhouse gas mitigation supply curve for the United States for transport versus other sectors publication-title: Transportation Research Part D doi: 10.1016/j.trd.2008.12.002 – ident: 10.1016/j.enpol.2012.01.013_bib21 – ident: 10.1016/j.enpol.2012.01.013_bib57 – year: 2004 ident: 10.1016/j.enpol.2012.01.013_bib52 – ident: 10.1016/j.enpol.2012.01.013_bib25 – volume: 35 start-page: 387 year: 2010 ident: 10.1016/j.enpol.2012.01.013_bib43 article-title: Long-term greenhouse gas emission and petroleum reduction goals: evolutionary pathways for the light-duty vehicle sector publication-title: Energy doi: 10.1016/j.energy.2009.10.006 – year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib56 – ident: 10.1016/j.enpol.2012.01.013_bib19 – ident: 10.1016/j.enpol.2012.01.013_bib44 – ident: 10.1016/j.enpol.2012.01.013_bib67 – ident: 10.1016/j.enpol.2012.01.013_bib30 – year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib4 – volume: 43 start-page: 3365 year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib29 article-title: Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors publication-title: Environmental Science and Technology doi: 10.1021/es802651r – ident: 10.1016/j.enpol.2012.01.013_bib62 – ident: 10.1016/j.enpol.2012.01.013_bib14 – year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib3 – volume: 171 start-page: 1212 year: 1971 ident: 10.1016/j.enpol.2012.01.013_bib22 article-title: Impact of population growth publication-title: Science doi: 10.1126/science.171.3977.1212 – ident: 10.1016/j.enpol.2012.01.013_bib33 doi: 10.1073/pnas.0404500101 – ident: 10.1016/j.enpol.2012.01.013_bib39 – ident: 10.1016/j.enpol.2012.01.013_bib41 – ident: 10.1016/j.enpol.2012.01.013_bib6 – year: 2002 ident: 10.1016/j.enpol.2012.01.013_bib55 – ident: 10.1016/j.enpol.2012.01.013_bib20 – ident: 10.1016/j.enpol.2012.01.013_bib49 – ident: 10.1016/j.enpol.2012.01.013_bib24 – ident: 10.1016/j.enpol.2012.01.013_bib38 doi: 10.1017/CBO9780511546013 – ident: 10.1016/j.enpol.2012.01.013_bib28 – ident: 10.1016/j.enpol.2012.01.013_bib18 – ident: 10.1016/j.enpol.2012.01.013_bib31 – year: 2006 ident: 10.1016/j.enpol.2012.01.013_bib40 – ident: 10.1016/j.enpol.2012.01.013_bib10 – ident: 10.1016/j.enpol.2012.01.013_bib13 – year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib60 article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change publication-title: Sciencexpress doi: 10.1126/science.1151861 – year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib53 – ident: 10.1016/j.enpol.2012.01.013_bib9 – ident: 10.1016/j.enpol.2012.01.013_bib17 – ident: 10.1016/j.enpol.2012.01.013_bib42 – ident: 10.1016/j.enpol.2012.01.013_bib36 – ident: 10.1016/j.enpol.2012.01.013_bib61 – volume: 36 start-page: 2754 year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib2 article-title: Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet publication-title: Energy Policy doi: 10.1016/j.enpol.2008.03.029 – year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib69 – volume: 379 start-page: 240 issue: 6562 year: 1996 ident: 10.1016/j.enpol.2012.01.013_bib64 article-title: Economic and environmental choices in the stabilization of atmospheric CO2 concentrations publication-title: Nature doi: 10.1038/379240a0 – volume: 42 start-page: 8202 issue: 22 year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib66 article-title: Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model publication-title: Environmental Science and Technology doi: 10.1021/es8005805 – ident: 10.1016/j.enpol.2012.01.013_bib46 – year: 2005 ident: 10.1016/j.enpol.2012.01.013_bib59 article-title: Biomass as a Feedstock for a Bioenergy and Bioprocessing Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Joint Study sponsored by USDOE and USDA. Oak Ridge National Laboratory publication-title: Oak Ridge – volume: 45 start-page: 3865 year: 2011 ident: 10.1016/j.enpol.2012.01.013_bib51 article-title: Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector publication-title: Environmental Science and Technology doi: 10.1021/es1037707 – volume: 43 start-page: 585 issue: 3 year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib32 article-title: Carbon emission targets for driving sustainable mobility with US light-duty vehicles publication-title: Environmental Science and Technology doi: 10.1021/es801032b – year: 2006 ident: 10.1016/j.enpol.2012.01.013_bib5 – ident: 10.1016/j.enpol.2012.01.013_bib37 – year: 2007 ident: 10.1016/j.enpol.2012.01.013_bib27 – ident: 10.1016/j.enpol.2012.01.013_bib12 – volume: 14D start-page: 147 issue: 3 year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib65 article-title: Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: a case study in California publication-title: Transportation Research Part D doi: 10.1016/j.trd.2008.11.010 – ident: 10.1016/j.enpol.2012.01.013_bib58 – year: 2010 ident: 10.1016/j.enpol.2012.01.013_bib54 – ident: 10.1016/j.enpol.2012.01.013_bib8 – year: 2009 ident: 10.1016/j.enpol.2012.01.013_bib68 – ident: 10.1016/j.enpol.2012.01.013_bib50 – year: 2010 ident: 10.1016/j.enpol.2012.01.013_bib35 – ident: 10.1016/j.enpol.2012.01.013_bib26 – year: 2008 ident: 10.1016/j.enpol.2012.01.013_bib71 article-title: The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid – ident: 10.1016/j.enpol.2012.01.013_bib1 |
SSID | ssj0004894 |
Score | 2.2406647 |
Snippet | California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this... California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 52 |
SubjectTerms | Adoption of innovations Advanced vehicles Air pollution Air pollution caused by fuel industries Alternative fuels Applied sciences Availability Biofuels California Carbon Carbon emissions Change agents Demand Diesel fuels Economic data Electric vehicles Electricity Electrification Emissions Emissions control Energy Energy economics Energy policy Energy. Thermal use of fuels Exact sciences and technology Fossil fuels Fuel economy Fuels Gasoline General, economic and professional studies Greenhouse effect greenhouse gas emissions Greenhouse gases Ground, air and sea transportation, marine construction issues and policy Low-carbon future Markets Metering. Control Natural energy Petrol Reduction Renewable energy sources Resource availability Road transportation and traffic Studies Technological change Transportation Transportation industry Transportation planning, management and economics Travel U.S.A Vehicle emissions Vehicles |
Title | Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions |
URI | https://dx.doi.org/10.1016/j.enpol.2012.01.013 https://www.proquest.com/docview/935428126 https://www.proquest.com/docview/1000944430 https://www.proquest.com/docview/1017957699 https://www.proquest.com/docview/1671408485 https://www.proquest.com/docview/2000067810 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9auwNwQFCYlg0qI3EktI4_Eh-naVMBscs2qTfLSeyu09RWSzqJy6782_g5ScuE1gNSLknsKPJ7eR_O7_0ewOeC5zIvrYupdUXMVZ7HqmR5bHipZJJYxxnWDv-8kJNr_n0qpntw2tXCIKyytf2NTQ_Wur0yaldztJrPR5chGwgeKwQu0x7sJ0xJ0Yf9k28_Jhfb8shMNSxSPnPGCR35UIB5Yct2_AWBe4LUH-w5B9VzZonISVP5xXNN14t_DHjwSudv4HUbTpKT5o3fwp5dDOBFV21cDeDVX4SDAzg429a1-Wnth129g9_YEw0r00mNzqvBcZH5gvj4kGzrt8hd4B0p1_Uv8mBvAqSOVGHjn9RLgsBM-2BJae2K3CMp7PY5HYl60AQyQ7jPzXJdWTIzFcGmc7htV72Hq_Ozq9NJ3PZoiAs5ZnWcsJxyqkpZWuVyVQphhDLeaErv9qxgMi14UgiTGuuUyZjMlEuFYGkq_UXKDqC_WC7sIZCSOVZalidWptxkxjCpnEmty5xzGTMRJJ1cdNHyl2MbjTvdAdVudRCmRmHqMfUHi-DLZtKqoe_YPVx2AtdPtFB7B7N74qFXD21m3jLr68sEefswelOURzB8ojOb9_DG0qeLGY3guFMi3RqQSismfGJIExnBp81dLwv8nWMW1ssH2aZ9bs45G-8a4w2uTymV2jFGImljxjPx_JikjWvo-Oh_l-gYXuJZAxb9AP36fm0_-oCuzofQ-_pIh-1n-wcOXU1q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7axmFwQFCYFgbDSBwJbWLHiY9o2lRg22Wd1JvlJHZXNKXVkk7iwpV_m_ecpGVC6wEpp-Q5ivyc98P-3vcAPhYil3lpXRhZV4RC5XmoSp6HRpRKxrF1glPt8MWlHF-Lb9NkugMnfS0MwSo729_adG-tuzvDbjaHy_l8eOWzAe-xfOAy3YUnIuEp4fo-_9rgPESmWg4pzJtJvKce8iAvathOBxC0IxjhxR9zT7vOLAg3aWqcOtf2vPjHfHufdPYCnnfBJPvSfu9L2LHVAPb7WuN6AM_-ohscwMHppqoNh3W_df0KflNHNKpLZw25rhbFxeYVw-iQbaq32K1nHSlXzU92b288oI7VftufNQtGsEx7b1lp7ZLdESXs5j09hbpfB2xGYJ-bxaq2bGZqRi3naNOufg2Ts9PJyTjsOjSEhRzxJox5HolIlbK0yuWqTBKTKIMmU6LTswmXaSHiIjGpsU6ZjMtMuTRBJaUSb0b8APaqRWUPgZXc8dLyPLYyFSYzhkvlTGpd5pzLuAkg7vWii469nJpo3OoepvZDe2VqUqYeRXjxAD6tBy1b8o7t4rJXuH6wBjW6l-0DD3F5aDNDu6yvr2Ji7aPYTUUigOMHa2b9HWgqMVnMogCO-kWkO_NRa8UTTAujWAbwYf0UdUGHOaayqB_imsbMXAg-2iaD5hYTSqW2yEiibMxEljwuE3dRTTR6879T9B72x5OLc33-9fL7ETylJy1s9C3sNXcr-w5DuyY_9r_uH-9HTjU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+transitions+in+the+California+light-duty+vehicles+sector+to+achieve+deep+reductions+in+transportation+greenhouse+gas+emissions&rft.jtitle=Energy+policy&rft.au=Leighty%2C+Wayne&rft.au=Ogden%2C+Joan+M&rft.au=Yang%2C+Christopher&rft.date=2012-05-01&rft.issn=0301-4215&rft.volume=44+p.52-67&rft.spage=52&rft.epage=67&rft_id=info:doi/10.1016%2Fj.enpol.2012.01.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon |