Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions

California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are availa...

Full description

Saved in:
Bibliographic Details
Published inEnergy policy Vol. 44; pp. 52 - 67
Main Authors Leighty, Wayne, Ogden, Joan M., Yang, Christopher
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.05.2012
Elsevier
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0301-4215
1873-6777
DOI10.1016/j.enpol.2012.01.013

Cover

Abstract California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. ► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%.
AbstractList California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. [PUBLICATIONABSTRACT]
California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. All rights reserved, Elsevier
California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required.
California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. ► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%.
California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required.
California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California's transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80 in 50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are "swing factors" that influence the degree of LDV electrification required. [PUBLICATION ABSTRACT]
Author Leighty, Wayne
Ogden, Joan M.
Yang, Christopher
Author_xml – sequence: 1
  givenname: Wayne
  surname: Leighty
  fullname: Leighty, Wayne
  email: WayneLeighty@gmail.com
– sequence: 2
  givenname: Joan M.
  surname: Ogden
  fullname: Ogden, Joan M.
  email: jmogden@ucdavis.edu
– sequence: 3
  givenname: Christopher
  surname: Yang
  fullname: Yang, Christopher
  email: ccyang@ucdavis.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25754881$$DView record in Pascal Francis
BookMark eNqNksuKFDEUhgsZwZ7RJ3BhEAQ31SaV-8KFNI4KIy4c1yGTnOpKU5OUSXXDPIGvbWp6UJiFLRwIHL7_5D-X8-YspghN85LgNcFEvNutIU5pXHeYdGtMatAnzYooSVshpTxrVphi0rKO8GfNeSk7jDFTmq2aX1-ThzHELZqzjSXMIcWCQkTzAGhjx9CnHINFY9gOc-v38x06wBDcCAUVcHPKaE7IuiHAAZAHmFAGv3d_6yxlp5Rnu6TQNgPEIe0LoK0tCG5DKQv6vHna27HAi4f3orm-_Hi9-dxeffv0ZfPhqnUC07nt6A1hRHvhQfc32nNuubbWe6GYBE6FdKxz3EoLvbaKCqV7yTmVUtQkoRfN22PZKaefeyizqQYcjKONUE2Zrg4GC6kIPokSIQnDiil-GsVEai6F1v-BYqwZY3Qx8PoRukv7HOt0jKacdYp0okJvHiBbnB37Om0XiplyuLX5znRccqbU0jg9ci6nUjL0fxCCF3_C7Mz9DZnlhgwmNWhV6UcqF46LrGsN4wntq6O2t8nYba6ufnyvgKgdSqIJq8T7IwF14YcA2RQXIDrwIdfTMj6Ff_7wG1jv71U
CODEN ENPYAC
CitedBy_id crossref_primary_10_1016_j_trd_2016_05_011
crossref_primary_10_1016_j_scs_2020_102030
crossref_primary_10_1016_j_eist_2016_08_002
crossref_primary_10_1016_j_tra_2019_03_002
crossref_primary_10_1016_j_apr_2020_08_034
crossref_primary_10_1016_j_enpol_2014_04_044
crossref_primary_10_3141_2467_16
crossref_primary_10_1016_j_rser_2016_02_013
crossref_primary_10_1016_j_apenergy_2017_05_054
crossref_primary_10_1016_j_enpol_2012_05_006
crossref_primary_10_1016_j_tej_2020_106878
crossref_primary_10_1016_j_tra_2015_04_030
crossref_primary_10_3390_atmos10110660
crossref_primary_10_1016_j_apenergy_2016_08_045
crossref_primary_10_1016_j_rser_2014_07_005
crossref_primary_10_1016_j_jclepro_2017_06_207
crossref_primary_10_1080_15568318_2016_1276651
crossref_primary_10_1016_j_ijepes_2013_05_016
crossref_primary_10_1016_j_enpol_2016_08_018
crossref_primary_10_1016_j_scitotenv_2017_03_171
crossref_primary_10_1111_jiec_12170
crossref_primary_10_1016_j_energy_2019_04_212
crossref_primary_10_1088_1748_9326_ab7c89
crossref_primary_10_1016_j_trd_2017_07_031
crossref_primary_10_1016_j_tranpol_2016_11_003
crossref_primary_10_1016_j_enpol_2016_10_027
crossref_primary_10_1016_j_techfore_2015_07_017
crossref_primary_10_1016_j_jth_2021_101142
crossref_primary_10_1038_s41560_020_00740_2
crossref_primary_10_1016_j_trd_2019_10_017
crossref_primary_10_1016_j_enpol_2014_12_006
crossref_primary_10_1016_j_tra_2020_08_008
crossref_primary_10_1016_j_rser_2016_12_052
crossref_primary_10_1016_j_trd_2018_06_008
crossref_primary_10_1016_j_jpowsour_2015_01_029
crossref_primary_10_1016_j_enpol_2016_02_031
crossref_primary_10_1080_09537325_2014_944148
crossref_primary_10_1016_j_enpol_2015_11_016
crossref_primary_10_1016_j_rser_2017_03_114
crossref_primary_10_1021_es4015635
crossref_primary_10_1016_j_trd_2018_05_010
Cites_doi 10.1016/j.enpol.2009.08.038
10.1016/j.trd.2008.12.002
10.1016/j.energy.2009.10.006
10.1021/es802651r
10.1126/science.171.3977.1212
10.1073/pnas.0404500101
10.1017/CBO9780511546013
10.1126/science.1151861
10.1016/j.enpol.2008.03.029
10.1038/379240a0
10.1021/es8005805
10.1021/es1037707
10.1021/es801032b
10.1016/j.trd.2008.11.010
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright Elsevier Science Ltd. May 2012
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright Elsevier Science Ltd. May 2012
DBID FBQ
AAYXX
CITATION
IQODW
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
7TV
7U6
C1K
SOI
7SU
7S9
L.6
DOI 10.1016/j.enpol.2012.01.013
DatabaseName AGRIS
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
ANTE: Abstracts in New Technology & Engineering
International Bibliography of the Social Sciences
Engineering Research Database
Aerospace Database
International Bibliography of the Social Sciences
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
PAIS International
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
International Bibliography of the Social Sciences (IBSS)
AGRICOLA

Pollution Abstracts

Materials Research Database
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-6777
EndPage 67
ExternalDocumentID 2616509211
25754881
10_1016_j_enpol_2012_01_013
US201600071914
S030142151200016X
Genre Feature
GeographicLocations California
United States
North America
America
United States--US
USA, California
GeographicLocations_xml – name: California
– name: United States--US
– name: USA, California
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLECG
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
JARJE
KCYFY
KOM
LY6
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSF
SSJ
SSO
SSR
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZY4
~02
~G-
ABPIF
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
EFKBS
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
7TV
7U6
C1K
SOI
7SU
7S9
L.6
ID FETCH-LOGICAL-c603t-23b1419d6de9fb9d55a59aadd6847e5367c42c5a7aef9a83689f75537765a713
IEDL.DBID AIKHN
ISSN 0301-4215
IngestDate Thu Sep 04 19:51:14 EDT 2025
Fri Sep 05 00:07:16 EDT 2025
Fri Sep 05 10:09:44 EDT 2025
Thu Sep 04 17:23:02 EDT 2025
Sun Sep 07 13:48:47 EDT 2025
Wed Apr 02 07:13:30 EDT 2025
Tue Jul 01 02:47:09 EDT 2025
Thu Apr 24 22:51:36 EDT 2025
Wed Dec 27 19:14:44 EST 2023
Fri Feb 23 02:34:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Advanced vehicles
Alternative fuels
Low-carbon future
Script
Pollution control
Pollution prevention
Lightweight vehicle
Biofuel
Electric vehicle
Market penetration
Pollutant emission
Long term
Modeling
2050
Case study
Road transportation
Greenhouse gas
Environment impact
Technological change
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-23b1419d6de9fb9d55a59aadd6847e5367c42c5a7aef9a83689f75537765a713
Notes http://dx.doi.org/10.1016/j.enpol.2012.01.013
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 935428126
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_2000067810
proquest_miscellaneous_1671408485
proquest_miscellaneous_1017957699
proquest_miscellaneous_1000944430
proquest_journals_935428126
pascalfrancis_primary_25754881
crossref_primary_10_1016_j_enpol_2012_01_013
crossref_citationtrail_10_1016_j_enpol_2012_01_013
fao_agris_US201600071914
elsevier_sciencedirect_doi_10_1016_j_enpol_2012_01_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy policy
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Ltd
References California Air Resources Board (CARB)(2008a) California Greenhouse Gas Emission Inventory
California Public Utilities Commission (CPUC) (2008) Decision 08-10-037, October 16
Kromer, M.A. and J.B. Heywood (2007) Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. In: S.A. Laboratory (ed). MIT, Cambridge, MA, p. 153.
California Department of Finance (CDF) (2007) Population Projections by Race/Ethnicity, Gender and Age for California and Its Counties 2000–2050, July
California Air Resources Board (CARB) (2009b) Mobile Source Emissions Inventory, EMFAC Model
Creyts, Jon, Derkach, Anton, Nyquist Scott, Ostrowski Ken and Stephenson Jack (2007) Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost? McKinsey & Company U.S. Greenhouse Gas Abatement Mapping Initiative, Executive Report
Wigley, Richels, Edmonds (bib64) 1996; 379
United States Environmental Protection Agency (USEPA) (2006) Light-Duty Automotive Technology and Fuel Economy Trends: 1975 through 2006, Office of Transportation and Air Quality, EPA420-R-06-011.
Zhang, Qi (2007) A study of diesel vehicle diffusion in Europe: calibration and analysis of a consumer acceptance and adoption model. In: 25th International Conference of the System Dynamics Society, Conference Proceedings, July 29–Aug 2, Boston, MA
California Air Resources Board (CARB) (2009c) Proposed Regulation to Implement the Low Carbon Fuel Standard, Staff Report: Initial Statement of Reasons, Vol. 1, March 5, 2009
McCollum, Yang (bib48) 2009; 37
O'Connor (bib69) 2008
California Public Utilities Commission (CPUC) (2009) California Renewables Portfolio Standard website
Moving Toward Sustainability, OECD Publishing, Paris, France.
Thomas, C.E. (Sandy) (2008) Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. National Hydrogen Association Annual Meeting, Sacramento, California, March 31 (revised June 24, 2008).
Kaya, Y. (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. In: Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris.
Lutsey, Sperling (bib47) 2009; 14
McCollum, D. (2011) Achieving long-term energy, transport and climate objectives: multi-dimensional scenario analysis and modeling within a systems level framework. Ph.D. Dissertation in Transportation Technology and Policy. Davis, University of California, Davis.
Argonne National Laboratory (2009) “VISION 2008 AEO Base Case Expanded,” VISION Model, downloaded from
Electric Power Research Institute (EPRI) (bib71) 2008
Brandt, Farrell (bib3) 2008
California Air Resourced Board (CARB) (2008c) Comparison of Greenhouse Gas Reductions Under CAFE Standards and ARB Regulations Adopted Pursuant to AB1493, Technical Assessment, January 2.
International Energy Agency (IEA) (2008) Energy Technology Perspectives: Scenarios and Strategies to 2050, OECD Publishing, Nov. 6, Paris, France, ISBN 978-92-64-04142-4.
National Research Council (NRC) (bib56) 2008
California Air Resources Board (CARB) (2008b) Climate Change Scoping Plan: a framework for change, Pursuant to AB 32, the California Global Warming Solutions Act of 2006, December
California Air Resources Board (CARB) (2010) Updated Economic Analysis of California’s Climate Change Scoping Plan, Staff Report to the Air Resources Board, Sacramento.
.
California Environmental Protection Agency (CalEPA) (bib5) 2006
Leighty, W.W. (2010) Deep reductions in greenhouse gas emissions from the California transportation sector: dynamics in vehicle fleet and energy supply transitions to achieve 80% reduction in emissions from 1990 levels by 2050. Research Report UCD-ITS-RR-10-27, Institute of Transportation Studies, University of California, Davis.
Kromer, Bandivadekar, Evans (bib43) 2010; 35
Perlack, Wright, Turhollow, Graham, Stokes, Erbach (bib59) 2005
Sutherland, Ian J. (2010) US Light Duty Transportation Greenhouse Gas Reduction, GM Research & Development Center Publication, April.
California Air Resources Board (CARB) (2004), Statewide Commercial Harbor Craft Survey: Final Report, in Emissions Assessment Branch, Sacramento, CA.
California Air Resources Board (CARB) (2007) State Alternative Fuels Plan, Final Commission Report, publication #CEC-600-2007-011-CMF
National Academies (bib54) 2010
Yang, McCollum, McCarthy, Leighty (bib65) 2009; 14D
Delucchi, M. (2008) Lifecycle analysis of GHG emissions from biofuels. In: STEPS Research Symposium. University of California, Davis.
Farrell, Alexander E., Sperling, Daniel (2007) A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis—Final Report, University of California, May 30.
National Research Council (NRC) (bib55) 2002
Ehrlich, Holdren (bib22) 1971; 171
Greencar Congress (2008) “European Automobile Production Grows by 5.3% in 2007; Diesel Accounts for 53.3% of New Car Registrations,”
International Energy Agency (IEA) (2009) Transport, Energy and CO
National Academies (bib52) 2004
Yeh, Farrell, Plevin, Sanstad, Weyant (bib66) 2008; 42
Executive Order S-3-05, signed on June 1, 2005 by Governor Arnold Schwarzenegger
Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Synthesis Report, p. 66
Searchinger, Heimlich, Houghton, Dong, Elobeid, Fabiosa, Tokgoz, Hayes, Yu (bib60) 2008
Hooks, Matthew, and Michael Jackson (2007) AB 1007 scenarios: hydrogen fuel cell vehicles, TIAX LLC, May 24.
Jenkins (bib40) 2006
Melaina, Webster (bib51) 2011; 45
Bandivadekar, Cheah, Evans, Groode, Heywood, Kasseris, Kromer, Weiss (bib2) 2008; 36
Grimes-Casey, Keoleian, Willcox (bib32) 2009; 43
Emissions: The Full Portfolio. Discussion Paper, Palo Alto, CA
ICF (bib35) 2010
Jackson, Michael (2007) AB 1007 Scenarios: Ethanol implementation scenarios, TIAX, LLC, May 30.
McCollum, D. Yeh, S. Yang, C. and Ogden, J. Deep Greenhouse gas reduction scenarios for California – strategic implications from the CA-TIMES Energy-Economic Systems Model, Energy Strategy Reviews, in press.
California Air Resources Board (CARB) (2008d) Comparison of Greenhouse Gas Reductions for the United States and Canada under U.S. CAFE Standards and California Air Resources Board Greenhouse Gas Regulations, Enhanced Technical Assessment, February 25.
Parker, Nathan C. (2011) Modeling future biofuel supply chains using spatially explicit infrastructure optimization. Research Report UCD-ITS-RR-11-04, Institute of Transportation Studies, University of California, Davis.
Ewing (bib27) 2007
Leighty, W.W., C. Yang, J. Ogden (2007) “Advanced ICE Vehicles: an assessment of the technologies for next generation vehicles,” Advanced Energy Pathways (AEP) Project, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies, Public Interest Energy Research (PIER) Program, California Energy Commission.
Busch (bib4) 2009
Electric Power Research Institute (EPRI) (2007a) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions. EPRI, Palo Alto, CA, 2007. 1015325.
Electric Power Research Institute (EPRI) (2007b) The Power to Reduce CO
Hayhoe, Katharine, et al.. (2004). Emissions pathways, climate change, and impacts on California. Proceedings National Academies of Science, August 24, 101(34) 12422–12427.
Greene, David L. (2007) Integrated analysis of market transformation scenarios with HyTrans, ORNL/TM-2007/094, Oak Ridge National Laboratory, Oak Ridge, TN, June.
NRDC, 2004. Growing Energy: How Biofuels Can Help End America’s Oil Dependence. National Resources Defense Council.
Plotkin, Singh (bib68) 2009
Grahn, Azar, Williander, Anderson, Mueller, Wallington (bib29) 2009; 43
California Air Resources Board (CARB) (2009a) 2009 Zero Emission Vehicle (ZEV) Review White Paper: Summary of Staff’s Preliminary Assessment of the Need for Revisions to the Zero Emission Vehicle Regulation, Attachment B: 2050 Greenhouse Gas Emissions Analysis: Staff Modeling in Support of the Zero Emission Vehicle Regulation
National Academies (bib53) 2009
10.1016/j.enpol.2012.01.013_bib8
10.1016/j.enpol.2012.01.013_bib9
10.1016/j.enpol.2012.01.013_bib6
10.1016/j.enpol.2012.01.013_bib7
National Research Council (NRC) (10.1016/j.enpol.2012.01.013_bib56) 2008
McCollum (10.1016/j.enpol.2012.01.013_bib48) 2009; 37
10.1016/j.enpol.2012.01.013_bib28
10.1016/j.enpol.2012.01.013_bib24
10.1016/j.enpol.2012.01.013_bib25
10.1016/j.enpol.2012.01.013_bib26
10.1016/j.enpol.2012.01.013_bib20
National Research Council (NRC) (10.1016/j.enpol.2012.01.013_bib55) 2002
10.1016/j.enpol.2012.01.013_bib21
10.1016/j.enpol.2012.01.013_bib67
10.1016/j.enpol.2012.01.013_bib1
10.1016/j.enpol.2012.01.013_bib61
10.1016/j.enpol.2012.01.013_bib62
10.1016/j.enpol.2012.01.013_bib63
O'Connor (10.1016/j.enpol.2012.01.013_bib69) 2008
Ewing (10.1016/j.enpol.2012.01.013_bib27) 2007
Lutsey (10.1016/j.enpol.2012.01.013_bib47) 2009; 14
Kromer (10.1016/j.enpol.2012.01.013_bib43) 2010; 35
10.1016/j.enpol.2012.01.013_bib39
Melaina (10.1016/j.enpol.2012.01.013_bib51) 2011; 45
Plotkin (10.1016/j.enpol.2012.01.013_bib68) 2009
National Academies (10.1016/j.enpol.2012.01.013_bib52) 2004
Grahn (10.1016/j.enpol.2012.01.013_bib29) 2009; 43
10.1016/j.enpol.2012.01.013_bib36
10.1016/j.enpol.2012.01.013_bib37
Yang (10.1016/j.enpol.2012.01.013_bib65) 2009; 14D
10.1016/j.enpol.2012.01.013_bib38
10.1016/j.enpol.2012.01.013_bib31
10.1016/j.enpol.2012.01.013_bib33
10.1016/j.enpol.2012.01.013_bib34
Perlack (10.1016/j.enpol.2012.01.013_bib59) 2005
California Environmental Protection Agency (CalEPA) (10.1016/j.enpol.2012.01.013_bib5) 2006
10.1016/j.enpol.2012.01.013_bib30
Jenkins (10.1016/j.enpol.2012.01.013_bib40) 2006
National Academies (10.1016/j.enpol.2012.01.013_bib54) 2010
Busch (10.1016/j.enpol.2012.01.013_bib4) 2009
Searchinger (10.1016/j.enpol.2012.01.013_bib60) 2008
Grimes-Casey (10.1016/j.enpol.2012.01.013_bib32) 2009; 43
National Academies (10.1016/j.enpol.2012.01.013_bib53) 2009
10.1016/j.enpol.2012.01.013_bib46
Wigley (10.1016/j.enpol.2012.01.013_bib64) 1996; 379
10.1016/j.enpol.2012.01.013_bib49
10.1016/j.enpol.2012.01.013_bib42
10.1016/j.enpol.2012.01.013_bib44
ICF (10.1016/j.enpol.2012.01.013_bib35) 2010
Yeh (10.1016/j.enpol.2012.01.013_bib66) 2008; 42
10.1016/j.enpol.2012.01.013_bib41
Brandt (10.1016/j.enpol.2012.01.013_bib3) 2008
Ehrlich (10.1016/j.enpol.2012.01.013_bib22) 1971; 171
Electric Power Research Institute (EPRI) (10.1016/j.enpol.2012.01.013_bib71) 2008
10.1016/j.enpol.2012.01.013_bib17
10.1016/j.enpol.2012.01.013_bib18
10.1016/j.enpol.2012.01.013_bib19
10.1016/j.enpol.2012.01.013_bib13
10.1016/j.enpol.2012.01.013_bib57
Bandivadekar (10.1016/j.enpol.2012.01.013_bib2) 2008; 36
10.1016/j.enpol.2012.01.013_bib14
10.1016/j.enpol.2012.01.013_bib58
10.1016/j.enpol.2012.01.013_bib15
10.1016/j.enpol.2012.01.013_bib10
10.1016/j.enpol.2012.01.013_bib11
10.1016/j.enpol.2012.01.013_bib12
10.1016/j.enpol.2012.01.013_bib50
References_xml – reference: Sutherland, Ian J. (2010) US Light Duty Transportation Greenhouse Gas Reduction, GM Research & Development Center Publication, April.
– volume: 45
  start-page: 3865
  year: 2011
  end-page: 3871
  ident: bib51
  article-title: Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector
  publication-title: Environmental Science and Technology
– reference: NRDC, 2004. Growing Energy: How Biofuels Can Help End America’s Oil Dependence. National Resources Defense Council.
– reference: Delucchi, M. (2008) Lifecycle analysis of GHG emissions from biofuels. In: STEPS Research Symposium. University of California, Davis.
– reference: Farrell, Alexander E., Sperling, Daniel (2007) A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis—Final Report, University of California, May 30.
– reference: Hayhoe, Katharine, et al.. (2004). Emissions pathways, climate change, and impacts on California. Proceedings National Academies of Science, August 24, 101(34) 12422–12427.
– reference: Zhang, Qi (2007) A study of diesel vehicle diffusion in Europe: calibration and analysis of a consumer acceptance and adoption model. In: 25th International Conference of the System Dynamics Society, Conference Proceedings, July 29–Aug 2, Boston, MA,
– reference: California Air Resources Board (CARB) (2009c) Proposed Regulation to Implement the Low Carbon Fuel Standard, Staff Report: Initial Statement of Reasons, Vol. 1, March 5, 2009,
– year: 2009
  ident: bib53
  article-title: Transitions to Alternative Transportation Technologies—A Focus on Hydrogen
– reference: Greene, David L. (2007) Integrated analysis of market transformation scenarios with HyTrans, ORNL/TM-2007/094, Oak Ridge National Laboratory, Oak Ridge, TN, June.
– year: 2006
  ident: bib5
  article-title: Climate Action Team Report to Governor Schwarzenegger and the California Legislature
– reference: Leighty, W.W. (2010) Deep reductions in greenhouse gas emissions from the California transportation sector: dynamics in vehicle fleet and energy supply transitions to achieve 80% reduction in emissions from 1990 levels by 2050. Research Report UCD-ITS-RR-10-27, Institute of Transportation Studies, University of California, Davis.
– reference: Kromer, M.A. and J.B. Heywood (2007) Electric Powertrains: Opportunities and Challenges in the US Light-Duty Vehicle Fleet. In: S.A. Laboratory (ed). MIT, Cambridge, MA, p. 153.
– year: 2008
  ident: bib3
  publication-title: Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions, U.o.C.E.I. (UCEI), Editor
– reference: Hooks, Matthew, and Michael Jackson (2007) AB 1007 scenarios: hydrogen fuel cell vehicles, TIAX LLC, May 24.
– reference: California Public Utilities Commission (CPUC) (2008) Decision 08-10-037, October 16,
– reference: McCollum, D. Yeh, S. Yang, C. and Ogden, J. Deep Greenhouse gas reduction scenarios for California – strategic implications from the CA-TIMES Energy-Economic Systems Model, Energy Strategy Reviews, in press.
– reference: California Air Resources Board (CARB) (2009a) 2009 Zero Emission Vehicle (ZEV) Review White Paper: Summary of Staff’s Preliminary Assessment of the Need for Revisions to the Zero Emission Vehicle Regulation, Attachment B: 2050 Greenhouse Gas Emissions Analysis: Staff Modeling in Support of the Zero Emission Vehicle Regulation,
– reference: Greencar Congress (2008) “European Automobile Production Grows by 5.3% in 2007; Diesel Accounts for 53.3% of New Car Registrations,”
– volume: 36
  start-page: 2754
  year: 2008
  end-page: 2760
  ident: bib2
  article-title: Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet
  publication-title: Energy Policy
– year: 2008
  ident: bib60
  article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change
  publication-title: Sciencexpress
– reference: California Air Resources Board (CARB) (2010) Updated Economic Analysis of California’s Climate Change Scoping Plan, Staff Report to the Air Resources Board, Sacramento.
– volume: 14
  start-page: 222
  year: 2009
  end-page: 229
  ident: bib47
  article-title: Greenhouse gas mitigation supply curve for the United States for transport versus other sectors
  publication-title: Transportation Research Part D
– reference: Executive Order S-3-05, signed on June 1, 2005 by Governor Arnold Schwarzenegger,
– year: 2010
  ident: bib35
  article-title: Modeling of Greenhouse Gas Reduction Measures to Support the Implementation of the California Global Warming Solutions Act (AB32): Energy 2020 Model Inputs and Assumptions
– reference: United States Environmental Protection Agency (USEPA) (2006) Light-Duty Automotive Technology and Fuel Economy Trends: 1975 through 2006, Office of Transportation and Air Quality, EPA420-R-06-011.
– year: 2010
  ident: bib54
  article-title: Transitions to Alternative Transportation Technologies—Plug-in Hybrid Electric Vehicles
– reference: Kaya, Y. (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. In: Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris.
– reference: Thomas, C.E. (Sandy) (2008) Comparison of transportation options in a carbon-constrained world: hydrogen, plug-in hybrids and biofuels. National Hydrogen Association Annual Meeting, Sacramento, California, March 31 (revised June 24, 2008).
– year: 2004
  ident: bib52
  article-title: The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs
– reference: : Moving Toward Sustainability, OECD Publishing, Paris, France.
– year: 2008
  ident: bib56
  publication-title: Water Implications of Biofuels Production in the United States
– volume: 379
  start-page: 240
  year: 1996
  end-page: 243
  ident: bib64
  article-title: Economic and environmental choices in the stabilization of atmospheric CO
  publication-title: Nature
– volume: 35
  start-page: 387
  year: 2010
  end-page: 397
  ident: bib43
  article-title: Long-term greenhouse gas emission and petroleum reduction goals: evolutionary pathways for the light-duty vehicle sector
  publication-title: Energy
– year: 2002
  ident: bib55
  publication-title: Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards
– year: 2006
  ident: bib40
  publication-title: A Roadmap for the Development of Biomass in California
– reference: International Energy Agency (IEA) (2008) Energy Technology Perspectives: Scenarios and Strategies to 2050, OECD Publishing, Nov. 6, Paris, France, ISBN 978-92-64-04142-4.
– reference: International Energy Agency (IEA) (2009) Transport, Energy and CO
– year: 2009
  ident: bib68
  article-title: Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses
– volume: 171
  start-page: 1212
  year: 1971
  end-page: 1217
  ident: bib22
  article-title: Impact of population growth
  publication-title: Science
– reference: Parker, Nathan C. (2011) Modeling future biofuel supply chains using spatially explicit infrastructure optimization. Research Report UCD-ITS-RR-11-04, Institute of Transportation Studies, University of California, Davis.
– reference: California Air Resources Board (CARB) (2007) State Alternative Fuels Plan, Final Commission Report, publication #CEC-600-2007-011-CMF,
– reference: California Air Resources Board (CARB)(2008a) California Greenhouse Gas Emission Inventory,
– reference: Electric Power Research Institute (EPRI) (2007b) The Power to Reduce CO
– reference: Emissions: The Full Portfolio. Discussion Paper, Palo Alto, CA,
– year: 2008
  ident: bib71
  article-title: The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid
  publication-title: Technical Update 1016905
– reference: California Department of Finance (CDF) (2007) Population Projections by Race/Ethnicity, Gender and Age for California and Its Counties 2000–2050, July,
– reference: Jackson, Michael (2007) AB 1007 Scenarios: Ethanol implementation scenarios, TIAX, LLC, May 30.
– reference: California Air Resources Board (CARB) (2009b) Mobile Source Emissions Inventory, EMFAC Model,
– volume: 37
  start-page: 5580
  year: 2009
  end-page: 5596
  ident: bib48
  article-title: Achieving deep reductions in U.S. transport greenhouse gas emissions: scenario analysis and policy implications
  publication-title: Energy Policy
– reference: McCollum, D. (2011) Achieving long-term energy, transport and climate objectives: multi-dimensional scenario analysis and modeling within a systems level framework. Ph.D. Dissertation in Transportation Technology and Policy. Davis, University of California, Davis.
– volume: 14D
  start-page: 147
  year: 2009
  end-page: 156
  ident: bib65
  article-title: Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: a case study in California
  publication-title: Transportation Research Part D
– year: 2005
  ident: bib59
  article-title: Biomass as a Feedstock for a Bioenergy and Bioprocessing Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Joint Study sponsored by USDOE and USDA. Oak Ridge National Laboratory
  publication-title: Oak Ridge
– volume: 42
  start-page: 8202
  year: 2008
  end-page: 8210
  ident: bib66
  article-title: Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model
  publication-title: Environmental Science and Technology
– year: 2009
  ident: bib4
  article-title: Climate Policy and Economic Growth in California: A Comparative Analysis of Different Economic Impact Projections
– reference: .
– reference: Electric Power Research Institute (EPRI) (2007a) Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions. EPRI, Palo Alto, CA, 2007. 1015325.
– volume: 43
  start-page: 585
  year: 2009
  end-page: 590
  ident: bib32
  article-title: Carbon emission targets for driving sustainable mobility with US light-duty vehicles
  publication-title: Environmental Science and Technology
– reference: Leighty, W.W., C. Yang, J. Ogden (2007) “Advanced ICE Vehicles: an assessment of the technologies for next generation vehicles,” Advanced Energy Pathways (AEP) Project, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies, Public Interest Energy Research (PIER) Program, California Energy Commission.
– year: 2008
  ident: bib69
  article-title: Vehicle technology assessment: plug-in hybrid electric vehicles (PHEV). In: Technology Assessment for Advanced Energy Pathways Project for California Energy Commission PIER Project
– reference: Creyts, Jon, Derkach, Anton, Nyquist Scott, Ostrowski Ken and Stephenson Jack (2007) Reducing U.S. Greenhouse Gas Emissions: How Much at What Cost? McKinsey & Company U.S. Greenhouse Gas Abatement Mapping Initiative, Executive Report,
– reference: California Public Utilities Commission (CPUC) (2009) California Renewables Portfolio Standard website,
– reference: Argonne National Laboratory (2009) “VISION 2008 AEO Base Case Expanded,” VISION Model, downloaded from
– reference: California Air Resources Board (CARB) (2008b) Climate Change Scoping Plan: a framework for change, Pursuant to AB 32, the California Global Warming Solutions Act of 2006, December,
– reference: California Air Resourced Board (CARB) (2008c) Comparison of Greenhouse Gas Reductions Under CAFE Standards and ARB Regulations Adopted Pursuant to AB1493, Technical Assessment, January 2.
– reference: California Air Resources Board (CARB) (2004), Statewide Commercial Harbor Craft Survey: Final Report, in Emissions Assessment Branch, Sacramento, CA.
– reference: California Air Resources Board (CARB) (2008d) Comparison of Greenhouse Gas Reductions for the United States and Canada under U.S. CAFE Standards and California Air Resources Board Greenhouse Gas Regulations, Enhanced Technical Assessment, February 25.
– volume: 43
  start-page: 3365
  year: 2009
  end-page: 3371
  ident: bib29
  article-title: Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO
  publication-title: Environmental Science and Technology
– reference: Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: Synthesis Report, p. 66,
– year: 2007
  ident: bib27
  publication-title: Growing Cooler: The Evidence on Urban Development and Climate Change
– volume: 37
  start-page: 5580
  issue: 12
  year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib48
  article-title: Achieving deep reductions in U.S. transport greenhouse gas emissions: scenario analysis and policy implications
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.08.038
– ident: 10.1016/j.enpol.2012.01.013_bib11
– ident: 10.1016/j.enpol.2012.01.013_bib34
– ident: 10.1016/j.enpol.2012.01.013_bib15
– ident: 10.1016/j.enpol.2012.01.013_bib63
– ident: 10.1016/j.enpol.2012.01.013_bib7
– volume: 14
  start-page: 222
  issue: 3
  year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib47
  article-title: Greenhouse gas mitigation supply curve for the United States for transport versus other sectors
  publication-title: Transportation Research Part D
  doi: 10.1016/j.trd.2008.12.002
– ident: 10.1016/j.enpol.2012.01.013_bib21
– ident: 10.1016/j.enpol.2012.01.013_bib57
– year: 2004
  ident: 10.1016/j.enpol.2012.01.013_bib52
– ident: 10.1016/j.enpol.2012.01.013_bib25
– volume: 35
  start-page: 387
  year: 2010
  ident: 10.1016/j.enpol.2012.01.013_bib43
  article-title: Long-term greenhouse gas emission and petroleum reduction goals: evolutionary pathways for the light-duty vehicle sector
  publication-title: Energy
  doi: 10.1016/j.energy.2009.10.006
– year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib56
– ident: 10.1016/j.enpol.2012.01.013_bib19
– ident: 10.1016/j.enpol.2012.01.013_bib44
– ident: 10.1016/j.enpol.2012.01.013_bib67
– ident: 10.1016/j.enpol.2012.01.013_bib30
– year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib4
– volume: 43
  start-page: 3365
  year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib29
  article-title: Fuel and vehicle technology choices for passenger vehicles in achieving stringent CO2 targets: connections between transportation and other energy sectors
  publication-title: Environmental Science and Technology
  doi: 10.1021/es802651r
– ident: 10.1016/j.enpol.2012.01.013_bib62
– ident: 10.1016/j.enpol.2012.01.013_bib14
– year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib3
– volume: 171
  start-page: 1212
  year: 1971
  ident: 10.1016/j.enpol.2012.01.013_bib22
  article-title: Impact of population growth
  publication-title: Science
  doi: 10.1126/science.171.3977.1212
– ident: 10.1016/j.enpol.2012.01.013_bib33
  doi: 10.1073/pnas.0404500101
– ident: 10.1016/j.enpol.2012.01.013_bib39
– ident: 10.1016/j.enpol.2012.01.013_bib41
– ident: 10.1016/j.enpol.2012.01.013_bib6
– year: 2002
  ident: 10.1016/j.enpol.2012.01.013_bib55
– ident: 10.1016/j.enpol.2012.01.013_bib20
– ident: 10.1016/j.enpol.2012.01.013_bib49
– ident: 10.1016/j.enpol.2012.01.013_bib24
– ident: 10.1016/j.enpol.2012.01.013_bib38
  doi: 10.1017/CBO9780511546013
– ident: 10.1016/j.enpol.2012.01.013_bib28
– ident: 10.1016/j.enpol.2012.01.013_bib18
– ident: 10.1016/j.enpol.2012.01.013_bib31
– year: 2006
  ident: 10.1016/j.enpol.2012.01.013_bib40
– ident: 10.1016/j.enpol.2012.01.013_bib10
– ident: 10.1016/j.enpol.2012.01.013_bib13
– year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib60
  article-title: Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change
  publication-title: Sciencexpress
  doi: 10.1126/science.1151861
– year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib53
– ident: 10.1016/j.enpol.2012.01.013_bib9
– ident: 10.1016/j.enpol.2012.01.013_bib17
– ident: 10.1016/j.enpol.2012.01.013_bib42
– ident: 10.1016/j.enpol.2012.01.013_bib36
– ident: 10.1016/j.enpol.2012.01.013_bib61
– volume: 36
  start-page: 2754
  year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib2
  article-title: Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.03.029
– year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib69
– volume: 379
  start-page: 240
  issue: 6562
  year: 1996
  ident: 10.1016/j.enpol.2012.01.013_bib64
  article-title: Economic and environmental choices in the stabilization of atmospheric CO2 concentrations
  publication-title: Nature
  doi: 10.1038/379240a0
– volume: 42
  start-page: 8202
  issue: 22
  year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib66
  article-title: Optimizing U.S. mitigation strategies for the light-duty transportation sector: what we learn from a bottom-up model
  publication-title: Environmental Science and Technology
  doi: 10.1021/es8005805
– ident: 10.1016/j.enpol.2012.01.013_bib46
– year: 2005
  ident: 10.1016/j.enpol.2012.01.013_bib59
  article-title: Biomass as a Feedstock for a Bioenergy and Bioprocessing Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Joint Study sponsored by USDOE and USDA. Oak Ridge National Laboratory
  publication-title: Oak Ridge
– volume: 45
  start-page: 3865
  year: 2011
  ident: 10.1016/j.enpol.2012.01.013_bib51
  article-title: Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector
  publication-title: Environmental Science and Technology
  doi: 10.1021/es1037707
– volume: 43
  start-page: 585
  issue: 3
  year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib32
  article-title: Carbon emission targets for driving sustainable mobility with US light-duty vehicles
  publication-title: Environmental Science and Technology
  doi: 10.1021/es801032b
– year: 2006
  ident: 10.1016/j.enpol.2012.01.013_bib5
– ident: 10.1016/j.enpol.2012.01.013_bib37
– year: 2007
  ident: 10.1016/j.enpol.2012.01.013_bib27
– ident: 10.1016/j.enpol.2012.01.013_bib12
– volume: 14D
  start-page: 147
  issue: 3
  year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib65
  article-title: Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: a case study in California
  publication-title: Transportation Research Part D
  doi: 10.1016/j.trd.2008.11.010
– ident: 10.1016/j.enpol.2012.01.013_bib58
– year: 2010
  ident: 10.1016/j.enpol.2012.01.013_bib54
– ident: 10.1016/j.enpol.2012.01.013_bib8
– year: 2009
  ident: 10.1016/j.enpol.2012.01.013_bib68
– ident: 10.1016/j.enpol.2012.01.013_bib50
– year: 2010
  ident: 10.1016/j.enpol.2012.01.013_bib35
– ident: 10.1016/j.enpol.2012.01.013_bib26
– year: 2008
  ident: 10.1016/j.enpol.2012.01.013_bib71
  article-title: The Green Grid: Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid
– ident: 10.1016/j.enpol.2012.01.013_bib1
SSID ssj0004894
Score 2.2406647
Snippet California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this...
California's target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Adoption of innovations
Advanced vehicles
Air pollution
Air pollution caused by fuel industries
Alternative fuels
Applied sciences
Availability
Biofuels
California
Carbon
Carbon emissions
Change agents
Demand
Diesel fuels
Economic data
Electric vehicles
Electricity
Electrification
Emissions
Emissions control
Energy
Energy economics
Energy policy
Energy. Thermal use of fuels
Exact sciences and technology
Fossil fuels
Fuel economy
Fuels
Gasoline
General, economic and professional studies
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Ground, air and sea transportation, marine construction
issues and policy
Low-carbon future
Markets
Metering. Control
Natural energy
Petrol
Reduction
Renewable energy sources
Resource availability
Road transportation and traffic
Studies
Technological change
Transportation
Transportation industry
Transportation planning, management and economics
Travel
U.S.A
Vehicle emissions
Vehicles
Title Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions
URI https://dx.doi.org/10.1016/j.enpol.2012.01.013
https://www.proquest.com/docview/935428126
https://www.proquest.com/docview/1000944430
https://www.proquest.com/docview/1017957699
https://www.proquest.com/docview/1671408485
https://www.proquest.com/docview/2000067810
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9auwNwQFCYlg0qI3EktI4_Eh-naVMBscs2qTfLSeyu09RWSzqJy6782_g5ScuE1gNSLknsKPJ7eR_O7_0ewOeC5zIvrYupdUXMVZ7HqmR5bHipZJJYxxnWDv-8kJNr_n0qpntw2tXCIKyytf2NTQ_Wur0yaldztJrPR5chGwgeKwQu0x7sJ0xJ0Yf9k28_Jhfb8shMNSxSPnPGCR35UIB5Yct2_AWBe4LUH-w5B9VzZonISVP5xXNN14t_DHjwSudv4HUbTpKT5o3fwp5dDOBFV21cDeDVX4SDAzg429a1-Wnth129g9_YEw0r00mNzqvBcZH5gvj4kGzrt8hd4B0p1_Uv8mBvAqSOVGHjn9RLgsBM-2BJae2K3CMp7PY5HYl60AQyQ7jPzXJdWTIzFcGmc7htV72Hq_Ozq9NJ3PZoiAs5ZnWcsJxyqkpZWuVyVQphhDLeaErv9qxgMi14UgiTGuuUyZjMlEuFYGkq_UXKDqC_WC7sIZCSOVZalidWptxkxjCpnEmty5xzGTMRJJ1cdNHyl2MbjTvdAdVudRCmRmHqMfUHi-DLZtKqoe_YPVx2AtdPtFB7B7N74qFXD21m3jLr68sEefswelOURzB8ojOb9_DG0qeLGY3guFMi3RqQSismfGJIExnBp81dLwv8nWMW1ssH2aZ9bs45G-8a4w2uTymV2jFGImljxjPx_JikjWvo-Oh_l-gYXuJZAxb9AP36fm0_-oCuzofQ-_pIh-1n-wcOXU1q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH7axmFwQFCYFgbDSBwJbWLHiY9o2lRg22Wd1JvlJHZXNKXVkk7iwpV_m_ecpGVC6wEpp-Q5ivyc98P-3vcAPhYil3lpXRhZV4RC5XmoSp6HRpRKxrF1glPt8MWlHF-Lb9NkugMnfS0MwSo729_adG-tuzvDbjaHy_l8eOWzAe-xfOAy3YUnIuEp4fo-_9rgPESmWg4pzJtJvKce8iAvathOBxC0IxjhxR9zT7vOLAg3aWqcOtf2vPjHfHufdPYCnnfBJPvSfu9L2LHVAPb7WuN6AM_-ohscwMHppqoNh3W_df0KflNHNKpLZw25rhbFxeYVw-iQbaq32K1nHSlXzU92b288oI7VftufNQtGsEx7b1lp7ZLdESXs5j09hbpfB2xGYJ-bxaq2bGZqRi3naNOufg2Ts9PJyTjsOjSEhRzxJox5HolIlbK0yuWqTBKTKIMmU6LTswmXaSHiIjGpsU6ZjMtMuTRBJaUSb0b8APaqRWUPgZXc8dLyPLYyFSYzhkvlTGpd5pzLuAkg7vWii469nJpo3OoepvZDe2VqUqYeRXjxAD6tBy1b8o7t4rJXuH6wBjW6l-0DD3F5aDNDu6yvr2Ji7aPYTUUigOMHa2b9HWgqMVnMogCO-kWkO_NRa8UTTAujWAbwYf0UdUGHOaayqB_imsbMXAg-2iaD5hYTSqW2yEiibMxEljwuE3dRTTR6879T9B72x5OLc33-9fL7ETylJy1s9C3sNXcr-w5DuyY_9r_uH-9HTjU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+transitions+in+the+California+light-duty+vehicles+sector+to+achieve+deep+reductions+in+transportation+greenhouse+gas+emissions&rft.jtitle=Energy+policy&rft.au=Leighty%2C+Wayne&rft.au=Ogden%2C+Joan+M&rft.au=Yang%2C+Christopher&rft.date=2012-05-01&rft.issn=0301-4215&rft.volume=44+p.52-67&rft.spage=52&rft.epage=67&rft_id=info:doi/10.1016%2Fj.enpol.2012.01.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon