Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications
The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts a...
Saved in:
Published in | Journal of controlled release Vol. 266; pp. 17 - 26 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
28.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
[Display omitted] |
---|---|
AbstractList | The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
[Display omitted] The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. |
Author | Liu, Hao Zhang, Li Liu, Chang Cheng, Kun |
Author_xml | – sequence: 1 givenname: Chang surname: Liu fullname: Liu, Chang – sequence: 2 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 4 givenname: Kun surname: Cheng fullname: Cheng, Kun email: chengkun@umkc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28911805$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFv0zAUhS00xLrBTwDlkZcEO46dWEggVNiYNGloG-LRcpzrzlVqZ7Zbqf8ed-0Q8NInP9xzju893xk6cd4BQm8Jrggm_MOyWmrvAoxVjUlbYVFhUr9AM9K1tGyEYCdolnVdSTkTp-gsxiXGmNGmfYVO604Q0mE2Q7--wmg3ELZFTEElWFiIhTdFeoBifnt19-O2nKsoigU4KGGwybpFEbcxwaowPux0QU2wTlYXappGq1Wy3sXX6KVRY4Q3h_cc_bz4dj__Xl7fXF7Nv1yXmmOayppo1Q_QqXYAwXtshG7oQBnVtFFMKTUoQTvCeWNMT0w3cK5UHnLTYc16Tc_Rp33utO5XMGhw-YxRTsGuVNhKr6z8d-Lsg1z4jWRtTRnjOeD9ISD4xzXEJFc2ahhH5cCvo6xza5w0mLGjUiIajBtR4y5L3_291p99novPgo97gQ4-xgBGapueqstb2lESLHeY5VIeMMsdZomFzJizm_3nfv7gmO_z3gcZycZCkFFbcDqDDaCTHLw9kvAbcWPHEQ |
CitedBy_id | crossref_primary_10_1088_1361_6528_ac357a crossref_primary_10_1016_j_semcdb_2019_05_007 crossref_primary_10_1016_j_gene_2024_148733 crossref_primary_10_1177_15353702211008106 crossref_primary_10_1002_smsc_202400192 crossref_primary_10_1080_21505594_2022_2107646 crossref_primary_10_1016_j_addr_2020_06_001 crossref_primary_10_1089_hgtb_2018_187 crossref_primary_10_1186_s12951_024_02571_9 crossref_primary_10_1039_D1CC05999H crossref_primary_10_1007_s00203_021_02723_7 crossref_primary_10_1016_j_plana_2022_100001 crossref_primary_10_34172_apb_2024_050 crossref_primary_10_1016_j_dmpk_2022_100450 crossref_primary_10_2147_IJN_S282110 crossref_primary_10_1016_j_addr_2020_06_014 crossref_primary_10_1016_j_cej_2024_152754 crossref_primary_10_1002_adtp_201800085 crossref_primary_10_1208_s12248_018_0267_9 crossref_primary_10_3390_molecules25153489 crossref_primary_10_1186_s12943_021_01346_2 crossref_primary_10_1016_j_fbio_2023_103110 crossref_primary_10_1002_adtp_202200287 crossref_primary_10_1002_anie_202005644 crossref_primary_10_1126_sciadv_abg3217 crossref_primary_10_1002_smtd_202001191 crossref_primary_10_1186_s12951_023_02139_z crossref_primary_10_3390_v15010054 crossref_primary_10_3390_cancers10040103 crossref_primary_10_1093_nar_gkaf082 crossref_primary_10_1159_000521128 crossref_primary_10_1016_j_apmt_2021_101212 crossref_primary_10_1007_s12265_024_10587_7 crossref_primary_10_1089_nat_2018_0721 crossref_primary_10_1038_s41598_020_77809_1 crossref_primary_10_1007_s40291_019_00391_4 crossref_primary_10_1080_07357907_2021_1952595 crossref_primary_10_3390_ijms23010573 crossref_primary_10_3390_pharmaceutics12090805 crossref_primary_10_1016_j_csbj_2023_10_018 crossref_primary_10_1186_s12951_024_02462_z crossref_primary_10_1016_j_biomaterials_2025_123090 crossref_primary_10_3389_fgene_2024_1364742 crossref_primary_10_1177_2472630320982320 crossref_primary_10_1007_s12274_024_6748_5 crossref_primary_10_1021_acs_bioconjchem_0c00627 crossref_primary_10_1056_NEJMra1705346 crossref_primary_10_1002_smll_202000673 crossref_primary_10_1016_j_lfs_2020_118525 crossref_primary_10_1021_acsami_2c22584 crossref_primary_10_1038_s41598_021_97224_4 crossref_primary_10_1039_D2TB01055K crossref_primary_10_34133_2020_2016201 crossref_primary_10_1016_j_addr_2021_114068 crossref_primary_10_1186_s12943_021_01487_4 crossref_primary_10_3390_biom11121769 crossref_primary_10_1002_ange_202005644 crossref_primary_10_1016_j_addr_2020_05_001 crossref_primary_10_1016_j_ymthe_2022_01_046 crossref_primary_10_1016_j_tibtech_2019_03_008 crossref_primary_10_1093_nar_gkac870 crossref_primary_10_3390_pharmaceutics14040805 crossref_primary_10_1021_acssynbio_0c00578 crossref_primary_10_1007_s12274_018_2093_x crossref_primary_10_3390_pharmaceutics16010062 crossref_primary_10_3390_siuj5010006 crossref_primary_10_1002_advs_202302253 crossref_primary_10_1016_j_ymthe_2021_06_003 crossref_primary_10_2147_IJN_S453566 crossref_primary_10_1016_j_xcrm_2024_101524 crossref_primary_10_1021_acs_molpharmaceut_0c00854 crossref_primary_10_3390_pharmaceutics15041311 crossref_primary_10_3390_ijms232415758 crossref_primary_10_3389_fphar_2021_770283 crossref_primary_10_3390_ijms22168422 crossref_primary_10_1007_s12029_021_00669_z crossref_primary_10_34133_bmr_0023 crossref_primary_10_1002_jnr_24636 crossref_primary_10_1109_TBME_2022_3149530 crossref_primary_10_1016_j_addr_2021_114087 crossref_primary_10_1007_s10126_019_09901_1 crossref_primary_10_1002_cphc_201900626 crossref_primary_10_1016_j_microb_2024_100184 crossref_primary_10_1021_acs_bioconjchem_9b00022 crossref_primary_10_1080_17425247_2019_1663822 crossref_primary_10_1002_adma_202006619 crossref_primary_10_1021_acsomega_9b01323 crossref_primary_10_1039_C8CC08468H crossref_primary_10_1016_j_isci_2022_104555 crossref_primary_10_3390_pharmaceutics13122035 crossref_primary_10_1021_jacsau_1c00467 crossref_primary_10_1093_nar_gkaa683 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_1016_j_biomaterials_2018_04_031 crossref_primary_10_3390_pharmaceutics13030352 crossref_primary_10_3390_ijms241713202 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_3390_cimb46110747 crossref_primary_10_1016_j_addr_2023_114826 crossref_primary_10_1038_s41392_019_0089_y crossref_primary_10_1002_bmm2_12025 crossref_primary_10_1016_j_drudis_2023_103652 crossref_primary_10_3390_ijms21197362 crossref_primary_10_1007_s00425_022_04023_w crossref_primary_10_1016_j_bcp_2021_114487 crossref_primary_10_1016_j_colsurfb_2020_110891 crossref_primary_10_1016_j_mattod_2018_12_003 crossref_primary_10_1038_s41467_020_17029_3 crossref_primary_10_1039_D1NH00254F crossref_primary_10_1007_s00418_019_01772_w crossref_primary_10_1021_acs_macromol_9b01645 crossref_primary_10_1007_s12033_021_00345_4 crossref_primary_10_1177_15330338211045206 crossref_primary_10_1248_bpb_b22_00452 crossref_primary_10_1021_acsnano_0c04707 crossref_primary_10_1080_17425247_2019_1641083 crossref_primary_10_3390_cancers12061504 crossref_primary_10_3390_ijms21197353 crossref_primary_10_1016_j_biomaterials_2019_119711 crossref_primary_10_1016_j_jddst_2024_106589 crossref_primary_10_1007_s13205_024_04186_1 crossref_primary_10_1002_biot_202300691 crossref_primary_10_1007_s00432_023_04747_6 crossref_primary_10_2174_0118715273283786240408034408 crossref_primary_10_1038_s42003_022_04363_z crossref_primary_10_1016_j_stem_2021_01_001 crossref_primary_10_2174_0115665232295117240405070809 crossref_primary_10_1016_j_biopha_2024_117516 crossref_primary_10_3389_fphys_2020_624129 crossref_primary_10_1134_S0006297918060020 crossref_primary_10_1002_bit_28603 crossref_primary_10_1126_sciadv_abp9435 crossref_primary_10_1080_15592294_2021_1939477 crossref_primary_10_3389_fcell_2023_1111488 crossref_primary_10_3389_fgeed_2024_1509924 crossref_primary_10_3892_ijmm_2020_4609 crossref_primary_10_1093_bfgp_elaa002 crossref_primary_10_1007_s13311_021_01075_w crossref_primary_10_3390_pharmaceutics15051450 crossref_primary_10_1016_j_jbiotec_2019_09_012 crossref_primary_10_1038_s41578_024_00725_7 crossref_primary_10_3390_pharmaceutics14061252 crossref_primary_10_1016_j_drudis_2020_10_011 crossref_primary_10_1016_j_theriogenology_2024_08_027 crossref_primary_10_1186_s40364_024_00701_x crossref_primary_10_1155_2020_9107140 crossref_primary_10_3389_fphar_2018_00307 crossref_primary_10_1080_10826068_2025_2453836 crossref_primary_10_1016_j_jmb_2018_06_034 crossref_primary_10_3389_fmicb_2022_811768 crossref_primary_10_3390_ijms222111753 crossref_primary_10_1039_D4BM00054D crossref_primary_10_1016_j_jbiotec_2024_09_002 crossref_primary_10_2147_IJN_S455574 crossref_primary_10_1016_j_jddst_2022_103948 crossref_primary_10_1186_s41021_021_00188_0 crossref_primary_10_1002_ptr_7018 crossref_primary_10_1002_jgm_3107 crossref_primary_10_3390_ph14060565 crossref_primary_10_54097_hset_v21i_3143 crossref_primary_10_1158_1541_7786_MCR_19_0262 crossref_primary_10_2147_CMAR_S292992 crossref_primary_10_21641_los_2021_18_4_212 crossref_primary_10_1155_2019_1369682 crossref_primary_10_2217_epi_2020_0110 crossref_primary_10_1038_s41598_022_07671_w crossref_primary_10_1039_D0NR05452F crossref_primary_10_1038_s41434_021_00240_2 crossref_primary_10_2174_0115665232292246240426125504 crossref_primary_10_1002_adfm_202412335 crossref_primary_10_3390_genes12060797 crossref_primary_10_1016_j_jconrel_2023_08_028 crossref_primary_10_1002_jsfa_12946 crossref_primary_10_1016_j_biotechadv_2019_107447 crossref_primary_10_1002_smll_202101155 crossref_primary_10_3390_pharmaceutics15030984 crossref_primary_10_1002_sae2_12061 crossref_primary_10_1007_s12033_023_00932_7 crossref_primary_10_3390_cancers15245877 crossref_primary_10_1016_j_jconrel_2020_04_052 crossref_primary_10_1002_rmv_2009 crossref_primary_10_1016_j_jddst_2022_103964 crossref_primary_10_2217_nnm_2021_0038 crossref_primary_10_1039_C8MD00249E crossref_primary_10_1007_s11481_019_09878_7 crossref_primary_10_1021_acsmacrolett_1c00538 crossref_primary_10_3389_fimmu_2022_908076 crossref_primary_10_1093_femsre_fuaa016 crossref_primary_10_1093_infdis_jiac145 crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_22159_ijpps_2024v16i9_51048 crossref_primary_10_1002_INMD_20220014 crossref_primary_10_3389_fmicb_2022_1111790 crossref_primary_10_3390_pharmaceutics14071495 crossref_primary_10_1186_s40164_024_00570_y crossref_primary_10_3390_pharmaceutics15061686 crossref_primary_10_1089_crispr_2023_0078 crossref_primary_10_3389_fgeed_2023_1248982 crossref_primary_10_1002_smll_202405593 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1038_s41596_024_01138_0 crossref_primary_10_1002_pat_5530 crossref_primary_10_1016_j_biomaterials_2021_121233 crossref_primary_10_1053_j_semperi_2018_09_008 crossref_primary_10_1186_s12915_020_00929_7 crossref_primary_10_1002_iub_2296 crossref_primary_10_1016_j_bbcan_2020_188454 crossref_primary_10_3389_fmed_2024_1418786 crossref_primary_10_1007_s00210_024_03509_6 crossref_primary_10_17816_gc633492 crossref_primary_10_1002_bkcs_12109 crossref_primary_10_3389_fanim_2024_1368155 crossref_primary_10_1089_crispr_2023_0070 crossref_primary_10_1016_j_addr_2024_115346 crossref_primary_10_1186_s12943_023_01738_6 crossref_primary_10_1016_j_aquaculture_2023_740424 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1016_j_colsurfb_2018_08_019 crossref_primary_10_1016_j_gendis_2023_101121 crossref_primary_10_3389_fphar_2018_00396 crossref_primary_10_1007_s11596_022_2645_x crossref_primary_10_3390_molecules27031114 crossref_primary_10_1007_s12247_020_09496_4 crossref_primary_10_1016_j_csbj_2020_08_031 crossref_primary_10_1021_acs_nanolett_0c04303 crossref_primary_10_1007_s13311_018_00696_y crossref_primary_10_1021_acs_molpharmaceut_1c00916 crossref_primary_10_1021_acsnano_8b07858 crossref_primary_10_1016_j_vetmic_2020_108589 crossref_primary_10_1093_nar_gkac255 crossref_primary_10_3389_fpls_2021_663849 crossref_primary_10_34016_pjbt_2023_20_02_826 crossref_primary_10_1016_j_gene_2024_149044 crossref_primary_10_3389_fnins_2021_803894 crossref_primary_10_1016_j_heliyon_2024_e39323 crossref_primary_10_3389_fnins_2021_747726 crossref_primary_10_1007_s12274_020_2773_1 crossref_primary_10_1016_j_addr_2018_12_011 crossref_primary_10_1016_j_nantod_2025_102654 crossref_primary_10_1126_sciadv_abc2315 crossref_primary_10_3390_pharmaceutics14091840 crossref_primary_10_2217_fmb_2022_0222 crossref_primary_10_1016_j_molmed_2019_07_007 crossref_primary_10_1016_j_mtbio_2025_101502 crossref_primary_10_1002_mco2_672 crossref_primary_10_1038_s41417_021_00299_4 crossref_primary_10_1016_j_jconrel_2019_05_019 crossref_primary_10_1016_j_ymeth_2020_04_006 crossref_primary_10_1186_s12575_021_00151_x crossref_primary_10_1016_j_addr_2022_114624 crossref_primary_10_1038_s42003_022_03851_6 crossref_primary_10_1016_j_actbio_2024_10_030 crossref_primary_10_1080_17425247_2020_1747429 crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_1021_acsptsci_5c00047 crossref_primary_10_1007_s13580_023_00549_4 crossref_primary_10_3390_genes12050723 crossref_primary_10_1038_s41557_021_00854_4 crossref_primary_10_1208_s12248_021_00613_w crossref_primary_10_1007_s12274_019_2465_x crossref_primary_10_1038_s41434_021_00282_6 crossref_primary_10_1111_raq_12995 crossref_primary_10_1021_acs_chemrev_0c00997 crossref_primary_10_1016_j_apmt_2022_101488 crossref_primary_10_1002_advs_201801847 crossref_primary_10_1186_s13395_021_00278_1 crossref_primary_10_1021_acsami_9b05772 crossref_primary_10_3389_fphar_2022_868398 crossref_primary_10_1016_j_jcyt_2019_10_002 crossref_primary_10_1002_jcp_27972 crossref_primary_10_1186_s13578_023_01143_y crossref_primary_10_1021_acsabm_0c01009 crossref_primary_10_1039_D2BM00368F crossref_primary_10_3390_ijms25137333 crossref_primary_10_1016_j_jconrel_2024_07_025 crossref_primary_10_1021_acsami_0c16380 crossref_primary_10_1002_adtp_202000072 crossref_primary_10_59786_bmtj_221 crossref_primary_10_1016_j_molmed_2019_02_012 crossref_primary_10_1038_s41467_024_52493_1 crossref_primary_10_3390_molecules28114479 crossref_primary_10_1007_s13205_023_03891_7 crossref_primary_10_1007_s40097_021_00446_1 crossref_primary_10_1016_j_canlet_2019_04_040 crossref_primary_10_1186_s13756_020_00795_6 crossref_primary_10_1038_s41551_023_01142_x crossref_primary_10_3390_pharmaceutics13010078 crossref_primary_10_3390_molecules26051422 crossref_primary_10_1039_D3SC06920F crossref_primary_10_1038_s41374_018_0171_z crossref_primary_10_3390_ijms24087052 crossref_primary_10_1039_D4NR03471F crossref_primary_10_1007_s13205_021_02680_4 crossref_primary_10_1039_D3BM00788J crossref_primary_10_1039_D0TB00207K crossref_primary_10_1002_adtp_202100152 crossref_primary_10_1039_D1BM01452H crossref_primary_10_1016_j_intimp_2020_106933 crossref_primary_10_1002_biot_202300352 crossref_primary_10_3390_biotech12020037 crossref_primary_10_1074_jbc_H118_006147 crossref_primary_10_1007_s12088_018_0708_2 crossref_primary_10_54097_hset_v36i_6282 crossref_primary_10_1002_advs_202100540 crossref_primary_10_1038_s41598_020_70258_w crossref_primary_10_1016_j_pmatsci_2020_100686 crossref_primary_10_34133_2021_9898769 crossref_primary_10_1002_btm2_10474 crossref_primary_10_1016_j_ijantimicag_2021_106475 crossref_primary_10_1590_1678_4685_gmb_2020_0463 crossref_primary_10_1246_cl_220242 crossref_primary_10_3390_biom12091239 crossref_primary_10_3389_fpls_2023_1232938 crossref_primary_10_1007_s12672_023_00680_9 crossref_primary_10_1016_j_jconrel_2022_02_012 crossref_primary_10_1007_s11356_023_26482_8 crossref_primary_10_1016_j_mtbio_2020_100091 crossref_primary_10_1155_2020_5803192 crossref_primary_10_1039_D4BM01290A crossref_primary_10_1016_j_carbpol_2022_119315 crossref_primary_10_1186_s13287_024_03848_4 crossref_primary_10_1021_acs_nanolett_1c03708 crossref_primary_10_1021_acsnano_0c08549 crossref_primary_10_1002_jgm_3082 crossref_primary_10_1093_nar_gkz713 crossref_primary_10_1186_s12943_022_01550_8 crossref_primary_10_1007_s13238_019_0635_y crossref_primary_10_1016_j_pharmthera_2020_107501 crossref_primary_10_30895_2221_996X_2023_23_3_247_261 crossref_primary_10_1016_j_jconrel_2021_08_015 crossref_primary_10_1016_j_biomaterials_2019_119291 crossref_primary_10_1089_crispr_2018_0006 crossref_primary_10_1038_s41392_023_01440_5 crossref_primary_10_1002_wnan_1609 crossref_primary_10_46810_tdfd_795053 crossref_primary_10_1039_D0TB01925A crossref_primary_10_1016_j_bios_2021_113732 crossref_primary_10_1007_s13237_024_00496_0 crossref_primary_10_1016_j_mam_2025_101358 crossref_primary_10_3389_fimmu_2023_1111777 crossref_primary_10_1016_j_gene_2022_146595 crossref_primary_10_1016_j_regen_2021_100053 crossref_primary_10_1007_s12033_024_01360_x crossref_primary_10_3390_molecules29194737 crossref_primary_10_1007_s13353_020_00537_9 crossref_primary_10_2147_BTT_S310312 crossref_primary_10_1039_D1BM01716K crossref_primary_10_1016_j_ajps_2023_100828 crossref_primary_10_1007_s40120_020_00218_z crossref_primary_10_1016_j_actbio_2023_10_029 crossref_primary_10_1155_2021_6050795 crossref_primary_10_18231_j_achr_2023_019 crossref_primary_10_1007_s12603_017_0988_y crossref_primary_10_1007_s10126_019_09885_y crossref_primary_10_3389_fmicb_2022_953218 crossref_primary_10_1016_j_nantod_2020_100895 crossref_primary_10_1016_j_tibtech_2018_03_009 crossref_primary_10_3390_synbio3010001 crossref_primary_10_1080_1040841X_2024_2313024 crossref_primary_10_1007_s11033_023_08278_8 crossref_primary_10_1016_j_semcdb_2019_04_004 crossref_primary_10_1016_j_semcdb_2019_04_007 crossref_primary_10_3389_fnano_2022_911063 crossref_primary_10_1002_adma_202405075 crossref_primary_10_3390_v16030409 crossref_primary_10_3390_cells11111843 crossref_primary_10_1007_s12035_024_04143_2 crossref_primary_10_1089_hum_2020_137 crossref_primary_10_3390_pharmaceutics14102129 crossref_primary_10_1002_pat_6136 crossref_primary_10_1002_dvg_23598 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_1021_acsami_9b12335 crossref_primary_10_1016_j_jddst_2020_101533 crossref_primary_10_1177_09636897211003022 crossref_primary_10_3390_ph14101016 crossref_primary_10_3390_pharmaceutics12030198 crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_2147_VMRR_S366533 crossref_primary_10_1371_journal_pone_0212198 crossref_primary_10_2174_0929867329666221006112615 crossref_primary_10_1186_s12951_024_02627_w crossref_primary_10_1007_s12015_023_10585_3 crossref_primary_10_3389_fbioe_2022_873369 crossref_primary_10_2174_1570162X17666191025112918 crossref_primary_10_1007_s00277_023_05457_2 crossref_primary_10_3389_fphar_2022_939090 crossref_primary_10_3390_ijms22158239 crossref_primary_10_3390_pharmaceutics13020278 crossref_primary_10_1002_adhm_202201038 crossref_primary_10_1021_acsnano_9b06025 crossref_primary_10_1016_j_cellimm_2021_104436 |
Cites_doi | 10.1038/nrmicro3279 10.1126/science.350.6266.1299 10.1186/2045-9769-3-12 10.1038/nbt.3055 10.1016/j.cell.2014.01.027 10.1073/pnas.1001673107 10.1038/mt.2015.151 10.1093/nar/gku749 10.1089/15362310252780816 10.1016/j.ydbio.2006.04.095 10.1016/bs.adgen.2014.10.002 10.1002/anie.201400323 10.1126/science.1232033 10.1038/cr.2013.45 10.1073/pnas.1512503112 10.1038/nature.2016.20988 10.1038/sj.mt.6300314 10.1038/nbt.3127 10.1128/JVI.00254-08 10.1002/hep.23481 10.1073/pnas.1410785111 10.1016/j.stem.2014.10.004 10.1093/bmb/ldx002 10.1126/science.1225829 10.2174/1566523034578285 10.1007/s00018-013-1438-6 10.1038/nbt.2675 10.1021/acs.bioconjchem.6b00676 10.3389/fpls.2016.00506 10.1126/science.1231143 10.1038/srep05105 10.1016/j.jbiotec.2015.04.024 10.1016/j.stem.2014.04.020 10.1093/nar/gkt714 10.1111/dgd.12113 10.1007/s00239-004-0046-3 10.1016/j.cell.2014.09.014 10.1101/gr.171322.113 10.1038/nbt.3471 10.1016/S0140-6736(13)61914-5 10.1002/bies.201300135 10.1038/nbt.2884 10.1186/s13059-015-0817-8 10.1016/j.cell.2014.05.010 10.1007/978-1-4939-2152-2_24 10.1016/j.stem.2013.03.006 10.1016/j.antiviral.2015.03.015 10.1038/srep10833 10.1038/mt.2012.194 10.1038/sj.gt.3300947 10.1007/978-1-4939-6518-2_7 10.1038/nature09886 10.1089/hum.2013.2517 10.1038/srep03355 10.1038/mt.2009.255 10.1016/j.jcyt.2014.01.125 10.1111/dgd.12149 10.1021/acs.bioconjchem.7b00057 10.1073/pnas.1218705110 10.1007/978-1-4939-7113-8_17 10.1038/npjregenmed.2016.2 10.1038/nprot.2013.143 10.1038/nrmicro3241 10.1016/j.cell.2013.08.022 10.1534/genetics.115.176594 10.1126/science.1159689 10.1046/j.1365-2958.2002.02839.x 10.1038/nature09523 10.1101/gr.171264.113 10.1002/anie.201506030 10.1038/nature13166 10.1126/science.1258096 10.1038/nbt.2800 10.1038/nbt.2951 10.1016/j.cell.2015.03.028 10.1016/S0065-2660(05)54004-5 10.1021/acsnano.6b07600 10.1038/nmeth.2857 10.1089/hum.2015.074 10.1038/nmeth.2532 10.1126/science.1247005 10.1016/j.cell.2015.02.038 10.1016/j.celrep.2014.10.051 10.1371/journal.pone.0136690 10.1038/sj.cgt.7701119 10.1073/pnas.1502370112 10.1073/pnas.1313587110 10.1128/JVI.72.12.9873-9880.1998 10.3390/v8030072 10.1038/cr.2013.46 10.1016/j.celrep.2014.03.033 10.1038/nbt.3469 10.1073/pnas.1520244113 10.1038/gt.2015.2 10.1038/nbt.3149 10.1126/science.1171242 10.1038/nbt.2623 10.1038/nrmicro3569 10.1126/sciadv.1500454 10.1126/science.1233151 10.1093/nar/gks216 10.1038/nbt.3081 10.1186/s12896-015-0144-x 10.1126/science.1246981 10.1128/jb.169.12.5429-5433.1987 10.1056/NEJMoa1208760 10.1089/10430340050015905 10.1016/j.mod.2004.05.013 10.1038/srep04513 10.1038/nature13589 10.1056/NEJMoa1300662 10.1038/nature14299 10.1038/nrmicro2577 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jconrel.2017.09.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 26 |
ExternalDocumentID | PMC5723556 28911805 10_1016_j_jconrel_2017_09_012 S0168365917308453 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R01 AA021510 – fundername: NIGMS NIH HHS grantid: R01 GM121798 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SPT SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c603t-21cabde8a7de96b0f9c43d353c34a5aaada9381664ffb1f8d66aa3c36f80c5bc3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Thu Aug 21 14:09:20 EDT 2025 Tue Aug 05 10:15:45 EDT 2025 Fri Jul 11 01:14:53 EDT 2025 Wed Feb 19 02:33:29 EST 2025 Thu Apr 24 22:57:02 EDT 2025 Tue Jul 01 04:04:40 EDT 2025 Fri Feb 23 02:33:28 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-viral delivery Gene-editing Delivery Gene therapy Nanoparticle CRISPR-Cas9 |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c603t-21cabde8a7de96b0f9c43d353c34a5aaada9381664ffb1f8d66aa3c36f80c5bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5723556 |
PMID | 28911805 |
PQID | 1940049208 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5723556 proquest_miscellaneous_2000614055 proquest_miscellaneous_1940049208 pubmed_primary_28911805 crossref_citationtrail_10_1016_j_jconrel_2017_09_012 crossref_primary_10_1016_j_jconrel_2017_09_012 elsevier_sciencedirect_doi_10_1016_j_jconrel_2017_09_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-28 |
PublicationDateYYYYMMDD | 2017-11-28 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Garneau (bb0090) 2010; 468 Hou (bb0225) 2013; 110 Mashiko (bb0260) 2013; 3 Mojica, Diez-Villasenor, Garcia-Martinez, Soria (bb0020) 2005; 60 Yan (bb0270) 2014; 3 Shalem (bb0430) 2014; 343 Sonntag, Schmidt, Kleinschmidt (bb0445) 2010; 107 Nakagawa (bb0295) 2015; 15 Thummel (bb0200) 2006; 295 Jansen, van Embden, Gaastra, Schouls (bb0015) 2002; 6 Mulvihill (bb0580) 2017; 122 Xue (bb0355) 2014; 514 Cong (bb0035) 2013; 339 Schnell, Foley, Wirth, Munch, Uberla (bb0500) 2000; 11 Kaminski (bb0560) 2016; 6 Katz, Fargnoli, Williams, Bridges (bb0185) 2013; 24 Hruscha, Schmid (bb0275) 2015; 1254 Ishino, Shinagawa, Makino, Amemura, Nakata (bb0005) 1987; 169 Zetsche, Volz, Zhang (bb0490) 2015; 33 Schumann (bb0070) 2015; 112 Aiuti (bb0505) 2013; 341 Yang (bb0215) 2013; 154 Sharei (bb0320) 2013; 110 Khatodia, Bhatotia, Passricha, Khurana, Tuteja (bb0060) 2016; 7 Hu (bb0400) 2014; 53 Ramakrishna (bb0310) 2014; 24 Yang (bb0485) 2016; 34 Suda, Liu (bb0340) 2015; 89 Seeger, Sohn (bb0570) 2014; 3 Cradick, Fine, Antico, Bao (bb0150) 2013 Fu (bb0145) 2013; 31 Liang (bb0245) 2015; 208 Ding (bb0230) 2013; 12 Fei, Haffner, Huttner (bb0210) 2014; 7 Suresh, Ramakrishna, Kim (bb0315) 2017; 1507 Wu, Yang, Colosi (bb0465) 2010; 18 Swiech (bb0480) 2015; 33 Niu (bb0135) 2014; 156 Makarova (bb0080) 2015; 13 Ran (bb0130) 2013; 8 Cyranoski (bb0075) 2016; 539 Fei (bb0240) 2016; 1 Heck (bb0545) 2014; 32 Shen (bb0155) 2014; 11 Sampson, Weiss (bb0055) 2014; 36 Gasiunas, Sinkunas, Siksnys (bb0100) 2014; 71 Mandal (bb0220) 2014; 15 Coelho (bb0375) 2013; 369 Raghavan (bb0380) 2016 Jinek (bb0030) 2012; 337 Yin (bb0590) 2016; 34 Zhou (bb0535) 2014; 509 van der Oost, Westra, Jackson, Wiedenheft (bb0085) 2014; 12 Yusa (bb0420) 2015; 26 Paulk (bb0435) 2010; 51 Ran (bb0470) 2015; 520 Deltcheva (bb0025) 2011; 471 Crispo (bb0255) 2015; 10 Nakamura, Katahira, Sato, Watanabe, Funahashi (bb0205) 2004; 121 Wang (bb0390) 2016; 113 Grimm, Kay (bb0455) 2003; 3 Suda, Liu (bb0345) 2007; 15 Mali (bb0195) 2013; 339 Basu (bb0290) 2015; 112 Sun (bb0405) 2015; 54 Worthen, Rittié, Fisher (bb1315) 2017; 1627 Ramanan (bb0575) 2015; 5 Veres (bb0050) 2014; 15 Fitzgerald (bb0370) 2014; 383 D'Astolfo (bb0180) 2015; 161 Qin (bb0170) 2015; 200 Travis (bb0040) 2015; 350 Cartier (bb0510) 2009; 326 Friedland (bb0285) 2013; 10 Shen (bb0045) 2013; 23 Chang (bb0250) 2013; 23 Maggio (bb0415) 2014; 4 Yosef, Goren, Qimron (bb0115) 2012; 40 Mout, Ray, Lee, Scaletti, Rotello (bb0585) 2017; 28 Sasaki, Yoshida, Hozumi, Sasakura (bb0280) 2014; 56 Jansen, van Embden, Gaastra, Schouls (bb0010) 2002; 43 Gori (bb0175) 2015; 26 Zuris (bb0140) 2015; 33 Mali (bb0235) 2013; 31 Yla-Herttuala (bb0460) 2012; 20 Li, Natarajan, Allen, Peshwa (bb0160) 2014; 16 Gaj, Epstein, Schaffer (bb0440) 2016; 24 Kang (bb0395) 2017; 28 Westra, Buckling, Fineran (bb0125) 2014; 12 Blasco (bb0550) 2014; 9 Horii (bb0300) 2014; 4 Dong (bb0565) 2015; 118 Yuan, Webb, Lemoine, Wang (bb0065) 2016; 8 Al-Dosari, Knapp, Liu (bb0330) 2005; 54 Chen (bb0540) 2015; 160 Hsu, Lander, Zhang (bb0110) 2014; 157 Zufferey (bb0495) 1998; 72 Kabadi, Ousterout, Hilton, Gersbach (bb0520) 2014; 42 Han (bb0325) 2015; 1 Wang, Wei, Sabatini, Lander (bb0515) 2014; 343 Zhen (bb0350) 2015; 22 Koike-Yusa, Li, Tan, Velasco-Herrera, Yusa (bb0425) 2014; 32 Grimm (bb0450) 2008; 82 Wang (bb0525) 2015; 33 Mout (bb0410) 2017 Kabadi, Ousterout, Hilton, Gersbach (bb0530) 2014; 22 Mashiko (bb0265) 2014; 56 Yin (bb0360) 2014; 32 Friedland (bb0475) 2015; 16 Kim, Kim, Cho, Kim, Kim (bb0165) 2014; 24 Liu, Song, Liu (bb0335) 1999; 6 Doudna, Charpentier (bb0105) 2014; 346 Khorsandi (bb0365) 2008; 15 Wang, Quake (bb0555) 2014; 111 Platt (bb0385) 2014; 159 Makarova (bb0095) 2011; 9 Tebas (bb0190) 2014; 370 Brouns (bb0120) 2008; 321 Mali (10.1016/j.jconrel.2017.09.012_bb0195) 2013; 339 Sasaki (10.1016/j.jconrel.2017.09.012_bb0280) 2014; 56 Wu (10.1016/j.jconrel.2017.09.012_bb0465) 2010; 18 Friedland (10.1016/j.jconrel.2017.09.012_bb0475) 2015; 16 Hsu (10.1016/j.jconrel.2017.09.012_bb0110) 2014; 157 Hruscha (10.1016/j.jconrel.2017.09.012_bb0275) 2015; 1254 Mashiko (10.1016/j.jconrel.2017.09.012_bb0265) 2014; 56 Ran (10.1016/j.jconrel.2017.09.012_bb0470) 2015; 520 Blasco (10.1016/j.jconrel.2017.09.012_bb0550) 2014; 9 Hu (10.1016/j.jconrel.2017.09.012_bb0400) 2014; 53 Chang (10.1016/j.jconrel.2017.09.012_bb0250) 2013; 23 Ramanan (10.1016/j.jconrel.2017.09.012_bb0575) 2015; 5 Kaminski (10.1016/j.jconrel.2017.09.012_bb0560) 2016; 6 Zufferey (10.1016/j.jconrel.2017.09.012_bb0495) 1998; 72 Veres (10.1016/j.jconrel.2017.09.012_bb0050) 2014; 15 Jinek (10.1016/j.jconrel.2017.09.012_bb0030) 2012; 337 Jansen (10.1016/j.jconrel.2017.09.012_bb0015) 2002; 6 Coelho (10.1016/j.jconrel.2017.09.012_bb0375) 2013; 369 Kang (10.1016/j.jconrel.2017.09.012_bb0395) 2017; 28 Ishino (10.1016/j.jconrel.2017.09.012_bb0005) 1987; 169 Li (10.1016/j.jconrel.2017.09.012_bb0160) 2014; 16 Horii (10.1016/j.jconrel.2017.09.012_bb0300) 2014; 4 Paulk (10.1016/j.jconrel.2017.09.012_bb0435) 2010; 51 Seeger (10.1016/j.jconrel.2017.09.012_bb0570) 2014; 3 Cyranoski (10.1016/j.jconrel.2017.09.012_bb0075) 2016; 539 Mojica (10.1016/j.jconrel.2017.09.012_bb0020) 2005; 60 Kim (10.1016/j.jconrel.2017.09.012_bb0165) 2014; 24 Shen (10.1016/j.jconrel.2017.09.012_bb0045) 2013; 23 Katz (10.1016/j.jconrel.2017.09.012_bb0185) 2013; 24 Yosef (10.1016/j.jconrel.2017.09.012_bb0115) 2012; 40 Suda (10.1016/j.jconrel.2017.09.012_bb0345) 2007; 15 Suda (10.1016/j.jconrel.2017.09.012_bb0340) 2015; 89 Schnell (10.1016/j.jconrel.2017.09.012_bb0500) 2000; 11 Grimm (10.1016/j.jconrel.2017.09.012_bb0450) 2008; 82 Wang (10.1016/j.jconrel.2017.09.012_bb0390) 2016; 113 Yusa (10.1016/j.jconrel.2017.09.012_bb0420) 2015; 26 Crispo (10.1016/j.jconrel.2017.09.012_bb0255) 2015; 10 Ding (10.1016/j.jconrel.2017.09.012_bb0230) 2013; 12 Gasiunas (10.1016/j.jconrel.2017.09.012_bb0100) 2014; 71 Thummel (10.1016/j.jconrel.2017.09.012_bb0200) 2006; 295 Mulvihill (10.1016/j.jconrel.2017.09.012_bb0580) 2017; 122 Travis (10.1016/j.jconrel.2017.09.012_bb0040) 2015; 350 Hou (10.1016/j.jconrel.2017.09.012_bb0225) 2013; 110 Garneau (10.1016/j.jconrel.2017.09.012_bb0090) 2010; 468 Brouns (10.1016/j.jconrel.2017.09.012_bb0120) 2008; 321 Ramakrishna (10.1016/j.jconrel.2017.09.012_bb0310) 2014; 24 Cong (10.1016/j.jconrel.2017.09.012_bb0035) 2013; 339 Makarova (10.1016/j.jconrel.2017.09.012_bb0095) 2011; 9 Chen (10.1016/j.jconrel.2017.09.012_bb0540) 2015; 160 Fei (10.1016/j.jconrel.2017.09.012_bb0210) 2014; 7 Mandal (10.1016/j.jconrel.2017.09.012_bb0220) 2014; 15 Nakagawa (10.1016/j.jconrel.2017.09.012_bb0295) 2015; 15 Yan (10.1016/j.jconrel.2017.09.012_bb0270) 2014; 3 Kabadi (10.1016/j.jconrel.2017.09.012_bb0530) 2014; 22 Doudna (10.1016/j.jconrel.2017.09.012_bb0105) 2014; 346 Deltcheva (10.1016/j.jconrel.2017.09.012_bb0025) 2011; 471 Platt (10.1016/j.jconrel.2017.09.012_bb0385) 2014; 159 Mout (10.1016/j.jconrel.2017.09.012_bb0410) 2017 Dong (10.1016/j.jconrel.2017.09.012_bb0565) 2015; 118 Tebas (10.1016/j.jconrel.2017.09.012_bb0190) 2014; 370 Sharei (10.1016/j.jconrel.2017.09.012_bb0320) 2013; 110 Liu (10.1016/j.jconrel.2017.09.012_bb0335) 1999; 6 D'Astolfo (10.1016/j.jconrel.2017.09.012_bb0180) 2015; 161 Gaj (10.1016/j.jconrel.2017.09.012_bb0440) 2016; 24 Yang (10.1016/j.jconrel.2017.09.012_bb0485) 2016; 34 Zhou (10.1016/j.jconrel.2017.09.012_bb0535) 2014; 509 Makarova (10.1016/j.jconrel.2017.09.012_bb0080) 2015; 13 Wang (10.1016/j.jconrel.2017.09.012_bb0555) 2014; 111 Grimm (10.1016/j.jconrel.2017.09.012_bb0455) 2003; 3 Mali (10.1016/j.jconrel.2017.09.012_bb0235) 2013; 31 Aiuti (10.1016/j.jconrel.2017.09.012_bb0505) 2013; 341 Nakamura (10.1016/j.jconrel.2017.09.012_bb0205) 2004; 121 Kabadi (10.1016/j.jconrel.2017.09.012_bb0520) 2014; 42 Fu (10.1016/j.jconrel.2017.09.012_bb0145) 2013; 31 Qin (10.1016/j.jconrel.2017.09.012_bb0170) 2015; 200 Han (10.1016/j.jconrel.2017.09.012_bb0325) 2015; 1 Khatodia (10.1016/j.jconrel.2017.09.012_bb0060) 2016; 7 Basu (10.1016/j.jconrel.2017.09.012_bb0290) 2015; 112 Sun (10.1016/j.jconrel.2017.09.012_bb0405) 2015; 54 Yin (10.1016/j.jconrel.2017.09.012_bb0590) 2016; 34 Fei (10.1016/j.jconrel.2017.09.012_bb0240) 2016; 1 Sampson (10.1016/j.jconrel.2017.09.012_bb0055) 2014; 36 Cradick (10.1016/j.jconrel.2017.09.012_bb0150) 2013 Koike-Yusa (10.1016/j.jconrel.2017.09.012_bb0425) 2014; 32 Swiech (10.1016/j.jconrel.2017.09.012_bb0480) 2015; 33 Niu (10.1016/j.jconrel.2017.09.012_bb0135) 2014; 156 Raghavan (10.1016/j.jconrel.2017.09.012_bb0380) 2016 Yang (10.1016/j.jconrel.2017.09.012_bb0215) 2013; 154 Zhen (10.1016/j.jconrel.2017.09.012_bb0350) 2015; 22 Jansen (10.1016/j.jconrel.2017.09.012_bb0010) 2002; 43 Yla-Herttuala (10.1016/j.jconrel.2017.09.012_bb0460) 2012; 20 Liang (10.1016/j.jconrel.2017.09.012_bb0245) 2015; 208 Shen (10.1016/j.jconrel.2017.09.012_bb0155) 2014; 11 Friedland (10.1016/j.jconrel.2017.09.012_bb0285) 2013; 10 Yuan (10.1016/j.jconrel.2017.09.012_bb0065) 2016; 8 Sonntag (10.1016/j.jconrel.2017.09.012_bb0445) 2010; 107 Mashiko (10.1016/j.jconrel.2017.09.012_bb0260) 2013; 3 Mout (10.1016/j.jconrel.2017.09.012_bb0585) 2017; 28 Zuris (10.1016/j.jconrel.2017.09.012_bb0140) 2015; 33 Worthen (10.1016/j.jconrel.2017.09.012_bb1315) 2017; 1627 Zetsche (10.1016/j.jconrel.2017.09.012_bb0490) 2015; 33 Shalem (10.1016/j.jconrel.2017.09.012_bb0430) 2014; 343 Schumann (10.1016/j.jconrel.2017.09.012_bb0070) 2015; 112 Maggio (10.1016/j.jconrel.2017.09.012_bb0415) 2014; 4 Westra (10.1016/j.jconrel.2017.09.012_bb0125) 2014; 12 Cartier (10.1016/j.jconrel.2017.09.012_bb0510) 2009; 326 van der Oost (10.1016/j.jconrel.2017.09.012_bb0085) 2014; 12 Al-Dosari (10.1016/j.jconrel.2017.09.012_bb0330) 2005; 54 Fitzgerald (10.1016/j.jconrel.2017.09.012_bb0370) 2014; 383 Wang (10.1016/j.jconrel.2017.09.012_bb0525) 2015; 33 Heck (10.1016/j.jconrel.2017.09.012_bb0545) 2014; 32 Yin (10.1016/j.jconrel.2017.09.012_bb0360) 2014; 32 Suresh (10.1016/j.jconrel.2017.09.012_bb0315) 2017; 1507 Wang (10.1016/j.jconrel.2017.09.012_bb0515) 2014; 343 Ran (10.1016/j.jconrel.2017.09.012_bb0130) 2013; 8 Xue (10.1016/j.jconrel.2017.09.012_bb0355) 2014; 514 Gori (10.1016/j.jconrel.2017.09.012_bb0175) 2015; 26 Khorsandi (10.1016/j.jconrel.2017.09.012_bb0365) 2008; 15 |
References_xml | – volume: 6 start-page: 1258 year: 1999 end-page: 1266 ident: bb0335 article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA publication-title: Gene Ther. – volume: 24 start-page: 1012 year: 2014 end-page: 1019 ident: bb0165 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: bb0430 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science – volume: 11 start-page: 399 year: 2014 end-page: 402 ident: bb0155 article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects publication-title: Nat. Methods – volume: 24 start-page: 1020 year: 2014 end-page: 1027 ident: bb0310 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. – volume: 110 start-page: 15644 year: 2013 end-page: 15649 ident: bb0225 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 160 start-page: 1246 year: 2015 end-page: 1260 ident: bb0540 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell – volume: 10 start-page: 741 year: 2013 ident: bb0285 article-title: Heritable genome editing in publication-title: Nat. Methods – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: bb0390 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: bb0030 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 22 start-page: 404 year: 2015 end-page: 412 ident: bb0350 article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus publication-title: Gene Ther. – volume: 112 start-page: 10437 year: 2015 end-page: 10442 ident: bb0070 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 056820 year: 2016 ident: bb0380 article-title: High-throughput screening and CRISPR-Cas9 modeling of causal lipid-associated expression quantitative trait locus variants publication-title: bioRxiv – volume: 36 start-page: 34 year: 2014 end-page: 38 ident: bb0055 article-title: Exploiting CRISPR/Cas systems for biotechnology publication-title: BioEssays – volume: 72 start-page: 9873 year: 1998 end-page: 9880 ident: bb0495 article-title: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery publication-title: J. Virol. – volume: 31 start-page: 822 year: 2013 end-page: 826 ident: bb0145 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. – volume: 89 start-page: 89 year: 2015 end-page: 111 ident: bb0340 article-title: Hydrodynamic delivery publication-title: Adv. Genet. – volume: 18 start-page: 80 year: 2010 end-page: 86 ident: bb0465 article-title: Effect of genome size on AAV vector packaging publication-title: Mol. Ther. – volume: 12 start-page: 479 year: 2014 end-page: 492 ident: bb0085 article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. – volume: 32 start-page: 941 year: 2014 end-page: 946 ident: bb0545 article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing publication-title: Nat. Biotechnol. – volume: 514 start-page: 380 year: 2014 end-page: 384 ident: bb0355 article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver publication-title: Nature – volume: 295 year: 2006 ident: bb0200 article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb publication-title: Dev. Biol. – volume: 12 start-page: 393 year: 2013 end-page: 394 ident: bb0230 article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs publication-title: Cell Stem Cell – volume: 346 start-page: 1258096 year: 2014 ident: bb0105 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – year: 2013 ident: bb0150 article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity publication-title: Nucleic Acids Res. – volume: 1627 start-page: 245 year: 2017 end-page: 251 ident: bb1315 article-title: Mechanical deformation of cultured cells with hydrogels publication-title: Methods Mol. Biol. – volume: 122 start-page: 17 year: 2017 end-page: 29 ident: bb0580 article-title: Ethical issues of CRISPR technology and gene editing through the lens of solidarity publication-title: Br. Med. Bull. – volume: 28 start-page: 880 year: 2017 end-page: 884 ident: bb0585 article-title: In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges publication-title: Bioconjug. Chem. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bb0035 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 1507 start-page: 81 year: 2017 end-page: 94 ident: bb0315 article-title: Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing publication-title: Methods Mol. Biol. – volume: 4 year: 2014 ident: bb0300 article-title: Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering publication-title: Sci. Rep. – volume: 43 start-page: 1565 year: 2002 end-page: 1575 ident: bb0010 article-title: Identification of genes that are associated with DNA repeats in prokaryotes publication-title: Mol. Microbiol. – volume: 32 start-page: 267 year: 2014 end-page: 273 ident: bb0425 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Nat. Biotechnol. – volume: 107 start-page: 10220 year: 2010 end-page: 10225 ident: bb0445 article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 350 start-page: 1299 year: 2015 end-page: 1300 ident: bb0040 article-title: Genetic Engineering. Germline editing dominates DNA summit publication-title: Science – volume: 82 start-page: 5887 year: 2008 end-page: 5911 ident: bb0450 article-title: In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses publication-title: J. Virol. – volume: 33 start-page: 102 year: 2015 end-page: U286 ident: bb0480 article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 341 start-page: 865 year: 2013 end-page: U871 ident: bb0505 article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome publication-title: Science – volume: 121 start-page: 1137 year: 2004 end-page: 1143 ident: bb0205 article-title: Gain- and loss-of-function in chick embryos by electroporation publication-title: Mech. Dev. – volume: 8 year: 2016 ident: bb0065 article-title: CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses publication-title: Viruses – volume: 33 start-page: 73 year: 2015 end-page: 80 ident: bb0140 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. – volume: 56 start-page: 499 year: 2014 end-page: 510 ident: bb0280 article-title: CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis publication-title: Develop. Growth Differ. – volume: 9 start-page: 1219 year: 2014 end-page: 1227 ident: bb0550 article-title: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology publication-title: Cell Rep. – volume: 3 start-page: 12 year: 2014 ident: bb0270 article-title: Generation of multi-gene knockout rabbits using the Cas9/gRNA system publication-title: Cell Regen. – volume: 24 start-page: 458 year: 2016 end-page: 464 ident: bb0440 article-title: Genome engineering using adeno-associated virus: basic and clinical research applications publication-title: Mol. Ther. – volume: 471 start-page: 602 year: 2011 ident: bb0025 article-title: CRISPR RNA maturation by trans‑encoded small RNA and host factor RNase III publication-title: Nature – volume: 20 start-page: 1831 year: 2012 end-page: 1832 ident: bb0460 article-title: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union publication-title: Mol. Ther. – volume: 16 year: 2015 ident: bb0475 article-title: Characterization of publication-title: Genome Biol. – volume: 343 start-page: 80 year: 2014 end-page: 84 ident: bb0515 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science – volume: 539 start-page: 479 year: 2016 ident: bb0075 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature – volume: 520 start-page: 186 year: 2015 end-page: U198 ident: bb0470 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature – volume: 40 start-page: 5569 year: 2012 end-page: 5576 ident: bb0115 article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli publication-title: Nucleic Acids Res. – volume: 23 start-page: 720 year: 2013 end-page: 723 ident: bb0045 article-title: Generation of gene-modified mice via Cas9/RNA-mediated gene targeting publication-title: Cell Res. – volume: 4 year: 2014 ident: bb0415 article-title: Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells publication-title: Sci. Rep. – volume: 112 start-page: 4038 year: 2015 end-page: 4043 ident: bb0290 article-title: Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 154 start-page: 1370 year: 2013 end-page: 1379 ident: bb0215 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: bb0110 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 26 start-page: 443 year: 2015 end-page: 451 ident: bb0175 article-title: Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy publication-title: Hum. Gene Ther. – volume: 15 start-page: 27 year: 2014 end-page: 30 ident: bb0050 article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing publication-title: Cell Stem Cell – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bb0130 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 156 start-page: 836 year: 2014 end-page: 843 ident: bb0135 article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos publication-title: Cell – volume: 53 start-page: 5821 year: 2014 end-page: 5826 ident: bb0400 article-title: DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery publication-title: Angew. Chem. Int. Ed. Eng. – volume: 6 year: 2016 ident: bb0560 article-title: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing publication-title: Sci Rep – volume: 12 start-page: 317 year: 2014 end-page: 326 ident: bb0125 article-title: CRISPR-Cas systems: beyond adaptive immunity publication-title: Nat. Rev. Microbiol. – year: 2017 ident: bb0410 article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing publication-title: ACS Nano – volume: 468 start-page: 67 year: 2010 end-page: 71 ident: bb0090 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature – volume: 7 start-page: 398 year: 2014 end-page: 411 ident: bb0210 article-title: 3′ UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size publication-title: Cell Rep. – volume: 11 start-page: 439 year: 2000 end-page: 447 ident: bb0500 article-title: Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus publication-title: Hum. Gene Ther. – volume: 33 start-page: 175 year: 2015 end-page: 178 ident: bb0525 article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors publication-title: Nat. Biotechnol. – volume: 321 start-page: 960 year: 2008 end-page: 964 ident: bb0120 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science – volume: 1 start-page: 16002 year: 2016 ident: bb0240 article-title: Tissue-and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration publication-title: npj Regen. Med. – volume: 111 start-page: 13157 year: 2014 end-page: 13162 ident: bb0555 article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 year: 2014 ident: bb0570 article-title: Targeting Hepatitis B Virus With CRISPR/Cas9 publication-title: Mol. Ther. – volume: 161 start-page: 674 year: 2015 end-page: 690 ident: bb0180 article-title: Efficient intracellular delivery of native proteins publication-title: Cell – volume: 326 start-page: 818 year: 2009 end-page: 823 ident: bb0510 article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy publication-title: Science – volume: 3 start-page: 281 year: 2003 end-page: 304 ident: bb0455 article-title: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy publication-title: Curr. Gene Ther. – volume: 33 start-page: 139 year: 2015 end-page: 142 ident: bb0490 article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation publication-title: Nat. Biotechnol. – volume: 159 start-page: 440 year: 2014 end-page: 455 ident: bb0385 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell – volume: 200 start-page: 423 year: 2015 end-page: 430 ident: bb0170 article-title: Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease publication-title: Genetics – volume: 56 start-page: 122 year: 2014 end-page: 129 ident: bb0265 article-title: Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes publication-title: Develop. Growth Differ. – volume: 15 start-page: 643 year: 2014 end-page: 652 ident: bb0220 article-title: Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9 publication-title: Cell Stem Cell – volume: 208 start-page: 44 year: 2015 end-page: 53 ident: bb0245 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. – volume: 34 start-page: 334 year: 2016 ident: bb0485 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. – volume: 31 start-page: 833 year: 2013 ident: bb0235 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 3 year: 2013 ident: bb0260 article-title: Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA publication-title: Sci. Rep. – volume: 26 year: 2015 ident: bb0420 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Hum. Gene Ther. – volume: 509 start-page: 487 year: 2014 end-page: 491 ident: bb0535 article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells publication-title: Nature – volume: 118 start-page: 110 year: 2015 end-page: 117 ident: bb0565 article-title: Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication publication-title: Antivir. Res. – volume: 71 start-page: 449 year: 2014 end-page: 465 ident: bb0100 article-title: Molecular mechanisms of CRISPR-mediated microbial immunity publication-title: Cell. Mol. Life Sci. – volume: 15 year: 2015 ident: bb0295 article-title: Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes publication-title: Bmc Biotechnol. – volume: 54 start-page: 65 year: 2005 end-page: 82 ident: bb0330 article-title: Hydrodynamic delivery publication-title: Adv. Genet. – volume: 22 year: 2014 ident: bb0530 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Mol. Ther. – volume: 110 start-page: 2082 year: 2013 end-page: 2087 ident: bb0320 article-title: A vector-free microfluidic platform for intracellular delivery publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1254 start-page: 341 year: 2015 end-page: 350 ident: bb0275 article-title: Generation of Zebrafish models by CRISPR/Cas9 genome editing publication-title: Neuronal Cell Death – volume: 51 start-page: 1200 year: 2010 end-page: 1208 ident: bb0435 article-title: Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo publication-title: Hepatology – volume: 369 start-page: 819 year: 2013 end-page: 829 ident: bb0375 article-title: Safety and efficacy of RNAi therapy for transthyretin amyloidosis publication-title: N. Engl. J. Med. – volume: 24 start-page: 914 year: 2013 end-page: 927 ident: bb0185 article-title: Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications publication-title: Hum. Gene Ther. – volume: 5 year: 2015 ident: bb0575 article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus publication-title: Sci. Rep. – volume: 34 start-page: 328 year: 2016 end-page: 333 ident: bb0590 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. – volume: 10 year: 2015 ident: bb0255 article-title: Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes publication-title: Plos One – volume: 54 start-page: 12029 year: 2015 end-page: 12033 ident: bb0405 article-title: Self-assembled DNA Nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 465 year: 2013 end-page: 472 ident: bb0250 article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos publication-title: Cell Res. – volume: 32 start-page: 551 year: 2014 end-page: 553 ident: bb0360 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat. Biotechnol. – volume: 370 start-page: 901 year: 2014 end-page: 910 ident: bb0190 article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV publication-title: N. Engl. J. Med. – volume: 60 start-page: 174 year: 2005 end-page: 182 ident: bb0020 article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements publication-title: J. Mol. Evol. – volume: 7 start-page: 506 year: 2016 ident: bb0060 article-title: The CRISPR/Cas genome-editing tool: application in improvement of crops publication-title: Front. Plant Sci. – volume: 28 start-page: 957 year: 2017 end-page: 967 ident: bb0395 article-title: Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance publication-title: Bioconjug. Chem. – volume: 42 year: 2014 ident: bb0520 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Nucleic Acids Res. – volume: 9 start-page: 467 year: 2011 end-page: 477 ident: bb0095 article-title: Evolution and classification of the CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. – volume: 15 start-page: 2063 year: 2007 end-page: 2069 ident: bb0345 article-title: Hydrodynamic gene delivery: its principles and applications publication-title: Mol. Ther. – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: bb0195 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 6 start-page: 23 year: 2002 end-page: 33 ident: bb0015 article-title: Identification of a novel family of sequence repeats among prokaryotes publication-title: OMICS – volume: 15 start-page: 225 year: 2008 end-page: 230 ident: bb0365 article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human publication-title: Cancer Gene Ther. – volume: 16 year: 2014 ident: bb0160 article-title: Cgmp-compliant, clinical scale, non-viral platform for efficient gene editing using Crispr/Cas9 publication-title: Cytotherapy – volume: 383 start-page: 60 year: 2014 end-page: 68 ident: bb0370 article-title: Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial publication-title: Lancet – volume: 13 start-page: 722 year: 2015 end-page: 736 ident: bb0080 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. – volume: 1 year: 2015 ident: bb0325 article-title: CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation publication-title: Sci. Adv. – volume: 169 start-page: 5429 year: 1987 end-page: 5433 ident: bb0005 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product publication-title: J. Bacteriol. – volume: 3 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0570 article-title: Targeting Hepatitis B Virus With CRISPR/Cas9 publication-title: Mol. Ther. – volume: 12 start-page: 479 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0085 article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3279 – volume: 350 start-page: 1299 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0040 article-title: Genetic Engineering. Germline editing dominates DNA summit publication-title: Science doi: 10.1126/science.350.6266.1299 – volume: 3 start-page: 12 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0270 article-title: Generation of multi-gene knockout rabbits using the Cas9/gRNA system publication-title: Cell Regen. doi: 10.1186/2045-9769-3-12 – volume: 33 start-page: 102 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0480 article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3055 – volume: 156 start-page: 836 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0135 article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos publication-title: Cell doi: 10.1016/j.cell.2014.01.027 – volume: 107 start-page: 10220 year: 2010 ident: 10.1016/j.jconrel.2017.09.012_bb0445 article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1001673107 – volume: 24 start-page: 458 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0440 article-title: Genome engineering using adeno-associated virus: basic and clinical research applications publication-title: Mol. Ther. doi: 10.1038/mt.2015.151 – volume: 42 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0520 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku749 – volume: 6 start-page: 23 year: 2002 ident: 10.1016/j.jconrel.2017.09.012_bb0015 article-title: Identification of a novel family of sequence repeats among prokaryotes publication-title: OMICS doi: 10.1089/15362310252780816 – volume: 295 year: 2006 ident: 10.1016/j.jconrel.2017.09.012_bb0200 article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.04.095 – volume: 89 start-page: 89 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0340 article-title: Hydrodynamic delivery publication-title: Adv. Genet. doi: 10.1016/bs.adgen.2014.10.002 – volume: 53 start-page: 5821 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0400 article-title: DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201400323 – volume: 339 start-page: 823 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0195 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 23 start-page: 465 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0250 article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos publication-title: Cell Res. doi: 10.1038/cr.2013.45 – volume: 112 start-page: 10437 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0070 article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1512503112 – volume: 539 start-page: 479 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0075 article-title: CRISPR gene-editing tested in a person for the first time publication-title: Nature doi: 10.1038/nature.2016.20988 – volume: 15 start-page: 2063 year: 2007 ident: 10.1016/j.jconrel.2017.09.012_bb0345 article-title: Hydrodynamic gene delivery: its principles and applications publication-title: Mol. Ther. doi: 10.1038/sj.mt.6300314 – volume: 33 start-page: 175 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0525 article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3127 – volume: 82 start-page: 5887 year: 2008 ident: 10.1016/j.jconrel.2017.09.012_bb0450 article-title: In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses publication-title: J. Virol. doi: 10.1128/JVI.00254-08 – volume: 51 start-page: 1200 year: 2010 ident: 10.1016/j.jconrel.2017.09.012_bb0435 article-title: Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo publication-title: Hepatology doi: 10.1002/hep.23481 – volume: 111 start-page: 13157 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0555 article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1410785111 – volume: 15 start-page: 643 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0220 article-title: Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.10.004 – volume: 122 start-page: 17 year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb0580 article-title: Ethical issues of CRISPR technology and gene editing through the lens of solidarity publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldx002 – volume: 337 start-page: 816 year: 2012 ident: 10.1016/j.jconrel.2017.09.012_bb0030 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 3 start-page: 281 year: 2003 ident: 10.1016/j.jconrel.2017.09.012_bb0455 article-title: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy publication-title: Curr. Gene Ther. doi: 10.2174/1566523034578285 – volume: 71 start-page: 449 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0100 article-title: Molecular mechanisms of CRISPR-mediated microbial immunity publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-013-1438-6 – volume: 31 start-page: 833 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0235 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – volume: 28 start-page: 957 year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb0395 article-title: Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00676 – volume: 7 start-page: 506 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0060 article-title: The CRISPR/Cas genome-editing tool: application in improvement of crops publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00506 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0035 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 4 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0415 article-title: Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells publication-title: Sci. Rep. doi: 10.1038/srep05105 – volume: 208 start-page: 44 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0245 article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2015.04.024 – volume: 15 start-page: 27 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0050 article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.04.020 – year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0150 article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt714 – volume: 56 start-page: 122 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0265 article-title: Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes publication-title: Develop. Growth Differ. doi: 10.1111/dgd.12113 – volume: 60 start-page: 174 year: 2005 ident: 10.1016/j.jconrel.2017.09.012_bb0020 article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements publication-title: J. Mol. Evol. doi: 10.1007/s00239-004-0046-3 – volume: 159 start-page: 440 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0385 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell doi: 10.1016/j.cell.2014.09.014 – volume: 24 start-page: 1012 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0165 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. doi: 10.1101/gr.171322.113 – volume: 34 start-page: 328 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0590 article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3471 – volume: 383 start-page: 60 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0370 article-title: Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial publication-title: Lancet doi: 10.1016/S0140-6736(13)61914-5 – volume: 36 start-page: 34 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0055 article-title: Exploiting CRISPR/Cas systems for biotechnology publication-title: BioEssays doi: 10.1002/bies.201300135 – volume: 32 start-page: 551 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0360 article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2884 – volume: 16 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0475 article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications publication-title: Genome Biol. doi: 10.1186/s13059-015-0817-8 – volume: 157 start-page: 1262 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0110 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 1254 start-page: 341 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0275 article-title: Generation of Zebrafish models by CRISPR/Cas9 genome editing publication-title: Neuronal Cell Death doi: 10.1007/978-1-4939-2152-2_24 – volume: 12 start-page: 393 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0230 article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.006 – volume: 6 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0560 article-title: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing publication-title: Sci Rep – volume: 118 start-page: 110 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0565 article-title: Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2015.03.015 – volume: 5 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0575 article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus publication-title: Sci. Rep. doi: 10.1038/srep10833 – volume: 20 start-page: 1831 year: 2012 ident: 10.1016/j.jconrel.2017.09.012_bb0460 article-title: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union publication-title: Mol. Ther. doi: 10.1038/mt.2012.194 – volume: 6 start-page: 1258 year: 1999 ident: 10.1016/j.jconrel.2017.09.012_bb0335 article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA publication-title: Gene Ther. doi: 10.1038/sj.gt.3300947 – volume: 1507 start-page: 81 year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb0315 article-title: Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6518-2_7 – volume: 471 start-page: 602 year: 2011 ident: 10.1016/j.jconrel.2017.09.012_bb0025 article-title: CRISPR RNA maturation by trans‑encoded small RNA and host factor RNase III publication-title: Nature doi: 10.1038/nature09886 – volume: 24 start-page: 914 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0185 article-title: Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications publication-title: Hum. Gene Ther. doi: 10.1089/hum.2013.2517 – volume: 3 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0260 article-title: Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA publication-title: Sci. Rep. doi: 10.1038/srep03355 – volume: 18 start-page: 80 year: 2010 ident: 10.1016/j.jconrel.2017.09.012_bb0465 article-title: Effect of genome size on AAV vector packaging publication-title: Mol. Ther. doi: 10.1038/mt.2009.255 – volume: 16 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0160 article-title: Cgmp-compliant, clinical scale, non-viral platform for efficient gene editing using Crispr/Cas9 publication-title: Cytotherapy doi: 10.1016/j.jcyt.2014.01.125 – volume: 56 start-page: 499 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0280 article-title: CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis publication-title: Develop. Growth Differ. doi: 10.1111/dgd.12149 – volume: 28 start-page: 880 year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb0585 article-title: In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.7b00057 – volume: 110 start-page: 2082 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0320 article-title: A vector-free microfluidic platform for intracellular delivery publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1218705110 – volume: 1627 start-page: 245 year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb1315 article-title: Mechanical deformation of cultured cells with hydrogels publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7113-8_17 – volume: 1 start-page: 16002 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0240 article-title: Tissue-and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration publication-title: npj Regen. Med. doi: 10.1038/npjregenmed.2016.2 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0130 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 12 start-page: 317 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0125 article-title: CRISPR-Cas systems: beyond adaptive immunity publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3241 – volume: 22 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0530 article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector publication-title: Mol. Ther. – volume: 154 start-page: 1370 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0215 article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.08.022 – volume: 200 start-page: 423 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0170 article-title: Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease publication-title: Genetics doi: 10.1534/genetics.115.176594 – volume: 321 start-page: 960 year: 2008 ident: 10.1016/j.jconrel.2017.09.012_bb0120 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science doi: 10.1126/science.1159689 – volume: 43 start-page: 1565 year: 2002 ident: 10.1016/j.jconrel.2017.09.012_bb0010 article-title: Identification of genes that are associated with DNA repeats in prokaryotes publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02839.x – volume: 468 start-page: 67 year: 2010 ident: 10.1016/j.jconrel.2017.09.012_bb0090 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature doi: 10.1038/nature09523 – volume: 24 start-page: 1020 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0310 article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA publication-title: Genome Res. doi: 10.1101/gr.171264.113 – volume: 54 start-page: 12029 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0405 article-title: Self-assembled DNA Nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506030 – volume: 509 start-page: 487 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0535 article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells publication-title: Nature doi: 10.1038/nature13166 – volume: 346 start-page: 1258096 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0105 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science doi: 10.1126/science.1258096 – volume: 32 start-page: 267 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0425 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2800 – volume: 32 start-page: 941 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0545 article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2951 – volume: 161 start-page: 674 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0180 article-title: Efficient intracellular delivery of native proteins publication-title: Cell doi: 10.1016/j.cell.2015.03.028 – volume: 54 start-page: 65 year: 2005 ident: 10.1016/j.jconrel.2017.09.012_bb0330 article-title: Hydrodynamic delivery publication-title: Adv. Genet. doi: 10.1016/S0065-2660(05)54004-5 – year: 2017 ident: 10.1016/j.jconrel.2017.09.012_bb0410 article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing publication-title: ACS Nano doi: 10.1021/acsnano.6b07600 – volume: 11 start-page: 399 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0155 article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects publication-title: Nat. Methods doi: 10.1038/nmeth.2857 – volume: 26 start-page: 443 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0175 article-title: Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.074 – volume: 10 start-page: 741 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0285 article-title: Heritable genome editing in C. elegans via a CRISPR-Cas9 system publication-title: Nat. Methods doi: 10.1038/nmeth.2532 – volume: 343 start-page: 84 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0430 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 160 start-page: 1246 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0540 article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis publication-title: Cell doi: 10.1016/j.cell.2015.02.038 – volume: 9 start-page: 1219 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0550 article-title: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.051 – volume: 10 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0255 article-title: Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes publication-title: Plos One doi: 10.1371/journal.pone.0136690 – volume: 15 start-page: 225 year: 2008 ident: 10.1016/j.jconrel.2017.09.012_bb0365 article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human publication-title: Cancer Gene Ther. doi: 10.1038/sj.cgt.7701119 – volume: 112 start-page: 4038 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0290 article-title: Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1502370112 – volume: 110 start-page: 15644 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0225 article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1313587110 – volume: 72 start-page: 9873 year: 1998 ident: 10.1016/j.jconrel.2017.09.012_bb0495 article-title: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery publication-title: J. Virol. doi: 10.1128/JVI.72.12.9873-9880.1998 – volume: 8 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0065 article-title: CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses publication-title: Viruses doi: 10.3390/v8030072 – start-page: 056820 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0380 article-title: High-throughput screening and CRISPR-Cas9 modeling of causal lipid-associated expression quantitative trait locus variants publication-title: bioRxiv – volume: 23 start-page: 720 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0045 article-title: Generation of gene-modified mice via Cas9/RNA-mediated gene targeting publication-title: Cell Res. doi: 10.1038/cr.2013.46 – volume: 7 start-page: 398 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0210 article-title: 3′ UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.033 – volume: 34 start-page: 334 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0485 article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3469 – volume: 113 start-page: 2868 year: 2016 ident: 10.1016/j.jconrel.2017.09.012_bb0390 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1520244113 – volume: 22 start-page: 404 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0350 article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus publication-title: Gene Ther. doi: 10.1038/gt.2015.2 – volume: 33 start-page: 139 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0490 article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3149 – volume: 326 start-page: 818 year: 2009 ident: 10.1016/j.jconrel.2017.09.012_bb0510 article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy publication-title: Science doi: 10.1126/science.1171242 – volume: 31 start-page: 822 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0145 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 – volume: 13 start-page: 722 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0080 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3569 – volume: 1 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0325 article-title: CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation publication-title: Sci. Adv. doi: 10.1126/sciadv.1500454 – volume: 341 start-page: 865 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0505 article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome publication-title: Science doi: 10.1126/science.1233151 – volume: 40 start-page: 5569 year: 2012 ident: 10.1016/j.jconrel.2017.09.012_bb0115 article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks216 – volume: 33 start-page: 73 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0140 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3081 – volume: 26 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0420 article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library publication-title: Hum. Gene Ther. – volume: 15 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0295 article-title: Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes publication-title: Bmc Biotechnol. doi: 10.1186/s12896-015-0144-x – volume: 343 start-page: 80 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0515 article-title: Genetic screens in human cells using the CRISPR-Cas9 system publication-title: Science doi: 10.1126/science.1246981 – volume: 169 start-page: 5429 year: 1987 ident: 10.1016/j.jconrel.2017.09.012_bb0005 article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product publication-title: J. Bacteriol. doi: 10.1128/jb.169.12.5429-5433.1987 – volume: 369 start-page: 819 year: 2013 ident: 10.1016/j.jconrel.2017.09.012_bb0375 article-title: Safety and efficacy of RNAi therapy for transthyretin amyloidosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1208760 – volume: 11 start-page: 439 year: 2000 ident: 10.1016/j.jconrel.2017.09.012_bb0500 article-title: Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus publication-title: Hum. Gene Ther. doi: 10.1089/10430340050015905 – volume: 121 start-page: 1137 year: 2004 ident: 10.1016/j.jconrel.2017.09.012_bb0205 article-title: Gain- and loss-of-function in chick embryos by electroporation publication-title: Mech. Dev. doi: 10.1016/j.mod.2004.05.013 – volume: 4 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0300 article-title: Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering publication-title: Sci. Rep. doi: 10.1038/srep04513 – volume: 514 start-page: 380 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0355 article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver publication-title: Nature doi: 10.1038/nature13589 – volume: 370 start-page: 901 year: 2014 ident: 10.1016/j.jconrel.2017.09.012_bb0190 article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1300662 – volume: 520 start-page: 186 year: 2015 ident: 10.1016/j.jconrel.2017.09.012_bb0470 article-title: In vivo genome editing using Staphylococcus aureus Cas9 publication-title: Nature doi: 10.1038/nature14299 – volume: 9 start-page: 467 year: 2011 ident: 10.1016/j.jconrel.2017.09.012_bb0095 article-title: Evolution and classification of the CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2577 |
SSID | ssj0005347 |
Score | 2.667827 |
SecondaryResourceType | review_article |
Snippet | The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17 |
SubjectTerms | adaptive immunity Animals Archaea bacteria bacteriophages clinical trials CRISPR-Cas Systems CRISPR-Cas9 Delivery eukaryotic cells Gene Editing Gene therapy Gene Transfer Techniques genes genetic engineering Genetic Therapy Humans immunotherapy mutation Nanoparticle neoplasms Non-viral delivery patients plasmids RNA T-lymphocytes Viruses |
Title | Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications |
URI | https://dx.doi.org/10.1016/j.jconrel.2017.09.012 https://www.ncbi.nlm.nih.gov/pubmed/28911805 https://www.proquest.com/docview/1940049208 https://www.proquest.com/docview/2000614055 https://pubmed.ncbi.nlm.nih.gov/PMC5723556 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhvfRSmj7dR1Ch5BTZWr1WewxugtNCMHnQ3ISklahNWIfYOfiS397RPvxICYEeVw_Qakaab5iZTwh95yrmXARPwFd2BCxUINZFSkRwjoaSslDWWb5nanQlfl7L6x007GphUlple_c3d3p9W7ctg3Y3B7eTyeACwIrmSoK_wakWMjF-CpEnLe8_bKR5cNGUTCtN0uh1Fc9g2p-Cz3kXUgQiy2u604w9ZZ_-xZ-P0yg37NLJa_SqBZT4qFnzHtoJ1Rt0MG4YqZeH-HJdYDU_xAd4vOaqXr5Fv3-Em5SZscTzRUcagWcRAyzEw_PTi_E5Gdp5gUHNAoG9SknSuGF_xgB38Ub5Ft6Mhb9DVyfHl8MRad9aIF5RviAs89aVQdu8DIVyNBZe8JJL7rmw0lpb2qKOMYoYXRZ1qZS10Kmipl46z9-j3WpWhY8Ix8Ajsz7jNkv2n1mqC5UL4aNlVpehh0S3w8a3ROTpPYwb02WcTU0rGJMEY2hhQDA91F9Nu22YOJ6boDvxmS2VMmAtnpv6rRO3geOWYii2CrP7ucnSQ_KiYFQ_PaaufgLHVcoe-tCoyGrF4N8m0j3oybeUZzUg0X1v91STPzXtt8wZgEP16f9_6zN6mb5SKSXTX9Du4u4-fAVMtXD79aHZRy-OTn-Nzv4CQRUluw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOcAFlXcoDyNBT3Xitb1e74EDSqkSWqqoTUVvrtdri0TVpmpSoVz4U_xBxvvIA1RVQup1x971esaeGc3MNwh94NInXDhLwFfOCGgoR0zmKREuy6jLKXN5meV7JHun4utZfLaBfje1MCGtsr77qzu9vK3rJ516NzuXo1HnBIwVxWUM_ganSsRNB-sDN_8Jftv0U38PmPyRsf0vw26P1K0FiJWUzwiLrMlyp0ySu1Rm1KdW8JzH3HJhYmNMbtIypCa8zyKvcimNAaL0ito4sxzeew_dh6-q0Dah_Wslr4SLqkZbKhKWtywb6ozbY3Byr1wIeURJia8asZsU4r8G7995myuKcH8LPaotWPy52qTHaMMVT9DOoILAnu_i4bKia7qLd_BgCY49f4q-77mLkAoyx9NZg1KBJx6DHYq7x_2TwTHpmmmKQa4dAeaErGxcwU1jsK_xSr0YXg2-P0Ond8KB52izmBTuJcLecc-MjbiJgsHBDFWpTISw3jCjctdCotlhbWvk89CA40I3KW5jXTNGB8ZommpgTAu1F9MuK-iP2yaohn16TYY1qKfbpr5v2K3hfIegjSnc5Hqqo9C5XqSMqpvHlOVW4CnHcQu9qERksWJwqAPKH1CSNeFZDAj44uuUYvSjxBmPEwbWqHz1_7_1Dj3oDb8d6sP-0cE2ehgooY6Tqddoc3Z17d6AQTfL3pYHCKPzuz6xfwCLrmOl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delivery+strategies+of+the+CRISPR-Cas9+gene-editing+system+for+therapeutic+applications&rft.jtitle=Journal+of+controlled+release&rft.au=Liu%2C+Chang&rft.au=Zhang%2C+Li&rft.au=Liu%2C+Hao&rft.au=Cheng%2C+Kun&rft.date=2017-11-28&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=266&rft.spage=17&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jconrel.2017.09.012&rft.externalDocID=S0168365917308453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |