Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications

The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts a...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 266; pp. 17 - 26
Main Authors Liu, Chang, Zhang, Li, Liu, Hao, Cheng, Kun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 28.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. [Display omitted]
AbstractList The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. [Display omitted]
The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes.
Author Liu, Hao
Zhang, Li
Liu, Chang
Cheng, Kun
Author_xml – sequence: 1
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 4
  givenname: Kun
  surname: Cheng
  fullname: Cheng, Kun
  email: chengkun@umkc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28911805$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFv0zAUhS00xLrBTwDlkZcEO46dWEggVNiYNGloG-LRcpzrzlVqZ7Zbqf8ed-0Q8NInP9xzju893xk6cd4BQm8Jrggm_MOyWmrvAoxVjUlbYVFhUr9AM9K1tGyEYCdolnVdSTkTp-gsxiXGmNGmfYVO604Q0mE2Q7--wmg3ELZFTEElWFiIhTdFeoBifnt19-O2nKsoigU4KGGwybpFEbcxwaowPux0QU2wTlYXappGq1Wy3sXX6KVRY4Q3h_cc_bz4dj__Xl7fXF7Nv1yXmmOayppo1Q_QqXYAwXtshG7oQBnVtFFMKTUoQTvCeWNMT0w3cK5UHnLTYc16Tc_Rp33utO5XMGhw-YxRTsGuVNhKr6z8d-Lsg1z4jWRtTRnjOeD9ISD4xzXEJFc2ahhH5cCvo6xza5w0mLGjUiIajBtR4y5L3_291p99novPgo97gQ4-xgBGapueqstb2lESLHeY5VIeMMsdZomFzJizm_3nfv7gmO_z3gcZycZCkFFbcDqDDaCTHLw9kvAbcWPHEQ
CitedBy_id crossref_primary_10_1088_1361_6528_ac357a
crossref_primary_10_1016_j_semcdb_2019_05_007
crossref_primary_10_1016_j_gene_2024_148733
crossref_primary_10_1177_15353702211008106
crossref_primary_10_1002_smsc_202400192
crossref_primary_10_1080_21505594_2022_2107646
crossref_primary_10_1016_j_addr_2020_06_001
crossref_primary_10_1089_hgtb_2018_187
crossref_primary_10_1186_s12951_024_02571_9
crossref_primary_10_1039_D1CC05999H
crossref_primary_10_1007_s00203_021_02723_7
crossref_primary_10_1016_j_plana_2022_100001
crossref_primary_10_34172_apb_2024_050
crossref_primary_10_1016_j_dmpk_2022_100450
crossref_primary_10_2147_IJN_S282110
crossref_primary_10_1016_j_addr_2020_06_014
crossref_primary_10_1016_j_cej_2024_152754
crossref_primary_10_1002_adtp_201800085
crossref_primary_10_1208_s12248_018_0267_9
crossref_primary_10_3390_molecules25153489
crossref_primary_10_1186_s12943_021_01346_2
crossref_primary_10_1016_j_fbio_2023_103110
crossref_primary_10_1002_adtp_202200287
crossref_primary_10_1002_anie_202005644
crossref_primary_10_1126_sciadv_abg3217
crossref_primary_10_1002_smtd_202001191
crossref_primary_10_1186_s12951_023_02139_z
crossref_primary_10_3390_v15010054
crossref_primary_10_3390_cancers10040103
crossref_primary_10_1093_nar_gkaf082
crossref_primary_10_1159_000521128
crossref_primary_10_1016_j_apmt_2021_101212
crossref_primary_10_1007_s12265_024_10587_7
crossref_primary_10_1089_nat_2018_0721
crossref_primary_10_1038_s41598_020_77809_1
crossref_primary_10_1007_s40291_019_00391_4
crossref_primary_10_1080_07357907_2021_1952595
crossref_primary_10_3390_ijms23010573
crossref_primary_10_3390_pharmaceutics12090805
crossref_primary_10_1016_j_csbj_2023_10_018
crossref_primary_10_1186_s12951_024_02462_z
crossref_primary_10_1016_j_biomaterials_2025_123090
crossref_primary_10_3389_fgene_2024_1364742
crossref_primary_10_1177_2472630320982320
crossref_primary_10_1007_s12274_024_6748_5
crossref_primary_10_1021_acs_bioconjchem_0c00627
crossref_primary_10_1056_NEJMra1705346
crossref_primary_10_1002_smll_202000673
crossref_primary_10_1016_j_lfs_2020_118525
crossref_primary_10_1021_acsami_2c22584
crossref_primary_10_1038_s41598_021_97224_4
crossref_primary_10_1039_D2TB01055K
crossref_primary_10_34133_2020_2016201
crossref_primary_10_1016_j_addr_2021_114068
crossref_primary_10_1186_s12943_021_01487_4
crossref_primary_10_3390_biom11121769
crossref_primary_10_1002_ange_202005644
crossref_primary_10_1016_j_addr_2020_05_001
crossref_primary_10_1016_j_ymthe_2022_01_046
crossref_primary_10_1016_j_tibtech_2019_03_008
crossref_primary_10_1093_nar_gkac870
crossref_primary_10_3390_pharmaceutics14040805
crossref_primary_10_1021_acssynbio_0c00578
crossref_primary_10_1007_s12274_018_2093_x
crossref_primary_10_3390_pharmaceutics16010062
crossref_primary_10_3390_siuj5010006
crossref_primary_10_1002_advs_202302253
crossref_primary_10_1016_j_ymthe_2021_06_003
crossref_primary_10_2147_IJN_S453566
crossref_primary_10_1016_j_xcrm_2024_101524
crossref_primary_10_1021_acs_molpharmaceut_0c00854
crossref_primary_10_3390_pharmaceutics15041311
crossref_primary_10_3390_ijms232415758
crossref_primary_10_3389_fphar_2021_770283
crossref_primary_10_3390_ijms22168422
crossref_primary_10_1007_s12029_021_00669_z
crossref_primary_10_34133_bmr_0023
crossref_primary_10_1002_jnr_24636
crossref_primary_10_1109_TBME_2022_3149530
crossref_primary_10_1016_j_addr_2021_114087
crossref_primary_10_1007_s10126_019_09901_1
crossref_primary_10_1002_cphc_201900626
crossref_primary_10_1016_j_microb_2024_100184
crossref_primary_10_1021_acs_bioconjchem_9b00022
crossref_primary_10_1080_17425247_2019_1663822
crossref_primary_10_1002_adma_202006619
crossref_primary_10_1021_acsomega_9b01323
crossref_primary_10_1039_C8CC08468H
crossref_primary_10_1016_j_isci_2022_104555
crossref_primary_10_3390_pharmaceutics13122035
crossref_primary_10_1021_jacsau_1c00467
crossref_primary_10_1093_nar_gkaa683
crossref_primary_10_1186_s12951_022_01570_y
crossref_primary_10_1016_j_biomaterials_2018_04_031
crossref_primary_10_3390_pharmaceutics13030352
crossref_primary_10_3390_ijms241713202
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_3390_cimb46110747
crossref_primary_10_1016_j_addr_2023_114826
crossref_primary_10_1038_s41392_019_0089_y
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_1016_j_drudis_2023_103652
crossref_primary_10_3390_ijms21197362
crossref_primary_10_1007_s00425_022_04023_w
crossref_primary_10_1016_j_bcp_2021_114487
crossref_primary_10_1016_j_colsurfb_2020_110891
crossref_primary_10_1016_j_mattod_2018_12_003
crossref_primary_10_1038_s41467_020_17029_3
crossref_primary_10_1039_D1NH00254F
crossref_primary_10_1007_s00418_019_01772_w
crossref_primary_10_1021_acs_macromol_9b01645
crossref_primary_10_1007_s12033_021_00345_4
crossref_primary_10_1177_15330338211045206
crossref_primary_10_1248_bpb_b22_00452
crossref_primary_10_1021_acsnano_0c04707
crossref_primary_10_1080_17425247_2019_1641083
crossref_primary_10_3390_cancers12061504
crossref_primary_10_3390_ijms21197353
crossref_primary_10_1016_j_biomaterials_2019_119711
crossref_primary_10_1016_j_jddst_2024_106589
crossref_primary_10_1007_s13205_024_04186_1
crossref_primary_10_1002_biot_202300691
crossref_primary_10_1007_s00432_023_04747_6
crossref_primary_10_2174_0118715273283786240408034408
crossref_primary_10_1038_s42003_022_04363_z
crossref_primary_10_1016_j_stem_2021_01_001
crossref_primary_10_2174_0115665232295117240405070809
crossref_primary_10_1016_j_biopha_2024_117516
crossref_primary_10_3389_fphys_2020_624129
crossref_primary_10_1134_S0006297918060020
crossref_primary_10_1002_bit_28603
crossref_primary_10_1126_sciadv_abp9435
crossref_primary_10_1080_15592294_2021_1939477
crossref_primary_10_3389_fcell_2023_1111488
crossref_primary_10_3389_fgeed_2024_1509924
crossref_primary_10_3892_ijmm_2020_4609
crossref_primary_10_1093_bfgp_elaa002
crossref_primary_10_1007_s13311_021_01075_w
crossref_primary_10_3390_pharmaceutics15051450
crossref_primary_10_1016_j_jbiotec_2019_09_012
crossref_primary_10_1038_s41578_024_00725_7
crossref_primary_10_3390_pharmaceutics14061252
crossref_primary_10_1016_j_drudis_2020_10_011
crossref_primary_10_1016_j_theriogenology_2024_08_027
crossref_primary_10_1186_s40364_024_00701_x
crossref_primary_10_1155_2020_9107140
crossref_primary_10_3389_fphar_2018_00307
crossref_primary_10_1080_10826068_2025_2453836
crossref_primary_10_1016_j_jmb_2018_06_034
crossref_primary_10_3389_fmicb_2022_811768
crossref_primary_10_3390_ijms222111753
crossref_primary_10_1039_D4BM00054D
crossref_primary_10_1016_j_jbiotec_2024_09_002
crossref_primary_10_2147_IJN_S455574
crossref_primary_10_1016_j_jddst_2022_103948
crossref_primary_10_1186_s41021_021_00188_0
crossref_primary_10_1002_ptr_7018
crossref_primary_10_1002_jgm_3107
crossref_primary_10_3390_ph14060565
crossref_primary_10_54097_hset_v21i_3143
crossref_primary_10_1158_1541_7786_MCR_19_0262
crossref_primary_10_2147_CMAR_S292992
crossref_primary_10_21641_los_2021_18_4_212
crossref_primary_10_1155_2019_1369682
crossref_primary_10_2217_epi_2020_0110
crossref_primary_10_1038_s41598_022_07671_w
crossref_primary_10_1039_D0NR05452F
crossref_primary_10_1038_s41434_021_00240_2
crossref_primary_10_2174_0115665232292246240426125504
crossref_primary_10_1002_adfm_202412335
crossref_primary_10_3390_genes12060797
crossref_primary_10_1016_j_jconrel_2023_08_028
crossref_primary_10_1002_jsfa_12946
crossref_primary_10_1016_j_biotechadv_2019_107447
crossref_primary_10_1002_smll_202101155
crossref_primary_10_3390_pharmaceutics15030984
crossref_primary_10_1002_sae2_12061
crossref_primary_10_1007_s12033_023_00932_7
crossref_primary_10_3390_cancers15245877
crossref_primary_10_1016_j_jconrel_2020_04_052
crossref_primary_10_1002_rmv_2009
crossref_primary_10_1016_j_jddst_2022_103964
crossref_primary_10_2217_nnm_2021_0038
crossref_primary_10_1039_C8MD00249E
crossref_primary_10_1007_s11481_019_09878_7
crossref_primary_10_1021_acsmacrolett_1c00538
crossref_primary_10_3389_fimmu_2022_908076
crossref_primary_10_1093_femsre_fuaa016
crossref_primary_10_1093_infdis_jiac145
crossref_primary_10_1016_j_jddst_2022_103737
crossref_primary_10_22159_ijpps_2024v16i9_51048
crossref_primary_10_1002_INMD_20220014
crossref_primary_10_3389_fmicb_2022_1111790
crossref_primary_10_3390_pharmaceutics14071495
crossref_primary_10_1186_s40164_024_00570_y
crossref_primary_10_3390_pharmaceutics15061686
crossref_primary_10_1089_crispr_2023_0078
crossref_primary_10_3389_fgeed_2023_1248982
crossref_primary_10_1002_smll_202405593
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1038_s41596_024_01138_0
crossref_primary_10_1002_pat_5530
crossref_primary_10_1016_j_biomaterials_2021_121233
crossref_primary_10_1053_j_semperi_2018_09_008
crossref_primary_10_1186_s12915_020_00929_7
crossref_primary_10_1002_iub_2296
crossref_primary_10_1016_j_bbcan_2020_188454
crossref_primary_10_3389_fmed_2024_1418786
crossref_primary_10_1007_s00210_024_03509_6
crossref_primary_10_17816_gc633492
crossref_primary_10_1002_bkcs_12109
crossref_primary_10_3389_fanim_2024_1368155
crossref_primary_10_1089_crispr_2023_0070
crossref_primary_10_1016_j_addr_2024_115346
crossref_primary_10_1186_s12943_023_01738_6
crossref_primary_10_1016_j_aquaculture_2023_740424
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1016_j_colsurfb_2018_08_019
crossref_primary_10_1016_j_gendis_2023_101121
crossref_primary_10_3389_fphar_2018_00396
crossref_primary_10_1007_s11596_022_2645_x
crossref_primary_10_3390_molecules27031114
crossref_primary_10_1007_s12247_020_09496_4
crossref_primary_10_1016_j_csbj_2020_08_031
crossref_primary_10_1021_acs_nanolett_0c04303
crossref_primary_10_1007_s13311_018_00696_y
crossref_primary_10_1021_acs_molpharmaceut_1c00916
crossref_primary_10_1021_acsnano_8b07858
crossref_primary_10_1016_j_vetmic_2020_108589
crossref_primary_10_1093_nar_gkac255
crossref_primary_10_3389_fpls_2021_663849
crossref_primary_10_34016_pjbt_2023_20_02_826
crossref_primary_10_1016_j_gene_2024_149044
crossref_primary_10_3389_fnins_2021_803894
crossref_primary_10_1016_j_heliyon_2024_e39323
crossref_primary_10_3389_fnins_2021_747726
crossref_primary_10_1007_s12274_020_2773_1
crossref_primary_10_1016_j_addr_2018_12_011
crossref_primary_10_1016_j_nantod_2025_102654
crossref_primary_10_1126_sciadv_abc2315
crossref_primary_10_3390_pharmaceutics14091840
crossref_primary_10_2217_fmb_2022_0222
crossref_primary_10_1016_j_molmed_2019_07_007
crossref_primary_10_1016_j_mtbio_2025_101502
crossref_primary_10_1002_mco2_672
crossref_primary_10_1038_s41417_021_00299_4
crossref_primary_10_1016_j_jconrel_2019_05_019
crossref_primary_10_1016_j_ymeth_2020_04_006
crossref_primary_10_1186_s12575_021_00151_x
crossref_primary_10_1016_j_addr_2022_114624
crossref_primary_10_1038_s42003_022_03851_6
crossref_primary_10_1016_j_actbio_2024_10_030
crossref_primary_10_1080_17425247_2020_1747429
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_1021_acsptsci_5c00047
crossref_primary_10_1007_s13580_023_00549_4
crossref_primary_10_3390_genes12050723
crossref_primary_10_1038_s41557_021_00854_4
crossref_primary_10_1208_s12248_021_00613_w
crossref_primary_10_1007_s12274_019_2465_x
crossref_primary_10_1038_s41434_021_00282_6
crossref_primary_10_1111_raq_12995
crossref_primary_10_1021_acs_chemrev_0c00997
crossref_primary_10_1016_j_apmt_2022_101488
crossref_primary_10_1002_advs_201801847
crossref_primary_10_1186_s13395_021_00278_1
crossref_primary_10_1021_acsami_9b05772
crossref_primary_10_3389_fphar_2022_868398
crossref_primary_10_1016_j_jcyt_2019_10_002
crossref_primary_10_1002_jcp_27972
crossref_primary_10_1186_s13578_023_01143_y
crossref_primary_10_1021_acsabm_0c01009
crossref_primary_10_1039_D2BM00368F
crossref_primary_10_3390_ijms25137333
crossref_primary_10_1016_j_jconrel_2024_07_025
crossref_primary_10_1021_acsami_0c16380
crossref_primary_10_1002_adtp_202000072
crossref_primary_10_59786_bmtj_221
crossref_primary_10_1016_j_molmed_2019_02_012
crossref_primary_10_1038_s41467_024_52493_1
crossref_primary_10_3390_molecules28114479
crossref_primary_10_1007_s13205_023_03891_7
crossref_primary_10_1007_s40097_021_00446_1
crossref_primary_10_1016_j_canlet_2019_04_040
crossref_primary_10_1186_s13756_020_00795_6
crossref_primary_10_1038_s41551_023_01142_x
crossref_primary_10_3390_pharmaceutics13010078
crossref_primary_10_3390_molecules26051422
crossref_primary_10_1039_D3SC06920F
crossref_primary_10_1038_s41374_018_0171_z
crossref_primary_10_3390_ijms24087052
crossref_primary_10_1039_D4NR03471F
crossref_primary_10_1007_s13205_021_02680_4
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1039_D0TB00207K
crossref_primary_10_1002_adtp_202100152
crossref_primary_10_1039_D1BM01452H
crossref_primary_10_1016_j_intimp_2020_106933
crossref_primary_10_1002_biot_202300352
crossref_primary_10_3390_biotech12020037
crossref_primary_10_1074_jbc_H118_006147
crossref_primary_10_1007_s12088_018_0708_2
crossref_primary_10_54097_hset_v36i_6282
crossref_primary_10_1002_advs_202100540
crossref_primary_10_1038_s41598_020_70258_w
crossref_primary_10_1016_j_pmatsci_2020_100686
crossref_primary_10_34133_2021_9898769
crossref_primary_10_1002_btm2_10474
crossref_primary_10_1016_j_ijantimicag_2021_106475
crossref_primary_10_1590_1678_4685_gmb_2020_0463
crossref_primary_10_1246_cl_220242
crossref_primary_10_3390_biom12091239
crossref_primary_10_3389_fpls_2023_1232938
crossref_primary_10_1007_s12672_023_00680_9
crossref_primary_10_1016_j_jconrel_2022_02_012
crossref_primary_10_1007_s11356_023_26482_8
crossref_primary_10_1016_j_mtbio_2020_100091
crossref_primary_10_1155_2020_5803192
crossref_primary_10_1039_D4BM01290A
crossref_primary_10_1016_j_carbpol_2022_119315
crossref_primary_10_1186_s13287_024_03848_4
crossref_primary_10_1021_acs_nanolett_1c03708
crossref_primary_10_1021_acsnano_0c08549
crossref_primary_10_1002_jgm_3082
crossref_primary_10_1093_nar_gkz713
crossref_primary_10_1186_s12943_022_01550_8
crossref_primary_10_1007_s13238_019_0635_y
crossref_primary_10_1016_j_pharmthera_2020_107501
crossref_primary_10_30895_2221_996X_2023_23_3_247_261
crossref_primary_10_1016_j_jconrel_2021_08_015
crossref_primary_10_1016_j_biomaterials_2019_119291
crossref_primary_10_1089_crispr_2018_0006
crossref_primary_10_1038_s41392_023_01440_5
crossref_primary_10_1002_wnan_1609
crossref_primary_10_46810_tdfd_795053
crossref_primary_10_1039_D0TB01925A
crossref_primary_10_1016_j_bios_2021_113732
crossref_primary_10_1007_s13237_024_00496_0
crossref_primary_10_1016_j_mam_2025_101358
crossref_primary_10_3389_fimmu_2023_1111777
crossref_primary_10_1016_j_gene_2022_146595
crossref_primary_10_1016_j_regen_2021_100053
crossref_primary_10_1007_s12033_024_01360_x
crossref_primary_10_3390_molecules29194737
crossref_primary_10_1007_s13353_020_00537_9
crossref_primary_10_2147_BTT_S310312
crossref_primary_10_1039_D1BM01716K
crossref_primary_10_1016_j_ajps_2023_100828
crossref_primary_10_1007_s40120_020_00218_z
crossref_primary_10_1016_j_actbio_2023_10_029
crossref_primary_10_1155_2021_6050795
crossref_primary_10_18231_j_achr_2023_019
crossref_primary_10_1007_s12603_017_0988_y
crossref_primary_10_1007_s10126_019_09885_y
crossref_primary_10_3389_fmicb_2022_953218
crossref_primary_10_1016_j_nantod_2020_100895
crossref_primary_10_1016_j_tibtech_2018_03_009
crossref_primary_10_3390_synbio3010001
crossref_primary_10_1080_1040841X_2024_2313024
crossref_primary_10_1007_s11033_023_08278_8
crossref_primary_10_1016_j_semcdb_2019_04_004
crossref_primary_10_1016_j_semcdb_2019_04_007
crossref_primary_10_3389_fnano_2022_911063
crossref_primary_10_1002_adma_202405075
crossref_primary_10_3390_v16030409
crossref_primary_10_3390_cells11111843
crossref_primary_10_1007_s12035_024_04143_2
crossref_primary_10_1089_hum_2020_137
crossref_primary_10_3390_pharmaceutics14102129
crossref_primary_10_1002_pat_6136
crossref_primary_10_1002_dvg_23598
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_1021_acsami_9b12335
crossref_primary_10_1016_j_jddst_2020_101533
crossref_primary_10_1177_09636897211003022
crossref_primary_10_3390_ph14101016
crossref_primary_10_3390_pharmaceutics12030198
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_2147_VMRR_S366533
crossref_primary_10_1371_journal_pone_0212198
crossref_primary_10_2174_0929867329666221006112615
crossref_primary_10_1186_s12951_024_02627_w
crossref_primary_10_1007_s12015_023_10585_3
crossref_primary_10_3389_fbioe_2022_873369
crossref_primary_10_2174_1570162X17666191025112918
crossref_primary_10_1007_s00277_023_05457_2
crossref_primary_10_3389_fphar_2022_939090
crossref_primary_10_3390_ijms22158239
crossref_primary_10_3390_pharmaceutics13020278
crossref_primary_10_1002_adhm_202201038
crossref_primary_10_1021_acsnano_9b06025
crossref_primary_10_1016_j_cellimm_2021_104436
Cites_doi 10.1038/nrmicro3279
10.1126/science.350.6266.1299
10.1186/2045-9769-3-12
10.1038/nbt.3055
10.1016/j.cell.2014.01.027
10.1073/pnas.1001673107
10.1038/mt.2015.151
10.1093/nar/gku749
10.1089/15362310252780816
10.1016/j.ydbio.2006.04.095
10.1016/bs.adgen.2014.10.002
10.1002/anie.201400323
10.1126/science.1232033
10.1038/cr.2013.45
10.1073/pnas.1512503112
10.1038/nature.2016.20988
10.1038/sj.mt.6300314
10.1038/nbt.3127
10.1128/JVI.00254-08
10.1002/hep.23481
10.1073/pnas.1410785111
10.1016/j.stem.2014.10.004
10.1093/bmb/ldx002
10.1126/science.1225829
10.2174/1566523034578285
10.1007/s00018-013-1438-6
10.1038/nbt.2675
10.1021/acs.bioconjchem.6b00676
10.3389/fpls.2016.00506
10.1126/science.1231143
10.1038/srep05105
10.1016/j.jbiotec.2015.04.024
10.1016/j.stem.2014.04.020
10.1093/nar/gkt714
10.1111/dgd.12113
10.1007/s00239-004-0046-3
10.1016/j.cell.2014.09.014
10.1101/gr.171322.113
10.1038/nbt.3471
10.1016/S0140-6736(13)61914-5
10.1002/bies.201300135
10.1038/nbt.2884
10.1186/s13059-015-0817-8
10.1016/j.cell.2014.05.010
10.1007/978-1-4939-2152-2_24
10.1016/j.stem.2013.03.006
10.1016/j.antiviral.2015.03.015
10.1038/srep10833
10.1038/mt.2012.194
10.1038/sj.gt.3300947
10.1007/978-1-4939-6518-2_7
10.1038/nature09886
10.1089/hum.2013.2517
10.1038/srep03355
10.1038/mt.2009.255
10.1016/j.jcyt.2014.01.125
10.1111/dgd.12149
10.1021/acs.bioconjchem.7b00057
10.1073/pnas.1218705110
10.1007/978-1-4939-7113-8_17
10.1038/npjregenmed.2016.2
10.1038/nprot.2013.143
10.1038/nrmicro3241
10.1016/j.cell.2013.08.022
10.1534/genetics.115.176594
10.1126/science.1159689
10.1046/j.1365-2958.2002.02839.x
10.1038/nature09523
10.1101/gr.171264.113
10.1002/anie.201506030
10.1038/nature13166
10.1126/science.1258096
10.1038/nbt.2800
10.1038/nbt.2951
10.1016/j.cell.2015.03.028
10.1016/S0065-2660(05)54004-5
10.1021/acsnano.6b07600
10.1038/nmeth.2857
10.1089/hum.2015.074
10.1038/nmeth.2532
10.1126/science.1247005
10.1016/j.cell.2015.02.038
10.1016/j.celrep.2014.10.051
10.1371/journal.pone.0136690
10.1038/sj.cgt.7701119
10.1073/pnas.1502370112
10.1073/pnas.1313587110
10.1128/JVI.72.12.9873-9880.1998
10.3390/v8030072
10.1038/cr.2013.46
10.1016/j.celrep.2014.03.033
10.1038/nbt.3469
10.1073/pnas.1520244113
10.1038/gt.2015.2
10.1038/nbt.3149
10.1126/science.1171242
10.1038/nbt.2623
10.1038/nrmicro3569
10.1126/sciadv.1500454
10.1126/science.1233151
10.1093/nar/gks216
10.1038/nbt.3081
10.1186/s12896-015-0144-x
10.1126/science.1246981
10.1128/jb.169.12.5429-5433.1987
10.1056/NEJMoa1208760
10.1089/10430340050015905
10.1016/j.mod.2004.05.013
10.1038/srep04513
10.1038/nature13589
10.1056/NEJMoa1300662
10.1038/nature14299
10.1038/nrmicro2577
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jconrel.2017.09.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 26
ExternalDocumentID PMC5723556
28911805
10_1016_j_jconrel_2017_09_012
S0168365917308453
Genre Journal Article
Review
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: R01 AA021510
– fundername: NIGMS NIH HHS
  grantid: R01 GM121798
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c603t-21cabde8a7de96b0f9c43d353c34a5aaada9381664ffb1f8d66aa3c36f80c5bc3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Thu Aug 21 14:09:20 EDT 2025
Tue Aug 05 10:15:45 EDT 2025
Fri Jul 11 01:14:53 EDT 2025
Wed Feb 19 02:33:29 EST 2025
Thu Apr 24 22:57:02 EDT 2025
Tue Jul 01 04:04:40 EDT 2025
Fri Feb 23 02:33:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-viral delivery
Gene-editing
Delivery
Gene therapy
Nanoparticle
CRISPR-Cas9
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-21cabde8a7de96b0f9c43d353c34a5aaada9381664ffb1f8d66aa3c36f80c5bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5723556
PMID 28911805
PQID 1940049208
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5723556
proquest_miscellaneous_2000614055
proquest_miscellaneous_1940049208
pubmed_primary_28911805
crossref_citationtrail_10_1016_j_jconrel_2017_09_012
crossref_primary_10_1016_j_jconrel_2017_09_012
elsevier_sciencedirect_doi_10_1016_j_jconrel_2017_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-28
PublicationDateYYYYMMDD 2017-11-28
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-28
  day: 28
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Garneau (bb0090) 2010; 468
Hou (bb0225) 2013; 110
Mashiko (bb0260) 2013; 3
Mojica, Diez-Villasenor, Garcia-Martinez, Soria (bb0020) 2005; 60
Yan (bb0270) 2014; 3
Shalem (bb0430) 2014; 343
Sonntag, Schmidt, Kleinschmidt (bb0445) 2010; 107
Nakagawa (bb0295) 2015; 15
Thummel (bb0200) 2006; 295
Jansen, van Embden, Gaastra, Schouls (bb0015) 2002; 6
Mulvihill (bb0580) 2017; 122
Xue (bb0355) 2014; 514
Cong (bb0035) 2013; 339
Schnell, Foley, Wirth, Munch, Uberla (bb0500) 2000; 11
Kaminski (bb0560) 2016; 6
Katz, Fargnoli, Williams, Bridges (bb0185) 2013; 24
Hruscha, Schmid (bb0275) 2015; 1254
Ishino, Shinagawa, Makino, Amemura, Nakata (bb0005) 1987; 169
Zetsche, Volz, Zhang (bb0490) 2015; 33
Schumann (bb0070) 2015; 112
Aiuti (bb0505) 2013; 341
Yang (bb0215) 2013; 154
Sharei (bb0320) 2013; 110
Khatodia, Bhatotia, Passricha, Khurana, Tuteja (bb0060) 2016; 7
Hu (bb0400) 2014; 53
Ramakrishna (bb0310) 2014; 24
Yang (bb0485) 2016; 34
Suda, Liu (bb0340) 2015; 89
Seeger, Sohn (bb0570) 2014; 3
Cradick, Fine, Antico, Bao (bb0150) 2013
Fu (bb0145) 2013; 31
Liang (bb0245) 2015; 208
Ding (bb0230) 2013; 12
Fei, Haffner, Huttner (bb0210) 2014; 7
Suresh, Ramakrishna, Kim (bb0315) 2017; 1507
Wu, Yang, Colosi (bb0465) 2010; 18
Swiech (bb0480) 2015; 33
Niu (bb0135) 2014; 156
Makarova (bb0080) 2015; 13
Ran (bb0130) 2013; 8
Cyranoski (bb0075) 2016; 539
Fei (bb0240) 2016; 1
Heck (bb0545) 2014; 32
Shen (bb0155) 2014; 11
Sampson, Weiss (bb0055) 2014; 36
Gasiunas, Sinkunas, Siksnys (bb0100) 2014; 71
Mandal (bb0220) 2014; 15
Coelho (bb0375) 2013; 369
Raghavan (bb0380) 2016
Jinek (bb0030) 2012; 337
Yin (bb0590) 2016; 34
Zhou (bb0535) 2014; 509
van der Oost, Westra, Jackson, Wiedenheft (bb0085) 2014; 12
Yusa (bb0420) 2015; 26
Paulk (bb0435) 2010; 51
Ran (bb0470) 2015; 520
Deltcheva (bb0025) 2011; 471
Crispo (bb0255) 2015; 10
Nakamura, Katahira, Sato, Watanabe, Funahashi (bb0205) 2004; 121
Wang (bb0390) 2016; 113
Grimm, Kay (bb0455) 2003; 3
Suda, Liu (bb0345) 2007; 15
Mali (bb0195) 2013; 339
Basu (bb0290) 2015; 112
Sun (bb0405) 2015; 54
Worthen, Rittié, Fisher (bb1315) 2017; 1627
Ramanan (bb0575) 2015; 5
Veres (bb0050) 2014; 15
Fitzgerald (bb0370) 2014; 383
D'Astolfo (bb0180) 2015; 161
Qin (bb0170) 2015; 200
Travis (bb0040) 2015; 350
Cartier (bb0510) 2009; 326
Friedland (bb0285) 2013; 10
Shen (bb0045) 2013; 23
Chang (bb0250) 2013; 23
Maggio (bb0415) 2014; 4
Yosef, Goren, Qimron (bb0115) 2012; 40
Mout, Ray, Lee, Scaletti, Rotello (bb0585) 2017; 28
Sasaki, Yoshida, Hozumi, Sasakura (bb0280) 2014; 56
Jansen, van Embden, Gaastra, Schouls (bb0010) 2002; 43
Gori (bb0175) 2015; 26
Zuris (bb0140) 2015; 33
Mali (bb0235) 2013; 31
Yla-Herttuala (bb0460) 2012; 20
Li, Natarajan, Allen, Peshwa (bb0160) 2014; 16
Gaj, Epstein, Schaffer (bb0440) 2016; 24
Kang (bb0395) 2017; 28
Westra, Buckling, Fineran (bb0125) 2014; 12
Blasco (bb0550) 2014; 9
Horii (bb0300) 2014; 4
Dong (bb0565) 2015; 118
Yuan, Webb, Lemoine, Wang (bb0065) 2016; 8
Al-Dosari, Knapp, Liu (bb0330) 2005; 54
Chen (bb0540) 2015; 160
Hsu, Lander, Zhang (bb0110) 2014; 157
Zufferey (bb0495) 1998; 72
Kabadi, Ousterout, Hilton, Gersbach (bb0520) 2014; 42
Han (bb0325) 2015; 1
Wang, Wei, Sabatini, Lander (bb0515) 2014; 343
Zhen (bb0350) 2015; 22
Koike-Yusa, Li, Tan, Velasco-Herrera, Yusa (bb0425) 2014; 32
Grimm (bb0450) 2008; 82
Wang (bb0525) 2015; 33
Mout (bb0410) 2017
Kabadi, Ousterout, Hilton, Gersbach (bb0530) 2014; 22
Mashiko (bb0265) 2014; 56
Yin (bb0360) 2014; 32
Friedland (bb0475) 2015; 16
Kim, Kim, Cho, Kim, Kim (bb0165) 2014; 24
Liu, Song, Liu (bb0335) 1999; 6
Doudna, Charpentier (bb0105) 2014; 346
Khorsandi (bb0365) 2008; 15
Wang, Quake (bb0555) 2014; 111
Platt (bb0385) 2014; 159
Makarova (bb0095) 2011; 9
Tebas (bb0190) 2014; 370
Brouns (bb0120) 2008; 321
Mali (10.1016/j.jconrel.2017.09.012_bb0195) 2013; 339
Sasaki (10.1016/j.jconrel.2017.09.012_bb0280) 2014; 56
Wu (10.1016/j.jconrel.2017.09.012_bb0465) 2010; 18
Friedland (10.1016/j.jconrel.2017.09.012_bb0475) 2015; 16
Hsu (10.1016/j.jconrel.2017.09.012_bb0110) 2014; 157
Hruscha (10.1016/j.jconrel.2017.09.012_bb0275) 2015; 1254
Mashiko (10.1016/j.jconrel.2017.09.012_bb0265) 2014; 56
Ran (10.1016/j.jconrel.2017.09.012_bb0470) 2015; 520
Blasco (10.1016/j.jconrel.2017.09.012_bb0550) 2014; 9
Hu (10.1016/j.jconrel.2017.09.012_bb0400) 2014; 53
Chang (10.1016/j.jconrel.2017.09.012_bb0250) 2013; 23
Ramanan (10.1016/j.jconrel.2017.09.012_bb0575) 2015; 5
Kaminski (10.1016/j.jconrel.2017.09.012_bb0560) 2016; 6
Zufferey (10.1016/j.jconrel.2017.09.012_bb0495) 1998; 72
Veres (10.1016/j.jconrel.2017.09.012_bb0050) 2014; 15
Jinek (10.1016/j.jconrel.2017.09.012_bb0030) 2012; 337
Jansen (10.1016/j.jconrel.2017.09.012_bb0015) 2002; 6
Coelho (10.1016/j.jconrel.2017.09.012_bb0375) 2013; 369
Kang (10.1016/j.jconrel.2017.09.012_bb0395) 2017; 28
Ishino (10.1016/j.jconrel.2017.09.012_bb0005) 1987; 169
Li (10.1016/j.jconrel.2017.09.012_bb0160) 2014; 16
Horii (10.1016/j.jconrel.2017.09.012_bb0300) 2014; 4
Paulk (10.1016/j.jconrel.2017.09.012_bb0435) 2010; 51
Seeger (10.1016/j.jconrel.2017.09.012_bb0570) 2014; 3
Cyranoski (10.1016/j.jconrel.2017.09.012_bb0075) 2016; 539
Mojica (10.1016/j.jconrel.2017.09.012_bb0020) 2005; 60
Kim (10.1016/j.jconrel.2017.09.012_bb0165) 2014; 24
Shen (10.1016/j.jconrel.2017.09.012_bb0045) 2013; 23
Katz (10.1016/j.jconrel.2017.09.012_bb0185) 2013; 24
Yosef (10.1016/j.jconrel.2017.09.012_bb0115) 2012; 40
Suda (10.1016/j.jconrel.2017.09.012_bb0345) 2007; 15
Suda (10.1016/j.jconrel.2017.09.012_bb0340) 2015; 89
Schnell (10.1016/j.jconrel.2017.09.012_bb0500) 2000; 11
Grimm (10.1016/j.jconrel.2017.09.012_bb0450) 2008; 82
Wang (10.1016/j.jconrel.2017.09.012_bb0390) 2016; 113
Yusa (10.1016/j.jconrel.2017.09.012_bb0420) 2015; 26
Crispo (10.1016/j.jconrel.2017.09.012_bb0255) 2015; 10
Ding (10.1016/j.jconrel.2017.09.012_bb0230) 2013; 12
Gasiunas (10.1016/j.jconrel.2017.09.012_bb0100) 2014; 71
Thummel (10.1016/j.jconrel.2017.09.012_bb0200) 2006; 295
Mulvihill (10.1016/j.jconrel.2017.09.012_bb0580) 2017; 122
Travis (10.1016/j.jconrel.2017.09.012_bb0040) 2015; 350
Hou (10.1016/j.jconrel.2017.09.012_bb0225) 2013; 110
Garneau (10.1016/j.jconrel.2017.09.012_bb0090) 2010; 468
Brouns (10.1016/j.jconrel.2017.09.012_bb0120) 2008; 321
Ramakrishna (10.1016/j.jconrel.2017.09.012_bb0310) 2014; 24
Cong (10.1016/j.jconrel.2017.09.012_bb0035) 2013; 339
Makarova (10.1016/j.jconrel.2017.09.012_bb0095) 2011; 9
Chen (10.1016/j.jconrel.2017.09.012_bb0540) 2015; 160
Fei (10.1016/j.jconrel.2017.09.012_bb0210) 2014; 7
Mandal (10.1016/j.jconrel.2017.09.012_bb0220) 2014; 15
Nakagawa (10.1016/j.jconrel.2017.09.012_bb0295) 2015; 15
Yan (10.1016/j.jconrel.2017.09.012_bb0270) 2014; 3
Kabadi (10.1016/j.jconrel.2017.09.012_bb0530) 2014; 22
Doudna (10.1016/j.jconrel.2017.09.012_bb0105) 2014; 346
Deltcheva (10.1016/j.jconrel.2017.09.012_bb0025) 2011; 471
Platt (10.1016/j.jconrel.2017.09.012_bb0385) 2014; 159
Mout (10.1016/j.jconrel.2017.09.012_bb0410) 2017
Dong (10.1016/j.jconrel.2017.09.012_bb0565) 2015; 118
Tebas (10.1016/j.jconrel.2017.09.012_bb0190) 2014; 370
Sharei (10.1016/j.jconrel.2017.09.012_bb0320) 2013; 110
Liu (10.1016/j.jconrel.2017.09.012_bb0335) 1999; 6
D'Astolfo (10.1016/j.jconrel.2017.09.012_bb0180) 2015; 161
Gaj (10.1016/j.jconrel.2017.09.012_bb0440) 2016; 24
Yang (10.1016/j.jconrel.2017.09.012_bb0485) 2016; 34
Zhou (10.1016/j.jconrel.2017.09.012_bb0535) 2014; 509
Makarova (10.1016/j.jconrel.2017.09.012_bb0080) 2015; 13
Wang (10.1016/j.jconrel.2017.09.012_bb0555) 2014; 111
Grimm (10.1016/j.jconrel.2017.09.012_bb0455) 2003; 3
Mali (10.1016/j.jconrel.2017.09.012_bb0235) 2013; 31
Aiuti (10.1016/j.jconrel.2017.09.012_bb0505) 2013; 341
Nakamura (10.1016/j.jconrel.2017.09.012_bb0205) 2004; 121
Kabadi (10.1016/j.jconrel.2017.09.012_bb0520) 2014; 42
Fu (10.1016/j.jconrel.2017.09.012_bb0145) 2013; 31
Qin (10.1016/j.jconrel.2017.09.012_bb0170) 2015; 200
Han (10.1016/j.jconrel.2017.09.012_bb0325) 2015; 1
Khatodia (10.1016/j.jconrel.2017.09.012_bb0060) 2016; 7
Basu (10.1016/j.jconrel.2017.09.012_bb0290) 2015; 112
Sun (10.1016/j.jconrel.2017.09.012_bb0405) 2015; 54
Yin (10.1016/j.jconrel.2017.09.012_bb0590) 2016; 34
Fei (10.1016/j.jconrel.2017.09.012_bb0240) 2016; 1
Sampson (10.1016/j.jconrel.2017.09.012_bb0055) 2014; 36
Cradick (10.1016/j.jconrel.2017.09.012_bb0150) 2013
Koike-Yusa (10.1016/j.jconrel.2017.09.012_bb0425) 2014; 32
Swiech (10.1016/j.jconrel.2017.09.012_bb0480) 2015; 33
Niu (10.1016/j.jconrel.2017.09.012_bb0135) 2014; 156
Raghavan (10.1016/j.jconrel.2017.09.012_bb0380) 2016
Yang (10.1016/j.jconrel.2017.09.012_bb0215) 2013; 154
Zhen (10.1016/j.jconrel.2017.09.012_bb0350) 2015; 22
Jansen (10.1016/j.jconrel.2017.09.012_bb0010) 2002; 43
Yla-Herttuala (10.1016/j.jconrel.2017.09.012_bb0460) 2012; 20
Liang (10.1016/j.jconrel.2017.09.012_bb0245) 2015; 208
Shen (10.1016/j.jconrel.2017.09.012_bb0155) 2014; 11
Friedland (10.1016/j.jconrel.2017.09.012_bb0285) 2013; 10
Yuan (10.1016/j.jconrel.2017.09.012_bb0065) 2016; 8
Sonntag (10.1016/j.jconrel.2017.09.012_bb0445) 2010; 107
Mashiko (10.1016/j.jconrel.2017.09.012_bb0260) 2013; 3
Mout (10.1016/j.jconrel.2017.09.012_bb0585) 2017; 28
Zuris (10.1016/j.jconrel.2017.09.012_bb0140) 2015; 33
Worthen (10.1016/j.jconrel.2017.09.012_bb1315) 2017; 1627
Zetsche (10.1016/j.jconrel.2017.09.012_bb0490) 2015; 33
Shalem (10.1016/j.jconrel.2017.09.012_bb0430) 2014; 343
Schumann (10.1016/j.jconrel.2017.09.012_bb0070) 2015; 112
Maggio (10.1016/j.jconrel.2017.09.012_bb0415) 2014; 4
Westra (10.1016/j.jconrel.2017.09.012_bb0125) 2014; 12
Cartier (10.1016/j.jconrel.2017.09.012_bb0510) 2009; 326
van der Oost (10.1016/j.jconrel.2017.09.012_bb0085) 2014; 12
Al-Dosari (10.1016/j.jconrel.2017.09.012_bb0330) 2005; 54
Fitzgerald (10.1016/j.jconrel.2017.09.012_bb0370) 2014; 383
Wang (10.1016/j.jconrel.2017.09.012_bb0525) 2015; 33
Heck (10.1016/j.jconrel.2017.09.012_bb0545) 2014; 32
Yin (10.1016/j.jconrel.2017.09.012_bb0360) 2014; 32
Suresh (10.1016/j.jconrel.2017.09.012_bb0315) 2017; 1507
Wang (10.1016/j.jconrel.2017.09.012_bb0515) 2014; 343
Ran (10.1016/j.jconrel.2017.09.012_bb0130) 2013; 8
Xue (10.1016/j.jconrel.2017.09.012_bb0355) 2014; 514
Gori (10.1016/j.jconrel.2017.09.012_bb0175) 2015; 26
Khorsandi (10.1016/j.jconrel.2017.09.012_bb0365) 2008; 15
References_xml – volume: 6
  start-page: 1258
  year: 1999
  end-page: 1266
  ident: bb0335
  article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA
  publication-title: Gene Ther.
– volume: 24
  start-page: 1012
  year: 2014
  end-page: 1019
  ident: bb0165
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: bb0430
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
– volume: 11
  start-page: 399
  year: 2014
  end-page: 402
  ident: bb0155
  article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
  publication-title: Nat. Methods
– volume: 24
  start-page: 1020
  year: 2014
  end-page: 1027
  ident: bb0310
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
– volume: 110
  start-page: 15644
  year: 2013
  end-page: 15649
  ident: bb0225
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 160
  start-page: 1246
  year: 2015
  end-page: 1260
  ident: bb0540
  article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
  publication-title: Cell
– volume: 10
  start-page: 741
  year: 2013
  ident: bb0285
  article-title: Heritable genome editing in
  publication-title: Nat. Methods
– volume: 113
  start-page: 2868
  year: 2016
  end-page: 2873
  ident: bb0390
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bb0030
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 22
  start-page: 404
  year: 2015
  end-page: 412
  ident: bb0350
  article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
  publication-title: Gene Ther.
– volume: 112
  start-page: 10437
  year: 2015
  end-page: 10442
  ident: bb0070
  article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 056820
  year: 2016
  ident: bb0380
  article-title: High-throughput screening and CRISPR-Cas9 modeling of causal lipid-associated expression quantitative trait locus variants
  publication-title: bioRxiv
– volume: 36
  start-page: 34
  year: 2014
  end-page: 38
  ident: bb0055
  article-title: Exploiting CRISPR/Cas systems for biotechnology
  publication-title: BioEssays
– volume: 72
  start-page: 9873
  year: 1998
  end-page: 9880
  ident: bb0495
  article-title: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery
  publication-title: J. Virol.
– volume: 31
  start-page: 822
  year: 2013
  end-page: 826
  ident: bb0145
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
– volume: 89
  start-page: 89
  year: 2015
  end-page: 111
  ident: bb0340
  article-title: Hydrodynamic delivery
  publication-title: Adv. Genet.
– volume: 18
  start-page: 80
  year: 2010
  end-page: 86
  ident: bb0465
  article-title: Effect of genome size on AAV vector packaging
  publication-title: Mol. Ther.
– volume: 12
  start-page: 479
  year: 2014
  end-page: 492
  ident: bb0085
  article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
– volume: 32
  start-page: 941
  year: 2014
  end-page: 946
  ident: bb0545
  article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing
  publication-title: Nat. Biotechnol.
– volume: 514
  start-page: 380
  year: 2014
  end-page: 384
  ident: bb0355
  article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver
  publication-title: Nature
– volume: 295
  year: 2006
  ident: bb0200
  article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb
  publication-title: Dev. Biol.
– volume: 12
  start-page: 393
  year: 2013
  end-page: 394
  ident: bb0230
  article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs
  publication-title: Cell Stem Cell
– volume: 346
  start-page: 1258096
  year: 2014
  ident: bb0105
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
– year: 2013
  ident: bb0150
  article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
  publication-title: Nucleic Acids Res.
– volume: 1627
  start-page: 245
  year: 2017
  end-page: 251
  ident: bb1315
  article-title: Mechanical deformation of cultured cells with hydrogels
  publication-title: Methods Mol. Biol.
– volume: 122
  start-page: 17
  year: 2017
  end-page: 29
  ident: bb0580
  article-title: Ethical issues of CRISPR technology and gene editing through the lens of solidarity
  publication-title: Br. Med. Bull.
– volume: 28
  start-page: 880
  year: 2017
  end-page: 884
  ident: bb0585
  article-title: In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges
  publication-title: Bioconjug. Chem.
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bb0035
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 1507
  start-page: 81
  year: 2017
  end-page: 94
  ident: bb0315
  article-title: Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing
  publication-title: Methods Mol. Biol.
– volume: 4
  year: 2014
  ident: bb0300
  article-title: Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering
  publication-title: Sci. Rep.
– volume: 43
  start-page: 1565
  year: 2002
  end-page: 1575
  ident: bb0010
  article-title: Identification of genes that are associated with DNA repeats in prokaryotes
  publication-title: Mol. Microbiol.
– volume: 32
  start-page: 267
  year: 2014
  end-page: 273
  ident: bb0425
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Nat. Biotechnol.
– volume: 107
  start-page: 10220
  year: 2010
  end-page: 10225
  ident: bb0445
  article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 350
  start-page: 1299
  year: 2015
  end-page: 1300
  ident: bb0040
  article-title: Genetic Engineering. Germline editing dominates DNA summit
  publication-title: Science
– volume: 82
  start-page: 5887
  year: 2008
  end-page: 5911
  ident: bb0450
  article-title: In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses
  publication-title: J. Virol.
– volume: 33
  start-page: 102
  year: 2015
  end-page: U286
  ident: bb0480
  article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 341
  start-page: 865
  year: 2013
  end-page: U871
  ident: bb0505
  article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome
  publication-title: Science
– volume: 121
  start-page: 1137
  year: 2004
  end-page: 1143
  ident: bb0205
  article-title: Gain- and loss-of-function in chick embryos by electroporation
  publication-title: Mech. Dev.
– volume: 8
  year: 2016
  ident: bb0065
  article-title: CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses
  publication-title: Viruses
– volume: 33
  start-page: 73
  year: 2015
  end-page: 80
  ident: bb0140
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
– volume: 56
  start-page: 499
  year: 2014
  end-page: 510
  ident: bb0280
  article-title: CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis
  publication-title: Develop. Growth Differ.
– volume: 9
  start-page: 1219
  year: 2014
  end-page: 1227
  ident: bb0550
  article-title: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
  publication-title: Cell Rep.
– volume: 3
  start-page: 12
  year: 2014
  ident: bb0270
  article-title: Generation of multi-gene knockout rabbits using the Cas9/gRNA system
  publication-title: Cell Regen.
– volume: 24
  start-page: 458
  year: 2016
  end-page: 464
  ident: bb0440
  article-title: Genome engineering using adeno-associated virus: basic and clinical research applications
  publication-title: Mol. Ther.
– volume: 471
  start-page: 602
  year: 2011
  ident: bb0025
  article-title: CRISPR RNA maturation by trans‑encoded small RNA and host factor RNase III
  publication-title: Nature
– volume: 20
  start-page: 1831
  year: 2012
  end-page: 1832
  ident: bb0460
  article-title: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union
  publication-title: Mol. Ther.
– volume: 16
  year: 2015
  ident: bb0475
  article-title: Characterization of
  publication-title: Genome Biol.
– volume: 343
  start-page: 80
  year: 2014
  end-page: 84
  ident: bb0515
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science
– volume: 539
  start-page: 479
  year: 2016
  ident: bb0075
  article-title: CRISPR gene-editing tested in a person for the first time
  publication-title: Nature
– volume: 520
  start-page: 186
  year: 2015
  end-page: U198
  ident: bb0470
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
– volume: 40
  start-page: 5569
  year: 2012
  end-page: 5576
  ident: bb0115
  article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 720
  year: 2013
  end-page: 723
  ident: bb0045
  article-title: Generation of gene-modified mice via Cas9/RNA-mediated gene targeting
  publication-title: Cell Res.
– volume: 4
  year: 2014
  ident: bb0415
  article-title: Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells
  publication-title: Sci. Rep.
– volume: 112
  start-page: 4038
  year: 2015
  end-page: 4043
  ident: bb0290
  article-title: Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 154
  start-page: 1370
  year: 2013
  end-page: 1379
  ident: bb0215
  article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
– volume: 157
  start-page: 1262
  year: 2014
  end-page: 1278
  ident: bb0110
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
– volume: 26
  start-page: 443
  year: 2015
  end-page: 451
  ident: bb0175
  article-title: Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy
  publication-title: Hum. Gene Ther.
– volume: 15
  start-page: 27
  year: 2014
  end-page: 30
  ident: bb0050
  article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
  publication-title: Cell Stem Cell
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: bb0130
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 156
  start-page: 836
  year: 2014
  end-page: 843
  ident: bb0135
  article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
  publication-title: Cell
– volume: 53
  start-page: 5821
  year: 2014
  end-page: 5826
  ident: bb0400
  article-title: DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 6
  year: 2016
  ident: bb0560
  article-title: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing
  publication-title: Sci Rep
– volume: 12
  start-page: 317
  year: 2014
  end-page: 326
  ident: bb0125
  article-title: CRISPR-Cas systems: beyond adaptive immunity
  publication-title: Nat. Rev. Microbiol.
– year: 2017
  ident: bb0410
  article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing
  publication-title: ACS Nano
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: bb0090
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
– volume: 7
  start-page: 398
  year: 2014
  end-page: 411
  ident: bb0210
  article-title: 3′ UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size
  publication-title: Cell Rep.
– volume: 11
  start-page: 439
  year: 2000
  end-page: 447
  ident: bb0500
  article-title: Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus
  publication-title: Hum. Gene Ther.
– volume: 33
  start-page: 175
  year: 2015
  end-page: 178
  ident: bb0525
  article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
  publication-title: Nat. Biotechnol.
– volume: 321
  start-page: 960
  year: 2008
  end-page: 964
  ident: bb0120
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
– volume: 1
  start-page: 16002
  year: 2016
  ident: bb0240
  article-title: Tissue-and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration
  publication-title: npj Regen. Med.
– volume: 111
  start-page: 13157
  year: 2014
  end-page: 13162
  ident: bb0555
  article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  year: 2014
  ident: bb0570
  article-title: Targeting Hepatitis B Virus With CRISPR/Cas9
  publication-title: Mol. Ther.
– volume: 161
  start-page: 674
  year: 2015
  end-page: 690
  ident: bb0180
  article-title: Efficient intracellular delivery of native proteins
  publication-title: Cell
– volume: 326
  start-page: 818
  year: 2009
  end-page: 823
  ident: bb0510
  article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy
  publication-title: Science
– volume: 3
  start-page: 281
  year: 2003
  end-page: 304
  ident: bb0455
  article-title: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy
  publication-title: Curr. Gene Ther.
– volume: 33
  start-page: 139
  year: 2015
  end-page: 142
  ident: bb0490
  article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation
  publication-title: Nat. Biotechnol.
– volume: 159
  start-page: 440
  year: 2014
  end-page: 455
  ident: bb0385
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
– volume: 200
  start-page: 423
  year: 2015
  end-page: 430
  ident: bb0170
  article-title: Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease
  publication-title: Genetics
– volume: 56
  start-page: 122
  year: 2014
  end-page: 129
  ident: bb0265
  article-title: Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes
  publication-title: Develop. Growth Differ.
– volume: 15
  start-page: 643
  year: 2014
  end-page: 652
  ident: bb0220
  article-title: Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9
  publication-title: Cell Stem Cell
– volume: 208
  start-page: 44
  year: 2015
  end-page: 53
  ident: bb0245
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
– volume: 34
  start-page: 334
  year: 2016
  ident: bb0485
  article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
  publication-title: Nat. Biotechnol.
– volume: 31
  start-page: 833
  year: 2013
  ident: bb0235
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 3
  year: 2013
  ident: bb0260
  article-title: Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA
  publication-title: Sci. Rep.
– volume: 26
  year: 2015
  ident: bb0420
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Hum. Gene Ther.
– volume: 509
  start-page: 487
  year: 2014
  end-page: 491
  ident: bb0535
  article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
  publication-title: Nature
– volume: 118
  start-page: 110
  year: 2015
  end-page: 117
  ident: bb0565
  article-title: Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication
  publication-title: Antivir. Res.
– volume: 71
  start-page: 449
  year: 2014
  end-page: 465
  ident: bb0100
  article-title: Molecular mechanisms of CRISPR-mediated microbial immunity
  publication-title: Cell. Mol. Life Sci.
– volume: 15
  year: 2015
  ident: bb0295
  article-title: Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes
  publication-title: Bmc Biotechnol.
– volume: 54
  start-page: 65
  year: 2005
  end-page: 82
  ident: bb0330
  article-title: Hydrodynamic delivery
  publication-title: Adv. Genet.
– volume: 22
  year: 2014
  ident: bb0530
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Mol. Ther.
– volume: 110
  start-page: 2082
  year: 2013
  end-page: 2087
  ident: bb0320
  article-title: A vector-free microfluidic platform for intracellular delivery
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1254
  start-page: 341
  year: 2015
  end-page: 350
  ident: bb0275
  article-title: Generation of Zebrafish models by CRISPR/Cas9 genome editing
  publication-title: Neuronal Cell Death
– volume: 51
  start-page: 1200
  year: 2010
  end-page: 1208
  ident: bb0435
  article-title: Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo
  publication-title: Hepatology
– volume: 369
  start-page: 819
  year: 2013
  end-page: 829
  ident: bb0375
  article-title: Safety and efficacy of RNAi therapy for transthyretin amyloidosis
  publication-title: N. Engl. J. Med.
– volume: 24
  start-page: 914
  year: 2013
  end-page: 927
  ident: bb0185
  article-title: Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications
  publication-title: Hum. Gene Ther.
– volume: 5
  year: 2015
  ident: bb0575
  article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus
  publication-title: Sci. Rep.
– volume: 34
  start-page: 328
  year: 2016
  end-page: 333
  ident: bb0590
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
– volume: 10
  year: 2015
  ident: bb0255
  article-title: Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
  publication-title: Plos One
– volume: 54
  start-page: 12029
  year: 2015
  end-page: 12033
  ident: bb0405
  article-title: Self-assembled DNA Nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 465
  year: 2013
  end-page: 472
  ident: bb0250
  article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
  publication-title: Cell Res.
– volume: 32
  start-page: 551
  year: 2014
  end-page: 553
  ident: bb0360
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat. Biotechnol.
– volume: 370
  start-page: 901
  year: 2014
  end-page: 910
  ident: bb0190
  article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
  publication-title: N. Engl. J. Med.
– volume: 60
  start-page: 174
  year: 2005
  end-page: 182
  ident: bb0020
  article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
  publication-title: J. Mol. Evol.
– volume: 7
  start-page: 506
  year: 2016
  ident: bb0060
  article-title: The CRISPR/Cas genome-editing tool: application in improvement of crops
  publication-title: Front. Plant Sci.
– volume: 28
  start-page: 957
  year: 2017
  end-page: 967
  ident: bb0395
  article-title: Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance
  publication-title: Bioconjug. Chem.
– volume: 42
  year: 2014
  ident: bb0520
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 467
  year: 2011
  end-page: 477
  ident: bb0095
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
– volume: 15
  start-page: 2063
  year: 2007
  end-page: 2069
  ident: bb0345
  article-title: Hydrodynamic gene delivery: its principles and applications
  publication-title: Mol. Ther.
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: bb0195
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 6
  start-page: 23
  year: 2002
  end-page: 33
  ident: bb0015
  article-title: Identification of a novel family of sequence repeats among prokaryotes
  publication-title: OMICS
– volume: 15
  start-page: 225
  year: 2008
  end-page: 230
  ident: bb0365
  article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human
  publication-title: Cancer Gene Ther.
– volume: 16
  year: 2014
  ident: bb0160
  article-title: Cgmp-compliant, clinical scale, non-viral platform for efficient gene editing using Crispr/Cas9
  publication-title: Cytotherapy
– volume: 383
  start-page: 60
  year: 2014
  end-page: 68
  ident: bb0370
  article-title: Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial
  publication-title: Lancet
– volume: 13
  start-page: 722
  year: 2015
  end-page: 736
  ident: bb0080
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
– volume: 1
  year: 2015
  ident: bb0325
  article-title: CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation
  publication-title: Sci. Adv.
– volume: 169
  start-page: 5429
  year: 1987
  end-page: 5433
  ident: bb0005
  article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
  publication-title: J. Bacteriol.
– volume: 3
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0570
  article-title: Targeting Hepatitis B Virus With CRISPR/Cas9
  publication-title: Mol. Ther.
– volume: 12
  start-page: 479
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0085
  article-title: Unravelling the structural and mechanistic basis of CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3279
– volume: 350
  start-page: 1299
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0040
  article-title: Genetic Engineering. Germline editing dominates DNA summit
  publication-title: Science
  doi: 10.1126/science.350.6266.1299
– volume: 3
  start-page: 12
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0270
  article-title: Generation of multi-gene knockout rabbits using the Cas9/gRNA system
  publication-title: Cell Regen.
  doi: 10.1186/2045-9769-3-12
– volume: 33
  start-page: 102
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0480
  article-title: In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3055
– volume: 156
  start-page: 836
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0135
  article-title: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2014.01.027
– volume: 107
  start-page: 10220
  year: 2010
  ident: 10.1016/j.jconrel.2017.09.012_bb0445
  article-title: A viral assembly factor promotes AAV2 capsid formation in the nucleolus
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1001673107
– volume: 24
  start-page: 458
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0440
  article-title: Genome engineering using adeno-associated virus: basic and clinical research applications
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.151
– volume: 42
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0520
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku749
– volume: 6
  start-page: 23
  year: 2002
  ident: 10.1016/j.jconrel.2017.09.012_bb0015
  article-title: Identification of a novel family of sequence repeats among prokaryotes
  publication-title: OMICS
  doi: 10.1089/15362310252780816
– volume: 295
  year: 2006
  ident: 10.1016/j.jconrel.2017.09.012_bb0200
  article-title: Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.04.095
– volume: 89
  start-page: 89
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0340
  article-title: Hydrodynamic delivery
  publication-title: Adv. Genet.
  doi: 10.1016/bs.adgen.2014.10.002
– volume: 53
  start-page: 5821
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0400
  article-title: DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201400323
– volume: 339
  start-page: 823
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0195
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 23
  start-page: 465
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0250
  article-title: Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.45
– volume: 112
  start-page: 10437
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0070
  article-title: Generation of knock-in primary human T cells using Cas9 ribonucleoproteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1512503112
– volume: 539
  start-page: 479
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0075
  article-title: CRISPR gene-editing tested in a person for the first time
  publication-title: Nature
  doi: 10.1038/nature.2016.20988
– volume: 15
  start-page: 2063
  year: 2007
  ident: 10.1016/j.jconrel.2017.09.012_bb0345
  article-title: Hydrodynamic gene delivery: its principles and applications
  publication-title: Mol. Ther.
  doi: 10.1038/sj.mt.6300314
– volume: 33
  start-page: 175
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0525
  article-title: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3127
– volume: 82
  start-page: 5887
  year: 2008
  ident: 10.1016/j.jconrel.2017.09.012_bb0450
  article-title: In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.00254-08
– volume: 51
  start-page: 1200
  year: 2010
  ident: 10.1016/j.jconrel.2017.09.012_bb0435
  article-title: Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo
  publication-title: Hepatology
  doi: 10.1002/hep.23481
– volume: 111
  start-page: 13157
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0555
  article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1410785111
– volume: 15
  start-page: 643
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0220
  article-title: Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.10.004
– volume: 122
  start-page: 17
  year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb0580
  article-title: Ethical issues of CRISPR technology and gene editing through the lens of solidarity
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/ldx002
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.jconrel.2017.09.012_bb0030
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 3
  start-page: 281
  year: 2003
  ident: 10.1016/j.jconrel.2017.09.012_bb0455
  article-title: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy
  publication-title: Curr. Gene Ther.
  doi: 10.2174/1566523034578285
– volume: 71
  start-page: 449
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0100
  article-title: Molecular mechanisms of CRISPR-mediated microbial immunity
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1438-6
– volume: 31
  start-page: 833
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0235
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 28
  start-page: 957
  year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb0395
  article-title: Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.6b00676
– volume: 7
  start-page: 506
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0060
  article-title: The CRISPR/Cas genome-editing tool: application in improvement of crops
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00506
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0035
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 4
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0415
  article-title: Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep05105
– volume: 208
  start-page: 44
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0245
  article-title: Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2015.04.024
– volume: 15
  start-page: 27
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0050
  article-title: Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.04.020
– year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0150
  article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt714
– volume: 56
  start-page: 122
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0265
  article-title: Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes
  publication-title: Develop. Growth Differ.
  doi: 10.1111/dgd.12113
– volume: 60
  start-page: 174
  year: 2005
  ident: 10.1016/j.jconrel.2017.09.012_bb0020
  article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-004-0046-3
– volume: 159
  start-page: 440
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0385
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.014
– volume: 24
  start-page: 1012
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0165
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
  doi: 10.1101/gr.171322.113
– volume: 34
  start-page: 328
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0590
  article-title: Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3471
– volume: 383
  start-page: 60
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0370
  article-title: Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61914-5
– volume: 36
  start-page: 34
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0055
  article-title: Exploiting CRISPR/Cas systems for biotechnology
  publication-title: BioEssays
  doi: 10.1002/bies.201300135
– volume: 32
  start-page: 551
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0360
  article-title: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2884
– volume: 16
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0475
  article-title: Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0817-8
– volume: 157
  start-page: 1262
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0110
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 1254
  start-page: 341
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0275
  article-title: Generation of Zebrafish models by CRISPR/Cas9 genome editing
  publication-title: Neuronal Cell Death
  doi: 10.1007/978-1-4939-2152-2_24
– volume: 12
  start-page: 393
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0230
  article-title: Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.006
– volume: 6
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0560
  article-title: Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing
  publication-title: Sci Rep
– volume: 118
  start-page: 110
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0565
  article-title: Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2015.03.015
– volume: 5
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0575
  article-title: CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus
  publication-title: Sci. Rep.
  doi: 10.1038/srep10833
– volume: 20
  start-page: 1831
  year: 2012
  ident: 10.1016/j.jconrel.2017.09.012_bb0460
  article-title: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2012.194
– volume: 6
  start-page: 1258
  year: 1999
  ident: 10.1016/j.jconrel.2017.09.012_bb0335
  article-title: Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3300947
– volume: 1507
  start-page: 81
  year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb0315
  article-title: Cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA for genome editing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6518-2_7
– volume: 471
  start-page: 602
  year: 2011
  ident: 10.1016/j.jconrel.2017.09.012_bb0025
  article-title: CRISPR RNA maturation by trans‑encoded small RNA and host factor RNase III
  publication-title: Nature
  doi: 10.1038/nature09886
– volume: 24
  start-page: 914
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0185
  article-title: Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: current concepts and future applications
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2013.2517
– volume: 3
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0260
  article-title: Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA
  publication-title: Sci. Rep.
  doi: 10.1038/srep03355
– volume: 18
  start-page: 80
  year: 2010
  ident: 10.1016/j.jconrel.2017.09.012_bb0465
  article-title: Effect of genome size on AAV vector packaging
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.255
– volume: 16
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0160
  article-title: Cgmp-compliant, clinical scale, non-viral platform for efficient gene editing using Crispr/Cas9
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2014.01.125
– volume: 56
  start-page: 499
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0280
  article-title: CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis
  publication-title: Develop. Growth Differ.
  doi: 10.1111/dgd.12149
– volume: 28
  start-page: 880
  year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb0585
  article-title: In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.7b00057
– volume: 110
  start-page: 2082
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0320
  article-title: A vector-free microfluidic platform for intracellular delivery
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1218705110
– volume: 1627
  start-page: 245
  year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb1315
  article-title: Mechanical deformation of cultured cells with hydrogels
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7113-8_17
– volume: 1
  start-page: 16002
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0240
  article-title: Tissue-and time-directed electroporation of CAS9 protein–gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration
  publication-title: npj Regen. Med.
  doi: 10.1038/npjregenmed.2016.2
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0130
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 12
  start-page: 317
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0125
  article-title: CRISPR-Cas systems: beyond adaptive immunity
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3241
– volume: 22
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0530
  article-title: Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector
  publication-title: Mol. Ther.
– volume: 154
  start-page: 1370
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0215
  article-title: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.022
– volume: 200
  start-page: 423
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0170
  article-title: Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease
  publication-title: Genetics
  doi: 10.1534/genetics.115.176594
– volume: 321
  start-page: 960
  year: 2008
  ident: 10.1016/j.jconrel.2017.09.012_bb0120
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1159689
– volume: 43
  start-page: 1565
  year: 2002
  ident: 10.1016/j.jconrel.2017.09.012_bb0010
  article-title: Identification of genes that are associated with DNA repeats in prokaryotes
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02839.x
– volume: 468
  start-page: 67
  year: 2010
  ident: 10.1016/j.jconrel.2017.09.012_bb0090
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 24
  start-page: 1020
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0310
  article-title: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA
  publication-title: Genome Res.
  doi: 10.1101/gr.171264.113
– volume: 54
  start-page: 12029
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0405
  article-title: Self-assembled DNA Nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506030
– volume: 509
  start-page: 487
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0535
  article-title: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
  publication-title: Nature
  doi: 10.1038/nature13166
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0105
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 32
  start-page: 267
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0425
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2800
– volume: 32
  start-page: 941
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0545
  article-title: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2951
– volume: 161
  start-page: 674
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0180
  article-title: Efficient intracellular delivery of native proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.028
– volume: 54
  start-page: 65
  year: 2005
  ident: 10.1016/j.jconrel.2017.09.012_bb0330
  article-title: Hydrodynamic delivery
  publication-title: Adv. Genet.
  doi: 10.1016/S0065-2660(05)54004-5
– year: 2017
  ident: 10.1016/j.jconrel.2017.09.012_bb0410
  article-title: Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07600
– volume: 11
  start-page: 399
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0155
  article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2857
– volume: 26
  start-page: 443
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0175
  article-title: Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2015.074
– volume: 10
  start-page: 741
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0285
  article-title: Heritable genome editing in C. elegans via a CRISPR-Cas9 system
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2532
– volume: 343
  start-page: 84
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0430
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 160
  start-page: 1246
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0540
  article-title: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.038
– volume: 9
  start-page: 1219
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0550
  article-title: Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.051
– volume: 10
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0255
  article-title: Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes
  publication-title: Plos One
  doi: 10.1371/journal.pone.0136690
– volume: 15
  start-page: 225
  year: 2008
  ident: 10.1016/j.jconrel.2017.09.012_bb0365
  article-title: Minimally invasive and selective hydrodynamic gene therapy of liver segments in the pig and human
  publication-title: Cancer Gene Ther.
  doi: 10.1038/sj.cgt.7701119
– volume: 112
  start-page: 4038
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0290
  article-title: Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1502370112
– volume: 110
  start-page: 15644
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0225
  article-title: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1313587110
– volume: 72
  start-page: 9873
  year: 1998
  ident: 10.1016/j.jconrel.2017.09.012_bb0495
  article-title: Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.12.9873-9880.1998
– volume: 8
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0065
  article-title: CRISPR-Cas9 as a powerful tool for efficient creation of oncolytic viruses
  publication-title: Viruses
  doi: 10.3390/v8030072
– start-page: 056820
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0380
  article-title: High-throughput screening and CRISPR-Cas9 modeling of causal lipid-associated expression quantitative trait locus variants
  publication-title: bioRxiv
– volume: 23
  start-page: 720
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0045
  article-title: Generation of gene-modified mice via Cas9/RNA-mediated gene targeting
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.46
– volume: 7
  start-page: 398
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0210
  article-title: 3′ UTR-dependent, miR-92-mediated restriction of Tis21 expression maintains asymmetric neural stem cell division to ensure proper neocortex size
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.033
– volume: 34
  start-page: 334
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0485
  article-title: A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3469
– volume: 113
  start-page: 2868
  year: 2016
  ident: 10.1016/j.jconrel.2017.09.012_bb0390
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1520244113
– volume: 22
  start-page: 404
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0350
  article-title: Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus
  publication-title: Gene Ther.
  doi: 10.1038/gt.2015.2
– volume: 33
  start-page: 139
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0490
  article-title: A split-Cas9 architecture for inducible genome editing and transcription modulation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3149
– volume: 326
  start-page: 818
  year: 2009
  ident: 10.1016/j.jconrel.2017.09.012_bb0510
  article-title: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy
  publication-title: Science
  doi: 10.1126/science.1171242
– volume: 31
  start-page: 822
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0145
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2623
– volume: 13
  start-page: 722
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0080
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3569
– volume: 1
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0325
  article-title: CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500454
– volume: 341
  start-page: 865
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0505
  article-title: Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome
  publication-title: Science
  doi: 10.1126/science.1233151
– volume: 40
  start-page: 5569
  year: 2012
  ident: 10.1016/j.jconrel.2017.09.012_bb0115
  article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks216
– volume: 33
  start-page: 73
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0140
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 26
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0420
  article-title: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
  publication-title: Hum. Gene Ther.
– volume: 15
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0295
  article-title: Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes
  publication-title: Bmc Biotechnol.
  doi: 10.1186/s12896-015-0144-x
– volume: 343
  start-page: 80
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0515
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science
  doi: 10.1126/science.1246981
– volume: 169
  start-page: 5429
  year: 1987
  ident: 10.1016/j.jconrel.2017.09.012_bb0005
  article-title: Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.169.12.5429-5433.1987
– volume: 369
  start-page: 819
  year: 2013
  ident: 10.1016/j.jconrel.2017.09.012_bb0375
  article-title: Safety and efficacy of RNAi therapy for transthyretin amyloidosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1208760
– volume: 11
  start-page: 439
  year: 2000
  ident: 10.1016/j.jconrel.2017.09.012_bb0500
  article-title: Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus
  publication-title: Hum. Gene Ther.
  doi: 10.1089/10430340050015905
– volume: 121
  start-page: 1137
  year: 2004
  ident: 10.1016/j.jconrel.2017.09.012_bb0205
  article-title: Gain- and loss-of-function in chick embryos by electroporation
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2004.05.013
– volume: 4
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0300
  article-title: Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering
  publication-title: Sci. Rep.
  doi: 10.1038/srep04513
– volume: 514
  start-page: 380
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0355
  article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver
  publication-title: Nature
  doi: 10.1038/nature13589
– volume: 370
  start-page: 901
  year: 2014
  ident: 10.1016/j.jconrel.2017.09.012_bb0190
  article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1300662
– volume: 520
  start-page: 186
  year: 2015
  ident: 10.1016/j.jconrel.2017.09.012_bb0470
  article-title: In vivo genome editing using Staphylococcus aureus Cas9
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 9
  start-page: 467
  year: 2011
  ident: 10.1016/j.jconrel.2017.09.012_bb0095
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2577
SSID ssj0005347
Score 2.667827
SecondaryResourceType review_article
Snippet The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms adaptive immunity
Animals
Archaea
bacteria
bacteriophages
clinical trials
CRISPR-Cas Systems
CRISPR-Cas9
Delivery
eukaryotic cells
Gene Editing
Gene therapy
Gene Transfer Techniques
genes
genetic engineering
Genetic Therapy
Humans
immunotherapy
mutation
Nanoparticle
neoplasms
Non-viral delivery
patients
plasmids
RNA
T-lymphocytes
Viruses
Title Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications
URI https://dx.doi.org/10.1016/j.jconrel.2017.09.012
https://www.ncbi.nlm.nih.gov/pubmed/28911805
https://www.proquest.com/docview/1940049208
https://www.proquest.com/docview/2000614055
https://pubmed.ncbi.nlm.nih.gov/PMC5723556
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhvfRSmj7dR1Ch5BTZWr1WewxugtNCMHnQ3ISklahNWIfYOfiS397RPvxICYEeVw_Qakaab5iZTwh95yrmXARPwFd2BCxUINZFSkRwjoaSslDWWb5nanQlfl7L6x007GphUlple_c3d3p9W7ctg3Y3B7eTyeACwIrmSoK_wakWMjF-CpEnLe8_bKR5cNGUTCtN0uh1Fc9g2p-Cz3kXUgQiy2u604w9ZZ_-xZ-P0yg37NLJa_SqBZT4qFnzHtoJ1Rt0MG4YqZeH-HJdYDU_xAd4vOaqXr5Fv3-Em5SZscTzRUcagWcRAyzEw_PTi_E5Gdp5gUHNAoG9SknSuGF_xgB38Ub5Ft6Mhb9DVyfHl8MRad9aIF5RviAs89aVQdu8DIVyNBZe8JJL7rmw0lpb2qKOMYoYXRZ1qZS10Kmipl46z9-j3WpWhY8Ix8Ajsz7jNkv2n1mqC5UL4aNlVpehh0S3w8a3ROTpPYwb02WcTU0rGJMEY2hhQDA91F9Nu22YOJ6boDvxmS2VMmAtnpv6rRO3geOWYii2CrP7ucnSQ_KiYFQ_PaaufgLHVcoe-tCoyGrF4N8m0j3oybeUZzUg0X1v91STPzXtt8wZgEP16f9_6zN6mb5SKSXTX9Du4u4-fAVMtXD79aHZRy-OTn-Nzv4CQRUluw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOcAFlXcoDyNBT3Xitb1e74EDSqkSWqqoTUVvrtdri0TVpmpSoVz4U_xBxvvIA1RVQup1x971esaeGc3MNwh94NInXDhLwFfOCGgoR0zmKREuy6jLKXN5meV7JHun4utZfLaBfje1MCGtsr77qzu9vK3rJ516NzuXo1HnBIwVxWUM_ganSsRNB-sDN_8Jftv0U38PmPyRsf0vw26P1K0FiJWUzwiLrMlyp0ySu1Rm1KdW8JzH3HJhYmNMbtIypCa8zyKvcimNAaL0ito4sxzeew_dh6-q0Dah_Wslr4SLqkZbKhKWtywb6ozbY3Byr1wIeURJia8asZsU4r8G7995myuKcH8LPaotWPy52qTHaMMVT9DOoILAnu_i4bKia7qLd_BgCY49f4q-77mLkAoyx9NZg1KBJx6DHYq7x_2TwTHpmmmKQa4dAeaErGxcwU1jsK_xSr0YXg2-P0Ond8KB52izmBTuJcLecc-MjbiJgsHBDFWpTISw3jCjctdCotlhbWvk89CA40I3KW5jXTNGB8ZommpgTAu1F9MuK-iP2yaohn16TYY1qKfbpr5v2K3hfIegjSnc5Hqqo9C5XqSMqpvHlOVW4CnHcQu9qERksWJwqAPKH1CSNeFZDAj44uuUYvSjxBmPEwbWqHz1_7_1Dj3oDb8d6sP-0cE2ehgooY6Tqddoc3Z17d6AQTfL3pYHCKPzuz6xfwCLrmOl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delivery+strategies+of+the+CRISPR-Cas9+gene-editing+system+for+therapeutic+applications&rft.jtitle=Journal+of+controlled+release&rft.au=Liu%2C+Chang&rft.au=Zhang%2C+Li&rft.au=Liu%2C+Hao&rft.au=Cheng%2C+Kun&rft.date=2017-11-28&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=266&rft.spage=17&rft.epage=26&rft_id=info:doi/10.1016%2Fj.jconrel.2017.09.012&rft.externalDocID=S0168365917308453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon