Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells

Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 7
Main Authors Kistler, Kathryn E, Trcek, Tatjana, Hurd, Thomas R, Chen, Ruoyu, Liang, Feng-Xia, Sall, Joseph, Kato, Masato, Lehmann, Ruth
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 27.09.2018
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
AbstractList Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar's nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar's nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar's nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.
Audience Academic
Author Kato, Masato
Liang, Feng-Xia
Hurd, Thomas R
Kistler, Kathryn E
Lehmann, Ruth
Trcek, Tatjana
Chen, Ruoyu
Sall, Joseph
Author_xml – sequence: 1
  givenname: Kathryn E
  surname: Kistler
  fullname: Kistler, Kathryn E
  organization: Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States, Department of Molecular and Cellular Biology, University of Washington, Washington, United States
– sequence: 2
  givenname: Tatjana
  orcidid: 0000-0003-4405-8733
  surname: Trcek
  fullname: Trcek, Tatjana
  organization: Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States
– sequence: 3
  givenname: Thomas R
  surname: Hurd
  fullname: Hurd, Thomas R
  organization: Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States, Department of Molecular Genetics, University of Toronto, Toronto, Canada
– sequence: 4
  givenname: Ruoyu
  surname: Chen
  fullname: Chen, Ruoyu
  organization: Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States
– sequence: 5
  givenname: Feng-Xia
  surname: Liang
  fullname: Liang, Feng-Xia
  organization: Department of Cell Biology, NYU School of Medicine, New York, United States, DART Microscopy Laboratory, NYU Langone Health, New York, United States
– sequence: 6
  givenname: Joseph
  surname: Sall
  fullname: Sall, Joseph
  organization: DART Microscopy Laboratory, NYU Langone Health, New York, United States
– sequence: 7
  givenname: Masato
  surname: Kato
  fullname: Kato, Masato
  organization: Department of Biochemistry, University of Texas Southwestern Medical Center, Texas, United States
– sequence: 8
  givenname: Ruth
  orcidid: 0000-0002-8454-5651
  surname: Lehmann
  fullname: Lehmann, Ruth
  organization: Skirball Institute of Biomolecular Medicine, Howard Hughes Medical Institute, NYU School of Medicine, New York, United States, Department of Cell Biology, NYU School of Medicine, New York, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30260314$$D View this record in MEDLINE/PubMed
BookMark eNptkstv1DAQhyNUREvpiTuKxAWEtviZ2JdKVXmttFIRDwmJgzVxxrsu2Xixkwr-e5zdFroVOSRW8vkbz-T3uDjoQ49F8ZSS01pK8RoX3uEpr7XQD4ojRiSZESW-HdxZHxYnKV2RfNVCKaofFYecsIpwKo6K7x9XkLAcIvTJDz7L27IfbYcQy8v0I983MazDgKm02HVl6699ylgZXPkmhhQ2K99Bhvw6xNZDVy4xrrdselI8dNAlPLl5Hhdf3739cvFhtrh8P784X8xsPsQwo5o0HJAK6ypGeS04I01LmG6aioDTXBHVNqjbBiRH0QCvWtkqqbSqAAny42K-87YBrsx0FIi_TQBvti9CXBqIg89NmVpJ0ThR15pWApwFRxwHx0hNAG3Dsuts59qMzRpbi30eTbcn3f_S-5VZhmtTUU2Zklnw4kYQw88R02DWPk3jgB7DmAyjlLNKVmKq9fweehXG2OdRZYrVsqZEqX_UEnIDvnch17WT1JxLXWlKqNKZerlH2dAP-GtYwpiSmX_-tM8-u9vj3-ZuU5EBugNs_sMpojPWDzClI5f2naHETOEz2_CZbfjynlf39txq_0f_AWWD2no
CitedBy_id crossref_primary_10_1002_ange_202211905
crossref_primary_10_1002_wrna_1807
crossref_primary_10_1038_s41556_024_01452_5
crossref_primary_10_1146_annurev_biophys_121219_081629
crossref_primary_10_1042_ETLS20190190
crossref_primary_10_1134_S1062360421020077
crossref_primary_10_1371_journal_pbio_3002069
crossref_primary_10_1038_s41598_020_57492_y
crossref_primary_10_1016_j_ceb_2019_05_002
crossref_primary_10_1261_rna_079026_121
crossref_primary_10_1186_s12929_024_00993_z
crossref_primary_10_3390_cimb45070358
crossref_primary_10_7554_eLife_63698
crossref_primary_10_7554_eLife_68620
crossref_primary_10_1002_wrna_1642
crossref_primary_10_1021_acsmacrolett_0c00709
crossref_primary_10_1073_pnas_2114462118
crossref_primary_10_1242_dev_202877
crossref_primary_10_1371_journal_pbio_3001183
crossref_primary_10_1073_pnas_1922365117
crossref_primary_10_1038_s41467_024_52346_x
crossref_primary_10_1073_pnas_2119800119
crossref_primary_10_1016_j_mattod_2023_03_029
crossref_primary_10_1186_s12864_023_09887_0
crossref_primary_10_1016_j_devcel_2024_06_017
crossref_primary_10_1002_adma_202007209
crossref_primary_10_1042_BCJ20210815
crossref_primary_10_1073_pnas_2218506120
crossref_primary_10_1016_j_cbpb_2022_110798
crossref_primary_10_1111_jfb_16005
crossref_primary_10_1146_annurev_biophys_052118_115508
crossref_primary_10_1016_j_stemcr_2020_10_011
crossref_primary_10_1016_j_jmb_2021_167215
crossref_primary_10_15252_embr_202154387
crossref_primary_10_1242_dev_200465
crossref_primary_10_1242_dev_201037
crossref_primary_10_1038_s41467_023_36059_1
crossref_primary_10_1002_wrna_1610
crossref_primary_10_1016_j_tcb_2020_12_004
crossref_primary_10_1042_BST20210320
crossref_primary_10_1038_s41392_022_01197_3
crossref_primary_10_1021_acs_analchem_0c02966
crossref_primary_10_1038_s41467_022_28019_y
crossref_primary_10_1016_j_celrep_2023_112723
crossref_primary_10_1126_science_abb4309
crossref_primary_10_1038_s41467_021_25809_8
crossref_primary_10_1016_j_molcel_2020_05_008
crossref_primary_10_1016_j_devcel_2020_09_004
crossref_primary_10_1038_s44286_024_00077_7
crossref_primary_10_1098_rsob_210137
crossref_primary_10_1111_tra_12674
crossref_primary_10_1016_j_repbio_2024_100922
crossref_primary_10_1038_s41598_019_55747_x
crossref_primary_10_1111_febs_17360
crossref_primary_10_1126_science_aaw4951
crossref_primary_10_1021_acs_chemrev_3c00575
crossref_primary_10_1002_anie_202211905
crossref_primary_10_1083_jcb_202303125
crossref_primary_10_1016_j_molcel_2022_12_030
crossref_primary_10_3389_fgene_2022_931220
crossref_primary_10_3390_molecules25143130
crossref_primary_10_1126_science_abq4835
crossref_primary_10_3389_fcell_2021_730332
crossref_primary_10_1042_ETLS20190155
crossref_primary_10_1038_s41576_024_00744_8
crossref_primary_10_1111_febs_15254
Cites_doi 10.1016/j.devcel.2006.02.021
10.1016/j.cell.2016.06.051
10.7554/eLife.04591
10.1038/nmeth.1592
10.1016/j.molcel.2015.09.006
10.1242/dev.128.14.2823
10.1101/gad.1956010
10.1016/bs.ctdb.2015.11.024
10.1038/382642a0
10.1002/anie.201703191
10.1002/jez.1401510302
10.1083/jcb.201308087
10.1016/j.molcel.2015.01.013
10.1016/j.cub.2011.01.073
10.1091/mbc.e08-05-0513
10.1016/j.cell.2007.01.044
10.1038/ncomms8962
10.1038/msb.2009.102
10.1083/jcb.151.6.1257
10.1016/j.cell.2016.04.047
10.1242/dev.062208
10.1016/j.molcel.2015.08.018
10.1101/gad.10.17.2179
10.1016/j.celrep.2015.06.055
10.1242/jcs.61.1.31
10.1101/gad.8.18.2123
10.1101/gad.297051.117
10.1016/j.celrep.2013.10.045
10.1016/j.celrep.2018.01.036
10.1101/SQB.1997.062.01.003
10.1016/j.cell.2016.10.003
10.1242/dev.129.15.3705
10.1111/j.1365-2818.2006.01706.x
10.1146/annurev-genet-110410-132541
10.1021/acs.biochem.8b00001
10.1038/nprot.2017.030
10.1083/jcb.70.2.358
10.1016/S0092-8674(00)81605-0
10.1038/nature17150
10.1101/cshperspect.a012286
10.1038/369315a0
10.1016/j.cub.2003.12.036
10.1007/978-3-662-02454-6
10.7554/eLife.05003
10.1242/dev.044255
10.1007/s00427-013-0463-7
10.1016/j.cell.2016.06.010
10.1126/science.1172046
10.1016/j.devcel.2016.11.004
10.1242/dev.02729
10.1016/j.cell.2015.10.040
10.1101/gad.1013102
10.1016/j.mod.2008.06.005
10.7554/eLife.18413
10.1038/ncb2761
10.15252/embj.201593517
10.1126/science.274.5295.2075
10.1016/j.cell.2007.08.003
10.1146/annurev-cellbio-100913-013325
10.1016/S0074-7696(08)60070-4
10.1038/ncb3143
10.1083/jcb.201709007
10.1016/j.molcel.2015.07.017
10.1371/journal.pgen.1000764
10.1101/gad.209841.112
10.1091/mbc.7.2.319
10.1242/dev.02572
10.1002/mrd.22115
10.1038/358387a0
10.1016/0092-8674(86)90375-2
10.1016/0012-1606(76)90257-8
10.1016/j.cub.2008.11.066
10.1126/science.1132516
10.1016/j.cell.2015.12.038
10.1016/j.cell.2015.08.060
10.1016/j.devcel.2017.06.022
10.1016/j.virol.2012.11.017
10.1002/gene.20079
10.1242/dev.112.3.679
10.1242/dev.121.11.3723
10.1016/j.cell.2012.04.017
10.1073/pnas.0509333103
10.1242/dev.01809
10.1101/cshperspect.a002774
10.1126/science.289.5487.2120
10.1016/j.cell.2012.04.016
10.1002/2211-5463.12144
10.1126/science.1193697
10.1038/nature06498
10.1016/0092-8674(88)90216-4
10.1093/bioinformatics/bts241
10.1038/nature10879
10.1016/j.cub.2016.11.048
10.1126/science.1198374
10.1006/dbio.1998.8855
10.1016/j.cell.2017.08.048
10.1073/pnas.1515568112
10.7554/eLife.06807
10.1261/rna.2340405
10.1016/j.ydbio.2008.07.008
10.1016/j.molcel.2015.09.017
ContentType Journal Article
Copyright 2018, Kistler et al.
COPYRIGHT 2018 eLife Science Publications, Ltd.
2018, Kistler et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018, Kistler et al 2018 Kistler et al
Copyright_xml – notice: 2018, Kistler et al.
– notice: COPYRIGHT 2018 eLife Science Publications, Ltd.
– notice: 2018, Kistler et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018, Kistler et al 2018 Kistler et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.37949
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_7854bf4779164afcaf0f3af2070aecb2
PMC6191285
A596910189
30260314
10_7554_eLife_37949
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: K99 HD088675
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: P30 CA016087
– fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development
  grantid: K99HD088675
– fundername: NIH HHS
  grantid: P40 OD010949
– fundername: ;
– fundername: ;
  grantid: K99HD088675
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c603t-190b3ae14cf621374320bd029bb60af93808dbe9dba53e4ba36d5d858986ae0e3
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:29:48 EDT 2025
Thu Aug 21 14:04:18 EDT 2025
Tue Aug 05 11:17:35 EDT 2025
Fri Jul 25 11:43:46 EDT 2025
Tue Jun 17 21:24:10 EDT 2025
Fri Jun 27 03:30:40 EDT 2025
Wed Feb 19 02:36:34 EST 2025
Tue Jul 01 01:24:23 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oskar protein
cell biology
germ granules
mebraneless RNP granules
phase transition
D. melanogaster
germ cells
Language English
License http://creativecommons.org/licenses/by/4.0
2018, Kistler et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c603t-190b3ae14cf621374320bd029bb60af93808dbe9dba53e4ba36d5d858986ae0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-8454-5651
0000-0003-4405-8733
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.37949
PMID 30260314
PQID 2127571088
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_7854bf4779164afcaf0f3af2070aecb2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6191285
proquest_miscellaneous_2113265642
proquest_journals_2127571088
gale_infotracmisc_A596910189
gale_incontextgauss_ISR_A596910189
pubmed_primary_30260314
crossref_citationtrail_10_7554_eLife_37949
crossref_primary_10_7554_eLife_37949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-27
PublicationDateYYYYMMDD 2018-09-27
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-27
  day: 27
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2018
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Ni (bib72) 2011; 8
Protter (bib77) 2018; 22
Tanaka (bib88) 2011; 138
Cinalli (bib19) 2013; 15
Hanyu-Nakamura (bib33) 2008; 451
Wang (bib96) 2014; 3
Campos-Ortega (bib18) 1985
Arkov (bib6) 2006; 133
Ahuja (bib1) 2014; 224
Kedersha (bib49) 2000; 151
Juliano (bib46) 2011; 45
Lin (bib60) 2015; 60
Lin (bib59) 2006; 10
Courchaine (bib20) 2016; 35
Jain (bib40) 2016; 164
Murray (bib70) 2017; 171
Xiang (bib99) 2015; 163
Hay (bib36) 1988; 55
Gallo (bib29) 2010; 330
Eddy (bib22) 1975; 43
Aizer (bib2) 2008; 19
Han (bib32) 2012; 149
Breitwieser (bib15) 1996; 10
Rongo (bib81) 1997; 62
Jongens (bib45) 1994; 8
Yang (bib100) 2015; 112
Foe (bib25) 1983; 61
Rangan (bib78) 2009; 19
Berchowitz (bib10) 2015; 163
Nott (bib74) 2015; 57
Li (bib58) 2012; 483
Aravin (bib5) 2009; 5
Lerit (bib57) 2011; 21
Burke (bib17) 2015; 60
Kotaja (bib50) 2006; 103
Brendza (bib16) 2000; 289
Sheth (bib82) 2010; 137
Gao (bib30) 2013; 80
Zhang (bib101) 2015; 60
Reineke (bib80) 2013; 436
Kawasaki (bib48) 1998; 94
Harris (bib35) 2001; 128
Andrei (bib3) 2005; 11
Frise (bib27) 2010; 6
Mahowald (bib64) 1962; 151
Jeske (bib43) 2017; 31
Lin (bib61) 2016; 167
Webster (bib97) 2015; 59
Jeske (bib42) 2015; 12
Wheeler (bib98) 2016; 5
Boke (bib11) 2016; 166
Jones (bib44) 2007; 134
Mahowald (bib65) 1976; 70
Milin (bib68) 2018; 57
modENCODE Consortium (bib69) 2010; 330
Thomson (bib90) 2008; 125
Illmensee (bib39) 1976; 49
Niewidok (bib73) 2018; 217
Patel (bib76) 2007; 129
Kroschwald (bib51) 2015; 4
Le Thomas (bib52) 2013; 27
Hyman (bib38) 2014; 30
Beelman (bib9) 1996; 382
Liu (bib63) 2010; 24
Kato (bib47) 2012; 149
Banerjee (bib8) 2017; 56
Rapsomaniki (bib79) 2012; 28
Vanzo (bib93) 2002; 129
Bolte (bib12) 2006; 224
Trcek (bib92) 2017; 12
Gavis (bib31) 1994; 369
Vourekas (bib95) 2016; 531
Nakamura (bib71) 1996; 274
Lécuyer (bib53) 2007; 131
Su (bib87) 1998; 196
Brangwynne (bib13) 2009; 324
Slaidina (bib84) 2017; 27
Banani (bib7) 2016; 166
Feric (bib24) 2016; 165
Voronina (bib94) 2011; 3
Brangwynne (bib14) 2013; 203
Jambor (bib41) 2015; 4
Hurd (bib37) 2016; 39
Lehmann (bib54) 1986; 47
Pae (bib75) 2017; 42
Decker (bib21) 2012; 4
Frey (bib26) 2006; 314
Lehmann (bib56) 2016; 116
Anne (bib4) 2005; 132
Harper (bib34) 2002; 16
Lehmann (bib55) 1991; 112
Thomson (bib89) 2004; 40
Trcek (bib91) 2015; 6
Zheng (bib102) 2016; 6
Sinsimer (bib83) 2013; 5
Ephrussi (bib23) 1992; 358
Su (bib86) 1996; 7
Gallo (bib28) 2008; 323
Little (bib62) 2015; 17
Martinho (bib67) 2004; 14
Spradling (bib85) 1993
Markussen (bib66) 1995; 121
References_xml – volume: 10
  start-page: 601
  year: 2006
  ident: bib59
  article-title: Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2006.02.021
– volume: 166
  start-page: 637
  year: 2016
  ident: bib11
  article-title: Amyloid-like Self-Assembly of a cellular compartment
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.051
– volume: 3
  start-page: e04591
  year: 2014
  ident: bib96
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans
  publication-title: eLife
  doi: 10.7554/eLife.04591
– volume: 8
  start-page: 405
  year: 2011
  ident: bib72
  article-title: A genome-scale shRNA resource for transgenic RNAi in Drosophila
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1592
– volume: 60
  start-page: 231
  year: 2015
  ident: bib17
  article-title: Residue-by-Residue view of in Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.09.006
– volume: 128
  start-page: 2823
  year: 2001
  ident: bib35
  article-title: Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C
  publication-title: Development
  doi: 10.1242/dev.128.14.2823
– volume: 24
  start-page: 1876
  year: 2010
  ident: bib63
  article-title: Structural basis for methylarginine-dependent recognition of aubergine by tudor
  publication-title: Genes & Development
  doi: 10.1101/gad.1956010
– volume: 116
  year: 2016
  ident: bib56
  article-title: Germ plasm biogenesis--an Oskar-Centric perspective
  publication-title: Current Topics in Developmental Biology
  doi: 10.1016/bs.ctdb.2015.11.024
– volume: 382
  start-page: 642
  year: 1996
  ident: bib9
  article-title: An essential component of the decapping enzyme required for normal rates of mRNA turnover
  publication-title: Nature
  doi: 10.1038/382642a0
– volume: 56
  start-page: 11354
  year: 2017
  ident: bib8
  article-title: Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201703191
– volume: 151
  start-page: 201
  year: 1962
  ident: bib64
  article-title: Fine structure of pole cells and polar granules inDrosophila Melanogaster
  publication-title: Journal of Experimental Zoology
  doi: 10.1002/jez.1401510302
– volume: 203
  start-page: 875
  year: 2013
  ident: bib14
  article-title: Phase transitions and size scaling of membrane-less organelles
  publication-title: The Journal of cell biology
  doi: 10.1083/jcb.201308087
– volume: 57
  start-page: 936
  year: 2015
  ident: bib74
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 21
  start-page: 439
  year: 2011
  ident: bib57
  article-title: Transport of germ plasm on astral microtubules directs germ cell development in Drosophila
  publication-title: Current Biology
  doi: 10.1016/j.cub.2011.01.073
– volume: 19
  start-page: 4154
  year: 2008
  ident: bib2
  article-title: The dynamics of mammalian P body transport, assembly, and disassembly in vivo
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.e08-05-0513
– volume: 129
  start-page: 83
  year: 2007
  ident: bib76
  article-title: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.044
– volume: 6
  start-page: 7962
  year: 2015
  ident: bib91
  article-title: Drosophila germ granules are structured and contain homotypic mRNA clusters
  publication-title: Nature Communications
  doi: 10.1038/ncomms8962
– volume: 6
  start-page: 345
  year: 2010
  ident: bib27
  article-title: Systematic image-driven analysis of the spatial Drosophila embryonic expression landscape
  publication-title: Molecular Systems Biology
  doi: 10.1038/msb.2009.102
– volume: 151
  start-page: 1257
  year: 2000
  ident: bib49
  article-title: Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.151.6.1257
– volume: 165
  start-page: 1686
  year: 2016
  ident: bib24
  article-title: Coexisting liquid phases underlie nucleolar subcompartments
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.047
– volume: 138
  start-page: 2523
  year: 2011
  ident: bib88
  article-title: Drosophila Mon2 couples Oskar-induced endocytosis with actin remodeling for cortical anchorage of the germ plasm
  publication-title: Development
  doi: 10.1242/dev.062208
– volume: 60
  start-page: 208
  year: 2015
  ident: bib60
  article-title: Formation and maturation of Phase-Separated liquid droplets by RNA-Binding proteins
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 10
  start-page: 2179
  year: 1996
  ident: bib15
  article-title: Oskar protein interaction with vasa represents an essential step in polar granule assembly
  publication-title: Genes & Development
  doi: 10.1101/gad.10.17.2179
– volume: 12
  start-page: 587
  year: 2015
  ident: bib42
  article-title: The crystal structure of the Drosophila germline inducer Oskar identifies two domains with distinct vasa helicase- and RNA-Binding activities
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.06.055
– volume: 61
  start-page: 31
  year: 1983
  ident: bib25
  article-title: Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.61.1.31
– volume: 8
  start-page: 2123
  year: 1994
  ident: bib45
  article-title: Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila
  publication-title: Genes & Development
  doi: 10.1101/gad.8.18.2123
– volume: 31
  start-page: 939
  year: 2017
  ident: bib43
  article-title: The LOTUS domain is a conserved DEAD-box RNA helicase regulator essential for the recruitment of vasa to the germ plasm and nuage
  publication-title: Genes & Development
  doi: 10.1101/gad.297051.117
– volume: 5
  start-page: 1169
  year: 2013
  ident: bib83
  article-title: Germ plasm anchoring is a dynamic state that requires persistent trafficking
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.10.045
– volume: 22
  start-page: 1401
  year: 2018
  ident: bib77
  article-title: Intrinsically disordered regions can contribute promiscuous interactions to RNP granule assembly
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2018.01.036
– volume: 62
  start-page: 1
  year: 1997
  ident: bib81
  article-title: Germ plasm assembly and germ cell migration in Drosophila
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
  doi: 10.1101/SQB.1997.062.01.003
– volume: 167
  start-page: 789
  year: 2016
  ident: bib61
  article-title: Toxic PR Poly-Dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.003
– volume: 129
  start-page: 3705
  year: 2002
  ident: bib93
  article-title: Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte
  publication-title: Development
  doi: 10.1242/dev.129.15.3705
– volume: 224
  start-page: 213
  year: 2006
  ident: bib12
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: Journal of Microscopy
  doi: 10.1111/j.1365-2818.2006.01706.x
– volume: 45
  start-page: 447
  year: 2011
  ident: bib46
  article-title: Uniting germline and stem cells: the function of piwi proteins and the piRNA pathway in diverse organisms
  publication-title: Annual Review of Genetics
  doi: 10.1146/annurev-genet-110410-132541
– volume: 57
  start-page: 2470
  year: 2018
  ident: bib68
  article-title: Reentrant phase transitions and Non-Equilibrium dynamics in membraneless organelles
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.8b00001
– volume: 12
  start-page: 1326
  year: 2017
  ident: bib92
  article-title: mRNA quantification using single-molecule FISH in Drosophila embryos
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2017.030
– volume: 70
  start-page: 358
  year: 1976
  ident: bib65
  article-title: Interspecific transplantation of polar plasm between Drosophila embryos
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.70.2.358
– volume: 94
  start-page: 635
  year: 1998
  ident: bib48
  article-title: PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81605-0
– volume: 531
  start-page: 390
  year: 2016
  ident: bib95
  article-title: Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm
  publication-title: Nature
  doi: 10.1038/nature17150
– volume: 4
  start-page: a012286
  year: 2012
  ident: bib21
  article-title: P-bodies and stress granules: possible roles in the control of translation and mRNA degradation
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a012286
– volume: 369
  start-page: 315
  year: 1994
  ident: bib31
  article-title: Translational regulation of nanos by RNA localization
  publication-title: Nature
  doi: 10.1038/369315a0
– volume: 14
  start-page: 159
  year: 2004
  ident: bib67
  article-title: A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells
  publication-title: Current Biology
  doi: 10.1016/j.cub.2003.12.036
– volume-title: The Embryonic Development of Drosophila Melanogaster
  year: 1985
  ident: bib18
  doi: 10.1007/978-3-662-02454-6
– volume: 4
  start-page: e05003
  year: 2015
  ident: bib41
  article-title: Systematic imaging reveals features and changing localization of mRNAs in Drosophila development
  publication-title: eLife
  doi: 10.7554/eLife.05003
– volume: 137
  start-page: 1305
  year: 2010
  ident: bib82
  article-title: Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells
  publication-title: Development
  doi: 10.1242/dev.044255
– volume: 224
  start-page: 65
  year: 2014
  ident: bib1
  article-title: Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila
  publication-title: Development Genes and Evolution
  doi: 10.1007/s00427-013-0463-7
– volume: 166
  start-page: 651
  year: 2016
  ident: bib7
  article-title: Compositional control of Phase-Separated cellular bodies
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.010
– volume: 324
  start-page: 1729
  year: 2009
  ident: bib13
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
  doi: 10.1126/science.1172046
– volume: 39
  start-page: 560
  year: 2016
  ident: bib37
  article-title: Long Oskar controls mitochondrial inheritance in Drosophila Melanogaster
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2016.11.004
– volume: 134
  start-page: 233
  year: 2007
  ident: bib44
  article-title: Oskar controls morphology of polar granules and nuclear bodies in Drosophila
  publication-title: Development
  doi: 10.1242/dev.02729
– volume: 163
  start-page: 829
  year: 2015
  ident: bib99
  article-title: The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, Liquid-like droplets, and nuclei
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.040
– volume: 16
  start-page: 2179
  year: 2002
  ident: bib34
  article-title: The anaphase-promoting complex: it's not just for mitosis any more
  publication-title: Genes & Development
  doi: 10.1101/gad.1013102
– volume-title: Developmental Genetics of Oogenesis in the Development of Drosophila Melanogaster
  year: 1993
  ident: bib85
– volume: 125
  start-page: 865
  year: 2008
  ident: bib90
  article-title: Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins
  publication-title: Mechanisms of Development
  doi: 10.1016/j.mod.2008.06.005
– volume: 5
  start-page: e18413
  year: 2016
  ident: bib98
  article-title: Distinct stages in stress granule assembly and disassembly
  publication-title: eLife
  doi: 10.7554/eLife.18413
– volume: 15
  start-page: 839
  year: 2013
  ident: bib19
  article-title: A spindle-independent cleavage pathway controls germ cell formation in Drosophila
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2761
– volume: 35
  start-page: 1603
  year: 2016
  ident: bib20
  article-title: Droplet organelles?
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201593517
– volume: 274
  start-page: 2075
  year: 1996
  ident: bib71
  article-title: Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment
  publication-title: Science
  doi: 10.1126/science.274.5295.2075
– volume: 131
  start-page: 174
  year: 2007
  ident: bib53
  article-title: Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.003
– volume: 30
  start-page: 39
  year: 2014
  ident: bib38
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 43
  start-page: 229
  year: 1975
  ident: bib22
  article-title: Germ plasm and the differentiation of the germ cell line
  publication-title: International Review of Cytology
  doi: 10.1016/S0074-7696(08)60070-4
– volume: 17
  start-page: 558
  year: 2015
  ident: bib62
  article-title: Independent and coordinate trafficking of single Drosophila germ plasm mRNAs
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3143
– volume: 217
  start-page: 1303
  year: 2018
  ident: bib73
  article-title: Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201709007
– volume: 59
  start-page: 564
  year: 2015
  ident: bib97
  article-title: Aub and Ago3 are recruited to nuage through two mechanisms to form a Ping-Pong complex assembled by krimper
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.07.017
– volume: 5
  start-page: e1000764
  year: 2009
  ident: bib5
  article-title: Cytoplasmic compartmentalization of the fetal piRNA pathway in mice
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1000764
– volume: 27
  start-page: 390
  year: 2013
  ident: bib52
  article-title: Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state
  publication-title: Genes & Development
  doi: 10.1101/gad.209841.112
– volume: 7
  start-page: 319
  year: 1996
  ident: bib86
  article-title: Drosophila MCM protein complexes
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.7.2.319
– volume: 133
  start-page: 4053
  year: 2006
  ident: bib6
  article-title: The role of tudor domains in germline development and polar granule architecture
  publication-title: Development
  doi: 10.1242/dev.02572
– volume: 80
  start-page: 610
  year: 2013
  ident: bib30
  article-title: Next generation organelles: structure and role of germ granules in the germline
  publication-title: Molecular Reproduction and Development
  doi: 10.1002/mrd.22115
– volume: 358
  start-page: 387
  year: 1992
  ident: bib23
  article-title: Induction of germ cell formation by oskar
  publication-title: Nature
  doi: 10.1038/358387a0
– volume: 47
  start-page: 141
  year: 1986
  ident: bib54
  article-title: Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of Oskar, a maternal gene in Drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90375-2
– volume: 49
  start-page: 40
  year: 1976
  ident: bib39
  article-title: The ontogeny of germ plasm during oogenesis in Drosophila
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(76)90257-8
– volume: 19
  start-page: 72
  year: 2009
  ident: bib78
  article-title: Temporal and spatial control of germ-plasm RNAs
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.11.066
– volume: 314
  start-page: 815
  year: 2006
  ident: bib26
  article-title: FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties
  publication-title: Science
  doi: 10.1126/science.1132516
– volume: 164
  start-page: 487
  year: 2016
  ident: bib40
  article-title: ATPase-Modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 163
  start-page: 406
  year: 2015
  ident: bib10
  article-title: Regulated formation of an Amyloid-like translational repressor governs gametogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.060
– volume: 42
  start-page: 130
  year: 2017
  ident: bib75
  article-title: GCL and CUL3 control the switch between cell lineages by mediating localized degradation of an RTK
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2017.06.022
– volume: 436
  start-page: 255
  year: 2013
  ident: bib80
  article-title: Diversion of stress granules and P-bodies during viral infection
  publication-title: Virology
  doi: 10.1016/j.virol.2012.11.017
– volume: 40
  start-page: 164
  year: 2004
  ident: bib89
  article-title: Drosophilatudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning
  publication-title: Genesis
  doi: 10.1002/gene.20079
– volume: 112
  start-page: 679
  year: 1991
  ident: bib55
  article-title: The maternal gene Nanos has a central role in posterior pattern formation of the Drosophila embryo
  publication-title: Development
  doi: 10.1242/dev.112.3.679
– volume: 121
  start-page: 3723
  year: 1995
  ident: bib66
  article-title: Translational control of Oskar generates short osk, the isoform that induces pole plasm assembly
  publication-title: Development
  doi: 10.1242/dev.121.11.3723
– volume: 149
  start-page: 753
  year: 2012
  ident: bib47
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 103
  start-page: 2647
  year: 2006
  ident: bib50
  article-title: The chromatoid body of male germ cells: similarity with processing bodies and presence of dicer and microRNA pathway components
  publication-title: PNAS
  doi: 10.1073/pnas.0509333103
– volume: 132
  start-page: 2167
  year: 2005
  ident: bib4
  article-title: Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to tudor and the methyltransferase capsuléen
  publication-title: Development
  doi: 10.1242/dev.01809
– volume: 3
  start-page: a002774
  year: 2011
  ident: bib94
  article-title: RNA granules in germ cells
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a002774
– volume: 289
  start-page: 2120
  year: 2000
  ident: bib16
  article-title: A function for kinesin I in the posterior transport of oskar mRNA and staufen protein
  publication-title: Science
  doi: 10.1126/science.289.5487.2120
– volume: 149
  start-page: 768
  year: 2012
  ident: bib32
  article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.016
– volume: 6
  start-page: 1248
  year: 2016
  ident: bib102
  article-title: In vivo mapping of a dynamic ribonucleoprotein granule interactome in early Drosophila embryos
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12144
– volume: 330
  start-page: 1685
  year: 2010
  ident: bib29
  article-title: Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans
  publication-title: Science
  doi: 10.1126/science.1193697
– volume: 451
  start-page: 730
  year: 2008
  ident: bib33
  article-title: Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells
  publication-title: Nature
  doi: 10.1038/nature06498
– volume: 55
  start-page: 577
  year: 1988
  ident: bib36
  article-title: A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90216-4
– volume: 28
  start-page: 1800
  year: 2012
  ident: bib79
  article-title: easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts241
– volume: 483
  start-page: 336
  year: 2012
  ident: bib58
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
  doi: 10.1038/nature10879
– volume: 27
  start-page: 291
  year: 2017
  ident: bib84
  article-title: Quantitative differences in a single maternal factor determine survival probabilities among Drosophila germ cells
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.11.048
– volume: 330
  start-page: 1787
  year: 2010
  ident: bib69
  article-title: Identification of functional elements and regulatory circuits by Drosophila modENCODE
  publication-title: Science
  doi: 10.1126/science.1198374
– volume: 196
  start-page: 160
  year: 1998
  ident: bib87
  article-title: The cell cycle program in germ cells of the Drosophila embryo
  publication-title: Developmental Biology
  doi: 10.1006/dbio.1998.8855
– volume: 171
  start-page: 615
  year: 2017
  ident: bib70
  article-title: Structure of FUS protein fibrils and its relevance to Self-Assembly and phase separation of Low-Complexity domains
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.048
– volume: 112
  start-page: 11541
  year: 2015
  ident: bib100
  article-title: Structure of Drosophila Oskar reveals a novel RNA binding protein
  publication-title: PNAS
  doi: 10.1073/pnas.1515568112
– volume: 4
  start-page: e06807
  year: 2015
  ident: bib51
  article-title: Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules
  publication-title: eLife
  doi: 10.7554/eLife.06807
– volume: 11
  start-page: 717
  year: 2005
  ident: bib3
  article-title: A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies
  publication-title: RNA
  doi: 10.1261/rna.2340405
– volume: 323
  start-page: 76
  year: 2008
  ident: bib28
  article-title: Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2008.07.008
– volume: 60
  start-page: 220
  year: 2015
  ident: bib101
  article-title: RNA controls PolyQ protein phase transitions
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2015.09.017
SSID ssj0000748819
Score 2.452045
Snippet Germ granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Biology
Cell adhesion & migration
Cell Biology
Cell cycle
Cell Differentiation - genetics
Cell division
Cell Division - genetics
Cell fate
Cell Nucleus - genetics
Clonal deletion
Cytoplasmic Granules - genetics
Displays (Marketing)
Drosophila
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Drosophila Proteins - genetics
Eggs
Embryo
Embryonic development
Embryonic Development - genetics
Embryos
Gene Expression Regulation, Developmental
Gene regulation
Genes
Genetic regulation
Germ cells
Germ Cells - growth & development
Germ Cells - metabolism
germ granules
Granule cells
Hydrogels
Insects
Localization
mebraneless RNP granules
Microscopy
Oskar protein
phase transition
Phase transitions
Post-transcription
Proteins
Statistical analysis
Synergism
Transcription (Genetics)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPQEEG9YQUmsR2Yh8LtCqIl4BKlThY49huV6yy1Wb30H_PjJOuNioSFy45xGPFHn_2jJ3xN4zt-9oHX7Yql64uchm1yo0PdV7RPydjwIOjA_3PX-qTU_nxTJ1tpfqimLCBHnhQ3EGjlXRRNg36MRJiC7GIAmKFUIXQurT6os3b2kylNbhBYJZmuJDXoMk8CJ9mMbwRCD8zMUGJqf_merxlkKbBklvW5_geuzu6jfxwaO59dit0D9jtIZHk1S779e0CrRFfkeEZyIc874ipGJb8a_8bn5cp7C70nE7qOV3ComMyvoj8_TKlMpjNAYVw5Agxc36OK3aS7R-y0-Ojn-9O8jFtQt7WhVjlaOKdgFDKNtZVKdBFqArni8o4HA6IRuhCexeMd6BEkA5E7ZXXShtdQyiCeMR2OmzoE8YL8IUEohxTIHWJdQQoBUaJqKVxTcZeX2vStiOnOKW2mFvcW5DabVK7TWrP2P5G-HKg0vi72Fsako0I8V-nF4gKO6LC_gsVGXtFA2qJ4aKjEJpzWPe9_fDjuz1UpjbEU4Zf2huF4gJb3eLEaqfF12iw48TubSLER69M64y93BRTTQpW68JiTTK4xUc_WWIzHg_g2fRGEIebKGXGmgmsJt2dlnSzi0T7jVtddCbU0_-hn2fsDnp-KfClavbYzmq5Ds_Ru1q5F2ki_QG-1SUv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQQb1hBSaxHZin1B5VAXxElBpJQ6WHdvbFatku9k98O-ZcbKhEYjLHuKJ1vGM5xtPJt8QcuhK511ei5TbMkt5kCJVzpdpge-clDLOWEzof_xUnp7x9zMxGxJu3VBWufOJ0VG7tsYc-VFkIgc4lPLl6iLFrlH4dnVooXGVXEPqMrTqalaNORaARwmI13-WVwFwHvkPi-BfMDBCNQGiyNf_t1e-BEvTkslLGHRyi9wcgkd63Gv7Nrnimzvket9O8tdd8uPLOWAS3SD89BREjjbIV2zW9HP3E35XsfjOdxTz9RQ_xcJkGW0DfbOODQ0WSwNCoD-0myWdg9-Ost09cnby9vvr03RonpDWZcY2KQC9ZcbnvA5lkTMIFIrMuqxQFpRigmIyk8565awRzHNrWOmEk0IqWRqfeXaf7DUw0YeEZsZl3CDxmDBc5nAPM0IYJViQXNkqIc93K6nrgVkcG1wsNZwwcNl1XHYdlz0hh6PwqifU-LfYK1TJKIIs2PFCu57rYVPpSgpuA68qiHG5CbUJWWAmFODGjK9tkZBnqFCNPBcNFtLMzbbr9LtvX_WxUKVCtjL4p4NBKLQw6xq2Vz0d3lmDHrZ3p_8YY0KejsN4J5asNb7dogwc9CFa5jCNB73xjE_DkMmN5Twh1cSsJo87HWkW55H8Gw68EFKIR_-f1j65AZFdLGwpqgOyt1lv_WOInjb2SdwivwGL7xvj
  priority: 102
  providerName: ProQuest
Title Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells
URI https://www.ncbi.nlm.nih.gov/pubmed/30260314
https://www.proquest.com/docview/2127571088
https://www.proquest.com/docview/2113265642
https://pubmed.ncbi.nlm.nih.gov/PMC6191285
https://doaj.org/article/7854bf4779164afcaf0f3af2070aecb2
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2ISReEN8rjCqgPSGlpLEd209og00DsTENKlXiwbJju6uo0tG0EvvvuXPSaoGJlzzEZ8U-n30_O-ffEXLgCufdsOQps0WWsiB5qpwv0hz_OSllnLF4oH92XpyO2OcxH2-RdTLOVoH1nVs7zCc1WswGv3_dvIcJD_h1IMAbvvNfpsEPKFiW2ia74JIEpjI4a3F-XJIF2GlM8pFnPHKZjpu7en_X73inSOL_71J9y1d14yhvOaaTh-RBiyiTw8YEHpEtXz0m95ockzdPyI-LK3BUyRJ9UsNL5JIKSYzNIvla_4TndYzI83WCh_gJ3s_CE7RkHpKPi5jlYDozIASDisY0SyawmEfZ-ikZnRx__3CathkV0rLI6DIF72-p8UNWhiIfUkAPeWZdlisLI2WCojKTznrlrOHUM2to4biTXCpZGJ95-ozsVNDQPZJkxmXMIBsZN0wOoQ41nBvFaZBMWdEjb9ea1GVLN45ZL2Yath2odh3VrqPae-RgI3zdsGzcLXaEQ7IRQWrs-GK-mOh2pmkhObOBCQHAl5lQmpAFakIOa5vxpc175A0OqEbyiwqjayZmVdf607dLfchVoZDCDL603wqFObS6hDlXdovX1qDXJqsjVz4ANil75PWmGGtiHFvl5yuUgd0_QGgGzXjeGM-mNxTp3eiQ9YjomFWnu92SanoVGcFhFww4g7_4f6tfkvsA92K0Sy72yc5ysfKvAFItbZ9si7Hok92j4_OLy348mOjHKfQH4GsjlA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEIIXxG8CAwIaL0jZkthO7AeEBmNqWTcQbFIlHowdO11FlZamFdo_xd_InZOWRSDe9tKH-tI657O_O_v8HSHbNrPOJgWPmMniiJWCR9K6LErxzElKbbXBDf2j46x3yj4M-XCD_FrdhcG0ytWa6BdqOy1wj3zXM5EDHArxZvYjwqpReLq6KqHRmMWhO_8JIVv9ur8P4_syTQ_en7zrRW1VgajIYrqIAAEN1S5hRZmlCQUETWNj41Qa6K0uJRWxsMZJazSnjhlNM8ut4EKKTLvYUfjdK-QqAG-MwV4-zNd7OgDHAhC2uQaYA1DvusG4dDsUjF52gM_XB_gbBS7AYDdF8wLmHdwiN1tnNdxrrOs22XDVHXKtKV95fpd8_XQGGBguEO4ayiMbVsiPrOfhx_o7fM58sp-rQzwfCPHqF27OhdMy3J_7AgrjiQYhsBe000k4ApzwsvU9cnopar1PNivo6EMSxtrGTCPRGddMJPAM1ZxryWkpmDR5QF6tNKmKlskcC2pMFEQ0qHbl1a682gOyvRaeNQQe_xZ7i0OyFkHWbf_FdD5S7SRWueDMlCzPwadmuix0GZdUlyksm9oVJg3ICxxQhbwaFSbujPSyrlX_y2e1x2UmkR0N_mmrFSqn0OsCpnPRbV5Zg2qXk1r9Mf6APF8345OYIle56RJlEnDFOcSTAXnQGM_6bSgyx9GEBSTvmFXndbst1fjMk41DgA0uDH_0_249I9d7J0cDNegfHz4mN8Cr9Ek1ab5FNhfzpXsCntvCPPXTJSTfLnt-_gben1jE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviN9kDAhovCCFJbGdxA8IbXTVykapBpMm8WDs2O6qVWlpWqH9a_x13CVpWQTibS99qC-tY9_5u7PP3xGyYxJjTZTzgOkkDJjLeCCMTYIYz5yEUEZp3ND_NEgOT9nHM362QX6t7sJgWuVqTawWajPNcY98t2IiBziEgM01aRHDbu_97EeAFaTwpHVVTqNWkSN7-RPCt_Jdvwtz_TqOewdfPxwGTYWBIE9CuggADTVVNmK5S-KIAprGoTZhLDT0XDlBszAz2gqjFaeWaUUTw03GM5ElyoaWwu_eIJspRkUdsrl_MBierHd4AJwzwNv6UmAKsL1rj8fOvqVgAqIFg1W1gL8x4QoothM2ryBg7y6507iu_l6ta_fIhi3uk5t1McvLB-Tb8BwQ0V8g-NUESMYvkC1Zzf3P5QV8zqrUP1v6eFrg40Uw3Krzp87vzqtyCuOJAiHQHtTaiT8C1Khky4fk9FoG9hHpFNDRJ8QPlQmZQtozrlgWwTNUca4Epy5jQqceebMaSZk3vOZYXmMiIb7BYZfVsMtq2D2ysxae1XQe_xbbxylZiyAHd_XFdD6SjUnLNONMO5am4GEz5XLlQkeVi2ERVTbXsUde4YRKZNkoUF9HalmWsv_lRO5xkQjkSoN_2m6E3BR6nYNx5-3mlTbIZnEp5R9T8MjLdTM-iQlzhZ0uUSYCx5xDdOmRx7XyrN-GIo8cjZhH0pZatV633VKMzyvqcQi3waHhW__v1gtyC2xTHvcHR0_JbXAxqwybON0mncV8aZ-BG7fQzxt78cn36zbR36Z_Xl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transitioned+nuclear+Oskar+promotes+cell+division+of+Drosophila+primordial+germ+cells&rft.jtitle=eLife&rft.au=Kistler%2C+Kathryn+E&rft.au=Trcek%2C+Tatjana&rft.au=Hurd%2C+Thomas+R&rft.au=Chen%2C+Ruoyu&rft.date=2018-09-27&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.37949&rft.externalDocID=A596910189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon