Non-apoptotic functions of apoptosis-regulatory proteins

During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initi...

Full description

Saved in:
Bibliographic Details
Published inEMBO reports Vol. 13; no. 4; pp. 322 - 330
Main Authors Galluzzi, Lorenzo, Kepp, Oliver, Trojel-Hansen, Christina, Kroemer, Guido
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2012
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1469-221X
1469-3178
1469-3178
DOI10.1038/embor.2012.19

Cover

Loading…
Abstract During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation.
AbstractList During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation.
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation.
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. [PUBLICATION ABSTRACT]
Author Kepp, Oliver
Trojel‐Hansen, Christina
Galluzzi, Lorenzo
Kroemer, Guido
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Galluzzi
  fullname: Galluzzi, Lorenzo
  organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France
– sequence: 2
  givenname: Oliver
  surname: Kepp
  fullname: Kepp, Oliver
  organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France
– sequence: 3
  givenname: Christina
  surname: Trojel-Hansen
  fullname: Trojel-Hansen, Christina
  organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France
– sequence: 4
  givenname: Guido
  surname: Kroemer
  fullname: Kroemer, Guido
  email: kroemer@orange.fr
  organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22402666$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URF8s2aJILFhN8GPGjw0SiUqDVIpUWrU7y3Gug8vEHuwZIP-eSSZEpQJWvrK_c-89PsfoIMQACL0geEwwk29gNY9pTDGhY6KeoCNSclUwIuTBrqaU3B2i45zvMcaVEvIZOqS0xJRzfoTkZQyFaWLTxtbbkeuCbX0MeRTdaLjOPhcJll1t2pjWoybFFnzIp-ipM3WG57vzBN28P7uezoqLT-cfpu8uCssxU0VVUrOgwgKpDGNKOIUVBorVvLRGihIEc2UJZsGk5KQSmPWoKh1Qxp1bWHaC3g59m26-goWF0CZT6yb5lUlrHY3Xf74E_0Uv43fNGCWkon2D17sGKX7rILd65bOFujYBYpe14kxSIYjqyVePyPvYpdC70wT3u0labamXDxfab_L7T3ugGACbYs4J3B4hWG8y09vM9CYzvW3IHvHWt2aTQu_H1_9UVYPqh69h_f8R-uzj5GpTb3XjQZd7SVhCemjy74N2dnxu4ed-kElfNRdMVPr28lxPpndkdj37rCfsF8pCy08
CODEN ERMEAX
CitedBy_id crossref_primary_10_1016_j_neuroscience_2014_07_027
crossref_primary_10_1038_cddis_2013_436
crossref_primary_10_1111_cpr_13108
crossref_primary_10_1016_j_biocel_2013_06_024
crossref_primary_10_1089_ars_2013_5417
crossref_primary_10_1083_jcb_201303144
crossref_primary_10_1002_bies_201300052
crossref_primary_10_3390_cells8111330
crossref_primary_10_1038_nrd4145
crossref_primary_10_1007_s10741_016_9531_1
crossref_primary_10_3892_ol_2018_9362
crossref_primary_10_1007_s10495_023_01835_3
crossref_primary_10_1242_jcs_186411
crossref_primary_10_1007_s10495_020_01630_4
crossref_primary_10_3389_fcell_2020_598112
crossref_primary_10_1080_15384101_2015_1026493
crossref_primary_10_1111_dgd_12066
crossref_primary_10_1038_cdd_2017_36
crossref_primary_10_1161_CIRCRESAHA_112_268946
crossref_primary_10_1007_s13105_016_0545_x
crossref_primary_10_1016_j_neurobiolaging_2020_12_013
crossref_primary_10_1038_s41419_022_04912_8
crossref_primary_10_1016_j_arr_2012_11_004
crossref_primary_10_1002_pro_2148
crossref_primary_10_1083_jcb_201209050
crossref_primary_10_3389_fimmu_2014_00327
crossref_primary_10_1007_s11357_019_00131_w
crossref_primary_10_1182_blood_2016_05_715961
crossref_primary_10_1080_15384101_2017_1371882
crossref_primary_10_1038_s41598_024_77026_0
crossref_primary_10_1016_j_semcancer_2013_05_008
crossref_primary_10_1016_j_ejcb_2018_01_005
crossref_primary_10_1007_s12035_012_8289_2
crossref_primary_10_1155_2013_705294
crossref_primary_10_4161_15384101_2014_949082
crossref_primary_10_1016_j_celrep_2022_111826
crossref_primary_10_1016_j_tcb_2013_08_002
crossref_primary_10_1016_j_ceca_2023_102759
crossref_primary_10_1016_j_tcb_2016_04_006
crossref_primary_10_1111_jcmm_12748
crossref_primary_10_1016_j_neuro_2015_06_001
crossref_primary_10_1016_j_yexcr_2023_113860
crossref_primary_10_1038_cddis_2013_454
crossref_primary_10_1038_cdd_2017_43
crossref_primary_10_1515_bmc_2016_0015
crossref_primary_10_1093_infdis_jiaa639
crossref_primary_10_1007_s12035_014_8794_6
crossref_primary_10_1016_j_neuroscience_2015_07_040
crossref_primary_10_1016_j_tcb_2020_03_004
crossref_primary_10_3389_fendo_2022_924299
crossref_primary_10_1016_j_jhep_2013_03_033
crossref_primary_10_1074_jbc_M112_408633
crossref_primary_10_18632_oncoscience_61
crossref_primary_10_1038_s41418_017_0012_4
crossref_primary_10_1016_j_bbabio_2016_04_005
crossref_primary_10_1038_ncb2788
crossref_primary_10_3109_15376516_2015_1043762
crossref_primary_10_3389_fphar_2021_626515
crossref_primary_10_1007_s11626_015_9964_1
crossref_primary_10_1007_s10571_014_0104_3
crossref_primary_10_1038_nrm3479
crossref_primary_10_3109_10428194_2013_842992
crossref_primary_10_1371_journal_pone_0139616
crossref_primary_10_1371_journal_pone_0072592
crossref_primary_10_1002_iub_2407
crossref_primary_10_4161_cc_23599
crossref_primary_10_1016_j_ejpb_2024_114599
crossref_primary_10_1016_j_euroneuro_2015_07_019
crossref_primary_10_1038_onc_2014_96
crossref_primary_10_1038_s41467_022_28265_0
crossref_primary_10_3389_fcell_2022_844844
crossref_primary_10_3390_ijms16035528
crossref_primary_10_4155_tde_12_75
crossref_primary_10_3390_cancers10120499
crossref_primary_10_1016_j_lfs_2020_118766
crossref_primary_10_1038_s41577_022_00760_x
crossref_primary_10_1016_j_tins_2013_07_001
crossref_primary_10_1016_j_bbamcr_2021_119191
crossref_primary_10_1016_j_bbadis_2012_11_021
crossref_primary_10_1016_j_molcel_2012_05_032
Cites_doi 10.1167/iovs.11-7570
10.1073/pnas.0907131106
10.1038/ni.2060
10.1002/j.1460-2075.1996.tb01090.x
10.1101/gad.1658508
10.1016/j.febslet.2011.05.061
10.1016/j.cell.2004.05.004
10.1182/blood-2002-06-1778
10.1038/sj.cdd.4401950
10.1038/nrm2970
10.1046/j.1365-2184.2003.00253.x
10.1038/nrm2308
10.1038/nature09878
10.4049/jimmunol.178.4.2429
10.1016/j.cell.2005.06.014
10.1016/S0968-0004(00)01585-1
10.1126/science.7535475
10.1093/emboj/17.24.7209
10.1007/s000180050299
10.1242/jeb.00241
10.1182/blood-2002-03-0686
10.1016/j.immuni.2011.08.014
10.1038/sj.emboj.7600104
10.1038/sj.cdd.4401307
10.4161/cc.6.24.5046
10.4049/jimmunol.162.9.5374
10.1128/MCB.20.13.4745-4753.2000
10.1126/science.279.5358.1954
10.1073/pnas.0809414106
10.1152/physrev.00013.2006
10.4049/jimmunol.181.10.6810
10.1016/j.cell.2007.08.047
10.1016/0092-8674(95)90490-5
10.1038/nature09982
10.1038/nm.2385
10.1126/science.1201940
10.1016/j.bbadis.2005.09.004
10.1007/s12026-011-8249-3
10.1038/nrm2083
10.1038/nature03434
10.1038/sj.cdd.4402232
10.1016/j.molcel.2006.12.021
10.1093/emboj/cdg533
10.1016/j.ceb.2010.07.014
10.1038/nn.2709
10.1126/science.1071553
10.1038/cdd.2008.28
10.1016/S1074-7613(00)80609-3
10.1038/sj.emboj.7600461
10.1002/eji.200324013
10.1074/jbc.M208955200
10.1016/S0092-8674(00)80849-1
10.4049/jimmunol.179.8.5291
10.1196/annals.1427.020
10.1146/annurev.physiol.70.021507.105852
10.1371/journal.ppat.1000018
10.1242/jcs.107.2.363
10.1073/pnas.0603445103
10.1038/nature10558
10.1038/sj.emboj.7601276
10.1038/cdd.2011.34
10.1016/j.cell.2007.12.040
10.1038/nrm2239
10.1038/cdd.2008.150
10.1016/j.ajhg.2010.03.002
10.1038/nrm2952
10.1038/sj.cdd.4401787
10.1146/annurev.biochem.75.062003.101730
10.1038/ni.1638
10.1016/j.molcel.2008.05.014
10.1016/j.euroneuro.2009.08.005
10.4049/jimmunol.175.5.3033
10.1016/j.cell.2009.05.021
10.1038/sj.onc.1209609
10.1016/S0092-8674(00)80943-5
10.1016/S1074-7613(00)80549-X
10.1073/pnas.2636393100
10.1016/j.molimm.2010.10.023
10.1016/j.cell.2005.03.016
10.1038/nature02229
10.1016/S1074-7613(00)80535-X
10.1038/ni976
10.1016/S1097-2765(04)00028-0
10.1016/j.immuni.2008.03.013
10.1084/jem.187.9.1477
10.1038/sj.onc.1206322
10.1093/emboj/cdg355
10.1038/nature09857
10.1038/ncb1575
10.1038/cdd.2011.96
10.1038/ncb1644
10.1038/ni1025
10.1016/j.cell.2007.01.045
10.1038/nature02451
10.1038/cdd.2010.151
10.1038/nature05378
10.1074/jbc.M108029200
10.1038/cdd.2008.24
10.2174/1389450033490867
10.1073/pnas.0603950103
10.1084/jem.193.2.247
10.1038/35069004
10.1371/journal.ppat.1000142
10.1016/j.cell.2007.03.017
10.1093/emboj/16.15.4628
10.1016/j.molcel.2007.09.030
10.1074/jbc.275.14.10453
10.1128/MCB.22.10.3509-3517.2002
10.1111/j.1749-6632.1980.tb47198.x
10.1038/nature10273
10.1093/molehr/gaq082
10.1016/j.cellsig.2007.05.016
10.1038/sj.onc.1210042
10.1038/ncb2330
10.1126/science.1123480
ContentType Journal Article
Copyright European Molecular Biology Organization 2012
Copyright © 2012 European Molecular Biology Organization
Copyright Nature Publishing Group Apr 2012
Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization
Copyright_xml – notice: European Molecular Biology Organization 2012
– notice: Copyright © 2012 European Molecular Biology Organization
– notice: Copyright Nature Publishing Group Apr 2012
– notice: Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/embor.2012.19
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE


Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1469-3178
EndPage 330
ExternalDocumentID PMC3321152
2669388901
22402666
10_1038_embor_2012_19
EMBR201219
ark_67375_WNG_BCX1HTHS_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-Q-
.55
0R~
1OC
24P
29G
2WC
33P
36B
39C
3O-
3V.
53G
5GY
5VS
70F
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DWQXO
E3Z
EBLON
EBS
EJD
EMB
EMOBN
F5P
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
L7B
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M0L
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHF
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TR2
UKHRP
WBKPD
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
WYJ
X7M
ZGI
ZZTAW
AAJSJ
AAMMB
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEUYN
AFWVQ
AGQPQ
AGXDD
AIDQK
AIDYY
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6039-542ad27ce15a3397f9090e209b4ca874e73f44ead388615703ce194fe236ffdc3
IEDL.DBID BENPR
ISSN 1469-221X
1469-3178
IngestDate Thu Aug 21 14:14:29 EDT 2025
Thu Sep 04 23:08:34 EDT 2025
Fri Jul 25 10:51:52 EDT 2025
Mon Jul 21 06:02:18 EDT 2025
Thu Apr 24 23:06:24 EDT 2025
Tue Jul 01 02:52:11 EDT 2025
Wed Jan 22 16:52:32 EST 2025
Tue Aug 12 01:10:39 EDT 2025
Wed Oct 30 09:47:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords BCL‐2
apoptosome
AIF
caspase
death receptor
mitochondrial membrane permeabilization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6039-542ad27ce15a3397f9090e209b4ca874e73f44ead388615703ce194fe236ffdc3
Notes ArticleID:EMBR201219
ark:/67375/WNG-BCX1HTHS-B
istex:A63D296EAE8B23A4E9130F9F6F49ADA6FA2002BC
See
Glossary
for abbreviations used in this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/embor.2012.19
PMID 22402666
PQID 1015782519
PQPubID 26169
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321152
proquest_miscellaneous_963827719
proquest_journals_1015782519
pubmed_primary_22402666
crossref_primary_10_1038_embor_2012_19
crossref_citationtrail_10_1038_embor_2012_19
wiley_primary_10_1038_embor_2012_19_EMBR201219
springer_journals_10_1038_embor_2012_19
istex_primary_ark_67375_WNG_BCX1HTHS_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
PublicationTitle EMBO reports
PublicationTitleAbbrev EMBO Rep
PublicationTitleAlternate EMBO Rep
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Watanabe C, Shu GL, Zheng TS, Flavell RA, Clark EA (2008) Caspase 6 regulates B cell activation and differentiation into plasma cells. J Immunol 181: 6810-6819
Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509
Huang Q et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17: 860-866
Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM (2011) Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 8646-8656
Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679-4689
Felmer R, Horvat S, Clinton M, Clark AJ (2003) Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes. Cell Prolif 36: 45-54
Kuninaka S et al (2007) Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26: 2395-2406
Zermati Y et al (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624-637
Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446-4453
O'Reilly LA, Huang DC, Strasser A (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979-6990
Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19: 2056-2067
Sohn D, Budach W, Janicke RU (2011) Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 18: 1664-1674
Belzacq AS, Brenner C (2003) The adenine nucleotide translocator: a new potential chemotherapeutic target. Curr Drug Targets 4: 517-524
Balachandran S, Venkataraman T, Fisher PB, Barber GN (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 178: 2429-2439
Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341: 552-563
Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700-714
Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112
Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11: 621-632
Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122: 593-603
Pospisilik JA et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131: 476-491
Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8: 297-303
Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J (2005) Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 175: 3033-3044
Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423-1433
Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330-334
De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100: 1310-1317
Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55: 423-436
Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008b) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15: 1113-1123
Li P et al (1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80: 401-411
Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20: 4745-4753
D'Amelio M et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 14: 69-76
Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8: 49-62
Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15: 113-122
Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165-187
Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164-180
Ribeil JA et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445: 102-105
Joza N et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15: 1009-1018
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59
Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106: 3935-3940
Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550-555
Buttner S et al (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25: 233-246
Gil-Gomez G, Berns A, Brady HJ (1998) A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 17: 7209-7218
Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117-121
Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459-5470
Liu Y, Bertram CC, Shi Q, Zinkel SS (2011) Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. Cell Death Differ 18: 841-852
Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci 25: 215-221
Ramos-Miguel A, Esteban S, Garcia-Sevilla JA (2010) The time course of unconditioned morphine-induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA-15 as a FADD-ERK binding partner in striatal plasticity. Eur Neuropsychopharmacol 20: 49-64
Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207-1216
Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35: 572-582
Bauler LD, Duckett CS, O'Riordan MX (2008) XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 4: e1000142
Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13: 329-340
Hao Z et al (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579-591
Shen SM, Yu Y, Wu ZX, Zheng Y, Chen GQ, Wang LS (2011) Apoptosis-inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation. FEBS Lett 585: 2307-2312
Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561-574
Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399
Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, Raas-Rothschild A, Nadjari M, Kaestner KH, Elpeleg O (2012) Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab (in the press)
Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700
Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-κB through RIP, NIK and IKKα kinases. Eur J Immunol 33: 1998-2006
Lu QL, Hanby AM, Nasser Hajibagheri MA, Gschmeissner SE, Lu PJ, Taylor-Papadimitriou J, Krajewski S, Reed JC, Wright NA (1994) Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 107: 363-371
Keller M, Ruegg A, Werner S, Beer HD (
2011; 479
2010; 11
2011; 477
2008a; 4
2005; 175
2004; 23
2002; 277
2011; 52
1999; 162
2012; 19
2004; 5
1998; 279
2008; 30
2011; 471
2003; 278
2011; 474
2010; 22
2007; 178
2001; 410
2007; 179
1998; 17
2010; 20
2003; 206
2006; 25
2008; 28
2007; 8
2007; 9
2007; 6
1999; 55
1998; 92
2008; 22
2009; 16
2007; 445
2007; 19
2003; 36
2008b; 15
2004; 427
1996; 15
2003; 33
2004; 429
2005; 121
2005; 122
1995; 267
2000; 101
2007; 87
2008; 132
2003; 100
2003; 22
2006; 103
1998; 9
1998; 8
2009; 106
2006; 75
2008; 9
2011; 13
2011; 12
2006; 1762
2008; 4
2011; 14
2011; 17
2008; 70
2011; 18
2007; 28
2002; 100
2007; 131
2003; 4
1997; 16
1994; 107
1980; 341
2007; 25
2007; 26
2011; 333
2007; 129
2002; 296
2012
2000; 25
2006; 13
2005; 434
2000; 20
2008; 15
2011; 35
2000; 275
2009; 137
2006; 312
2008; 181
2004; 11
2010; 86
2008; 1147
1995; 80
2001; 193
2011; 51
2002; 22
2004; 13
2011; 48
2003; 61
1998; 187
2004; 117
2011; 585
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_100_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_29_1
e_1_2_12_103_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
Papadopoulos V (e_1_2_12_81_1) 2003; 61
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_102_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
Berger I (e_1_2_12_75_1) 2012
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_105_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
9303307 - EMBO J. 1997 Aug 1;16(15):4628-38
16754849 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8995-9000
14749836 - Nature. 2004 Jan 29;427(6973):461-5
18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
15010700 - EMBO J. 2004 Mar 10;23(5):1207-16
14663139 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15782-7
12589253 - Ann Pharm Fr. 2003 Jan;61(1):30-50
15800627 - Nature. 2005 Mar 31;434(7033):658-62
21368761 - Nature. 2011 Mar 17;471(7338):373-6
15163405 - Cell. 2004 May 28;117(5):561-74
22000287 - Immunity. 2011 Oct 28;35(4):572-82
19223583 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3935-40
22019070 - Mol Genet Metab. 2011 Dec;104(4):517-20
9003774 - EMBO J. 1996 Dec 16;15(24):6979-90
21760595 - Cell Death Differ. 2012 Jan;19(1):107-20
12529375 - J Biol Chem. 2003 Mar 28;278(13):11633-41
12970760 - Nat Immunol. 2003 Oct;4(10):1016-22
21111482 - Mol Immunol. 2011 Jan;48(4):610-22
14535652 - Curr Drug Targets. 2003 Oct;4(7):517-24
10228556 - Cell Mol Life Sci. 1999 Mar;55(3):423-36
18981099 - J Immunol. 2008 Nov 15;181(10):6810-9
17167422 - Nature. 2007 Jan 4;445(7123):102-5
9529147 - Immunity. 1998 Mar;8(3):297-303
16917506 - EMBO J. 2006 Sep 6;25(17):4061-73
19076440 - Ann N Y Acad Sci. 2008 Dec;1147:171-9
14730360 - Nat Immunol. 2004 Feb;5(2):199-207
18042457 - Mol Cell. 2007 Nov 30;28(4):624-37
12853472 - EMBO J. 2003 Jul 15;22(14):3568-79
9565639 - J Exp Med. 1998 May 4;187(9):1477-85
16645094 - Science. 2006 Apr 28;312(5773):572-6
17901875 - Cell Death Differ. 2008 Jan;15(1):113-22
18309324 - Cell Death Differ. 2008 Jul;15(7):1113-23
15526035 - EMBO J. 2004 Nov 24;23(23):4679-89
6249159 - Ann N Y Acad Sci. 1980;341:552-63
17981116 - Cell. 2007 Nov 2;131(3):476-91
18516228 - PLoS Pathog. 2008 May;4(5):e1000018
12970672 - Cell Death Differ. 2004 Jan;11(1):90-8
21804564 - Nature. 2011 Sep 15;477(7364):330-4
12756287 - J Exp Biol. 2003 Jun;206(Pt 12):2049-57
10848600 - Mol Cell Biol. 2000 Jul;20(13):4745-53
22002608 - Nature. 2011 Nov 3;479(7371):117-21
18769721 - PLoS Pathog. 2008;4(8):e1000142
20362274 - Am J Hum Genet. 2010 Apr 9;86(4):639-49
21368762 - Nature. 2011 Mar 17;471(7338):368-72
19667203 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14524-9
9491891 - Cell. 1998 Feb 20;92(4):501-9
8207068 - J Cell Sci. 1994 Feb;107 ( Pt 2):363-71
10782088 - Trends Biochem Sci. 2000 May;25(5):215-21
18570872 - Mol Cell. 2008 Jun 20;30(6):689-700
19758790 - Eur Neuropsychopharmacol. 2010 Jan;20(1):49-64
10228014 - J Immunol. 1999 May 1;162(9):5374-9
10744735 - J Biol Chem. 2000 Apr 7;275(14):10453-62
21475302 - Cell Death Differ. 2011 Oct;18(10):1664-74
16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33
21552281 - Nature. 2011 Jun 2;474(7349):96-9
21151119 - Nat Neurosci. 2011 Jan;14(1):69-76
10830166 - Cell. 2000 May 12;101(4):389-99
16122426 - Cell. 2005 Aug 26;122(4):593-603
16788063 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9918-23
15907471 - Cell. 2005 May 20;121(4):579-91
18439848 - Immunity. 2008 May;28(5):651-61
19524512 - Cell. 2009 Jun 12;137(6):1100-11
21664907 - FEBS Lett. 2011 Jul 21;585(14):2307-12
20926603 - Mol Hum Reprod. 2011 Feb;17(2):127-34
14967141 - Mol Cell. 2004 Feb 13;13(3):329-40
17417626 - Nat Cell Biol. 2007 May;9(5):550-5
18846107 - Cell Death Differ. 2009 Jan;16(1):3-11
11208865 - J Exp Med. 2001 Jan 15;193(2):247-54
20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32
17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52
21969293 - Invest Ophthalmol Vis Sci. 2011 Nov;52(12):8646-56
18559474 - Genes Dev. 2008 Jun 15;22(12):1577-90
21926988 - Nat Cell Biol. 2011 Oct;13(10):1224-33
21725296 - Nat Med. 2011 Jul;17(7):860-6
21113148 - Cell Death Differ. 2011 May;18(5):841-52
18329368 - Cell. 2008 Mar 7;132(5):818-31
17644308 - Cell Signal. 2007 Oct;19(10):2056-67
17906618 - Nat Cell Biol. 2007 Nov;9(11):1243-52
17244531 - Mol Cell. 2007 Jan 26;25(2):233-46
17237344 - Physiol Rev. 2007 Jan;87(1):99-163
16239930 - Cell Death Differ. 2006 Jul;13(7):1147-55
9857178 - EMBO J. 1998 Dec 15;17(24):7209-18
17680735 - Annu Rev Physiol. 2008;70:73-91
16116191 - J Immunol. 2005 Sep 1;175(5):3033-44
17130845 - Oncogene. 2007 Apr 12;26(17):2395-406
12642862 - Oncogene. 2003 Mar 20;22(11):1589-99
18309327 - Cell Death Differ. 2008 Jun;15(6):1009-18
7859282 - Cell. 1995 Feb 10;80(3):401-11
16236486 - Biochim Biophys Acta. 2006 Feb;1762(2):164-80
11971981 - Mol Cell Biol. 2002 May;22(10):3509-17
16756489 - Annu Rev Biochem. 2006;75:165-87
11832478 - J Biol Chem. 2002 Apr 19;277(16):13430-7
20823910 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14
16892087 - Oncogene. 2006 Aug 7;25(34):4744-56
17418785 - Cell. 2007 Apr 6;129(1):45-56
12884866 - Eur J Immunol. 2003 Jul;33(7):1998-2006
21772280 - Nat Immunol. 2011 Aug;12(8):715-23
20729050 - Curr Opin Cell Biol. 2010 Dec;22(6):852-8
17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62
22038529 - Immunol Res. 2011 Dec;51(2-3):227-36
21868666 - Science. 2011 Aug 26;333(6046):1109-12
12149212 - Blood. 2002 Aug 15;100(4):1310-7
17277150 - J Immunol. 2007 Feb 15;178(4):2429-39
9506948 - Science. 1998 Mar 20;279(5358):1954-8
9586634 - Immunity. 1998 Apr;8(4):439-49
18641654 - Nat Immunol. 2008 Sep;9(9):1037-46
7535475 - Science. 1995 Mar 31;267(5206):2000-3
14532118 - EMBO J. 2003 Oct 15;22(20):5459-70
12558660 - Cell Prolif. 2003 Feb;36(1):45-54
17911615 - J Immunol. 2007 Oct 15;179(8):5291-300
12040174 - Science. 2002 May 31;296(5573):1635-6
11279485 - Nature. 2001 Mar 29;410(6828):549-54
15129283 - Nature. 2004 May 6;429(6987):75-9
18073531 - Cell Cycle. 2007 Dec;6(24):3103-3107
9729047 - Immunity. 1998 Aug;9(2):267-76
12393560 - Blood. 2002 Dec 15;100(13):4446-53
17448999 - Cell. 2007 Apr 20;129(2):423-33
References_xml – reference: Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8: 297-303
– reference: Kaufmann T, Tai L, Ekert PG, Huang DC, Norris F, Lindemann RK, Johnstone RW, Dixit VM, Strasser A (2007) The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129: 423-433
– reference: Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277: 13430-13437
– reference: Okada H et al (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22: 3509-3517
– reference: Hao Z et al (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579-591
– reference: Shen SM, Yu Y, Wu ZX, Zheng Y, Chen GQ, Wang LS (2011) Apoptosis-inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation. FEBS Lett 585: 2307-2312
– reference: Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700
– reference: Cheung EC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25: 4061-4073
– reference: Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008b) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15: 1113-1123
– reference: Ermolaeva MA, Michallet MC, Papadopoulou N, Utermohlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9: 1037-1046
– reference: Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561-574
– reference: Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, Raas-Rothschild A, Nadjari M, Kaestner KH, Elpeleg O (2012) Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab (in the press)
– reference: Huang DC, O'Reilly LA, Strasser A, Cory S (1997) The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J 16: 4628-4638
– reference: Zhang J et al (2003) Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc Natl Acad Sci USA 100: 15782-15787
– reference: Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471: 368-372
– reference: Balachandran S, Venkataraman T, Fisher PB, Barber GN (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 178: 2429-2439
– reference: Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267: 2000-2003
– reference: Bruey JM et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129: 45-56
– reference: Varfolomeev EE et al (1998) Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267-276
– reference: Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752
– reference: Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509
– reference: Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296: 1635-1636
– reference: Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423-1433
– reference: Zan H, Zhang J, Al-Qahtani A, Pone EJ, White CA, Lee D, Yel L, Mai T, Casali P (2011) Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions. Mol Immunol 48: 610-622
– reference: Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99-163
– reference: Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3-11
– reference: Huang KJ, Ku CC, Lehman IR (2006) Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc Natl Acad Sci USA 103: 8995-9000
– reference: Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427: 461-465
– reference: Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES, Newland AC (2003) Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 22: 1589-1599
– reference: Lind EF, Wayne J, Wang QZ, Staeva T, Stolzer A, Petrie HT (1999) Bcl-2-induced changes in E2F regulatory complexes reveal the potential for integrated cell cycle and cell death functions. J Immunol 162: 5374-5379
– reference: Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15: 113-122
– reference: Walsh CM, Wen BG, Chinnaiyan AM, O'Rourke K, Dixit VM, Hedrick SM (1998) A role for FADD in T cell activation and development. Immunity 8: 439-449
– reference: Yeh WC et al (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279: 1954-1958
– reference: Sohn D, Budach W, Janicke RU (2011) Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 18: 1664-1674
– reference: O'Reilly LA, Huang DC, Strasser A (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979-6990
– reference: Ramos-Miguel A, Esteban S, Garcia-Sevilla JA (2010) The time course of unconditioned morphine-induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA-15 as a FADD-ERK binding partner in striatal plasticity. Eur Neuropsychopharmacol 20: 49-64
– reference: Watanabe C, Shu GL, Zheng TS, Flavell RA, Clark EA (2008) Caspase 6 regulates B cell activation and differentiation into plasma cells. J Immunol 181: 6810-6819
– reference: Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13: 329-340
– reference: Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471: 373-376
– reference: Zermati Y et al (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624-637
– reference: Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM (2011) Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 8646-8656
– reference: Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399
– reference: Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446-4453
– reference: Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459-5470
– reference: Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12: 715-723
– reference: Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122: 593-603
– reference: Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70: 73-91
– reference: Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59
– reference: Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112
– reference: Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22: 852-858
– reference: Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J (2005) Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 175: 3033-3044
– reference: De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100: 1310-1317
– reference: Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20: 4745-4753
– reference: Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8: 49-62
– reference: Hueber AO, Zornig M, Bernard AM, Chautan M, Evan G (2000) A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 275: 10453-10462
– reference: Wesemann DR, Qin H, Kokorina N, Benveniste EN (2004) TRADD interacts with STAT1α and influences interferon-γ signaling. Nat Immunol 5: 199-207
– reference: Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117-121
– reference: Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187: 1477-1485
– reference: Felmer R, Horvat S, Clinton M, Clark AJ (2003) Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes. Cell Prolif 36: 45-54
– reference: Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700-714
– reference: Brown D, Yu BD, Joza N, Benit P, Meneses J, Firpo M, Rustin P, Penninger JM, Martin GR (2006) Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci USA 103: 9918-9923
– reference: Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci 25: 215-221
– reference: Li P et al (1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80: 401-411
– reference: Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207-1216
– reference: Hetz C et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312: 572-576
– reference: Plun-Favreau H et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 9: 1243-1252
– reference: Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55: 423-436
– reference: Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577-1590
– reference: Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19: 2056-2067
– reference: Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B (2004) Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 11: 90-98
– reference: Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, Knoefel WT, Reed JC (2009) XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 106: 14524-14529
– reference: Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35: 572-582
– reference: Lu QL, Hanby AM, Nasser Hajibagheri MA, Gschmeissner SE, Lu PJ, Taylor-Papadimitriou J, Krajewski S, Reed JC, Wright NA (1994) Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 107: 363-371
– reference: Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106: 3935-3940
– reference: Buttner S et al (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25: 233-246
– reference: Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86: 639-649
– reference: Baines CP et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658-662
– reference: David KK, Sasaki M, Yu SW, Dawson TM, Dawson VL (2006) EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ 13: 1147-1155
– reference: Fluhr H, Wenig H, Spratte J, Heidrich S, Ehrhardt J, Zygmunt M (2011) Non-apoptotic Fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol Hum Reprod 17: 127-134
– reference: Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120
– reference: Saleh M et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429: 75-79
– reference: Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165-187
– reference: Ribeil JA et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445: 102-105
– reference: Papadopoulos V (2003) Peripheral benzodiazepine receptor: structure and function in health and disease. Ann Pharm Fr 61: 30-50
– reference: Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11: 621-632
– reference: D'Amelio M et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 14: 69-76
– reference: He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137: 1100-1111
– reference: Kuninaka S et al (2007) Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26: 2395-2406
– reference: Liu Y, Bertram CC, Shi Q, Zinkel SS (2011) Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. Cell Death Differ 18: 841-852
– reference: Gil-Gomez G, Berns A, Brady HJ (1998) A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 17: 7209-7218
– reference: Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193: 247-254
– reference: Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341: 552-563
– reference: Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164-180
– reference: Joza N et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554
– reference: Pospisilik JA et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131: 476-491
– reference: Yeretssian G, Correa RG, Doiron K, Fitzgerald P, Dillon CP, Green DR, Reed JC, Saleh M (2011) Non-apoptotic role of BID in inflammation and innate immunity. Nature 474: 96-99
– reference: Mouhamad S, Galluzzi L, Zermati Y, Castedo M, Kroemer G (2007) Apaf-1 deficiency causes chromosomal instability. Cell Cycle 6: 3103-3107
– reference: Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550-555
– reference: Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, Qin F, Farabaugh M (2011) RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res 51: 227-236
– reference: Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132: 818-831
– reference: Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008a) Viral control of mitochondrial apoptosis. PLoS Pathog 4: e1000018
– reference: Joza N et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15: 1009-1018
– reference: Arechiga AF et al (2007) A Fas-associated death domain protein/caspase-8-signaling axis promotes S-phase entry and maintains S6 kinase activity in T cells responding to IL-2. J Immunol 179: 5291-5300
– reference: Michallet MC et al (2008) TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28: 651-661
– reference: Woo M et al (2003) Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 4: 1016-1022
– reference: Brenner C, Grimm S (2006) The permeability transition pore complex in cancer cell death. Oncogene 25: 4744-4756
– reference: Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-κB through RIP, NIK and IKKα kinases. Eur J Immunol 33: 1998-2006
– reference: Mannella CA (2008) Structural diversity of mitochondria: functional implications. Ann NY Acad Sci 1147: 171-179
– reference: Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206: 2049-2057
– reference: Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330-334
– reference: Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM (2003) The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 278: 11633-11641
– reference: Alavian KN et al (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13: 1224-1233
– reference: Belzacq AS, Brenner C (2003) The adenine nucleotide translocator: a new potential chemotherapeutic target. Curr Drug Targets 4: 517-524
– reference: Huang Q et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17: 860-866
– reference: Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22: 3568-3579
– reference: Bauler LD, Duckett CS, O'Riordan MX (2008) XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 4: e1000142
– reference: Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679-4689
– volume: 33
  start-page: 1998
  year: 2003
  end-page: 2006
  article-title: Caspase‐8 and caspase‐10 activate NF‐κB through RIP, NIK and IKKα kinases
  publication-title: Eur J Immunol
– volume: 16
  start-page: 4628
  year: 1997
  end-page: 4638
  article-title: The anti‐apoptosis function of Bcl‐2 can be genetically separated from its inhibitory effect on cell cycle entry
  publication-title: EMBO J
– volume: 22
  start-page: 1577
  year: 2008
  end-page: 1590
  article-title: Mitochondrial dynamics and apoptosis
  publication-title: Genes Dev
– volume: 19
  start-page: 107
  year: 2012
  end-page: 120
  article-title: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
  publication-title: Cell Death Differ
– volume: 22
  start-page: 3568
  year: 2003
  end-page: 3579
  article-title: Buffy, a Bcl‐2 protein, has anti‐apoptotic and cell cycle inhibitory functions
  publication-title: EMBO J
– volume: 92
  start-page: 501
  year: 1998
  end-page: 509
  article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE
  publication-title: Cell
– volume: 20
  start-page: 49
  year: 2010
  end-page: 64
  article-title: The time course of unconditioned morphine‐induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA‐15 as a FADD‐ERK binding partner in striatal plasticity
  publication-title: Eur Neuropsychopharmacol
– volume: 70
  start-page: 73
  year: 2008
  end-page: 91
  article-title: Bcl‐2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis
  publication-title: Annu Rev Physiol
– volume: 15
  start-page: 1113
  year: 2008b
  end-page: 1123
  article-title: No death without life: vital functions of apoptotic effectors
  publication-title: Cell Death Differ
– volume: 101
  start-page: 389
  year: 2000
  end-page: 399
  article-title: Cytochrome deficiency causes embryonic lethality and attenuates stress‐induced apoptosis
  publication-title: Cell
– volume: 9
  start-page: 1243
  year: 2007
  end-page: 1252
  article-title: The mitochondrial protease HtrA2 is regulated by Parkinson's disease‐associated kinase PINK1
  publication-title: Nat Cell Biol
– volume: 51
  start-page: 227
  year: 2011
  end-page: 236
  article-title: RIP1‐mediated regulation of lymphocyte survival and death responses
  publication-title: Immunol Res
– volume: 427
  start-page: 461
  year: 2004
  end-page: 465
  article-title: The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore
  publication-title: Nature
– volume: 19
  start-page: 2056
  year: 2007
  end-page: 2067
  article-title: Cleavage of RIP3 inactivates its caspase‐independent apoptosis pathway by removal of kinase domain
  publication-title: Cell Signal
– volume: 477
  start-page: 330
  year: 2011
  end-page: 334
  article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation
  publication-title: Nature
– volume: 100
  start-page: 15782
  year: 2003
  end-page: 15787
  article-title: Endonuclease G is required for early embryogenesis and normal apoptosis in mice
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1589
  year: 2003
  end-page: 1599
  article-title: Role of Smac in human leukaemic cell apoptosis and proliferation
  publication-title: Oncogene
– volume: 75
  start-page: 165
  year: 2006
  end-page: 187
  article-title: Energy transduction: proton transfer through the respiratory complexes
  publication-title: Annu Rev Biochem
– volume: 9
  start-page: 47
  year: 2008
  end-page: 59
  article-title: The BCL‐2 protein family: opposing activities that mediate cell death
  publication-title: Nat Rev Mol Cell Biol
– volume: 12
  start-page: 715
  year: 2011
  end-page: 723
  article-title: Inflammation meets cancer, with NF‐κB as the matchmaker
  publication-title: Nat Immunol
– volume: 15
  start-page: 113
  year: 2008
  end-page: 122
  article-title: An essential role for the metacaspase in cell cycle progression
  publication-title: Cell Death Differ
– volume: 129
  start-page: 45
  year: 2007
  end-page: 56
  article-title: Bcl‐2 and Bcl‐XL regulate proinflammatory caspase‐1 activation by interaction with NALP1
  publication-title: Cell
– volume: 121
  start-page: 579
  year: 2005
  end-page: 591
  article-title: Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf‐1 in apoptosis
  publication-title: Cell
– volume: 312
  start-page: 572
  year: 2006
  end-page: 576
  article-title: Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α
  publication-title: Science
– volume: 13
  start-page: 1423
  year: 2006
  end-page: 1433
  article-title: Mechanisms of cytochrome release from mitochondria
  publication-title: Cell Death Differ
– volume: 48
  start-page: 610
  year: 2011
  end-page: 622
  article-title: Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double‐strand breaks in switch regions
  publication-title: Mol Immunol
– volume: 14
  start-page: 69
  year: 2011
  end-page: 76
  article-title: Caspase‐3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease
  publication-title: Nat Neurosci
– volume: 9
  start-page: 267
  year: 1998
  end-page: 276
  article-title: Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally
  publication-title: Immunity
– volume: 35
  start-page: 572
  year: 2011
  end-page: 582
  article-title: The adaptor protein FADD protects epidermal keratinocytes from necroptosis and prevents skin inflammation
  publication-title: Immunity
– volume: 28
  start-page: 624
  year: 2007
  end-page: 637
  article-title: Nonapoptotic role for Apaf‐1 in the DNA damage checkpoint
  publication-title: Mol Cell
– volume: 22
  start-page: 852
  year: 2010
  end-page: 858
  article-title: New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics
  publication-title: Curr Opin Cell Biol
– volume: 17
  start-page: 127
  year: 2011
  end-page: 134
  article-title: Non‐apoptotic Fas‐induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase‐activity
  publication-title: Mol Hum Reprod
– volume: 18
  start-page: 1664
  year: 2011
  end-page: 1674
  article-title: Caspase‐2 is required for DNA damage‐induced expression of the CDK inhibitor p21(WAF1/CIP1)
  publication-title: Cell Death Differ
– volume: 585
  start-page: 2307
  year: 2011
  end-page: 2312
  article-title: Apoptosis‐inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation
  publication-title: FEBS Lett
– volume: 1147
  start-page: 171
  year: 2008
  end-page: 179
  article-title: Structural diversity of mitochondria: functional implications
  publication-title: Ann NY Acad Sci
– volume: 122
  start-page: 593
  year: 2005
  end-page: 603
  article-title: Proapoptotic BID is an ATM effector in the DNA‐damage response
  publication-title: Cell
– volume: 179
  start-page: 5291
  year: 2007
  end-page: 5300
  article-title: A Fas‐associated death domain protein/caspase‐8‐signaling axis promotes S‐phase entry and maintains S6 kinase activity in T cells responding to IL‐2
  publication-title: J Immunol
– volume: 25
  start-page: 233
  year: 2007
  end-page: 246
  article-title: Endonuclease G regulates budding yeast life and death
  publication-title: Mol Cell
– volume: 103
  start-page: 9918
  year: 2006
  end-page: 9923
  article-title: Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 651
  year: 2008
  end-page: 661
  article-title: TRADD protein is an essential component of the RIG‐like helicase antiviral pathway
  publication-title: Immunity
– volume: 52
  start-page: 8646
  year: 2011
  end-page: 8656
  article-title: Expression and functional roles of caspase‐5 in inflammatory responses of human retinal pigment epithelial cells
  publication-title: Invest Ophthalmol Vis Sci
– volume: 9
  start-page: 550
  year: 2007
  end-page: 555
  article-title: Voltage‐dependent anion channels are dispensable for mitochondrial‐dependent cell death
  publication-title: Nat Cell Biol
– volume: 8
  start-page: 741
  year: 2007
  end-page: 752
  article-title: Self‐eating and self‐killing: crosstalk between autophagy and apoptosis
  publication-title: Nat Rev Mol Cell Biol
– volume: 296
  start-page: 1635
  year: 2002
  end-page: 1636
  article-title: The Fas signaling pathway: more than a paradigm
  publication-title: Science
– volume: 131
  start-page: 476
  year: 2007
  end-page: 491
  article-title: Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes
  publication-title: Cell
– volume: 11
  start-page: 700
  year: 2010
  end-page: 714
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat Rev Mol Cell Biol
– volume: 23
  start-page: 1207
  year: 2004
  end-page: 1216
  article-title: Phosphorylation of BCL‐2 regulates ER Ca homeostasis and apoptosis
  publication-title: EMBO J
– volume: 471
  start-page: 368
  year: 2011
  end-page: 372
  article-title: RIP3 mediates the embryonic lethality of caspase‐8‐deficient mice
  publication-title: Nature
– volume: 4
  start-page: e1000018
  year: 2008a
  article-title: Viral control of mitochondrial apoptosis
  publication-title: PLoS Pathog
– volume: 175
  start-page: 3033
  year: 2005
  end-page: 3044
  article-title: Conditional Fas‐associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis
  publication-title: J Immunol
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  article-title: Non‐canonical inflammasome activation targets caspase‐11
  publication-title: Nature
– volume: 1762
  start-page: 164
  year: 2006
  end-page: 180
  article-title: Mitochondrial creatine kinase in human health and disease
  publication-title: Biochim Biophys Acta
– volume: 17
  start-page: 7209
  year: 1998
  end-page: 7218
  article-title: A link between cell cycle and cell death: Bax and Bcl‐2 modulate Cdk2 activation during thymocyte apoptosis
  publication-title: EMBO J
– volume: 30
  start-page: 689
  year: 2008
  end-page: 700
  article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination
  publication-title: Mol Cell
– volume: 471
  start-page: 373
  year: 2011
  end-page: 376
  article-title: Functional complementation between FADD and RIP1 in embryos and lymphocytes
  publication-title: Nature
– volume: 341
  start-page: 552
  year: 1980
  end-page: 563
  article-title: Structure and mode of action of a voltage dependent anion‐selective channel (VDAC) located in the outer mitochondrial membrane
  publication-title: Ann NY Acad Sci
– volume: 22
  start-page: 5459
  year: 2003
  end-page: 5470
  article-title: Bcl‐xL/Bcl‐2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry
  publication-title: EMBO J
– volume: 4
  start-page: 1016
  year: 2003
  end-page: 1022
  article-title: Caspase‐3 regulates cell cycle in B cells: a consequence of substrate specificity
  publication-title: Nat Immunol
– volume: 100
  start-page: 1310
  year: 2002
  end-page: 1317
  article-title: Platelet formation is the consequence of caspase activation within megakaryocytes
  publication-title: Blood
– volume: 162
  start-page: 5374
  year: 1999
  end-page: 5379
  article-title: Bcl‐2‐induced changes in E2F regulatory complexes reveal the potential for integrated cell cycle and cell death functions
  publication-title: J Immunol
– volume: 178
  start-page: 2429
  year: 2007
  end-page: 2439
  article-title: Fas‐associated death domain‐containing protein‐mediated antiviral innate immune signaling involves the regulation of Irf7
  publication-title: J Immunol
– volume: 132
  start-page: 818
  year: 2008
  end-page: 831
  article-title: Active caspase‐1 is a regulator of unconventional protein secretion
  publication-title: Cell
– volume: 267
  start-page: 2000
  year: 1995
  end-page: 2003
  article-title: Altered cytokine export and apoptosis in mice deficient in interleukin‐1β converting enzyme
  publication-title: Science
– volume: 18
  start-page: 841
  year: 2011
  end-page: 852
  article-title: Proapoptotic Bid mediates the Atr‐directed DNA damage response to replicative stress
  publication-title: Cell Death Differ
– volume: 25
  start-page: 4744
  year: 2006
  end-page: 4756
  article-title: The permeability transition pore complex in cancer cell death
  publication-title: Oncogene
– year: 2012
  article-title: Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing
  publication-title: Mol Genet Metab
– volume: 206
  start-page: 2049
  year: 2003
  end-page: 2057
  article-title: Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function
  publication-title: J Exp Biol
– volume: 17
  start-page: 860
  year: 2011
  end-page: 866
  article-title: Caspase 3‐mediated stimulation of tumor cell repopulation during cancer radiotherapy
  publication-title: Nat Med
– volume: 13
  start-page: 1147
  year: 2006
  end-page: 1155
  article-title: EndoG is dispensable in embryogenesis and apoptosis
  publication-title: Cell Death Differ
– volume: 100
  start-page: 4446
  year: 2002
  end-page: 4453
  article-title: Specific involvement of caspases in the differentiation of monocytes into macrophages
  publication-title: Blood
– volume: 4
  start-page: e1000142
  year: 2008
  article-title: XIAP regulates cytosol‐specific innate immunity to infection
  publication-title: PLoS Pathog
– volume: 107
  start-page: 363
  year: 1994
  end-page: 371
  article-title: Bcl‐2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines
  publication-title: J Cell Sci
– volume: 55
  start-page: 423
  year: 1999
  end-page: 436
  article-title: Peptidyl‐prolyl isomerases, a superfamily of ubiquitous folding catalysts
  publication-title: Cell Mol Life Sci
– volume: 275
  start-page: 10453
  year: 2000
  end-page: 10462
  article-title: A dominant negative Fas‐associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T‐cells and fibroblasts
  publication-title: J Biol Chem
– volume: 87
  start-page: 99
  year: 2007
  end-page: 163
  article-title: Mitochondrial membrane permeabilization in cell death
  publication-title: Physiol Rev
– volume: 129
  start-page: 423
  year: 2007
  end-page: 433
  article-title: The BH3‐only protein bid is dispensable for DNA damage‐ and replicative stress‐induced apoptosis or cell‐cycle arrest
  publication-title: Cell
– volume: 279
  start-page: 1954
  year: 1998
  end-page: 1958
  article-title: FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis
  publication-title: Science
– volume: 5
  start-page: 199
  year: 2004
  end-page: 207
  article-title: TRADD interacts with STAT1α and influences interferon‐γ signaling
  publication-title: Nat Immunol
– volume: 474
  start-page: 96
  year: 2011
  end-page: 99
  article-title: Non‐apoptotic role of BID in inflammation and innate immunity
  publication-title: Nature
– volume: 20
  start-page: 4745
  year: 2000
  end-page: 4753
  article-title: Bcl‐2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation
  publication-title: Mol Cell Biol
– volume: 86
  start-page: 639
  year: 2010
  end-page: 649
  article-title: Severe X‐linked mitochondrial encephalomyopathy associated with a mutation in apoptosis‐inducing factor
  publication-title: Am J Hum Genet
– volume: 187
  start-page: 1477
  year: 1998
  end-page: 1485
  article-title: Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor
  publication-title: J Exp Med
– volume: 22
  start-page: 3509
  year: 2002
  end-page: 3517
  article-title: Generation and characterization of Smac/DIABLO‐deficient mice
  publication-title: Mol Cell Biol
– volume: 445
  start-page: 102
  year: 2007
  end-page: 105
  article-title: Hsp70 regulates erythropoiesis by preventing caspase‐3‐mediated cleavage of GATA‐1
  publication-title: Nature
– volume: 9
  start-page: 1037
  year: 2008
  end-page: 1046
  article-title: Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF‐dependent inflammatory responses
  publication-title: Nat Immunol
– volume: 80
  start-page: 401
  year: 1995
  end-page: 411
  article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock
  publication-title: Cell
– volume: 278
  start-page: 11633
  year: 2003
  end-page: 11641
  article-title: The N‐terminal end of Bax contains a mitochondrial‐targeting signal
  publication-title: J Biol Chem
– volume: 181
  start-page: 6810
  year: 2008
  end-page: 6819
  article-title: Caspase 6 regulates B cell activation and differentiation into plasma cells
  publication-title: J Immunol
– volume: 16
  start-page: 3
  year: 2009
  end-page: 11
  article-title: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009
  publication-title: Cell Death Differ
– volume: 25
  start-page: 215
  year: 2000
  end-page: 221
  article-title: Regulation of mitochondrial metabolism by ER Ca release: an intimate connection
  publication-title: Trends Biochem Sci
– volume: 4
  start-page: 517
  year: 2003
  end-page: 524
  article-title: The adenine nucleotide translocator: a new potential chemotherapeutic target
  publication-title: Curr Drug Targets
– volume: 410
  start-page: 549
  year: 2001
  end-page: 554
  article-title: Essential role of the mitochondrial apoptosis‐inducing factor in programmed cell death
  publication-title: Nature
– volume: 8
  start-page: 297
  year: 1998
  end-page: 303
  article-title: The death domain kinase RIP mediates the TNF‐induced NF‐κB signal
  publication-title: Immunity
– volume: 15
  start-page: 6979
  year: 1996
  end-page: 6990
  article-title: The cell death inhibitor Bcl‐2 and its homologues influence control of cell cycle entry
  publication-title: EMBO J
– volume: 429
  start-page: 75
  year: 2004
  end-page: 79
  article-title: Differential modulation of endotoxin responsiveness by human caspase‐12 polymorphisms
  publication-title: Nature
– volume: 333
  start-page: 1109
  year: 2011
  end-page: 1112
  article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging
  publication-title: Science
– volume: 11
  start-page: 90
  year: 2004
  end-page: 98
  article-title: Syncytial fusion of human trophoblast depends on caspase 8
  publication-title: Cell Death Differ
– volume: 13
  start-page: 1224
  year: 2011
  end-page: 1233
  article-title: Bcl‐xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F F ATP synthase
  publication-title: Nat Cell Biol
– volume: 434
  start-page: 658
  year: 2005
  end-page: 662
  article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death
  publication-title: Nature
– volume: 106
  start-page: 3935
  year: 2009
  end-page: 3940
  article-title: Mechanism of Bcl‐2 and Bcl‐X(L) inhibition of NLRP1 inflammasome: loop domain‐dependent suppression of ATP binding and oligomerization
  publication-title: Proc Natl Acad Sci USA
– volume: 106
  start-page: 14524
  year: 2009
  end-page: 14529
  article-title: XIAP mediates NOD signaling via interaction with RIP2
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 3103
  year: 2007
  end-page: 3107
  article-title: Apaf‐1 deficiency causes chromosomal instability
  publication-title: Cell Cycle
– volume: 15
  start-page: 1009
  year: 2008
  end-page: 1018
  article-title: The molecular archaeology of a mitochondrial death effector: AIF in
  publication-title: Cell Death Differ
– volume: 277
  start-page: 13430
  year: 2002
  end-page: 13437
  article-title: Caspase‐2 induces apoptosis by releasing proapoptotic proteins from mitochondria
  publication-title: J Biol Chem
– volume: 8
  start-page: 49
  year: 2007
  end-page: 62
  article-title: Integrating cell‐signalling pathways with NF‐κB and IKK function
  publication-title: Nat Rev Mol Cell Biol
– volume: 137
  start-page: 1100
  year: 2009
  end-page: 1111
  article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐α
  publication-title: Cell
– volume: 193
  start-page: 247
  year: 2001
  end-page: 254
  article-title: Caspase activation is required for terminal erythroid differentiation
  publication-title: J Exp Med
– volume: 8
  start-page: 439
  year: 1998
  end-page: 449
  article-title: A role for FADD in T cell activation and development
  publication-title: Immunity
– volume: 13
  start-page: 329
  year: 2004
  end-page: 340
  article-title: JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl‐2 family protein BAD
  publication-title: Mol Cell
– volume: 26
  start-page: 2395
  year: 2007
  end-page: 2406
  article-title: Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation
  publication-title: Oncogene
– volume: 117
  start-page: 561
  year: 2004
  end-page: 574
  article-title: Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases
  publication-title: Cell
– volume: 25
  start-page: 4061
  year: 2006
  end-page: 4073
  article-title: Dissociating the dual roles of apoptosis‐inducing factor in maintaining mitochondrial structure and apoptosis
  publication-title: EMBO J
– volume: 11
  start-page: 621
  year: 2010
  end-page: 632
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat Rev Mol Cell Biol
– volume: 103
  start-page: 8995
  year: 2006
  end-page: 9000
  article-title: Endonuclease G: a role for the enzyme in recombination and cellular proliferation
  publication-title: Proc Natl Acad Sci USA
– volume: 61
  start-page: 30
  year: 2003
  end-page: 50
  article-title: Peripheral benzodiazepine receptor: structure and function in health and disease
  publication-title: Ann Pharm Fr
– volume: 36
  start-page: 45
  year: 2003
  end-page: 54
  article-title: Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes
  publication-title: Cell Prolif
– volume: 23
  start-page: 4679
  year: 2004
  end-page: 4689
  article-title: AIF deficiency compromises oxidative phosphorylation
  publication-title: EMBO J
– ident: e_1_2_12_30_1
  doi: 10.1167/iovs.11-7570
– ident: e_1_2_12_28_1
  doi: 10.1073/pnas.0907131106
– ident: e_1_2_12_19_1
  doi: 10.1038/ni.2060
– ident: e_1_2_12_58_1
  doi: 10.1002/j.1460-2075.1996.tb01090.x
– ident: e_1_2_12_93_1
  doi: 10.1101/gad.1658508
– ident: e_1_2_12_16_1
  doi: 10.1016/j.febslet.2011.05.061
– ident: e_1_2_12_31_1
  doi: 10.1016/j.cell.2004.05.004
– ident: e_1_2_12_10_1
  doi: 10.1182/blood-2002-06-1778
– ident: e_1_2_12_68_1
  doi: 10.1038/sj.cdd.4401950
– ident: e_1_2_12_95_1
  doi: 10.1038/nrm2970
– ident: e_1_2_12_15_1
  doi: 10.1046/j.1365-2184.2003.00253.x
– ident: e_1_2_12_38_1
  doi: 10.1038/nrm2308
– ident: e_1_2_12_102_1
  doi: 10.1038/nature09878
– ident: e_1_2_12_24_1
  doi: 10.4049/jimmunol.178.4.2429
– ident: e_1_2_12_63_1
  doi: 10.1016/j.cell.2005.06.014
– ident: e_1_2_12_88_1
  doi: 10.1016/S0968-0004(00)01585-1
– ident: e_1_2_12_35_1
  doi: 10.1126/science.7535475
– ident: e_1_2_12_54_1
  doi: 10.1093/emboj/17.24.7209
– ident: e_1_2_12_80_1
  doi: 10.1007/s000180050299
– ident: e_1_2_12_82_1
  doi: 10.1242/jeb.00241
– ident: e_1_2_12_13_1
  doi: 10.1182/blood-2002-03-0686
– ident: e_1_2_12_105_1
  doi: 10.1016/j.immuni.2011.08.014
– ident: e_1_2_12_113_1
  doi: 10.1038/sj.emboj.7600104
– ident: e_1_2_12_11_1
  doi: 10.1038/sj.cdd.4401307
– ident: e_1_2_12_62_1
  doi: 10.4161/cc.6.24.5046
– ident: e_1_2_12_56_1
  doi: 10.4049/jimmunol.162.9.5374
– ident: e_1_2_12_55_1
  doi: 10.1128/MCB.20.13.4745-4753.2000
– ident: e_1_2_12_101_1
  doi: 10.1126/science.279.5358.1954
– ident: e_1_2_12_40_1
  doi: 10.1073/pnas.0809414106
– ident: e_1_2_12_5_1
  doi: 10.1152/physrev.00013.2006
– ident: e_1_2_12_12_1
  doi: 10.4049/jimmunol.181.10.6810
– ident: e_1_2_12_77_1
  doi: 10.1016/j.cell.2007.08.047
– ident: e_1_2_12_36_1
  doi: 10.1016/0092-8674(95)90490-5
– ident: e_1_2_12_34_1
  doi: 10.1038/nature09982
– ident: e_1_2_12_45_1
  doi: 10.1038/nm.2385
– ident: e_1_2_12_91_1
  doi: 10.1126/science.1201940
– ident: e_1_2_12_83_1
  doi: 10.1016/j.bbadis.2005.09.004
– ident: e_1_2_12_26_1
  doi: 10.1007/s12026-011-8249-3
– ident: e_1_2_12_20_1
  doi: 10.1038/nrm2083
– ident: e_1_2_12_86_1
  doi: 10.1038/nature03434
– ident: e_1_2_12_46_1
  doi: 10.1038/sj.cdd.4402232
– ident: e_1_2_12_52_1
  doi: 10.1016/j.molcel.2006.12.021
– ident: e_1_2_12_57_1
  doi: 10.1093/emboj/cdg533
– ident: e_1_2_12_92_1
  doi: 10.1016/j.ceb.2010.07.014
– ident: e_1_2_12_107_1
  doi: 10.1038/nn.2709
– ident: e_1_2_12_7_1
  doi: 10.1126/science.1071553
– ident: e_1_2_12_8_1
  doi: 10.1038/cdd.2008.28
– ident: e_1_2_12_99_1
  doi: 10.1016/S1074-7613(00)80609-3
– ident: e_1_2_12_71_1
  doi: 10.1038/sj.emboj.7600461
– year: 2012
  ident: e_1_2_12_75_1
  article-title: Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing
  publication-title: Mol Genet Metab
– ident: e_1_2_12_21_1
  doi: 10.1002/eji.200324013
– ident: e_1_2_12_115_1
  doi: 10.1074/jbc.M208955200
– ident: e_1_2_12_70_1
  doi: 10.1016/S0092-8674(00)80849-1
– ident: e_1_2_12_47_1
  doi: 10.4049/jimmunol.179.8.5291
– ident: e_1_2_12_94_1
  doi: 10.1196/annals.1427.020
– ident: e_1_2_12_87_1
  doi: 10.1146/annurev.physiol.70.021507.105852
– ident: e_1_2_12_112_1
  doi: 10.1371/journal.ppat.1000018
– ident: e_1_2_12_116_1
  doi: 10.1242/jcs.107.2.363
– ident: e_1_2_12_53_1
  doi: 10.1073/pnas.0603445103
– ident: e_1_2_12_37_1
  doi: 10.1038/nature10558
– ident: e_1_2_12_117_1
  doi: 10.1038/sj.emboj.7601276
– ident: e_1_2_12_67_1
  doi: 10.1038/cdd.2011.34
– ident: e_1_2_12_106_1
  doi: 10.1016/j.cell.2007.12.040
– ident: e_1_2_12_90_1
  doi: 10.1038/nrm2239
– ident: e_1_2_12_2_1
  doi: 10.1038/cdd.2008.150
– ident: e_1_2_12_76_1
  doi: 10.1016/j.ajhg.2010.03.002
– ident: e_1_2_12_4_1
  doi: 10.1038/nrm2952
– ident: e_1_2_12_42_1
  doi: 10.1038/sj.cdd.4401787
– ident: e_1_2_12_69_1
  doi: 10.1146/annurev.biochem.75.062003.101730
– ident: e_1_2_12_23_1
  doi: 10.1038/ni.1638
– ident: e_1_2_12_22_1
  doi: 10.1016/j.molcel.2008.05.014
– ident: e_1_2_12_109_1
  doi: 10.1016/j.euroneuro.2009.08.005
– ident: e_1_2_12_18_1
  doi: 10.4049/jimmunol.175.5.3033
– ident: e_1_2_12_98_1
  doi: 10.1016/j.cell.2009.05.021
– ident: e_1_2_12_6_1
  doi: 10.1038/sj.onc.1209609
– ident: e_1_2_12_32_1
  doi: 10.1016/S0092-8674(00)80943-5
– ident: e_1_2_12_17_1
  doi: 10.1016/S1074-7613(00)80549-X
– ident: e_1_2_12_41_1
  doi: 10.1073/pnas.2636393100
– ident: e_1_2_12_43_1
  doi: 10.1016/j.molimm.2010.10.023
– ident: e_1_2_12_118_1
  doi: 10.1016/j.cell.2005.03.016
– ident: e_1_2_12_84_1
  doi: 10.1038/nature02229
– ident: e_1_2_12_103_1
  doi: 10.1016/S1074-7613(00)80535-X
– ident: e_1_2_12_44_1
  doi: 10.1038/ni976
– ident: e_1_2_12_114_1
  doi: 10.1016/S1097-2765(04)00028-0
– ident: e_1_2_12_25_1
  doi: 10.1016/j.immuni.2008.03.013
– ident: e_1_2_12_96_1
  doi: 10.1084/jem.187.9.1477
– ident: e_1_2_12_50_1
  doi: 10.1038/sj.onc.1206322
– ident: e_1_2_12_59_1
  doi: 10.1093/emboj/cdg355
– ident: e_1_2_12_100_1
  doi: 10.1038/nature09857
– ident: e_1_2_12_85_1
  doi: 10.1038/ncb1575
– ident: e_1_2_12_3_1
  doi: 10.1038/cdd.2011.96
– ident: e_1_2_12_110_1
  doi: 10.1038/ncb1644
– ident: e_1_2_12_29_1
  doi: 10.1038/ni1025
– ident: e_1_2_12_39_1
  doi: 10.1016/j.cell.2007.01.045
– ident: e_1_2_12_33_1
  doi: 10.1038/nature02451
– ident: e_1_2_12_65_1
  doi: 10.1038/cdd.2010.151
– ident: e_1_2_12_14_1
  doi: 10.1038/nature05378
– ident: e_1_2_12_66_1
  doi: 10.1074/jbc.M108029200
– ident: e_1_2_12_74_1
  doi: 10.1038/cdd.2008.24
– ident: e_1_2_12_78_1
  doi: 10.2174/1389450033490867
– ident: e_1_2_12_73_1
  doi: 10.1073/pnas.0603950103
– ident: e_1_2_12_9_1
  doi: 10.1084/jem.193.2.247
– ident: e_1_2_12_72_1
  doi: 10.1038/35069004
– ident: e_1_2_12_27_1
  doi: 10.1371/journal.ppat.1000142
– ident: e_1_2_12_64_1
  doi: 10.1016/j.cell.2007.03.017
– ident: e_1_2_12_60_1
  doi: 10.1093/emboj/16.15.4628
– ident: e_1_2_12_61_1
  doi: 10.1016/j.molcel.2007.09.030
– ident: e_1_2_12_48_1
  doi: 10.1074/jbc.275.14.10453
– ident: e_1_2_12_51_1
  doi: 10.1128/MCB.22.10.3509-3517.2002
– ident: e_1_2_12_79_1
  doi: 10.1111/j.1749-6632.1980.tb47198.x
– ident: e_1_2_12_104_1
  doi: 10.1038/nature10273
– ident: e_1_2_12_111_1
  doi: 10.1093/molehr/gaq082
– volume: 61
  start-page: 30
  year: 2003
  ident: e_1_2_12_81_1
  article-title: Peripheral benzodiazepine receptor: structure and function in health and disease
  publication-title: Ann Pharm Fr
– ident: e_1_2_12_97_1
  doi: 10.1016/j.cellsig.2007.05.016
– ident: e_1_2_12_49_1
  doi: 10.1038/sj.onc.1210042
– ident: e_1_2_12_89_1
  doi: 10.1038/ncb2330
– ident: e_1_2_12_108_1
  doi: 10.1126/science.1123480
– reference: 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32
– reference: 12393560 - Blood. 2002 Dec 15;100(13):4446-53
– reference: 12756287 - J Exp Biol. 2003 Jun;206(Pt 12):2049-57
– reference: 17680735 - Annu Rev Physiol. 2008;70:73-91
– reference: 9303307 - EMBO J. 1997 Aug 1;16(15):4628-38
– reference: 16239930 - Cell Death Differ. 2006 Jul;13(7):1147-55
– reference: 18329368 - Cell. 2008 Mar 7;132(5):818-31
– reference: 22038529 - Immunol Res. 2011 Dec;51(2-3):227-36
– reference: 21804564 - Nature. 2011 Sep 15;477(7364):330-4
– reference: 18439848 - Immunity. 2008 May;28(5):651-61
– reference: 17448999 - Cell. 2007 Apr 20;129(2):423-33
– reference: 17167422 - Nature. 2007 Jan 4;445(7123):102-5
– reference: 9003774 - EMBO J. 1996 Dec 16;15(24):6979-90
– reference: 12558660 - Cell Prolif. 2003 Feb;36(1):45-54
– reference: 16122426 - Cell. 2005 Aug 26;122(4):593-603
– reference: 20362274 - Am J Hum Genet. 2010 Apr 9;86(4):639-49
– reference: 12040174 - Science. 2002 May 31;296(5573):1635-6
– reference: 6249159 - Ann N Y Acad Sci. 1980;341:552-63
– reference: 16236486 - Biochim Biophys Acta. 2006 Feb;1762(2):164-80
– reference: 7535475 - Science. 1995 Mar 31;267(5206):2000-3
– reference: 17644308 - Cell Signal. 2007 Oct;19(10):2056-67
– reference: 17130845 - Oncogene. 2007 Apr 12;26(17):2395-406
– reference: 21151119 - Nat Neurosci. 2011 Jan;14(1):69-76
– reference: 16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33
– reference: 9729047 - Immunity. 1998 Aug;9(2):267-76
– reference: 21868666 - Science. 2011 Aug 26;333(6046):1109-12
– reference: 21664907 - FEBS Lett. 2011 Jul 21;585(14):2307-12
– reference: 21969293 - Invest Ophthalmol Vis Sci. 2011 Nov;52(12):8646-56
– reference: 14730360 - Nat Immunol. 2004 Feb;5(2):199-207
– reference: 16788063 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9918-23
– reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59
– reference: 21475302 - Cell Death Differ. 2011 Oct;18(10):1664-74
– reference: 17244531 - Mol Cell. 2007 Jan 26;25(2):233-46
– reference: 21725296 - Nat Med. 2011 Jul;17(7):860-6
– reference: 9857178 - EMBO J. 1998 Dec 15;17(24):7209-18
– reference: 18570872 - Mol Cell. 2008 Jun 20;30(6):689-700
– reference: 18641654 - Nat Immunol. 2008 Sep;9(9):1037-46
– reference: 12853472 - EMBO J. 2003 Jul 15;22(14):3568-79
– reference: 8207068 - J Cell Sci. 1994 Feb;107 ( Pt 2):363-71
– reference: 14535652 - Curr Drug Targets. 2003 Oct;4(7):517-24
– reference: 17418785 - Cell. 2007 Apr 6;129(1):45-56
– reference: 17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52
– reference: 17417626 - Nat Cell Biol. 2007 May;9(5):550-5
– reference: 15010700 - EMBO J. 2004 Mar 10;23(5):1207-16
– reference: 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20
– reference: 18559474 - Genes Dev. 2008 Jun 15;22(12):1577-90
– reference: 10228014 - J Immunol. 1999 May 1;162(9):5374-9
– reference: 17911615 - J Immunol. 2007 Oct 15;179(8):5291-300
– reference: 16754849 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8995-9000
– reference: 11279485 - Nature. 2001 Mar 29;410(6828):549-54
– reference: 18309324 - Cell Death Differ. 2008 Jul;15(7):1113-23
– reference: 21368762 - Nature. 2011 Mar 17;471(7338):368-72
– reference: 9529147 - Immunity. 1998 Mar;8(3):297-303
– reference: 19076440 - Ann N Y Acad Sci. 2008 Dec;1147:171-9
– reference: 15800627 - Nature. 2005 Mar 31;434(7033):658-62
– reference: 21926988 - Nat Cell Biol. 2011 Oct;13(10):1224-33
– reference: 21111482 - Mol Immunol. 2011 Jan;48(4):610-22
– reference: 18846107 - Cell Death Differ. 2009 Jan;16(1):3-11
– reference: 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62
– reference: 17901875 - Cell Death Differ. 2008 Jan;15(1):113-22
– reference: 16116191 - J Immunol. 2005 Sep 1;175(5):3033-44
– reference: 15907471 - Cell. 2005 May 20;121(4):579-91
– reference: 22019070 - Mol Genet Metab. 2011 Dec;104(4):517-20
– reference: 19667203 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14524-9
– reference: 15163405 - Cell. 2004 May 28;117(5):561-74
– reference: 7859282 - Cell. 1995 Feb 10;80(3):401-11
– reference: 12884866 - Eur J Immunol. 2003 Jul;33(7):1998-2006
– reference: 18309327 - Cell Death Differ. 2008 Jun;15(6):1009-18
– reference: 9506948 - Science. 1998 Mar 20;279(5358):1954-8
– reference: 12970672 - Cell Death Differ. 2004 Jan;11(1):90-8
– reference: 17277150 - J Immunol. 2007 Feb 15;178(4):2429-39
– reference: 9491891 - Cell. 1998 Feb 20;92(4):501-9
– reference: 16917506 - EMBO J. 2006 Sep 6;25(17):4061-73
– reference: 18981099 - J Immunol. 2008 Nov 15;181(10):6810-9
– reference: 19524512 - Cell. 2009 Jun 12;137(6):1100-11
– reference: 14532118 - EMBO J. 2003 Oct 15;22(20):5459-70
– reference: 20823910 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14
– reference: 21368761 - Nature. 2011 Mar 17;471(7338):373-6
– reference: 20729050 - Curr Opin Cell Biol. 2010 Dec;22(6):852-8
– reference: 10848600 - Mol Cell Biol. 2000 Jul;20(13):4745-53
– reference: 18073531 - Cell Cycle. 2007 Dec;6(24):3103-3107
– reference: 19223583 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3935-40
– reference: 15129283 - Nature. 2004 May 6;429(6987):75-9
– reference: 9586634 - Immunity. 1998 Apr;8(4):439-49
– reference: 12642862 - Oncogene. 2003 Mar 20;22(11):1589-99
– reference: 21552281 - Nature. 2011 Jun 2;474(7349):96-9
– reference: 14663139 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15782-7
– reference: 17981116 - Cell. 2007 Nov 2;131(3):476-91
– reference: 18516228 - PLoS Pathog. 2008 May;4(5):e1000018
– reference: 11832478 - J Biol Chem. 2002 Apr 19;277(16):13430-7
– reference: 19758790 - Eur Neuropsychopharmacol. 2010 Jan;20(1):49-64
– reference: 14967141 - Mol Cell. 2004 Feb 13;13(3):329-40
– reference: 10228556 - Cell Mol Life Sci. 1999 Mar;55(3):423-36
– reference: 11971981 - Mol Cell Biol. 2002 May;22(10):3509-17
– reference: 20926603 - Mol Hum Reprod. 2011 Feb;17(2):127-34
– reference: 10830166 - Cell. 2000 May 12;101(4):389-99
– reference: 12589253 - Ann Pharm Fr. 2003 Jan;61(1):30-50
– reference: 9565639 - J Exp Med. 1998 May 4;187(9):1477-85
– reference: 12149212 - Blood. 2002 Aug 15;100(4):1310-7
– reference: 15526035 - EMBO J. 2004 Nov 24;23(23):4679-89
– reference: 22002608 - Nature. 2011 Nov 3;479(7371):117-21
– reference: 16892087 - Oncogene. 2006 Aug 7;25(34):4744-56
– reference: 14749836 - Nature. 2004 Jan 29;427(6973):461-5
– reference: 16645094 - Science. 2006 Apr 28;312(5773):572-6
– reference: 18769721 - PLoS Pathog. 2008;4(8):e1000142
– reference: 18042457 - Mol Cell. 2007 Nov 30;28(4):624-37
– reference: 12970760 - Nat Immunol. 2003 Oct;4(10):1016-22
– reference: 10744735 - J Biol Chem. 2000 Apr 7;275(14):10453-62
– reference: 21772280 - Nat Immunol. 2011 Aug;12(8):715-23
– reference: 11208865 - J Exp Med. 2001 Jan 15;193(2):247-54
– reference: 12529375 - J Biol Chem. 2003 Mar 28;278(13):11633-41
– reference: 17237344 - Physiol Rev. 2007 Jan;87(1):99-163
– reference: 17906618 - Nat Cell Biol. 2007 Nov;9(11):1243-52
– reference: 22000287 - Immunity. 2011 Oct 28;35(4):572-82
– reference: 16756489 - Annu Rev Biochem. 2006;75:165-87
– reference: 10782088 - Trends Biochem Sci. 2000 May;25(5):215-21
– reference: 21113148 - Cell Death Differ. 2011 May;18(5):841-52
SSID ssj0005978
Score 2.3674214
SecondaryResourceType review_article
Snippet During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products...
Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non-lethal physiological processes as diverse as...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 322
SubjectTerms AIF
Animals
Apoptosis
Apoptosis Regulatory Proteins - metabolism
apoptosome
Autophagy
BCL-2
Biochemistry
caspase
Cell Cycle
Cell Differentiation
death receptor
EMBO07
EMBO37
Humans
Mitochondria
mitochondrial membrane permeabilization
Models, Biological
Mortality
Physiology
Proteins
Review
SummonAdditionalLinks – databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbQrkBcEC0_TSkoBwQXUhz_JLHEZbdqWa3UPdBW7M1yvLZYUZLVZiu1Nx6BZ-RJ8Dje0IiCuFnxyHHGM56x5stnhF7rjDLGjU10wVnCNFkk7pxFE1wCefkCZ9h6tMUsm1yw6ZzPw8_qTYBVtpSWfpveosPem29OJYDEIodA8jkElnY8QMPRaHo2_Y3pEH7rdd4vEkLSeSDVxLToD9ALQkPQ5_VdGeafQMmuWtrPZX0wOnmMHoUsMh61895B90y1i-6390re7KIHp6Fi_gR9mNXVz-8_1KpebWonHUMg87YW1zZuHzfLxoms21vp6_VN7MkbllXzFF2cHJ8fTZJwY0KiMyjpckbUguTapFxRl2lYgQU2BIuSaeVUZnJqGXPGQ4vCpTLO252oYNYQmlm70PQZGlR1ZfZQzItCFHAeosA3Y1RZWue7LnhpTZTCeYTebVUodaATh1stLqUva9NCeo1L0LhMRYTedOKrlkfjr4J-PToptf4K4LOcy8-zj3J8NE8n55MzOY7QwXbBZPC7BgBrwM_PYZy463YeA2UQVZn6qpGw5ZA8B5Hn7fJ274L8xmUsWYTy3sJ3AkDG3e-pll88KTel7ijNSYTebk3k9qzu_NBDb0H_Voc8Ph1_gnYq9v976BfoIbRagNEBGmzWV-aly5025avgMb8A_YkXvA
  priority: 102
  providerName: Springer Nature
Title Non-apoptotic functions of apoptosis-regulatory proteins
URI https://api.istex.fr/ark:/67375/WNG-BCX1HTHS-B/fulltext.pdf
https://link.springer.com/article/10.1038/embor.2012.19
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fembor.2012.19
https://www.ncbi.nlm.nih.gov/pubmed/22402666
https://www.proquest.com/docview/1015782519
https://www.proquest.com/docview/963827719
https://pubmed.ncbi.nlm.nih.gov/PMC3321152
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xViBeEIyPBUaVBwQveCS2kzhPqK26VZVWoX2IvFmp44gKlpSmk9h_j89xs1WMvUSRfVKS893559zpdwAfVMw4j3RJlIg44YoWxJyzGAkWSF5eBHFQ2mqLeTy95LMsytwPt8aVVW5jog3URa3wH7nx7hCZ1w3g-Lr6TbBrFGZXXQuNPeibECyiHvRHk_m3s9sij9TGYhMOUkJpmDmWzYCJL_rKKBlru-gR0uzc2ZX6qOA_90HOfysnu_TpLri1u9Pxc3jmYKU_bO3gBTzS1T48bhtN3uzDk1OXQn8JYl5XJF_Vq01tZH3c16zp-XXpt8PNsiHrtkV9vb7xLZPDsmpeweXx5GI8Ja59AlEx5ncjTvOCJkqHUc4M7CjTIA00DdIFV7lIuE5YybmxJCaEwTXG9Y1oyktNWVyWhWKvoVfVlT4APxIiFXg4Ykg-o_PFojSObHYypWieB4kHn7fqk8pxi2OLi1_S5riZkFbbErUtw9SDj534qiXV-K-gXYtOKl__xEq0JJLf5ydyNM7C6cX0XI48ONwulnRO2Mhbk_HA76aN-2BOJK90fd1IjD80SVDkTbu03bMQ7Bj4EnuQ7Cx6J4DM3Lsz1fKHZehmzJyrI-rBp6153H2rez_0yFrPw-qQk9PRGd6H6duHP_gdPEW5tsToEHqb9bV-b9DTZjGAvSRLzFWMwwH0h8PZ-Wzg3MaMnmThX9GbGzI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRlAuCAoUQwEfeFxwsXfXrwNCpKSktIlQSUVui71ZQwTYIU4F-VP8RmbWjzai9NabZY9f817P-BuAJyrgQvg6c1TkC0coNnFwncUdNyXw8okbuJnpthgG_WPxfuyP1-BP8y8MtVU2PtE46kmh6Bs5WrdHyOuYcLye_XRoahRVV5sRGpVaHOjlL1yyla_236J8nzK21xvt9p16qoCjAip7-oIlExYq7fkJx2icxW7saubGqVBJFAod8kwIZDCPIgz3aBFIGotMMx5k2URxvO4V6GCaEaMVdbq94Yej06aS2Ph-dD-xw5g3rlE9XR691D9QqNRLxnYI1udMFOyQQH-fl-L-26nZlmtXk2kTDfduwo06jbXfVHp3C9Z0vglXq8GWy024NqhL9rchGha5k8yK2aJAWpviqFF1u8jsanc5LZ25_kJzxIr50jbIEdO8vAPHl8LYu7CeF7m-B7YfRXFEizFOYDc6SdMMHQdGTqVYkrihBS8a9klVY5nTSI3v0tTUeSQNtyVxW3qxBc9a8lkF4vFfQiOLliqZf6POt9CXn4bvZHd37PVH_Y-ya8F2IyxZG30pT1XUArs9jOZKNZgk18VJKcnfsTAkkq1KtO29KLnCdCmwIFwRektASOCrR_LpV4MIzjmu431mwfNGPc4-1bkvumO052J2yN6ge0TbXnz_4hd-DBv90eBQHu4PDx7AdTqnam_ahvXF_EQ_xMxtkT6qzcWGz5dtoX8BsTVS9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL0qHVGxQVBegQJZINiQaWI7D0tsZkqHYaAjRFsxOytxbDFqSUaTqUR3fALfyJfg6zwgoiB2kX3lONe-9rHuyTHAMxlRxkKlPZmEzGOS5J45Z1HPz1C8PPcjX1u2xTyanrLZIlxsQdD-C2NJ-1bS0i7TLTtsX30xLkEmFhkGfLjK9TUYGKiNsTgYjWbHs1-8Dm6XX7MCcI-QYNEIa_o06TfS24gG6NOvV6HMP8mSXca0j2fthjS5BTcbJOmO6r7fhi1V7ML1-m7Jy13YOWqy5nfg1bwsfnz7nq7K1aY01i5uZna-uaV26-JqWRmTdX0zfbm-dK2Aw7Ko7sLp5PDkYOo1tyZ4MsK0bshImpNYqiBMqUEbmvvcV8TnGZNpEjMVU82YmUA0SQycMRFvTDnTitBI61zSe7BdlIV6AG6YJDzBMxFFzRmVZpk28Ws2MClJmvqxAy9bFwrZSIrjzRbnwqa2aSKsxwV6XATcgeed-arW0viroR2PzipdnyEBLQ7Fp_kbMT5YBNOT6bEYO7DXDphoYq9C0hpq9IfYjttVm6jBVEhaqPKiErjskDhGk_v18HbvQoxjUEvkQNwb-M4ABbn7NcXysxXmptQcp0PiwIt2ivzeqys_dGhn0L_dIQ6Pxh_xOeAP_7vpp7Dz4fVEvH87f_cIbmBhzTfag-3N-kI9NlBqkz1pgucnONQbtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-apoptotic+functions+of+apoptosis-regulatory+proteins&rft.jtitle=EMBO+reports&rft.au=Galluzzi%2C+Lorenzo&rft.au=Kepp%2C+Oliver&rft.au=Trojel-hansen%2C+Christina&rft.au=Kroemer%2C+Guido&rft.date=2012-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=13&rft.issue=4&rft.spage=322&rft_id=info:doi/10.1038%2Fembor.2012.19&rft.externalDocID=2669388901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon