Non-apoptotic functions of apoptosis-regulatory proteins
During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initi...
Saved in:
Published in | EMBO reports Vol. 13; no. 4; pp. 322 - 330 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2012
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1469-221X 1469-3178 1469-3178 |
DOI | 10.1038/embor.2012.19 |
Cover
Loading…
Abstract | During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.
EMBO reports
advance online publication 9 March 2012; doi:10.1038/embor.2012.19
Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. |
---|---|
AbstractList | During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non‐apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro‐apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications.EMBO reports advance online publication 9 March 2012; doi:10.1038/embor.2012.19 Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non‐lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products that govern both its induction and execution. In parallel, it has progressively become evident that most, if not all, proteins that had initially been discovered for their essential role in apoptosis also mediate a wide range of non-apoptotic functions. On the one hand, apoptotic regulators and executioners are involved in non-lethal physiological processes as diverse as cell cycle progression, differentiation, metabolism, autophagy and inflammation. On the other hand, pro-apoptotic proteins can control other modalities of programmed cell death, in particular regulated necrosis. In this review, we summarize the unconventional roles of the apoptotic core machinery from a functional perspective and discuss their pathophysiological implications. [PUBLICATION ABSTRACT] |
Author | Kepp, Oliver Trojel‐Hansen, Christina Galluzzi, Lorenzo Kroemer, Guido |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Galluzzi fullname: Galluzzi, Lorenzo organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France – sequence: 2 givenname: Oliver surname: Kepp fullname: Kepp, Oliver organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France – sequence: 3 givenname: Christina surname: Trojel-Hansen fullname: Trojel-Hansen, Christina organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France – sequence: 4 givenname: Guido surname: Kroemer fullname: Kroemer, Guido email: kroemer@orange.fr organization: INSERM, U848, IGR, Pavillon de Recherche 1, 39 rue Camille Desmoulins, F-94805, Villejuif, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22402666$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1URF8s2aJILFhN8GPGjw0SiUqDVIpUWrU7y3Gug8vEHuwZIP-eSSZEpQJWvrK_c-89PsfoIMQACL0geEwwk29gNY9pTDGhY6KeoCNSclUwIuTBrqaU3B2i45zvMcaVEvIZOqS0xJRzfoTkZQyFaWLTxtbbkeuCbX0MeRTdaLjOPhcJll1t2pjWoybFFnzIp-ipM3WG57vzBN28P7uezoqLT-cfpu8uCssxU0VVUrOgwgKpDGNKOIUVBorVvLRGihIEc2UJZsGk5KQSmPWoKh1Qxp1bWHaC3g59m26-goWF0CZT6yb5lUlrHY3Xf74E_0Uv43fNGCWkon2D17sGKX7rILd65bOFujYBYpe14kxSIYjqyVePyPvYpdC70wT3u0labamXDxfab_L7T3ugGACbYs4J3B4hWG8y09vM9CYzvW3IHvHWt2aTQu_H1_9UVYPqh69h_f8R-uzj5GpTb3XjQZd7SVhCemjy74N2dnxu4ed-kElfNRdMVPr28lxPpndkdj37rCfsF8pCy08 |
CODEN | ERMEAX |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2014_07_027 crossref_primary_10_1038_cddis_2013_436 crossref_primary_10_1111_cpr_13108 crossref_primary_10_1016_j_biocel_2013_06_024 crossref_primary_10_1089_ars_2013_5417 crossref_primary_10_1083_jcb_201303144 crossref_primary_10_1002_bies_201300052 crossref_primary_10_3390_cells8111330 crossref_primary_10_1038_nrd4145 crossref_primary_10_1007_s10741_016_9531_1 crossref_primary_10_3892_ol_2018_9362 crossref_primary_10_1007_s10495_023_01835_3 crossref_primary_10_1242_jcs_186411 crossref_primary_10_1007_s10495_020_01630_4 crossref_primary_10_3389_fcell_2020_598112 crossref_primary_10_1080_15384101_2015_1026493 crossref_primary_10_1111_dgd_12066 crossref_primary_10_1038_cdd_2017_36 crossref_primary_10_1161_CIRCRESAHA_112_268946 crossref_primary_10_1007_s13105_016_0545_x crossref_primary_10_1016_j_neurobiolaging_2020_12_013 crossref_primary_10_1038_s41419_022_04912_8 crossref_primary_10_1016_j_arr_2012_11_004 crossref_primary_10_1002_pro_2148 crossref_primary_10_1083_jcb_201209050 crossref_primary_10_3389_fimmu_2014_00327 crossref_primary_10_1007_s11357_019_00131_w crossref_primary_10_1182_blood_2016_05_715961 crossref_primary_10_1080_15384101_2017_1371882 crossref_primary_10_1038_s41598_024_77026_0 crossref_primary_10_1016_j_semcancer_2013_05_008 crossref_primary_10_1016_j_ejcb_2018_01_005 crossref_primary_10_1007_s12035_012_8289_2 crossref_primary_10_1155_2013_705294 crossref_primary_10_4161_15384101_2014_949082 crossref_primary_10_1016_j_celrep_2022_111826 crossref_primary_10_1016_j_tcb_2013_08_002 crossref_primary_10_1016_j_ceca_2023_102759 crossref_primary_10_1016_j_tcb_2016_04_006 crossref_primary_10_1111_jcmm_12748 crossref_primary_10_1016_j_neuro_2015_06_001 crossref_primary_10_1016_j_yexcr_2023_113860 crossref_primary_10_1038_cddis_2013_454 crossref_primary_10_1038_cdd_2017_43 crossref_primary_10_1515_bmc_2016_0015 crossref_primary_10_1093_infdis_jiaa639 crossref_primary_10_1007_s12035_014_8794_6 crossref_primary_10_1016_j_neuroscience_2015_07_040 crossref_primary_10_1016_j_tcb_2020_03_004 crossref_primary_10_3389_fendo_2022_924299 crossref_primary_10_1016_j_jhep_2013_03_033 crossref_primary_10_1074_jbc_M112_408633 crossref_primary_10_18632_oncoscience_61 crossref_primary_10_1038_s41418_017_0012_4 crossref_primary_10_1016_j_bbabio_2016_04_005 crossref_primary_10_1038_ncb2788 crossref_primary_10_3109_15376516_2015_1043762 crossref_primary_10_3389_fphar_2021_626515 crossref_primary_10_1007_s11626_015_9964_1 crossref_primary_10_1007_s10571_014_0104_3 crossref_primary_10_1038_nrm3479 crossref_primary_10_3109_10428194_2013_842992 crossref_primary_10_1371_journal_pone_0139616 crossref_primary_10_1371_journal_pone_0072592 crossref_primary_10_1002_iub_2407 crossref_primary_10_4161_cc_23599 crossref_primary_10_1016_j_ejpb_2024_114599 crossref_primary_10_1016_j_euroneuro_2015_07_019 crossref_primary_10_1038_onc_2014_96 crossref_primary_10_1038_s41467_022_28265_0 crossref_primary_10_3389_fcell_2022_844844 crossref_primary_10_3390_ijms16035528 crossref_primary_10_4155_tde_12_75 crossref_primary_10_3390_cancers10120499 crossref_primary_10_1016_j_lfs_2020_118766 crossref_primary_10_1038_s41577_022_00760_x crossref_primary_10_1016_j_tins_2013_07_001 crossref_primary_10_1016_j_bbamcr_2021_119191 crossref_primary_10_1016_j_bbadis_2012_11_021 crossref_primary_10_1016_j_molcel_2012_05_032 |
Cites_doi | 10.1167/iovs.11-7570 10.1073/pnas.0907131106 10.1038/ni.2060 10.1002/j.1460-2075.1996.tb01090.x 10.1101/gad.1658508 10.1016/j.febslet.2011.05.061 10.1016/j.cell.2004.05.004 10.1182/blood-2002-06-1778 10.1038/sj.cdd.4401950 10.1038/nrm2970 10.1046/j.1365-2184.2003.00253.x 10.1038/nrm2308 10.1038/nature09878 10.4049/jimmunol.178.4.2429 10.1016/j.cell.2005.06.014 10.1016/S0968-0004(00)01585-1 10.1126/science.7535475 10.1093/emboj/17.24.7209 10.1007/s000180050299 10.1242/jeb.00241 10.1182/blood-2002-03-0686 10.1016/j.immuni.2011.08.014 10.1038/sj.emboj.7600104 10.1038/sj.cdd.4401307 10.4161/cc.6.24.5046 10.4049/jimmunol.162.9.5374 10.1128/MCB.20.13.4745-4753.2000 10.1126/science.279.5358.1954 10.1073/pnas.0809414106 10.1152/physrev.00013.2006 10.4049/jimmunol.181.10.6810 10.1016/j.cell.2007.08.047 10.1016/0092-8674(95)90490-5 10.1038/nature09982 10.1038/nm.2385 10.1126/science.1201940 10.1016/j.bbadis.2005.09.004 10.1007/s12026-011-8249-3 10.1038/nrm2083 10.1038/nature03434 10.1038/sj.cdd.4402232 10.1016/j.molcel.2006.12.021 10.1093/emboj/cdg533 10.1016/j.ceb.2010.07.014 10.1038/nn.2709 10.1126/science.1071553 10.1038/cdd.2008.28 10.1016/S1074-7613(00)80609-3 10.1038/sj.emboj.7600461 10.1002/eji.200324013 10.1074/jbc.M208955200 10.1016/S0092-8674(00)80849-1 10.4049/jimmunol.179.8.5291 10.1196/annals.1427.020 10.1146/annurev.physiol.70.021507.105852 10.1371/journal.ppat.1000018 10.1242/jcs.107.2.363 10.1073/pnas.0603445103 10.1038/nature10558 10.1038/sj.emboj.7601276 10.1038/cdd.2011.34 10.1016/j.cell.2007.12.040 10.1038/nrm2239 10.1038/cdd.2008.150 10.1016/j.ajhg.2010.03.002 10.1038/nrm2952 10.1038/sj.cdd.4401787 10.1146/annurev.biochem.75.062003.101730 10.1038/ni.1638 10.1016/j.molcel.2008.05.014 10.1016/j.euroneuro.2009.08.005 10.4049/jimmunol.175.5.3033 10.1016/j.cell.2009.05.021 10.1038/sj.onc.1209609 10.1016/S0092-8674(00)80943-5 10.1016/S1074-7613(00)80549-X 10.1073/pnas.2636393100 10.1016/j.molimm.2010.10.023 10.1016/j.cell.2005.03.016 10.1038/nature02229 10.1016/S1074-7613(00)80535-X 10.1038/ni976 10.1016/S1097-2765(04)00028-0 10.1016/j.immuni.2008.03.013 10.1084/jem.187.9.1477 10.1038/sj.onc.1206322 10.1093/emboj/cdg355 10.1038/nature09857 10.1038/ncb1575 10.1038/cdd.2011.96 10.1038/ncb1644 10.1038/ni1025 10.1016/j.cell.2007.01.045 10.1038/nature02451 10.1038/cdd.2010.151 10.1038/nature05378 10.1074/jbc.M108029200 10.1038/cdd.2008.24 10.2174/1389450033490867 10.1073/pnas.0603950103 10.1084/jem.193.2.247 10.1038/35069004 10.1371/journal.ppat.1000142 10.1016/j.cell.2007.03.017 10.1093/emboj/16.15.4628 10.1016/j.molcel.2007.09.030 10.1074/jbc.275.14.10453 10.1128/MCB.22.10.3509-3517.2002 10.1111/j.1749-6632.1980.tb47198.x 10.1038/nature10273 10.1093/molehr/gaq082 10.1016/j.cellsig.2007.05.016 10.1038/sj.onc.1210042 10.1038/ncb2330 10.1126/science.1123480 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 2012 Copyright © 2012 European Molecular Biology Organization Copyright Nature Publishing Group Apr 2012 Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 2012 – notice: Copyright © 2012 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Apr 2012 – notice: Copyright © 2012, European Molecular Biology Organization 2012 European Molecular Biology Organization |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/embor.2012.19 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1469-3178 |
EndPage | 330 |
ExternalDocumentID | PMC3321152 2669388901 22402666 10_1038_embor_2012_19 EMBR201219 ark_67375_WNG_BCX1HTHS_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -Q- .55 0R~ 1OC 24P 29G 2WC 33P 36B 39C 3O- 3V. 53G 5GY 5VS 70F 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 DCZOG DIK DPXWK DRFUL DRSTM DWQXO E3Z EBLON EBS EJD EMB EMOBN F5P FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HK~ HMCUK HVGLF HYE H~9 KQ8 L7B LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M0L M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P2P P2W PQQKQ PROAC PSQYO Q2X R.K RHF RHI RIG RNI RNS ROL RPM RZO SV3 TR2 UKHRP WBKPD WIH WIK WIN WOHZO WOQ WXSBR WYJ X7M ZGI ZZTAW AAJSJ AAMMB AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEUYN AFWVQ AGQPQ AGXDD AIDQK AIDYY PHGZM PHGZT PJZUB PPXIY PQGLB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T5 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c6039-542ad27ce15a3397f9090e209b4ca874e73f44ead388615703ce194fe236ffdc3 |
IEDL.DBID | BENPR |
ISSN | 1469-221X 1469-3178 |
IngestDate | Thu Aug 21 14:14:29 EDT 2025 Thu Sep 04 23:08:34 EDT 2025 Fri Jul 25 10:51:52 EDT 2025 Mon Jul 21 06:02:18 EDT 2025 Thu Apr 24 23:06:24 EDT 2025 Tue Jul 01 02:52:11 EDT 2025 Wed Jan 22 16:52:32 EST 2025 Tue Aug 12 01:10:39 EDT 2025 Wed Oct 30 09:47:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | BCL‐2 apoptosome AIF caspase death receptor mitochondrial membrane permeabilization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6039-542ad27ce15a3397f9090e209b4ca874e73f44ead388615703ce194fe236ffdc3 |
Notes | ArticleID:EMBR201219 ark:/67375/WNG-BCX1HTHS-B istex:A63D296EAE8B23A4E9130F9F6F49ADA6FA2002BC See Glossary for abbreviations used in this article. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/embor.2012.19 |
PMID | 22402666 |
PQID | 1015782519 |
PQPubID | 26169 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321152 proquest_miscellaneous_963827719 proquest_journals_1015782519 pubmed_primary_22402666 crossref_primary_10_1038_embor_2012_19 crossref_citationtrail_10_1038_embor_2012_19 wiley_primary_10_1038_embor_2012_19_EMBR201219 springer_journals_10_1038_embor_2012_19 istex_primary_ark_67375_WNG_BCX1HTHS_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
PublicationTitle | EMBO reports |
PublicationTitleAbbrev | EMBO Rep |
PublicationTitleAlternate | EMBO Rep |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Watanabe C, Shu GL, Zheng TS, Flavell RA, Clark EA (2008) Caspase 6 regulates B cell activation and differentiation into plasma cells. J Immunol 181: 6810-6819 Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509 Huang Q et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17: 860-866 Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM (2011) Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 8646-8656 Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679-4689 Felmer R, Horvat S, Clinton M, Clark AJ (2003) Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes. Cell Prolif 36: 45-54 Kuninaka S et al (2007) Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26: 2395-2406 Zermati Y et al (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624-637 Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446-4453 O'Reilly LA, Huang DC, Strasser A (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979-6990 Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19: 2056-2067 Sohn D, Budach W, Janicke RU (2011) Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 18: 1664-1674 Belzacq AS, Brenner C (2003) The adenine nucleotide translocator: a new potential chemotherapeutic target. Curr Drug Targets 4: 517-524 Balachandran S, Venkataraman T, Fisher PB, Barber GN (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 178: 2429-2439 Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341: 552-563 Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700-714 Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112 Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11: 621-632 Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122: 593-603 Pospisilik JA et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131: 476-491 Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8: 297-303 Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J (2005) Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 175: 3033-3044 Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423-1433 Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330-334 De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100: 1310-1317 Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55: 423-436 Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008b) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15: 1113-1123 Li P et al (1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80: 401-411 Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20: 4745-4753 D'Amelio M et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 14: 69-76 Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8: 49-62 Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15: 113-122 Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165-187 Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164-180 Ribeil JA et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445: 102-105 Joza N et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15: 1009-1018 Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59 Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106: 3935-3940 Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550-555 Buttner S et al (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25: 233-246 Gil-Gomez G, Berns A, Brady HJ (1998) A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 17: 7209-7218 Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117-121 Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459-5470 Liu Y, Bertram CC, Shi Q, Zinkel SS (2011) Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. Cell Death Differ 18: 841-852 Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci 25: 215-221 Ramos-Miguel A, Esteban S, Garcia-Sevilla JA (2010) The time course of unconditioned morphine-induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA-15 as a FADD-ERK binding partner in striatal plasticity. Eur Neuropsychopharmacol 20: 49-64 Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207-1216 Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35: 572-582 Bauler LD, Duckett CS, O'Riordan MX (2008) XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 4: e1000142 Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13: 329-340 Hao Z et al (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579-591 Shen SM, Yu Y, Wu ZX, Zheng Y, Chen GQ, Wang LS (2011) Apoptosis-inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation. FEBS Lett 585: 2307-2312 Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561-574 Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399 Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, Raas-Rothschild A, Nadjari M, Kaestner KH, Elpeleg O (2012) Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab (in the press) Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700 Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-κB through RIP, NIK and IKKα kinases. Eur J Immunol 33: 1998-2006 Lu QL, Hanby AM, Nasser Hajibagheri MA, Gschmeissner SE, Lu PJ, Taylor-Papadimitriou J, Krajewski S, Reed JC, Wright NA (1994) Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 107: 363-371 Keller M, Ruegg A, Werner S, Beer HD ( 2011; 479 2010; 11 2011; 477 2008a; 4 2005; 175 2004; 23 2002; 277 2011; 52 1999; 162 2012; 19 2004; 5 1998; 279 2008; 30 2011; 471 2003; 278 2011; 474 2010; 22 2007; 178 2001; 410 2007; 179 1998; 17 2010; 20 2003; 206 2006; 25 2008; 28 2007; 8 2007; 9 2007; 6 1999; 55 1998; 92 2008; 22 2009; 16 2007; 445 2007; 19 2003; 36 2008b; 15 2004; 427 1996; 15 2003; 33 2004; 429 2005; 121 2005; 122 1995; 267 2000; 101 2007; 87 2008; 132 2003; 100 2003; 22 2006; 103 1998; 9 1998; 8 2009; 106 2006; 75 2008; 9 2011; 13 2011; 12 2006; 1762 2008; 4 2011; 14 2011; 17 2008; 70 2011; 18 2007; 28 2002; 100 2007; 131 2003; 4 1997; 16 1994; 107 1980; 341 2007; 25 2007; 26 2011; 333 2007; 129 2002; 296 2012 2000; 25 2006; 13 2005; 434 2000; 20 2008; 15 2011; 35 2000; 275 2009; 137 2006; 312 2008; 181 2004; 11 2010; 86 2008; 1147 1995; 80 2001; 193 2011; 51 2002; 22 2004; 13 2011; 48 2003; 61 1998; 187 2004; 117 2011; 585 e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_100_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_29_1 e_1_2_12_103_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 Papadopoulos V (e_1_2_12_81_1) 2003; 61 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_102_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 Berger I (e_1_2_12_75_1) 2012 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_105_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 9303307 - EMBO J. 1997 Aug 1;16(15):4628-38 16754849 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8995-9000 14749836 - Nature. 2004 Jan 29;427(6973):461-5 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 15010700 - EMBO J. 2004 Mar 10;23(5):1207-16 14663139 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15782-7 12589253 - Ann Pharm Fr. 2003 Jan;61(1):30-50 15800627 - Nature. 2005 Mar 31;434(7033):658-62 21368761 - Nature. 2011 Mar 17;471(7338):373-6 15163405 - Cell. 2004 May 28;117(5):561-74 22000287 - Immunity. 2011 Oct 28;35(4):572-82 19223583 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3935-40 22019070 - Mol Genet Metab. 2011 Dec;104(4):517-20 9003774 - EMBO J. 1996 Dec 16;15(24):6979-90 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20 12529375 - J Biol Chem. 2003 Mar 28;278(13):11633-41 12970760 - Nat Immunol. 2003 Oct;4(10):1016-22 21111482 - Mol Immunol. 2011 Jan;48(4):610-22 14535652 - Curr Drug Targets. 2003 Oct;4(7):517-24 10228556 - Cell Mol Life Sci. 1999 Mar;55(3):423-36 18981099 - J Immunol. 2008 Nov 15;181(10):6810-9 17167422 - Nature. 2007 Jan 4;445(7123):102-5 9529147 - Immunity. 1998 Mar;8(3):297-303 16917506 - EMBO J. 2006 Sep 6;25(17):4061-73 19076440 - Ann N Y Acad Sci. 2008 Dec;1147:171-9 14730360 - Nat Immunol. 2004 Feb;5(2):199-207 18042457 - Mol Cell. 2007 Nov 30;28(4):624-37 12853472 - EMBO J. 2003 Jul 15;22(14):3568-79 9565639 - J Exp Med. 1998 May 4;187(9):1477-85 16645094 - Science. 2006 Apr 28;312(5773):572-6 17901875 - Cell Death Differ. 2008 Jan;15(1):113-22 18309324 - Cell Death Differ. 2008 Jul;15(7):1113-23 15526035 - EMBO J. 2004 Nov 24;23(23):4679-89 6249159 - Ann N Y Acad Sci. 1980;341:552-63 17981116 - Cell. 2007 Nov 2;131(3):476-91 18516228 - PLoS Pathog. 2008 May;4(5):e1000018 12970672 - Cell Death Differ. 2004 Jan;11(1):90-8 21804564 - Nature. 2011 Sep 15;477(7364):330-4 12756287 - J Exp Biol. 2003 Jun;206(Pt 12):2049-57 10848600 - Mol Cell Biol. 2000 Jul;20(13):4745-53 22002608 - Nature. 2011 Nov 3;479(7371):117-21 18769721 - PLoS Pathog. 2008;4(8):e1000142 20362274 - Am J Hum Genet. 2010 Apr 9;86(4):639-49 21368762 - Nature. 2011 Mar 17;471(7338):368-72 19667203 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14524-9 9491891 - Cell. 1998 Feb 20;92(4):501-9 8207068 - J Cell Sci. 1994 Feb;107 ( Pt 2):363-71 10782088 - Trends Biochem Sci. 2000 May;25(5):215-21 18570872 - Mol Cell. 2008 Jun 20;30(6):689-700 19758790 - Eur Neuropsychopharmacol. 2010 Jan;20(1):49-64 10228014 - J Immunol. 1999 May 1;162(9):5374-9 10744735 - J Biol Chem. 2000 Apr 7;275(14):10453-62 21475302 - Cell Death Differ. 2011 Oct;18(10):1664-74 16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33 21552281 - Nature. 2011 Jun 2;474(7349):96-9 21151119 - Nat Neurosci. 2011 Jan;14(1):69-76 10830166 - Cell. 2000 May 12;101(4):389-99 16122426 - Cell. 2005 Aug 26;122(4):593-603 16788063 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9918-23 15907471 - Cell. 2005 May 20;121(4):579-91 18439848 - Immunity. 2008 May;28(5):651-61 19524512 - Cell. 2009 Jun 12;137(6):1100-11 21664907 - FEBS Lett. 2011 Jul 21;585(14):2307-12 20926603 - Mol Hum Reprod. 2011 Feb;17(2):127-34 14967141 - Mol Cell. 2004 Feb 13;13(3):329-40 17417626 - Nat Cell Biol. 2007 May;9(5):550-5 18846107 - Cell Death Differ. 2009 Jan;16(1):3-11 11208865 - J Exp Med. 2001 Jan 15;193(2):247-54 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32 17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52 21969293 - Invest Ophthalmol Vis Sci. 2011 Nov;52(12):8646-56 18559474 - Genes Dev. 2008 Jun 15;22(12):1577-90 21926988 - Nat Cell Biol. 2011 Oct;13(10):1224-33 21725296 - Nat Med. 2011 Jul;17(7):860-6 21113148 - Cell Death Differ. 2011 May;18(5):841-52 18329368 - Cell. 2008 Mar 7;132(5):818-31 17644308 - Cell Signal. 2007 Oct;19(10):2056-67 17906618 - Nat Cell Biol. 2007 Nov;9(11):1243-52 17244531 - Mol Cell. 2007 Jan 26;25(2):233-46 17237344 - Physiol Rev. 2007 Jan;87(1):99-163 16239930 - Cell Death Differ. 2006 Jul;13(7):1147-55 9857178 - EMBO J. 1998 Dec 15;17(24):7209-18 17680735 - Annu Rev Physiol. 2008;70:73-91 16116191 - J Immunol. 2005 Sep 1;175(5):3033-44 17130845 - Oncogene. 2007 Apr 12;26(17):2395-406 12642862 - Oncogene. 2003 Mar 20;22(11):1589-99 18309327 - Cell Death Differ. 2008 Jun;15(6):1009-18 7859282 - Cell. 1995 Feb 10;80(3):401-11 16236486 - Biochim Biophys Acta. 2006 Feb;1762(2):164-80 11971981 - Mol Cell Biol. 2002 May;22(10):3509-17 16756489 - Annu Rev Biochem. 2006;75:165-87 11832478 - J Biol Chem. 2002 Apr 19;277(16):13430-7 20823910 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14 16892087 - Oncogene. 2006 Aug 7;25(34):4744-56 17418785 - Cell. 2007 Apr 6;129(1):45-56 12884866 - Eur J Immunol. 2003 Jul;33(7):1998-2006 21772280 - Nat Immunol. 2011 Aug;12(8):715-23 20729050 - Curr Opin Cell Biol. 2010 Dec;22(6):852-8 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62 22038529 - Immunol Res. 2011 Dec;51(2-3):227-36 21868666 - Science. 2011 Aug 26;333(6046):1109-12 12149212 - Blood. 2002 Aug 15;100(4):1310-7 17277150 - J Immunol. 2007 Feb 15;178(4):2429-39 9506948 - Science. 1998 Mar 20;279(5358):1954-8 9586634 - Immunity. 1998 Apr;8(4):439-49 18641654 - Nat Immunol. 2008 Sep;9(9):1037-46 7535475 - Science. 1995 Mar 31;267(5206):2000-3 14532118 - EMBO J. 2003 Oct 15;22(20):5459-70 12558660 - Cell Prolif. 2003 Feb;36(1):45-54 17911615 - J Immunol. 2007 Oct 15;179(8):5291-300 12040174 - Science. 2002 May 31;296(5573):1635-6 11279485 - Nature. 2001 Mar 29;410(6828):549-54 15129283 - Nature. 2004 May 6;429(6987):75-9 18073531 - Cell Cycle. 2007 Dec;6(24):3103-3107 9729047 - Immunity. 1998 Aug;9(2):267-76 12393560 - Blood. 2002 Dec 15;100(13):4446-53 17448999 - Cell. 2007 Apr 20;129(2):423-33 |
References_xml | – reference: Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8: 297-303 – reference: Kaufmann T, Tai L, Ekert PG, Huang DC, Norris F, Lindemann RK, Johnstone RW, Dixit VM, Strasser A (2007) The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129: 423-433 – reference: Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277: 13430-13437 – reference: Okada H et al (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22: 3509-3517 – reference: Hao Z et al (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121: 579-591 – reference: Shen SM, Yu Y, Wu ZX, Zheng Y, Chen GQ, Wang LS (2011) Apoptosis-inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation. FEBS Lett 585: 2307-2312 – reference: Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689-700 – reference: Cheung EC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25: 4061-4073 – reference: Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008b) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15: 1113-1123 – reference: Ermolaeva MA, Michallet MC, Papadopoulou N, Utermohlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9: 1037-1046 – reference: Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561-574 – reference: Berger I, Ben-Neriah Z, Dor-Wolman T, Shaag A, Saada A, Zenvirt S, Raas-Rothschild A, Nadjari M, Kaestner KH, Elpeleg O (2012) Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab (in the press) – reference: Huang DC, O'Reilly LA, Strasser A, Cory S (1997) The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J 16: 4628-4638 – reference: Zhang J et al (2003) Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc Natl Acad Sci USA 100: 15782-15787 – reference: Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471: 368-372 – reference: Balachandran S, Venkataraman T, Fisher PB, Barber GN (2007) Fas-associated death domain-containing protein-mediated antiviral innate immune signaling involves the regulation of Irf7. J Immunol 178: 2429-2439 – reference: Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267: 2000-2003 – reference: Bruey JM et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129: 45-56 – reference: Varfolomeev EE et al (1998) Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267-276 – reference: Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752 – reference: Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509 – reference: Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296: 1635-1636 – reference: Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13: 1423-1433 – reference: Zan H, Zhang J, Al-Qahtani A, Pone EJ, White CA, Lee D, Yel L, Mai T, Casali P (2011) Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions. Mol Immunol 48: 610-622 – reference: Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99-163 – reference: Kroemer G et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3-11 – reference: Huang KJ, Ku CC, Lehman IR (2006) Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc Natl Acad Sci USA 103: 8995-9000 – reference: Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427: 461-465 – reference: Jia L, Patwari Y, Kelsey SM, Srinivasula SM, Agrawal SG, Alnemri ES, Newland AC (2003) Role of Smac in human leukaemic cell apoptosis and proliferation. Oncogene 22: 1589-1599 – reference: Lind EF, Wayne J, Wang QZ, Staeva T, Stolzer A, Petrie HT (1999) Bcl-2-induced changes in E2F regulatory complexes reveal the potential for integrated cell cycle and cell death functions. J Immunol 162: 5374-5379 – reference: Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15: 113-122 – reference: Walsh CM, Wen BG, Chinnaiyan AM, O'Rourke K, Dixit VM, Hedrick SM (1998) A role for FADD in T cell activation and development. Immunity 8: 439-449 – reference: Yeh WC et al (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279: 1954-1958 – reference: Sohn D, Budach W, Janicke RU (2011) Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 18: 1664-1674 – reference: O'Reilly LA, Huang DC, Strasser A (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979-6990 – reference: Ramos-Miguel A, Esteban S, Garcia-Sevilla JA (2010) The time course of unconditioned morphine-induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA-15 as a FADD-ERK binding partner in striatal plasticity. Eur Neuropsychopharmacol 20: 49-64 – reference: Watanabe C, Shu GL, Zheng TS, Flavell RA, Clark EA (2008) Caspase 6 regulates B cell activation and differentiation into plasma cells. J Immunol 181: 6810-6819 – reference: Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A (2004) JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell 13: 329-340 – reference: Zhang H, Zhou X, McQuade T, Li J, Chan FK, Zhang J (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471: 373-376 – reference: Zermati Y et al (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28: 624-637 – reference: Bian ZM, Elner SG, Khanna H, Murga-Zamalloa CA, Patil S, Elner VM (2011) Expression and functional roles of caspase-5 in inflammatory responses of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 52: 8646-8656 – reference: Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399 – reference: Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446-4453 – reference: Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22: 5459-5470 – reference: Ben-Neriah Y, Karin M (2011) Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12: 715-723 – reference: Kamer I, Sarig R, Zaltsman Y, Niv H, Oberkovitz G, Regev L, Haimovich G, Lerenthal Y, Marcellus RC, Gross A (2005) Proapoptotic BID is an ATM effector in the DNA-damage response. Cell 122: 593-603 – reference: Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70: 73-91 – reference: Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47-59 – reference: Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112 – reference: Rolland SG, Conradt B (2010) New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 22: 852-858 – reference: Zhang Y, Rosenberg S, Wang H, Imtiyaz HZ, Hou YJ, Zhang J (2005) Conditional Fas-associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis. J Immunol 175: 3033-3044 – reference: De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100: 1310-1317 – reference: Vairo G, Soos TJ, Upton TM, Zalvide J, DeCaprio JA, Ewen ME, Koff A, Adams JM (2000) Bcl-2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation. Mol Cell Biol 20: 4745-4753 – reference: Perkins ND (2007) Integrating cell-signalling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 8: 49-62 – reference: Hueber AO, Zornig M, Bernard AM, Chautan M, Evan G (2000) A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 275: 10453-10462 – reference: Wesemann DR, Qin H, Kokorina N, Benveniste EN (2004) TRADD interacts with STAT1α and influences interferon-γ signaling. Nat Immunol 5: 199-207 – reference: Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117-121 – reference: Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187: 1477-1485 – reference: Felmer R, Horvat S, Clinton M, Clark AJ (2003) Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes. Cell Prolif 36: 45-54 – reference: Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700-714 – reference: Brown D, Yu BD, Joza N, Benit P, Meneses J, Firpo M, Rustin P, Penninger JM, Martin GR (2006) Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci USA 103: 9918-9923 – reference: Rutter GA, Rizzuto R (2000) Regulation of mitochondrial metabolism by ER Ca2+ release: an intimate connection. Trends Biochem Sci 25: 215-221 – reference: Li P et al (1995) Mice deficient in IL-1β-converting enzyme are defective in production of mature IL-1β and resistant to endotoxic shock. Cell 80: 401-411 – reference: Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23: 1207-1216 – reference: Hetz C et al (2006) Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α. Science 312: 572-576 – reference: Plun-Favreau H et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 9: 1243-1252 – reference: Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55: 423-436 – reference: Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22: 1577-1590 – reference: Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19: 2056-2067 – reference: Black S, Kadyrov M, Kaufmann P, Ugele B, Emans N, Huppertz B (2004) Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ 11: 90-98 – reference: Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, Knoefel WT, Reed JC (2009) XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci USA 106: 14524-14529 – reference: Bonnet MC, Preukschat D, Welz PS, van Loo G, Ermolaeva MA, Bloch W, Haase I, Pasparakis M (2011) The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35: 572-582 – reference: Lu QL, Hanby AM, Nasser Hajibagheri MA, Gschmeissner SE, Lu PJ, Taylor-Papadimitriou J, Krajewski S, Reed JC, Wright NA (1994) Bcl-2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines. J Cell Sci 107: 363-371 – reference: Faustin B, Chen Y, Zhai D, Le Negrate G, Lartigue L, Satterthwait A, Reed JC (2009) Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc Natl Acad Sci USA 106: 3935-3940 – reference: Buttner S et al (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25: 233-246 – reference: Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D'Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M (2010) Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet 86: 639-649 – reference: Baines CP et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658-662 – reference: David KK, Sasaki M, Yu SW, Dawson TM, Dawson VL (2006) EndoG is dispensable in embryogenesis and apoptosis. Cell Death Differ 13: 1147-1155 – reference: Fluhr H, Wenig H, Spratte J, Heidrich S, Ehrhardt J, Zygmunt M (2011) Non-apoptotic Fas-induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase-activity. Mol Hum Reprod 17: 127-134 – reference: Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120 – reference: Saleh M et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429: 75-79 – reference: Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165-187 – reference: Ribeil JA et al (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445: 102-105 – reference: Papadopoulos V (2003) Peripheral benzodiazepine receptor: structure and function in health and disease. Ann Pharm Fr 61: 30-50 – reference: Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11: 621-632 – reference: D'Amelio M et al (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 14: 69-76 – reference: He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137: 1100-1111 – reference: Kuninaka S et al (2007) Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26: 2395-2406 – reference: Liu Y, Bertram CC, Shi Q, Zinkel SS (2011) Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. Cell Death Differ 18: 841-852 – reference: Gil-Gomez G, Berns A, Brady HJ (1998) A link between cell cycle and cell death: Bax and Bcl-2 modulate Cdk2 activation during thymocyte apoptosis. EMBO J 17: 7209-7218 – reference: Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193: 247-254 – reference: Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341: 552-563 – reference: Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762: 164-180 – reference: Joza N et al (2001) Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549-554 – reference: Pospisilik JA et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131: 476-491 – reference: Yeretssian G, Correa RG, Doiron K, Fitzgerald P, Dillon CP, Green DR, Reed JC, Saleh M (2011) Non-apoptotic role of BID in inflammation and innate immunity. Nature 474: 96-99 – reference: Mouhamad S, Galluzzi L, Zermati Y, Castedo M, Kroemer G (2007) Apaf-1 deficiency causes chromosomal instability. Cell Cycle 6: 3103-3107 – reference: Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9: 550-555 – reference: Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, Qin F, Farabaugh M (2011) RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res 51: 227-236 – reference: Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132: 818-831 – reference: Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008a) Viral control of mitochondrial apoptosis. PLoS Pathog 4: e1000018 – reference: Joza N et al (2008) The molecular archaeology of a mitochondrial death effector: AIF in Drosophila. Cell Death Differ 15: 1009-1018 – reference: Arechiga AF et al (2007) A Fas-associated death domain protein/caspase-8-signaling axis promotes S-phase entry and maintains S6 kinase activity in T cells responding to IL-2. J Immunol 179: 5291-5300 – reference: Michallet MC et al (2008) TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28: 651-661 – reference: Woo M et al (2003) Caspase-3 regulates cell cycle in B cells: a consequence of substrate specificity. Nat Immunol 4: 1016-1022 – reference: Brenner C, Grimm S (2006) The permeability transition pore complex in cancer cell death. Oncogene 25: 4744-4756 – reference: Shikama Y, Yamada M, Miyashita T (2003) Caspase-8 and caspase-10 activate NF-κB through RIP, NIK and IKKα kinases. Eur J Immunol 33: 1998-2006 – reference: Mannella CA (2008) Structural diversity of mitochondria: functional implications. Ann NY Acad Sci 1147: 171-179 – reference: Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206: 2049-2057 – reference: Welz PS, Wullaert A, Vlantis K, Kondylis V, Fernandez-Majada V, Ermolaeva M, Kirsch P, Sterner-Kock A, van Loo G, Pasparakis M (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477: 330-334 – reference: Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM (2003) The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 278: 11633-11641 – reference: Alavian KN et al (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13: 1224-1233 – reference: Belzacq AS, Brenner C (2003) The adenine nucleotide translocator: a new potential chemotherapeutic target. Curr Drug Targets 4: 517-524 – reference: Huang Q et al (2011) Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med 17: 860-866 – reference: Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22: 3568-3579 – reference: Bauler LD, Duckett CS, O'Riordan MX (2008) XIAP regulates cytosol-specific innate immunity to Listeria infection. PLoS Pathog 4: e1000142 – reference: Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23: 4679-4689 – volume: 33 start-page: 1998 year: 2003 end-page: 2006 article-title: Caspase‐8 and caspase‐10 activate NF‐κB through RIP, NIK and IKKα kinases publication-title: Eur J Immunol – volume: 16 start-page: 4628 year: 1997 end-page: 4638 article-title: The anti‐apoptosis function of Bcl‐2 can be genetically separated from its inhibitory effect on cell cycle entry publication-title: EMBO J – volume: 22 start-page: 1577 year: 2008 end-page: 1590 article-title: Mitochondrial dynamics and apoptosis publication-title: Genes Dev – volume: 19 start-page: 107 year: 2012 end-page: 120 article-title: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 publication-title: Cell Death Differ – volume: 22 start-page: 3568 year: 2003 end-page: 3579 article-title: Buffy, a Bcl‐2 protein, has anti‐apoptotic and cell cycle inhibitory functions publication-title: EMBO J – volume: 92 start-page: 501 year: 1998 end-page: 509 article-title: Murine caspase‐11, an ICE‐interacting protease, is essential for the activation of ICE publication-title: Cell – volume: 20 start-page: 49 year: 2010 end-page: 64 article-title: The time course of unconditioned morphine‐induced psychomotor sensitization mirrors the phosphorylation of FADD and MEK/ERK in rat striatum: role of PEA‐15 as a FADD‐ERK binding partner in striatal plasticity publication-title: Eur Neuropsychopharmacol – volume: 70 start-page: 73 year: 2008 end-page: 91 article-title: Bcl‐2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis publication-title: Annu Rev Physiol – volume: 15 start-page: 1113 year: 2008b end-page: 1123 article-title: No death without life: vital functions of apoptotic effectors publication-title: Cell Death Differ – volume: 101 start-page: 389 year: 2000 end-page: 399 article-title: Cytochrome deficiency causes embryonic lethality and attenuates stress‐induced apoptosis publication-title: Cell – volume: 9 start-page: 1243 year: 2007 end-page: 1252 article-title: The mitochondrial protease HtrA2 is regulated by Parkinson's disease‐associated kinase PINK1 publication-title: Nat Cell Biol – volume: 51 start-page: 227 year: 2011 end-page: 236 article-title: RIP1‐mediated regulation of lymphocyte survival and death responses publication-title: Immunol Res – volume: 427 start-page: 461 year: 2004 end-page: 465 article-title: The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore publication-title: Nature – volume: 19 start-page: 2056 year: 2007 end-page: 2067 article-title: Cleavage of RIP3 inactivates its caspase‐independent apoptosis pathway by removal of kinase domain publication-title: Cell Signal – volume: 477 start-page: 330 year: 2011 end-page: 334 article-title: FADD prevents RIP3‐mediated epithelial cell necrosis and chronic intestinal inflammation publication-title: Nature – volume: 100 start-page: 15782 year: 2003 end-page: 15787 article-title: Endonuclease G is required for early embryogenesis and normal apoptosis in mice publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1589 year: 2003 end-page: 1599 article-title: Role of Smac in human leukaemic cell apoptosis and proliferation publication-title: Oncogene – volume: 75 start-page: 165 year: 2006 end-page: 187 article-title: Energy transduction: proton transfer through the respiratory complexes publication-title: Annu Rev Biochem – volume: 9 start-page: 47 year: 2008 end-page: 59 article-title: The BCL‐2 protein family: opposing activities that mediate cell death publication-title: Nat Rev Mol Cell Biol – volume: 12 start-page: 715 year: 2011 end-page: 723 article-title: Inflammation meets cancer, with NF‐κB as the matchmaker publication-title: Nat Immunol – volume: 15 start-page: 113 year: 2008 end-page: 122 article-title: An essential role for the metacaspase in cell cycle progression publication-title: Cell Death Differ – volume: 129 start-page: 45 year: 2007 end-page: 56 article-title: Bcl‐2 and Bcl‐XL regulate proinflammatory caspase‐1 activation by interaction with NALP1 publication-title: Cell – volume: 121 start-page: 579 year: 2005 end-page: 591 article-title: Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf‐1 in apoptosis publication-title: Cell – volume: 312 start-page: 572 year: 2006 end-page: 576 article-title: Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1α publication-title: Science – volume: 13 start-page: 1423 year: 2006 end-page: 1433 article-title: Mechanisms of cytochrome release from mitochondria publication-title: Cell Death Differ – volume: 48 start-page: 610 year: 2011 end-page: 622 article-title: Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double‐strand breaks in switch regions publication-title: Mol Immunol – volume: 14 start-page: 69 year: 2011 end-page: 76 article-title: Caspase‐3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease publication-title: Nat Neurosci – volume: 9 start-page: 267 year: 1998 end-page: 276 article-title: Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally publication-title: Immunity – volume: 35 start-page: 572 year: 2011 end-page: 582 article-title: The adaptor protein FADD protects epidermal keratinocytes from necroptosis and prevents skin inflammation publication-title: Immunity – volume: 28 start-page: 624 year: 2007 end-page: 637 article-title: Nonapoptotic role for Apaf‐1 in the DNA damage checkpoint publication-title: Mol Cell – volume: 22 start-page: 852 year: 2010 end-page: 858 article-title: New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics publication-title: Curr Opin Cell Biol – volume: 17 start-page: 127 year: 2011 end-page: 134 article-title: Non‐apoptotic Fas‐induced regulation of cytokines in undifferentiated and decidualized human endometrial stromal cells depends on caspase‐activity publication-title: Mol Hum Reprod – volume: 18 start-page: 1664 year: 2011 end-page: 1674 article-title: Caspase‐2 is required for DNA damage‐induced expression of the CDK inhibitor p21(WAF1/CIP1) publication-title: Cell Death Differ – volume: 585 start-page: 2307 year: 2011 end-page: 2312 article-title: Apoptosis‐inducing factor is a target gene of C/EBPa and participates in adipocyte differentiation publication-title: FEBS Lett – volume: 1147 start-page: 171 year: 2008 end-page: 179 article-title: Structural diversity of mitochondria: functional implications publication-title: Ann NY Acad Sci – volume: 122 start-page: 593 year: 2005 end-page: 603 article-title: Proapoptotic BID is an ATM effector in the DNA‐damage response publication-title: Cell – volume: 179 start-page: 5291 year: 2007 end-page: 5300 article-title: A Fas‐associated death domain protein/caspase‐8‐signaling axis promotes S‐phase entry and maintains S6 kinase activity in T cells responding to IL‐2 publication-title: J Immunol – volume: 25 start-page: 233 year: 2007 end-page: 246 article-title: Endonuclease G regulates budding yeast life and death publication-title: Mol Cell – volume: 103 start-page: 9918 year: 2006 end-page: 9923 article-title: Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 651 year: 2008 end-page: 661 article-title: TRADD protein is an essential component of the RIG‐like helicase antiviral pathway publication-title: Immunity – volume: 52 start-page: 8646 year: 2011 end-page: 8656 article-title: Expression and functional roles of caspase‐5 in inflammatory responses of human retinal pigment epithelial cells publication-title: Invest Ophthalmol Vis Sci – volume: 9 start-page: 550 year: 2007 end-page: 555 article-title: Voltage‐dependent anion channels are dispensable for mitochondrial‐dependent cell death publication-title: Nat Cell Biol – volume: 8 start-page: 741 year: 2007 end-page: 752 article-title: Self‐eating and self‐killing: crosstalk between autophagy and apoptosis publication-title: Nat Rev Mol Cell Biol – volume: 296 start-page: 1635 year: 2002 end-page: 1636 article-title: The Fas signaling pathway: more than a paradigm publication-title: Science – volume: 131 start-page: 476 year: 2007 end-page: 491 article-title: Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes publication-title: Cell – volume: 11 start-page: 700 year: 2010 end-page: 714 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat Rev Mol Cell Biol – volume: 23 start-page: 1207 year: 2004 end-page: 1216 article-title: Phosphorylation of BCL‐2 regulates ER Ca homeostasis and apoptosis publication-title: EMBO J – volume: 471 start-page: 368 year: 2011 end-page: 372 article-title: RIP3 mediates the embryonic lethality of caspase‐8‐deficient mice publication-title: Nature – volume: 4 start-page: e1000018 year: 2008a article-title: Viral control of mitochondrial apoptosis publication-title: PLoS Pathog – volume: 175 start-page: 3033 year: 2005 end-page: 3044 article-title: Conditional Fas‐associated death domain protein (FADD): GFP knockout mice reveal FADD is dispensable in thymic development but essential in peripheral T cell homeostasis publication-title: J Immunol – volume: 479 start-page: 117 year: 2011 end-page: 121 article-title: Non‐canonical inflammasome activation targets caspase‐11 publication-title: Nature – volume: 1762 start-page: 164 year: 2006 end-page: 180 article-title: Mitochondrial creatine kinase in human health and disease publication-title: Biochim Biophys Acta – volume: 17 start-page: 7209 year: 1998 end-page: 7218 article-title: A link between cell cycle and cell death: Bax and Bcl‐2 modulate Cdk2 activation during thymocyte apoptosis publication-title: EMBO J – volume: 30 start-page: 689 year: 2008 end-page: 700 article-title: cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination publication-title: Mol Cell – volume: 471 start-page: 373 year: 2011 end-page: 376 article-title: Functional complementation between FADD and RIP1 in embryos and lymphocytes publication-title: Nature – volume: 341 start-page: 552 year: 1980 end-page: 563 article-title: Structure and mode of action of a voltage dependent anion‐selective channel (VDAC) located in the outer mitochondrial membrane publication-title: Ann NY Acad Sci – volume: 22 start-page: 5459 year: 2003 end-page: 5470 article-title: Bcl‐xL/Bcl‐2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry publication-title: EMBO J – volume: 4 start-page: 1016 year: 2003 end-page: 1022 article-title: Caspase‐3 regulates cell cycle in B cells: a consequence of substrate specificity publication-title: Nat Immunol – volume: 100 start-page: 1310 year: 2002 end-page: 1317 article-title: Platelet formation is the consequence of caspase activation within megakaryocytes publication-title: Blood – volume: 162 start-page: 5374 year: 1999 end-page: 5379 article-title: Bcl‐2‐induced changes in E2F regulatory complexes reveal the potential for integrated cell cycle and cell death functions publication-title: J Immunol – volume: 178 start-page: 2429 year: 2007 end-page: 2439 article-title: Fas‐associated death domain‐containing protein‐mediated antiviral innate immune signaling involves the regulation of Irf7 publication-title: J Immunol – volume: 132 start-page: 818 year: 2008 end-page: 831 article-title: Active caspase‐1 is a regulator of unconventional protein secretion publication-title: Cell – volume: 267 start-page: 2000 year: 1995 end-page: 2003 article-title: Altered cytokine export and apoptosis in mice deficient in interleukin‐1β converting enzyme publication-title: Science – volume: 18 start-page: 841 year: 2011 end-page: 852 article-title: Proapoptotic Bid mediates the Atr‐directed DNA damage response to replicative stress publication-title: Cell Death Differ – volume: 25 start-page: 4744 year: 2006 end-page: 4756 article-title: The permeability transition pore complex in cancer cell death publication-title: Oncogene – year: 2012 article-title: Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing publication-title: Mol Genet Metab – volume: 206 start-page: 2049 year: 2003 end-page: 2057 article-title: Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function publication-title: J Exp Biol – volume: 17 start-page: 860 year: 2011 end-page: 866 article-title: Caspase 3‐mediated stimulation of tumor cell repopulation during cancer radiotherapy publication-title: Nat Med – volume: 13 start-page: 1147 year: 2006 end-page: 1155 article-title: EndoG is dispensable in embryogenesis and apoptosis publication-title: Cell Death Differ – volume: 100 start-page: 4446 year: 2002 end-page: 4453 article-title: Specific involvement of caspases in the differentiation of monocytes into macrophages publication-title: Blood – volume: 4 start-page: e1000142 year: 2008 article-title: XIAP regulates cytosol‐specific innate immunity to infection publication-title: PLoS Pathog – volume: 107 start-page: 363 year: 1994 end-page: 371 article-title: Bcl‐2 protein localizes to the chromosomes of mitotic nuclei and is correlated with the cell cycle in cultured epithelial cell lines publication-title: J Cell Sci – volume: 55 start-page: 423 year: 1999 end-page: 436 article-title: Peptidyl‐prolyl isomerases, a superfamily of ubiquitous folding catalysts publication-title: Cell Mol Life Sci – volume: 275 start-page: 10453 year: 2000 end-page: 10462 article-title: A dominant negative Fas‐associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T‐cells and fibroblasts publication-title: J Biol Chem – volume: 87 start-page: 99 year: 2007 end-page: 163 article-title: Mitochondrial membrane permeabilization in cell death publication-title: Physiol Rev – volume: 129 start-page: 423 year: 2007 end-page: 433 article-title: The BH3‐only protein bid is dispensable for DNA damage‐ and replicative stress‐induced apoptosis or cell‐cycle arrest publication-title: Cell – volume: 279 start-page: 1954 year: 1998 end-page: 1958 article-title: FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis publication-title: Science – volume: 5 start-page: 199 year: 2004 end-page: 207 article-title: TRADD interacts with STAT1α and influences interferon‐γ signaling publication-title: Nat Immunol – volume: 474 start-page: 96 year: 2011 end-page: 99 article-title: Non‐apoptotic role of BID in inflammation and innate immunity publication-title: Nature – volume: 20 start-page: 4745 year: 2000 end-page: 4753 article-title: Bcl‐2 retards cell cycle entry through p27(Kip1), pRB relative p130, and altered E2F regulation publication-title: Mol Cell Biol – volume: 86 start-page: 639 year: 2010 end-page: 649 article-title: Severe X‐linked mitochondrial encephalomyopathy associated with a mutation in apoptosis‐inducing factor publication-title: Am J Hum Genet – volume: 187 start-page: 1477 year: 1998 end-page: 1485 article-title: Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor publication-title: J Exp Med – volume: 22 start-page: 3509 year: 2002 end-page: 3517 article-title: Generation and characterization of Smac/DIABLO‐deficient mice publication-title: Mol Cell Biol – volume: 445 start-page: 102 year: 2007 end-page: 105 article-title: Hsp70 regulates erythropoiesis by preventing caspase‐3‐mediated cleavage of GATA‐1 publication-title: Nature – volume: 9 start-page: 1037 year: 2008 end-page: 1046 article-title: Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF‐dependent inflammatory responses publication-title: Nat Immunol – volume: 80 start-page: 401 year: 1995 end-page: 411 article-title: Mice deficient in IL‐1β‐converting enzyme are defective in production of mature IL‐1β and resistant to endotoxic shock publication-title: Cell – volume: 278 start-page: 11633 year: 2003 end-page: 11641 article-title: The N‐terminal end of Bax contains a mitochondrial‐targeting signal publication-title: J Biol Chem – volume: 181 start-page: 6810 year: 2008 end-page: 6819 article-title: Caspase 6 regulates B cell activation and differentiation into plasma cells publication-title: J Immunol – volume: 16 start-page: 3 year: 2009 end-page: 11 article-title: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 publication-title: Cell Death Differ – volume: 25 start-page: 215 year: 2000 end-page: 221 article-title: Regulation of mitochondrial metabolism by ER Ca release: an intimate connection publication-title: Trends Biochem Sci – volume: 4 start-page: 517 year: 2003 end-page: 524 article-title: The adenine nucleotide translocator: a new potential chemotherapeutic target publication-title: Curr Drug Targets – volume: 410 start-page: 549 year: 2001 end-page: 554 article-title: Essential role of the mitochondrial apoptosis‐inducing factor in programmed cell death publication-title: Nature – volume: 8 start-page: 297 year: 1998 end-page: 303 article-title: The death domain kinase RIP mediates the TNF‐induced NF‐κB signal publication-title: Immunity – volume: 15 start-page: 6979 year: 1996 end-page: 6990 article-title: The cell death inhibitor Bcl‐2 and its homologues influence control of cell cycle entry publication-title: EMBO J – volume: 429 start-page: 75 year: 2004 end-page: 79 article-title: Differential modulation of endotoxin responsiveness by human caspase‐12 polymorphisms publication-title: Nature – volume: 333 start-page: 1109 year: 2011 end-page: 1112 article-title: Mitochondria and the autophagy‐inflammation‐cell death axis in organismal aging publication-title: Science – volume: 11 start-page: 90 year: 2004 end-page: 98 article-title: Syncytial fusion of human trophoblast depends on caspase 8 publication-title: Cell Death Differ – volume: 13 start-page: 1224 year: 2011 end-page: 1233 article-title: Bcl‐xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F F ATP synthase publication-title: Nat Cell Biol – volume: 434 start-page: 658 year: 2005 end-page: 662 article-title: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death publication-title: Nature – volume: 106 start-page: 3935 year: 2009 end-page: 3940 article-title: Mechanism of Bcl‐2 and Bcl‐X(L) inhibition of NLRP1 inflammasome: loop domain‐dependent suppression of ATP binding and oligomerization publication-title: Proc Natl Acad Sci USA – volume: 106 start-page: 14524 year: 2009 end-page: 14529 article-title: XIAP mediates NOD signaling via interaction with RIP2 publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 3103 year: 2007 end-page: 3107 article-title: Apaf‐1 deficiency causes chromosomal instability publication-title: Cell Cycle – volume: 15 start-page: 1009 year: 2008 end-page: 1018 article-title: The molecular archaeology of a mitochondrial death effector: AIF in publication-title: Cell Death Differ – volume: 277 start-page: 13430 year: 2002 end-page: 13437 article-title: Caspase‐2 induces apoptosis by releasing proapoptotic proteins from mitochondria publication-title: J Biol Chem – volume: 8 start-page: 49 year: 2007 end-page: 62 article-title: Integrating cell‐signalling pathways with NF‐κB and IKK function publication-title: Nat Rev Mol Cell Biol – volume: 137 start-page: 1100 year: 2009 end-page: 1111 article-title: Receptor interacting protein kinase‐3 determines cellular necrotic response to TNF‐α publication-title: Cell – volume: 193 start-page: 247 year: 2001 end-page: 254 article-title: Caspase activation is required for terminal erythroid differentiation publication-title: J Exp Med – volume: 8 start-page: 439 year: 1998 end-page: 449 article-title: A role for FADD in T cell activation and development publication-title: Immunity – volume: 13 start-page: 329 year: 2004 end-page: 340 article-title: JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl‐2 family protein BAD publication-title: Mol Cell – volume: 26 start-page: 2395 year: 2007 end-page: 2406 article-title: Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation publication-title: Oncogene – volume: 117 start-page: 561 year: 2004 end-page: 574 article-title: Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases publication-title: Cell – volume: 25 start-page: 4061 year: 2006 end-page: 4073 article-title: Dissociating the dual roles of apoptosis‐inducing factor in maintaining mitochondrial structure and apoptosis publication-title: EMBO J – volume: 11 start-page: 621 year: 2010 end-page: 632 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat Rev Mol Cell Biol – volume: 103 start-page: 8995 year: 2006 end-page: 9000 article-title: Endonuclease G: a role for the enzyme in recombination and cellular proliferation publication-title: Proc Natl Acad Sci USA – volume: 61 start-page: 30 year: 2003 end-page: 50 article-title: Peripheral benzodiazepine receptor: structure and function in health and disease publication-title: Ann Pharm Fr – volume: 36 start-page: 45 year: 2003 end-page: 54 article-title: Overexpression of Raidd cDNA inhibits differentiation of mouse preadipocytes publication-title: Cell Prolif – volume: 23 start-page: 4679 year: 2004 end-page: 4689 article-title: AIF deficiency compromises oxidative phosphorylation publication-title: EMBO J – ident: e_1_2_12_30_1 doi: 10.1167/iovs.11-7570 – ident: e_1_2_12_28_1 doi: 10.1073/pnas.0907131106 – ident: e_1_2_12_19_1 doi: 10.1038/ni.2060 – ident: e_1_2_12_58_1 doi: 10.1002/j.1460-2075.1996.tb01090.x – ident: e_1_2_12_93_1 doi: 10.1101/gad.1658508 – ident: e_1_2_12_16_1 doi: 10.1016/j.febslet.2011.05.061 – ident: e_1_2_12_31_1 doi: 10.1016/j.cell.2004.05.004 – ident: e_1_2_12_10_1 doi: 10.1182/blood-2002-06-1778 – ident: e_1_2_12_68_1 doi: 10.1038/sj.cdd.4401950 – ident: e_1_2_12_95_1 doi: 10.1038/nrm2970 – ident: e_1_2_12_15_1 doi: 10.1046/j.1365-2184.2003.00253.x – ident: e_1_2_12_38_1 doi: 10.1038/nrm2308 – ident: e_1_2_12_102_1 doi: 10.1038/nature09878 – ident: e_1_2_12_24_1 doi: 10.4049/jimmunol.178.4.2429 – ident: e_1_2_12_63_1 doi: 10.1016/j.cell.2005.06.014 – ident: e_1_2_12_88_1 doi: 10.1016/S0968-0004(00)01585-1 – ident: e_1_2_12_35_1 doi: 10.1126/science.7535475 – ident: e_1_2_12_54_1 doi: 10.1093/emboj/17.24.7209 – ident: e_1_2_12_80_1 doi: 10.1007/s000180050299 – ident: e_1_2_12_82_1 doi: 10.1242/jeb.00241 – ident: e_1_2_12_13_1 doi: 10.1182/blood-2002-03-0686 – ident: e_1_2_12_105_1 doi: 10.1016/j.immuni.2011.08.014 – ident: e_1_2_12_113_1 doi: 10.1038/sj.emboj.7600104 – ident: e_1_2_12_11_1 doi: 10.1038/sj.cdd.4401307 – ident: e_1_2_12_62_1 doi: 10.4161/cc.6.24.5046 – ident: e_1_2_12_56_1 doi: 10.4049/jimmunol.162.9.5374 – ident: e_1_2_12_55_1 doi: 10.1128/MCB.20.13.4745-4753.2000 – ident: e_1_2_12_101_1 doi: 10.1126/science.279.5358.1954 – ident: e_1_2_12_40_1 doi: 10.1073/pnas.0809414106 – ident: e_1_2_12_5_1 doi: 10.1152/physrev.00013.2006 – ident: e_1_2_12_12_1 doi: 10.4049/jimmunol.181.10.6810 – ident: e_1_2_12_77_1 doi: 10.1016/j.cell.2007.08.047 – ident: e_1_2_12_36_1 doi: 10.1016/0092-8674(95)90490-5 – ident: e_1_2_12_34_1 doi: 10.1038/nature09982 – ident: e_1_2_12_45_1 doi: 10.1038/nm.2385 – ident: e_1_2_12_91_1 doi: 10.1126/science.1201940 – ident: e_1_2_12_83_1 doi: 10.1016/j.bbadis.2005.09.004 – ident: e_1_2_12_26_1 doi: 10.1007/s12026-011-8249-3 – ident: e_1_2_12_20_1 doi: 10.1038/nrm2083 – ident: e_1_2_12_86_1 doi: 10.1038/nature03434 – ident: e_1_2_12_46_1 doi: 10.1038/sj.cdd.4402232 – ident: e_1_2_12_52_1 doi: 10.1016/j.molcel.2006.12.021 – ident: e_1_2_12_57_1 doi: 10.1093/emboj/cdg533 – ident: e_1_2_12_92_1 doi: 10.1016/j.ceb.2010.07.014 – ident: e_1_2_12_107_1 doi: 10.1038/nn.2709 – ident: e_1_2_12_7_1 doi: 10.1126/science.1071553 – ident: e_1_2_12_8_1 doi: 10.1038/cdd.2008.28 – ident: e_1_2_12_99_1 doi: 10.1016/S1074-7613(00)80609-3 – ident: e_1_2_12_71_1 doi: 10.1038/sj.emboj.7600461 – year: 2012 ident: e_1_2_12_75_1 article-title: Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing publication-title: Mol Genet Metab – ident: e_1_2_12_21_1 doi: 10.1002/eji.200324013 – ident: e_1_2_12_115_1 doi: 10.1074/jbc.M208955200 – ident: e_1_2_12_70_1 doi: 10.1016/S0092-8674(00)80849-1 – ident: e_1_2_12_47_1 doi: 10.4049/jimmunol.179.8.5291 – ident: e_1_2_12_94_1 doi: 10.1196/annals.1427.020 – ident: e_1_2_12_87_1 doi: 10.1146/annurev.physiol.70.021507.105852 – ident: e_1_2_12_112_1 doi: 10.1371/journal.ppat.1000018 – ident: e_1_2_12_116_1 doi: 10.1242/jcs.107.2.363 – ident: e_1_2_12_53_1 doi: 10.1073/pnas.0603445103 – ident: e_1_2_12_37_1 doi: 10.1038/nature10558 – ident: e_1_2_12_117_1 doi: 10.1038/sj.emboj.7601276 – ident: e_1_2_12_67_1 doi: 10.1038/cdd.2011.34 – ident: e_1_2_12_106_1 doi: 10.1016/j.cell.2007.12.040 – ident: e_1_2_12_90_1 doi: 10.1038/nrm2239 – ident: e_1_2_12_2_1 doi: 10.1038/cdd.2008.150 – ident: e_1_2_12_76_1 doi: 10.1016/j.ajhg.2010.03.002 – ident: e_1_2_12_4_1 doi: 10.1038/nrm2952 – ident: e_1_2_12_42_1 doi: 10.1038/sj.cdd.4401787 – ident: e_1_2_12_69_1 doi: 10.1146/annurev.biochem.75.062003.101730 – ident: e_1_2_12_23_1 doi: 10.1038/ni.1638 – ident: e_1_2_12_22_1 doi: 10.1016/j.molcel.2008.05.014 – ident: e_1_2_12_109_1 doi: 10.1016/j.euroneuro.2009.08.005 – ident: e_1_2_12_18_1 doi: 10.4049/jimmunol.175.5.3033 – ident: e_1_2_12_98_1 doi: 10.1016/j.cell.2009.05.021 – ident: e_1_2_12_6_1 doi: 10.1038/sj.onc.1209609 – ident: e_1_2_12_32_1 doi: 10.1016/S0092-8674(00)80943-5 – ident: e_1_2_12_17_1 doi: 10.1016/S1074-7613(00)80549-X – ident: e_1_2_12_41_1 doi: 10.1073/pnas.2636393100 – ident: e_1_2_12_43_1 doi: 10.1016/j.molimm.2010.10.023 – ident: e_1_2_12_118_1 doi: 10.1016/j.cell.2005.03.016 – ident: e_1_2_12_84_1 doi: 10.1038/nature02229 – ident: e_1_2_12_103_1 doi: 10.1016/S1074-7613(00)80535-X – ident: e_1_2_12_44_1 doi: 10.1038/ni976 – ident: e_1_2_12_114_1 doi: 10.1016/S1097-2765(04)00028-0 – ident: e_1_2_12_25_1 doi: 10.1016/j.immuni.2008.03.013 – ident: e_1_2_12_96_1 doi: 10.1084/jem.187.9.1477 – ident: e_1_2_12_50_1 doi: 10.1038/sj.onc.1206322 – ident: e_1_2_12_59_1 doi: 10.1093/emboj/cdg355 – ident: e_1_2_12_100_1 doi: 10.1038/nature09857 – ident: e_1_2_12_85_1 doi: 10.1038/ncb1575 – ident: e_1_2_12_3_1 doi: 10.1038/cdd.2011.96 – ident: e_1_2_12_110_1 doi: 10.1038/ncb1644 – ident: e_1_2_12_29_1 doi: 10.1038/ni1025 – ident: e_1_2_12_39_1 doi: 10.1016/j.cell.2007.01.045 – ident: e_1_2_12_33_1 doi: 10.1038/nature02451 – ident: e_1_2_12_65_1 doi: 10.1038/cdd.2010.151 – ident: e_1_2_12_14_1 doi: 10.1038/nature05378 – ident: e_1_2_12_66_1 doi: 10.1074/jbc.M108029200 – ident: e_1_2_12_74_1 doi: 10.1038/cdd.2008.24 – ident: e_1_2_12_78_1 doi: 10.2174/1389450033490867 – ident: e_1_2_12_73_1 doi: 10.1073/pnas.0603950103 – ident: e_1_2_12_9_1 doi: 10.1084/jem.193.2.247 – ident: e_1_2_12_72_1 doi: 10.1038/35069004 – ident: e_1_2_12_27_1 doi: 10.1371/journal.ppat.1000142 – ident: e_1_2_12_64_1 doi: 10.1016/j.cell.2007.03.017 – ident: e_1_2_12_60_1 doi: 10.1093/emboj/16.15.4628 – ident: e_1_2_12_61_1 doi: 10.1016/j.molcel.2007.09.030 – ident: e_1_2_12_48_1 doi: 10.1074/jbc.275.14.10453 – ident: e_1_2_12_51_1 doi: 10.1128/MCB.22.10.3509-3517.2002 – ident: e_1_2_12_79_1 doi: 10.1111/j.1749-6632.1980.tb47198.x – ident: e_1_2_12_104_1 doi: 10.1038/nature10273 – ident: e_1_2_12_111_1 doi: 10.1093/molehr/gaq082 – volume: 61 start-page: 30 year: 2003 ident: e_1_2_12_81_1 article-title: Peripheral benzodiazepine receptor: structure and function in health and disease publication-title: Ann Pharm Fr – ident: e_1_2_12_97_1 doi: 10.1016/j.cellsig.2007.05.016 – ident: e_1_2_12_49_1 doi: 10.1038/sj.onc.1210042 – ident: e_1_2_12_89_1 doi: 10.1038/ncb2330 – ident: e_1_2_12_108_1 doi: 10.1126/science.1123480 – reference: 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32 – reference: 12393560 - Blood. 2002 Dec 15;100(13):4446-53 – reference: 12756287 - J Exp Biol. 2003 Jun;206(Pt 12):2049-57 – reference: 17680735 - Annu Rev Physiol. 2008;70:73-91 – reference: 9303307 - EMBO J. 1997 Aug 1;16(15):4628-38 – reference: 16239930 - Cell Death Differ. 2006 Jul;13(7):1147-55 – reference: 18329368 - Cell. 2008 Mar 7;132(5):818-31 – reference: 22038529 - Immunol Res. 2011 Dec;51(2-3):227-36 – reference: 21804564 - Nature. 2011 Sep 15;477(7364):330-4 – reference: 18439848 - Immunity. 2008 May;28(5):651-61 – reference: 17448999 - Cell. 2007 Apr 20;129(2):423-33 – reference: 17167422 - Nature. 2007 Jan 4;445(7123):102-5 – reference: 9003774 - EMBO J. 1996 Dec 16;15(24):6979-90 – reference: 12558660 - Cell Prolif. 2003 Feb;36(1):45-54 – reference: 16122426 - Cell. 2005 Aug 26;122(4):593-603 – reference: 20362274 - Am J Hum Genet. 2010 Apr 9;86(4):639-49 – reference: 12040174 - Science. 2002 May 31;296(5573):1635-6 – reference: 6249159 - Ann N Y Acad Sci. 1980;341:552-63 – reference: 16236486 - Biochim Biophys Acta. 2006 Feb;1762(2):164-80 – reference: 7535475 - Science. 1995 Mar 31;267(5206):2000-3 – reference: 17644308 - Cell Signal. 2007 Oct;19(10):2056-67 – reference: 17130845 - Oncogene. 2007 Apr 12;26(17):2395-406 – reference: 21151119 - Nat Neurosci. 2011 Jan;14(1):69-76 – reference: 16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33 – reference: 9729047 - Immunity. 1998 Aug;9(2):267-76 – reference: 21868666 - Science. 2011 Aug 26;333(6046):1109-12 – reference: 21664907 - FEBS Lett. 2011 Jul 21;585(14):2307-12 – reference: 21969293 - Invest Ophthalmol Vis Sci. 2011 Nov;52(12):8646-56 – reference: 14730360 - Nat Immunol. 2004 Feb;5(2):199-207 – reference: 16788063 - Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9918-23 – reference: 18097445 - Nat Rev Mol Cell Biol. 2008 Jan;9(1):47-59 – reference: 21475302 - Cell Death Differ. 2011 Oct;18(10):1664-74 – reference: 17244531 - Mol Cell. 2007 Jan 26;25(2):233-46 – reference: 21725296 - Nat Med. 2011 Jul;17(7):860-6 – reference: 9857178 - EMBO J. 1998 Dec 15;17(24):7209-18 – reference: 18570872 - Mol Cell. 2008 Jun 20;30(6):689-700 – reference: 18641654 - Nat Immunol. 2008 Sep;9(9):1037-46 – reference: 12853472 - EMBO J. 2003 Jul 15;22(14):3568-79 – reference: 8207068 - J Cell Sci. 1994 Feb;107 ( Pt 2):363-71 – reference: 14535652 - Curr Drug Targets. 2003 Oct;4(7):517-24 – reference: 17418785 - Cell. 2007 Apr 6;129(1):45-56 – reference: 17717517 - Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52 – reference: 17417626 - Nat Cell Biol. 2007 May;9(5):550-5 – reference: 15010700 - EMBO J. 2004 Mar 10;23(5):1207-16 – reference: 21760595 - Cell Death Differ. 2012 Jan;19(1):107-20 – reference: 18559474 - Genes Dev. 2008 Jun 15;22(12):1577-90 – reference: 10228014 - J Immunol. 1999 May 1;162(9):5374-9 – reference: 17911615 - J Immunol. 2007 Oct 15;179(8):5291-300 – reference: 16754849 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):8995-9000 – reference: 11279485 - Nature. 2001 Mar 29;410(6828):549-54 – reference: 18309324 - Cell Death Differ. 2008 Jul;15(7):1113-23 – reference: 21368762 - Nature. 2011 Mar 17;471(7338):368-72 – reference: 9529147 - Immunity. 1998 Mar;8(3):297-303 – reference: 19076440 - Ann N Y Acad Sci. 2008 Dec;1147:171-9 – reference: 15800627 - Nature. 2005 Mar 31;434(7033):658-62 – reference: 21926988 - Nat Cell Biol. 2011 Oct;13(10):1224-33 – reference: 21111482 - Mol Immunol. 2011 Jan;48(4):610-22 – reference: 18846107 - Cell Death Differ. 2009 Jan;16(1):3-11 – reference: 17183360 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):49-62 – reference: 17901875 - Cell Death Differ. 2008 Jan;15(1):113-22 – reference: 16116191 - J Immunol. 2005 Sep 1;175(5):3033-44 – reference: 15907471 - Cell. 2005 May 20;121(4):579-91 – reference: 22019070 - Mol Genet Metab. 2011 Dec;104(4):517-20 – reference: 19667203 - Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14524-9 – reference: 15163405 - Cell. 2004 May 28;117(5):561-74 – reference: 7859282 - Cell. 1995 Feb 10;80(3):401-11 – reference: 12884866 - Eur J Immunol. 2003 Jul;33(7):1998-2006 – reference: 18309327 - Cell Death Differ. 2008 Jun;15(6):1009-18 – reference: 9506948 - Science. 1998 Mar 20;279(5358):1954-8 – reference: 12970672 - Cell Death Differ. 2004 Jan;11(1):90-8 – reference: 17277150 - J Immunol. 2007 Feb 15;178(4):2429-39 – reference: 9491891 - Cell. 1998 Feb 20;92(4):501-9 – reference: 16917506 - EMBO J. 2006 Sep 6;25(17):4061-73 – reference: 18981099 - J Immunol. 2008 Nov 15;181(10):6810-9 – reference: 19524512 - Cell. 2009 Jun 12;137(6):1100-11 – reference: 14532118 - EMBO J. 2003 Oct 15;22(20):5459-70 – reference: 20823910 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):700-14 – reference: 21368761 - Nature. 2011 Mar 17;471(7338):373-6 – reference: 20729050 - Curr Opin Cell Biol. 2010 Dec;22(6):852-8 – reference: 10848600 - Mol Cell Biol. 2000 Jul;20(13):4745-53 – reference: 18073531 - Cell Cycle. 2007 Dec;6(24):3103-3107 – reference: 19223583 - Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3935-40 – reference: 15129283 - Nature. 2004 May 6;429(6987):75-9 – reference: 9586634 - Immunity. 1998 Apr;8(4):439-49 – reference: 12642862 - Oncogene. 2003 Mar 20;22(11):1589-99 – reference: 21552281 - Nature. 2011 Jun 2;474(7349):96-9 – reference: 14663139 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15782-7 – reference: 17981116 - Cell. 2007 Nov 2;131(3):476-91 – reference: 18516228 - PLoS Pathog. 2008 May;4(5):e1000018 – reference: 11832478 - J Biol Chem. 2002 Apr 19;277(16):13430-7 – reference: 19758790 - Eur Neuropsychopharmacol. 2010 Jan;20(1):49-64 – reference: 14967141 - Mol Cell. 2004 Feb 13;13(3):329-40 – reference: 10228556 - Cell Mol Life Sci. 1999 Mar;55(3):423-36 – reference: 11971981 - Mol Cell Biol. 2002 May;22(10):3509-17 – reference: 20926603 - Mol Hum Reprod. 2011 Feb;17(2):127-34 – reference: 10830166 - Cell. 2000 May 12;101(4):389-99 – reference: 12589253 - Ann Pharm Fr. 2003 Jan;61(1):30-50 – reference: 9565639 - J Exp Med. 1998 May 4;187(9):1477-85 – reference: 12149212 - Blood. 2002 Aug 15;100(4):1310-7 – reference: 15526035 - EMBO J. 2004 Nov 24;23(23):4679-89 – reference: 22002608 - Nature. 2011 Nov 3;479(7371):117-21 – reference: 16892087 - Oncogene. 2006 Aug 7;25(34):4744-56 – reference: 14749836 - Nature. 2004 Jan 29;427(6973):461-5 – reference: 16645094 - Science. 2006 Apr 28;312(5773):572-6 – reference: 18769721 - PLoS Pathog. 2008;4(8):e1000142 – reference: 18042457 - Mol Cell. 2007 Nov 30;28(4):624-37 – reference: 12970760 - Nat Immunol. 2003 Oct;4(10):1016-22 – reference: 10744735 - J Biol Chem. 2000 Apr 7;275(14):10453-62 – reference: 21772280 - Nat Immunol. 2011 Aug;12(8):715-23 – reference: 11208865 - J Exp Med. 2001 Jan 15;193(2):247-54 – reference: 12529375 - J Biol Chem. 2003 Mar 28;278(13):11633-41 – reference: 17237344 - Physiol Rev. 2007 Jan;87(1):99-163 – reference: 17906618 - Nat Cell Biol. 2007 Nov;9(11):1243-52 – reference: 22000287 - Immunity. 2011 Oct 28;35(4):572-82 – reference: 16756489 - Annu Rev Biochem. 2006;75:165-87 – reference: 10782088 - Trends Biochem Sci. 2000 May;25(5):215-21 – reference: 21113148 - Cell Death Differ. 2011 May;18(5):841-52 |
SSID | ssj0005978 |
Score | 2.3674214 |
SecondaryResourceType | review_article |
Snippet | During the past two decades, apoptotic cell death has been the subject of an intense wave of investigation, leading to the discovery of multiple gene products... Galluzzi, Kroemer and colleagues summarize the important roles of apoptotic regulators and executioners in non-lethal physiological processes as diverse as... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 322 |
SubjectTerms | AIF Animals Apoptosis Apoptosis Regulatory Proteins - metabolism apoptosome Autophagy BCL-2 Biochemistry caspase Cell Cycle Cell Differentiation death receptor EMBO07 EMBO37 Humans Mitochondria mitochondrial membrane permeabilization Models, Biological Mortality Physiology Proteins Review |
SummonAdditionalLinks | – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbQrkBcEC0_TSkoBwQXUhz_JLHEZbdqWa3UPdBW7M1yvLZYUZLVZiu1Nx6BZ-RJ8Dje0IiCuFnxyHHGM56x5stnhF7rjDLGjU10wVnCNFkk7pxFE1wCefkCZ9h6tMUsm1yw6ZzPw8_qTYBVtpSWfpveosPem29OJYDEIodA8jkElnY8QMPRaHo2_Y3pEH7rdd4vEkLSeSDVxLToD9ALQkPQ5_VdGeafQMmuWtrPZX0wOnmMHoUsMh61895B90y1i-6390re7KIHp6Fi_gR9mNXVz-8_1KpebWonHUMg87YW1zZuHzfLxoms21vp6_VN7MkbllXzFF2cHJ8fTZJwY0KiMyjpckbUguTapFxRl2lYgQU2BIuSaeVUZnJqGXPGQ4vCpTLO252oYNYQmlm70PQZGlR1ZfZQzItCFHAeosA3Y1RZWue7LnhpTZTCeYTebVUodaATh1stLqUva9NCeo1L0LhMRYTedOKrlkfjr4J-PToptf4K4LOcy8-zj3J8NE8n55MzOY7QwXbBZPC7BgBrwM_PYZy463YeA2UQVZn6qpGw5ZA8B5Hn7fJ274L8xmUsWYTy3sJ3AkDG3e-pll88KTel7ijNSYTebk3k9qzu_NBDb0H_Voc8Ph1_gnYq9v976BfoIbRagNEBGmzWV-aly5025avgMb8A_YkXvA priority: 102 providerName: Springer Nature |
Title | Non-apoptotic functions of apoptosis-regulatory proteins |
URI | https://api.istex.fr/ark:/67375/WNG-BCX1HTHS-B/fulltext.pdf https://link.springer.com/article/10.1038/embor.2012.19 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Fembor.2012.19 https://www.ncbi.nlm.nih.gov/pubmed/22402666 https://www.proquest.com/docview/1015782519 https://www.proquest.com/docview/963827719 https://pubmed.ncbi.nlm.nih.gov/PMC3321152 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xViBeEIyPBUaVBwQveCS2kzhPqK26VZVWoX2IvFmp44gKlpSmk9h_j89xs1WMvUSRfVKS893559zpdwAfVMw4j3RJlIg44YoWxJyzGAkWSF5eBHFQ2mqLeTy95LMsytwPt8aVVW5jog3URa3wH7nx7hCZ1w3g-Lr6TbBrFGZXXQuNPeibECyiHvRHk_m3s9sij9TGYhMOUkJpmDmWzYCJL_rKKBlru-gR0uzc2ZX6qOA_90HOfysnu_TpLri1u9Pxc3jmYKU_bO3gBTzS1T48bhtN3uzDk1OXQn8JYl5XJF_Vq01tZH3c16zp-XXpt8PNsiHrtkV9vb7xLZPDsmpeweXx5GI8Ja59AlEx5ncjTvOCJkqHUc4M7CjTIA00DdIFV7lIuE5YybmxJCaEwTXG9Y1oyktNWVyWhWKvoVfVlT4APxIiFXg4Ykg-o_PFojSObHYypWieB4kHn7fqk8pxi2OLi1_S5riZkFbbErUtw9SDj534qiXV-K-gXYtOKl__xEq0JJLf5ydyNM7C6cX0XI48ONwulnRO2Mhbk_HA76aN-2BOJK90fd1IjD80SVDkTbu03bMQ7Bj4EnuQ7Cx6J4DM3Lsz1fKHZehmzJyrI-rBp6153H2rez_0yFrPw-qQk9PRGd6H6duHP_gdPEW5tsToEHqb9bV-b9DTZjGAvSRLzFWMwwH0h8PZ-Wzg3MaMnmThX9GbGzI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VRlAuCAoUQwEfeFxwsXfXrwNCpKSktIlQSUVui71ZQwTYIU4F-VP8RmbWjzai9NabZY9f817P-BuAJyrgQvg6c1TkC0coNnFwncUdNyXw8okbuJnpthgG_WPxfuyP1-BP8y8MtVU2PtE46kmh6Bs5WrdHyOuYcLye_XRoahRVV5sRGpVaHOjlL1yyla_236J8nzK21xvt9p16qoCjAip7-oIlExYq7fkJx2icxW7saubGqVBJFAod8kwIZDCPIgz3aBFIGotMMx5k2URxvO4V6GCaEaMVdbq94Yej06aS2Ph-dD-xw5g3rlE9XR691D9QqNRLxnYI1udMFOyQQH-fl-L-26nZlmtXk2kTDfduwo06jbXfVHp3C9Z0vglXq8GWy024NqhL9rchGha5k8yK2aJAWpviqFF1u8jsanc5LZ25_kJzxIr50jbIEdO8vAPHl8LYu7CeF7m-B7YfRXFEizFOYDc6SdMMHQdGTqVYkrihBS8a9klVY5nTSI3v0tTUeSQNtyVxW3qxBc9a8lkF4vFfQiOLliqZf6POt9CXn4bvZHd37PVH_Y-ya8F2IyxZG30pT1XUArs9jOZKNZgk18VJKcnfsTAkkq1KtO29KLnCdCmwIFwRektASOCrR_LpV4MIzjmu431mwfNGPc4-1bkvumO052J2yN6ge0TbXnz_4hd-DBv90eBQHu4PDx7AdTqnam_ahvXF_EQ_xMxtkT6qzcWGz5dtoX8BsTVS9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFL0qHVGxQVBegQJZINiQaWI7D0tsZkqHYaAjRFsxOytxbDFqSUaTqUR3fALfyJfg6zwgoiB2kX3lONe-9rHuyTHAMxlRxkKlPZmEzGOS5J45Z1HPz1C8PPcjX1u2xTyanrLZIlxsQdD-C2NJ-1bS0i7TLTtsX30xLkEmFhkGfLjK9TUYGKiNsTgYjWbHs1-8Dm6XX7MCcI-QYNEIa_o06TfS24gG6NOvV6HMP8mSXca0j2fthjS5BTcbJOmO6r7fhi1V7ML1-m7Jy13YOWqy5nfg1bwsfnz7nq7K1aY01i5uZna-uaV26-JqWRmTdX0zfbm-dK2Aw7Ko7sLp5PDkYOo1tyZ4MsK0bshImpNYqiBMqUEbmvvcV8TnGZNpEjMVU82YmUA0SQycMRFvTDnTitBI61zSe7BdlIV6AG6YJDzBMxFFzRmVZpk28Ws2MClJmvqxAy9bFwrZSIrjzRbnwqa2aSKsxwV6XATcgeed-arW0viroR2PzipdnyEBLQ7Fp_kbMT5YBNOT6bEYO7DXDphoYq9C0hpq9IfYjttVm6jBVEhaqPKiErjskDhGk_v18HbvQoxjUEvkQNwb-M4ABbn7NcXysxXmptQcp0PiwIt2ivzeqys_dGhn0L_dIQ6Pxh_xOeAP_7vpp7Dz4fVEvH87f_cIbmBhzTfag-3N-kI9NlBqkz1pgucnONQbtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-apoptotic+functions+of+apoptosis-regulatory+proteins&rft.jtitle=EMBO+reports&rft.au=Galluzzi%2C+Lorenzo&rft.au=Kepp%2C+Oliver&rft.au=Trojel-hansen%2C+Christina&rft.au=Kroemer%2C+Guido&rft.date=2012-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1469-221X&rft.eissn=1469-3178&rft.volume=13&rft.issue=4&rft.spage=322&rft_id=info:doi/10.1038%2Fembor.2012.19&rft.externalDocID=2669388901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-221X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-221X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-221X&client=summon |