Bimetal-Organic Framework: One-Step Homogenous Formation and its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage

Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The C...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 7; pp. 1098 - 1103
Main Authors Li, Hao, Liang, Ming, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 16.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g−1 after 200 repetitive cycles at a small current of 100 mA g−1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g−1 can also be retained after 500 cycles at large currents of 2 and 5 A g−1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components. Microwave‐assisted one‐step formation of bimetallic Co/Ni‐metal–organic framework‐74 is used to fabricate a mesoporous Co–Ni–O nanorod, which delivers higher‐than‐theoretical reversible capacities, with excellent high‐rate performances for lithium‐ion batteries.
AbstractList Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g−1 after 200 repetitive cycles at a small current of 100 mA g−1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g−1 can also be retained after 500 cycles at large currents of 2 and 5 A g−1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components. Microwave‐assisted one‐step formation of bimetallic Co/Ni‐metal–organic framework‐74 is used to fabricate a mesoporous Co–Ni–O nanorod, which delivers higher‐than‐theoretical reversible capacities, with excellent high‐rate performances for lithium‐ion batteries.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous Ni x Co 3− x O 4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni 0.3 Co 2.7 O 4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g −1 after 200 repetitive cycles at a small current of 100 mA g −1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g −1 can also be retained after 500 cycles at large currents of 2 and 5 A g −1 , respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.
Metal-organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous Ni sub(x)Co sub(3-x)O sub(4) nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni-MOFs are prepared by a one-step facile microwave-assisted solvothermal method rather than surface metallic cation exchange on the preformed one-metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni sub(0.3)Co sub(2.7)O sub(4) nanorod delivers a larger-than-theoretical reversible capacity of 1410 mAh g super(-1) after 200 repetitive cycles at a small current of 100 mA g super(-1) with an excellent high-rate capability for lithium-ion batteries. Large reversible capacities of 812 and 656 mAh g super(-1) can also be retained after 500 cycles at large currents of 2 and 5 A g super(-1), respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle-integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components. Microwave-assisted one-step formation of bimetallic Co/Ni-metal-organic framework-74 is used to fabricate a mesoporous Co-Ni-O nanorod, which delivers higher-than-theoretical reversible capacities, with excellent high-rate performances for lithium-ion batteries.
Author Liang, Ming
Wang, Yong
Li, Hao
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China
– sequence: 2
  givenname: Ming
  surname: Liang
  fullname: Liang, Ming
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  email: vivisun@shu.edu.cn
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China
– sequence: 4
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: vivisun@shu.edu.cn
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China
BookMark eNqFkV9v0zAUxSM0JLbBK89-5GEudpw4KW9bR9dJ6SrYYLxZN8lNZpbYwXbZ-rH2DUlXVCEkxJP_nd-58jlH0YGxBqPoLWcTzlj8Huqmn8SMpywRPH4RHXLJJRUszg_2e_7tVXTk_XfGeJaJ5DB6OtM9BujoyrVgdEXmDnp8sO7-A1kZpNcBB7KwvW3R2LUnc-t6CNoaAqYmOnhyjk7_xJos0dvBuq3oBp0BtxmvRmeyetQ1kisw42NNGuvIQrd3dAYDVDpsTnbHzxDw5Nm0sKals03VIS10g6TQ4U6ve3IdrIMWX0cvG-g8vvm9Hkdf5h9vZgtarC4uZ6cFrSQTMRWQN1CWKDPEEmQiRc5KTBBTRJGUeZrHXMayaSTn1bTMgLE8ZdOpqNKsTJJaHEfvdr6Dsz_W6IPqta-w68Dg-EnFc8aSLOUiG6WTnbRy1nuHjRqc7scEFGdq243adqP23YxA8hcwJvEca3Cgu39j0x32oDvc_GeIOj2fL_9k6Y7VPuDjngV3r2QmslTdXl0ouSzE4uz2k_oqfgEbmbdL
CitedBy_id crossref_primary_10_1039_C6TA09060E
crossref_primary_10_1002_smtd_202000637
crossref_primary_10_1016_j_ensm_2019_09_005
crossref_primary_10_1021_acscatal_7b03795
crossref_primary_10_1016_j_jpowsour_2016_11_114
crossref_primary_10_1016_j_jpowsour_2023_232918
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1016_j_jallcom_2021_160126
crossref_primary_10_1021_acsami_7b04045
crossref_primary_10_1016_j_jallcom_2018_09_082
crossref_primary_10_1016_j_ensm_2017_12_027
crossref_primary_10_1007_s10853_020_05428_2
crossref_primary_10_1016_j_jmst_2021_04_033
crossref_primary_10_1002_anie_201607271
crossref_primary_10_1016_j_electacta_2016_08_051
crossref_primary_10_1016_j_jpowsour_2020_227727
crossref_primary_10_1016_j_electacta_2017_07_007
crossref_primary_10_1016_j_ica_2022_120890
crossref_primary_10_1016_j_jallcom_2020_156823
crossref_primary_10_1039_C9NR03088C
crossref_primary_10_1016_j_microc_2022_108067
crossref_primary_10_1039_C7NR08882E
crossref_primary_10_1039_C8TA01426D
crossref_primary_10_1016_j_cclet_2017_09_024
crossref_primary_10_1039_C8TA02919A
crossref_primary_10_1039_D3TA05478K
crossref_primary_10_1016_j_jallcom_2024_177004
crossref_primary_10_1002_adhm_202300887
crossref_primary_10_1002_cssc_202401612
crossref_primary_10_1016_j_cej_2020_124681
crossref_primary_10_1016_j_matchemphys_2019_03_070
crossref_primary_10_1039_C6RA28296B
crossref_primary_10_1039_C8NR02686F
crossref_primary_10_1016_j_est_2024_110947
crossref_primary_10_1016_j_gee_2018_01_005
crossref_primary_10_1002_adma_201607015
crossref_primary_10_1016_j_carbpol_2022_119682
crossref_primary_10_1021_acsami_6b15757
crossref_primary_10_1088_1755_1315_634_1_012042
crossref_primary_10_1016_j_mcat_2021_111614
crossref_primary_10_1016_j_poly_2022_115996
crossref_primary_10_1002_adfm_202006761
crossref_primary_10_1002_smll_202101080
crossref_primary_10_1039_D0CE00170H
crossref_primary_10_1016_j_colsurfb_2019_110764
crossref_primary_10_1021_acssuschemeng_8b04685
crossref_primary_10_2174_1385272823666190709113758
crossref_primary_10_3389_fmats_2020_00194
crossref_primary_10_3920_WMJ2020_2578
crossref_primary_10_1039_C6TA03429B
crossref_primary_10_1039_C8TA00612A
crossref_primary_10_1039_C7TA08868J
crossref_primary_10_1039_D0NR01152E
crossref_primary_10_1002_eom2_12133
crossref_primary_10_1021_acsnano_1c07943
crossref_primary_10_1002_celc_201900848
crossref_primary_10_1021_acsaem_0c02303
crossref_primary_10_1002_batt_202000094
crossref_primary_10_1007_s10853_018_2550_7
crossref_primary_10_1007_s40820_018_0234_0
crossref_primary_10_1016_j_cej_2024_156303
crossref_primary_10_1038_srep40574
crossref_primary_10_1007_s41918_018_0024_x
crossref_primary_10_1016_j_inoche_2019_107538
crossref_primary_10_1016_j_jpcs_2023_111728
crossref_primary_10_1002_smll_201800589
crossref_primary_10_1016_j_cej_2018_03_062
crossref_primary_10_1021_acsami_9b08694
crossref_primary_10_1016_j_cis_2021_102562
crossref_primary_10_1002_smll_201702150
crossref_primary_10_1016_j_ccr_2020_213372
crossref_primary_10_1002_adfm_201704440
crossref_primary_10_1002_chem_201904077
crossref_primary_10_1021_acs_chemmater_2c01481
crossref_primary_10_1016_j_elecom_2017_09_019
crossref_primary_10_1002_smll_202403767
crossref_primary_10_1016_j_cej_2017_12_049
crossref_primary_10_1039_C8TA11982A
crossref_primary_10_1021_acsaem_0c02379
crossref_primary_10_1039_C9TA00054B
crossref_primary_10_1039_D2AY01058E
crossref_primary_10_1016_j_jelechem_2024_118258
crossref_primary_10_1016_j_vacuum_2019_108959
crossref_primary_10_1002_smll_202304477
crossref_primary_10_1021_acsaem_8b01613
crossref_primary_10_1021_acsami_8b03104
crossref_primary_10_1016_j_cclet_2025_111012
crossref_primary_10_3390_nano13081432
crossref_primary_10_1016_j_ccr_2019_02_029
crossref_primary_10_1016_j_fuel_2020_119910
crossref_primary_10_1039_C7TA00855D
crossref_primary_10_1002_aenm_202002961
crossref_primary_10_1002_smll_201604270
crossref_primary_10_1002_smll_201801454
crossref_primary_10_1016_j_matchar_2017_08_026
crossref_primary_10_1002_aenm_202100154
crossref_primary_10_1039_C8CC00789F
crossref_primary_10_1007_s10904_023_02898_0
crossref_primary_10_1016_j_ensm_2017_01_011
crossref_primary_10_1016_j_jcis_2020_01_108
crossref_primary_10_1002_asia_202400161
crossref_primary_10_1021_acsami_2c14286
crossref_primary_10_1016_j_ensm_2018_05_024
crossref_primary_10_1039_C6MH00534A
crossref_primary_10_1039_C9DT03995C
crossref_primary_10_1016_j_electacta_2019_04_121
crossref_primary_10_1016_j_flatc_2021_100332
crossref_primary_10_1016_j_cej_2018_06_093
crossref_primary_10_1039_C7CC09602J
crossref_primary_10_1088_1361_6528_aafe42
crossref_primary_10_1016_j_jechem_2017_10_012
crossref_primary_10_1038_natrevmats_2017_75
crossref_primary_10_1039_C8DT05055D
crossref_primary_10_1016_j_cej_2019_03_162
crossref_primary_10_1016_j_cej_2019_03_163
crossref_primary_10_1002_ange_201607271
crossref_primary_10_1021_acsami_6b15719
crossref_primary_10_1039_C8DT04716B
crossref_primary_10_1016_j_apcata_2022_118805
crossref_primary_10_1016_j_memsci_2017_09_056
crossref_primary_10_1021_acsaem_8b00103
crossref_primary_10_1021_acsami_7b02176
crossref_primary_10_1021_acsami_8b21369
crossref_primary_10_1016_j_electacta_2020_135824
crossref_primary_10_1007_s41918_021_00113_7
crossref_primary_10_1002_adma_202201779
crossref_primary_10_1002_smll_201700521
crossref_primary_10_1039_D0QI00929F
crossref_primary_10_1002_ange_202209335
crossref_primary_10_1016_j_ccr_2020_213434
crossref_primary_10_1002_cssc_201903029
crossref_primary_10_1007_s10854_020_04495_0
crossref_primary_10_1002_adma_202209924
crossref_primary_10_1002_anie_202209335
crossref_primary_10_1016_j_electacta_2016_06_082
crossref_primary_10_1039_D0QM00710B
crossref_primary_10_1002_adfm_201605332
crossref_primary_10_1002_advs_201802373
crossref_primary_10_1021_acsomega_3c06408
crossref_primary_10_1016_j_talanta_2024_125836
crossref_primary_10_1016_j_jallcom_2018_02_112
crossref_primary_10_1002_celc_202100687
crossref_primary_10_1002_smll_201805277
crossref_primary_10_1016_j_cej_2017_12_014
crossref_primary_10_1016_j_jallcom_2023_169679
crossref_primary_10_20964_2019_03_28
crossref_primary_10_1016_j_cej_2018_08_037
crossref_primary_10_1016_j_enchem_2019_100001
crossref_primary_10_1039_C9RA02163A
crossref_primary_10_1021_acsnano_7b01152
crossref_primary_10_1021_acssuschemeng_8b05980
crossref_primary_10_1039_C7RA05090A
crossref_primary_10_1016_j_cej_2019_03_263
crossref_primary_10_1002_adma_201604437
crossref_primary_10_1016_j_jhazmat_2019_121143
crossref_primary_10_1016_j_cej_2019_123597
crossref_primary_10_1016_j_jallcom_2020_157177
crossref_primary_10_1016_j_seppur_2023_123998
crossref_primary_10_1016_j_apcatb_2019_118570
crossref_primary_10_1016_j_apsusc_2018_09_122
crossref_primary_10_1021_acs_energyfuels_3c00801
crossref_primary_10_3390_ma14112771
crossref_primary_10_1016_j_cej_2018_05_091
crossref_primary_10_1039_D0NJ01027H
crossref_primary_10_1016_j_mseb_2017_12_018
crossref_primary_10_1016_j_pmatsci_2020_100671
crossref_primary_10_1016_j_ccr_2022_214741
crossref_primary_10_1039_C8RA04081H
crossref_primary_10_1016_j_electacta_2018_12_020
crossref_primary_10_1016_j_jechem_2017_02_001
crossref_primary_10_1007_s11581_019_03152_9
crossref_primary_10_1016_j_cej_2018_08_024
crossref_primary_10_1016_j_matchar_2019_03_032
crossref_primary_10_1002_elsa_202100001
crossref_primary_10_1007_s13369_017_2611_2
crossref_primary_10_1039_C7TA09676C
crossref_primary_10_1039_C8QM00366A
crossref_primary_10_1016_j_inoche_2024_112688
crossref_primary_10_1002_celc_201700041
crossref_primary_10_1021_acsami_9b11547
Cites_doi 10.1002/adma.201306126
10.1021/nn501783n
10.1002/smll.201303520
10.1039/C4CC03807J
10.1126/science.1230444
10.1039/C5TA03256C
10.1039/C4NR00930D
10.1039/C4TA02874K
10.1039/C4TA04809A
10.1002/adma.201104407
10.1039/c3ta11672g
10.1039/C4TA01966K
10.1039/c0cs00147c
10.1002/adma.201500783
10.1021/cm400858d
10.1002/adma.201202146
10.1039/C4TA05520A
10.1002/adma.201002854
10.1021/nl302618s
10.1002/aenm.201300958
10.1002/adfm.201304206
10.1039/C4NR06321J
10.1002/chem.201300967
10.1039/c3ta11549f
10.1021/jacs.5b02465
10.1021/nn9012675
10.1039/C5TA03605D
10.1002/adma.200702412
10.1002/chem.200901632
10.1002/adma.201202271
10.1002/adfm.201303138
10.1002/chem.201200770
10.1039/C4NR02999B
10.1021/ja506230r
10.1002/adma.201402322
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201504312
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 1103
ExternalDocumentID 10_1002_adfm_201504312
ADFM201504312
ark_67375_WNG_6ML3HBWQ_V
Genre article
GrantInformation_xml – fundername: Shanghai Municipal Government
  funderid: 13YZ012; 15520720600
– fundername: National Natural Science Foundation of China
  funderid: 51271105; 51201095
– fundername: Innovative Research Team
  funderid: IRT13078
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c6032-3a8fabbe67eeba646380be4ee5ee34b85821626ff611c9b7a00850993c57b44d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 01:34:23 EDT 2025
Tue Jul 01 01:30:22 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:25:13 EST 2025
Wed Oct 30 09:56:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6032-3a8fabbe67eeba646380be4ee5ee34b85821626ff611c9b7a00850993c57b44d3
Notes ArticleID:ADFM201504312
istex:D4275D3EB3907AB3F40A9244304DE983D93ED875
National Natural Science Foundation of China - No. 51271105; No. 51201095
Innovative Research Team - No. IRT13078
Shanghai Municipal Government - No. 13YZ012; No. 15520720600
ark:/67375/WNG-6ML3HBWQ-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800475137
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1800475137
crossref_primary_10_1002_adfm_201504312
crossref_citationtrail_10_1002_adfm_201504312
wiley_primary_10_1002_adfm_201504312_ADFM201504312
istex_primary_ark_67375_WNG_6ML3HBWQ_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 16, 2016
PublicationDateYYYYMMDD 2016-02-16
PublicationDate_xml – month: 02
  year: 2016
  text: February 16, 2016
  day: 16
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References B. L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 2014, 26, 3368.
R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, F. S. Xiao, J. Mater. Chem. A 2013, 1, 9037.
J. Shao, Z. M. Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu, H. H. Zheng, J. Mater. Chem. A 2014, 2, 12194.
L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 15030.
W. F. Yang, G. H. Cheng, C. Q. Dong, Q. G. Bai, X. T. Chen, Z. Q. Peng, Z. H. Zhang, J. Mater. Chem. A 2014, 2, 20022.
H. Guo, L. X. Liu, T. T. Li, W. W. Chen, J. J. Liu, Y. Y. Guo, Y. C. Guo, Nanoscale 2014, 6, 5491.
F. Zou, X. L. Hu, Z. Li, L. Qie, C. C. Hu, R. Zeng, Y. Jiang, Y. H. Huang, Adv. Mater. 2014, 26, 6622.
L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745.
R. B. Wu, X. K. Qian, K. Zhou, J. Wei, J. Lou, P. M. Ajayan, ACS Nano 2014, 8, 6297.
F. C. Zheng, M. N. He, Y. Yang, Q. W. Chen, Nanoscale 2015, 7, 3410.
L. Hu, N. Yan, Q. W. Chen, P. Zhang, H. Zhong, X. R. Zheng, Y. Li, X. Y. Hu, Chem. Eur. J. 2012, 18, 8971.
O. Shekhah, J. Liu, R. A. Fischer, C. WöII, Chem. Soc. Rev. 2011, 40, 1081.
L. X. Liu, H. Guo, J. J. Liu, F. Qian, C. H. Zhang, T. T. Li, W. W. Chen, X. J. Yang, Y. C. Guo, Chem. Commun. 2014, 50, 9485.
H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 4706.
H. Hu, B. Y. Guan, B. Y. Xia, X. W. D. Lou, J. Am. Chem. Soc. 2015, 137, 5590.
C. K. Brozek, A. F. Cozzolino, S. J. Teat, Y. S. Chen, M. Dincă, Chem. Mater. 2013, 25, 2998.
Y. Wang, H. Xia, L. Lu, J. Y. Lin, ACS Nano 2010, 4, 1425.
X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258.
M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. H. Gordon, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2014, 136, 12119.
X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, Y. D. Li, Adv. Mater. 2012, 24, 5762.
Y. Xiao, C. W. Hu, M. H. Cao, Chem. Eur. J. 2013, 19, 10193.
L. L. Li, Y. L. Cheah, Y. Ko, P. Teh, G. Wee, C. L. Wong, S. J. Peng, M. Srinivasan, J. Mater. Chem. A 2013, 1, 10935.
L. Zhang, H. B. Wu, X. W. D. Lou, Adv. Energy Mater. 2014, 4, 1300958.
R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang, Y. Z. Huang, Small 2014, 10, 1932.
R. B. Wu, D. P. Wang, X. H. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Y. Yan, J. Wei, Z. Chen, Adv. Mater. 2015, 27, 3038.
W. W. Sun, Y. Wang, Nanoscale 2014, 6, 11528.
P. P. Su, S. C. Liao, F. Rong, F. Q. Wang, J. Chen, C. Li, Q. H. Yang, J. Mater. Chem. A 2014, 2, 17408.
X. D. Xu, R. G. Cao, S. Jeong, J. Cho, Nano Lett. 2012, 12, 4988.
F. Y. Jin, Y. Wang, J. Mater. Chem. A 2015, 3, 14741.
L. F. Shen, Q. Che, H. S. Li, X. G. Zhang, Adv. Funct. Mater. 2014, 24, 2630.
C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, T. H. Wang, Chem. Eur. J. 2010, 16, 5215.
S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249.
D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang, C. W. Cheng, Adv. Funct. Mater. 2014, 24, 3815.
J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. D. Lou, Adv. Mater. 2012, 24, 5166.
2010; 16
2013; 25
2013; 1
2015; 3
2011; 40
2014; 26
2014; 24
2012; 18
2013; 341
2012; 12
2015; 7
2014; 136
2013; 19
2015; 27
2014; 4
2014; 2
2015; 137
2011; 23
2008; 20
2012; 24
2014; 8
2014; 50
2014; 6
2010; 4
2014; 10
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, Y. D. Li, Adv. Mater. 2012, 24, 5762.
– reference: X. D. Xu, R. G. Cao, S. Jeong, J. Cho, Nano Lett. 2012, 12, 4988.
– reference: L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 4706.
– reference: J. Shao, Z. M. Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu, H. H. Zheng, J. Mater. Chem. A 2014, 2, 12194.
– reference: R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang, Y. Z. Huang, Small 2014, 10, 1932.
– reference: L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 15030.
– reference: L. Hu, N. Yan, Q. W. Chen, P. Zhang, H. Zhong, X. R. Zheng, Y. Li, X. Y. Hu, Chem. Eur. J. 2012, 18, 8971.
– reference: L. L. Li, Y. L. Cheah, Y. Ko, P. Teh, G. Wee, C. L. Wong, S. J. Peng, M. Srinivasan, J. Mater. Chem. A 2013, 1, 10935.
– reference: B. L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 2014, 26, 3368.
– reference: C. K. Brozek, A. F. Cozzolino, S. J. Teat, Y. S. Chen, M. Dincă, Chem. Mater. 2013, 25, 2998.
– reference: R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, F. S. Xiao, J. Mater. Chem. A 2013, 1, 9037.
– reference: F. Y. Jin, Y. Wang, J. Mater. Chem. A 2015, 3, 14741.
– reference: F. C. Zheng, M. N. He, Y. Yang, Q. W. Chen, Nanoscale 2015, 7, 3410.
– reference: X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258.
– reference: H. Hu, B. Y. Guan, B. Y. Xia, X. W. D. Lou, J. Am. Chem. Soc. 2015, 137, 5590.
– reference: C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, T. H. Wang, Chem. Eur. J. 2010, 16, 5215.
– reference: M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. H. Gordon, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2014, 136, 12119.
– reference: R. B. Wu, X. K. Qian, K. Zhou, J. Wei, J. Lou, P. M. Ajayan, ACS Nano 2014, 8, 6297.
– reference: O. Shekhah, J. Liu, R. A. Fischer, C. WöII, Chem. Soc. Rev. 2011, 40, 1081.
– reference: D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang, C. W. Cheng, Adv. Funct. Mater. 2014, 24, 3815.
– reference: W. W. Sun, Y. Wang, Nanoscale 2014, 6, 11528.
– reference: H. Guo, L. X. Liu, T. T. Li, W. W. Chen, J. J. Liu, Y. Y. Guo, Y. C. Guo, Nanoscale 2014, 6, 5491.
– reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
– reference: W. F. Yang, G. H. Cheng, C. Q. Dong, Q. G. Bai, X. T. Chen, Z. Q. Peng, Z. H. Zhang, J. Mater. Chem. A 2014, 2, 20022.
– reference: L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745.
– reference: L. Zhang, H. B. Wu, X. W. D. Lou, Adv. Energy Mater. 2014, 4, 1300958.
– reference: L. X. Liu, H. Guo, J. J. Liu, F. Qian, C. H. Zhang, T. T. Li, W. W. Chen, X. J. Yang, Y. C. Guo, Chem. Commun. 2014, 50, 9485.
– reference: Y. Wang, H. Xia, L. Lu, J. Y. Lin, ACS Nano 2010, 4, 1425.
– reference: S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249.
– reference: L. F. Shen, Q. Che, H. S. Li, X. G. Zhang, Adv. Funct. Mater. 2014, 24, 2630.
– reference: P. P. Su, S. C. Liao, F. Rong, F. Q. Wang, J. Chen, C. Li, Q. H. Yang, J. Mater. Chem. A 2014, 2, 17408.
– reference: R. B. Wu, D. P. Wang, X. H. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Y. Yan, J. Wei, Z. Chen, Adv. Mater. 2015, 27, 3038.
– reference: J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. D. Lou, Adv. Mater. 2012, 24, 5166.
– reference: F. Zou, X. L. Hu, Z. Li, L. Qie, C. C. Hu, R. Zeng, Y. Jiang, Y. H. Huang, Adv. Mater. 2014, 26, 6622.
– reference: Y. Xiao, C. W. Hu, M. H. Cao, Chem. Eur. J. 2013, 19, 10193.
– volume: 136
  start-page: 12119
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 10935
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 3038
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 17408
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1425
  year: 2010
  publication-title: ACS Nano
– volume: 7
  start-page: 3410
  year: 2015
  publication-title: Nanoscale
– volume: 50
  start-page: 9485
  year: 2014
  publication-title: Chem. Commun.
– volume: 3
  start-page: 14741
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 8971
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 15030
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 2998
  year: 2013
  publication-title: Chem. Mater.
– volume: 3
  start-page: 4706
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 5491
  year: 2014
  publication-title: Nanoscale
– volume: 2
  start-page: 20022
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 11528
  year: 2014
  publication-title: Nanoscale
– volume: 20
  start-page: 258
  year: 2008
  publication-title: Adv. Mater.
– volume: 23
  start-page: 249
  year: 2011
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5166
  year: 2012
  publication-title: Adv. Mater.
– volume: 341
  start-page: 1230444
  year: 2013
  publication-title: Science
– volume: 24
  start-page: 5762
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 6297
  year: 2014
  publication-title: ACS Nano
– volume: 24
  start-page: 2630
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 5215
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 137
  start-page: 5590
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 9037
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 3815
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 10193
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 12194
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 3368
  year: 2014
  publication-title: Adv. Mater.
– volume: 40
  start-page: 1081
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 1932
  year: 2014
  publication-title: Small
– volume: 12
  start-page: 4988
  year: 2012
  publication-title: Nano Lett.
– volume: 4
  start-page: 1300958
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 745
  year: 2012
  publication-title: Adv. Mater.
– volume: 26
  start-page: 6622
  year: 2014
  publication-title: Adv. Mater.
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201306126
– ident: e_1_2_6_30_1
  doi: 10.1021/nn501783n
– ident: e_1_2_6_10_1
  doi: 10.1002/smll.201303520
– ident: e_1_2_6_18_1
  doi: 10.1039/C4CC03807J
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1230444
– ident: e_1_2_6_23_1
  doi: 10.1039/C5TA03256C
– ident: e_1_2_6_34_1
  doi: 10.1039/C4NR00930D
– ident: e_1_2_6_5_1
  doi: 10.1039/C4TA02874K
– ident: e_1_2_6_15_1
  doi: 10.1039/C4TA04809A
– ident: e_1_2_6_31_1
  doi: 10.1002/adma.201104407
– ident: e_1_2_6_33_1
  doi: 10.1039/c3ta11672g
– ident: e_1_2_6_9_1
  doi: 10.1039/C4TA01966K
– ident: e_1_2_6_3_1
  doi: 10.1039/c0cs00147c
– ident: e_1_2_6_6_1
  doi: 10.1002/adma.201500783
– ident: e_1_2_6_11_1
  doi: 10.1021/cm400858d
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_6_24_1
  doi: 10.1039/C4TA05520A
– ident: e_1_2_6_2_1
  doi: 10.1002/adma.201002854
– ident: e_1_2_6_8_1
  doi: 10.1021/nl302618s
– ident: e_1_2_6_13_1
  doi: 10.1002/aenm.201300958
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.201304206
– ident: e_1_2_6_21_1
  doi: 10.1039/C4NR06321J
– ident: e_1_2_6_25_1
  doi: 10.1002/chem.201300967
– ident: e_1_2_6_35_1
  doi: 10.1039/c3ta11549f
– ident: e_1_2_6_4_1
  doi: 10.1021/jacs.5b02465
– ident: e_1_2_6_26_1
  doi: 10.1021/nn9012675
– ident: e_1_2_6_22_1
  doi: 10.1039/C5TA03605D
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.200702412
– ident: e_1_2_6_27_1
  doi: 10.1002/chem.200901632
– ident: e_1_2_6_12_1
  doi: 10.1002/adma.201202271
– ident: e_1_2_6_20_1
  doi: 10.1002/adfm.201303138
– ident: e_1_2_6_28_1
  doi: 10.1002/chem.201200770
– ident: e_1_2_6_19_1
  doi: 10.1039/C4NR02999B
– ident: e_1_2_6_32_1
  doi: 10.1021/ja506230r
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201402322
SSID ssj0017734
Score 2.585909
Snippet Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This...
Metal-organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1098
SubjectTerms Bimetals
Cobalt
cobalt oxide
Formations
Lithium batteries
lithium-ion batteries
mesoporous nanorods
Metal oxides
metal-organic frameworks
Nanostructure
Nickel
nickel oxide
Rechargeable batteries
Title Bimetal-Organic Framework: One-Step Homogenous Formation and its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage
URI https://api.istex.fr/ark:/67375/WNG-6ML3HBWQ-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201504312
https://www.proquest.com/docview/1800475137
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4EDb8TyqIyE4NK06zycLLdtl7BCm1b0Qfdm2cmkjcomaDeLWk79CUj8Hv5MfwkzySbsIiEkOEVxxo6TGduf7ZnPjL00kKY9LYQlU8dYaBSpFQRJYvUQ26YQy8Q2tKAf7cnhsft-7I2Xovhrfoh2wY1aRtVfUwPXZrb9izRUJylFkgui4KqOGSaHLUJFBy1_lPD9eltZCnLwEuOGtbFrb69mXxmV1ukHX6xAzmXgWo084R2mmzrXDifnW_PSbMVff6Nz_J-PustuL2Ap79d2dI_dgPw-u7VEVviA_djJJoBQ_frqex3AGfOw8ex6w_dzuL76Rj5jfFhMipr6lYdNaCTXecKzcsYHWNoXSHgEswKhPwkd0ZLk9BKTsHS-f5ElwLHTx4cJR0jNyRUFy97FYT3GOcNmk3CAMHmzKnhU5KckcYl1x-soS4GPsvIsm0_4YYlGfgoP2XH49mh3aC0Of7Bi2XVsy9FBqo0B6QMYLV3sJ7oGXAAPwHFNQAG-OBlLUylE3DO-rsj3EG3Fnm9cN3EesbW8yOEx477Uto226lNUXy9AUcSMONPTxtVCu6LDrEb5Kl4wo9MBHZ9UzelsK1KLatXSYa9b-c81J8gfJV9VttSK6ek5edL5njrZe6dkNHKGOycf1McOe9EYm8L2TZs2OgfUgRIBEXp6wvE7zK5M5y_vVP1BGLV3T_4l01N2U1SMA7Yl5DO2Vk7n8ByxV2k22Hp_EI0ON6p29hNVRC7k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-EeE30Xi51K3WduxHSQObUNwqZOKNqW5Lbv2uFglDkocaDj1EZB4Eh6Al-AR-iTM2LFpkBASUg-cLK_H49XujHdmduZbxh5piOOmEsJwYksbKBSx4XlRZDTRto0hdCJTU0C_03X8PftVv9FfYN_KWpgCH6IKuJFm5P9rUnAKSK_-Qg1VUUyl5IIwuIQ5y6vcgukn9NrGzzdbOMWPTbP9orfhG7ODBYzQqVumYSkvVlqD4wJo5dgog3UNNkADwLK1R8WjaOjHsSNE2NSuyoHdcCUPG6627chCvufYEh0jTnD9rZ0KsUq4brGR7QhKKRP9Eieybq7O93duHVyiKT2aM3JPm8r5Wte-zH6Uo1SkuByuTDK9En7-DUDyvxrGK-zSzPLma4WqXGULkF5jF0_hMV5n39eTAaA3cnL8tahRDXm7TF57xrdTODn-Qmlx3B8OhgW6LW-X1Z9cpRFPsjFvIbePEPEOjIfo3RBRj6Kuoyk2IXe-fZREwHFdw4cRR6-BU7YN8t5AyyVEt2i5bNhBT2A5ZxwM0wOimGLf8RokMfAgyd4lkwHfzVCPD-AG2zuT8bvJFtNhCrcYdx1lmqiOLhUuNj0kRbMYnVmlbSWULWrMKKVNhjPwdzqD5L0sYKtNSWIgKzGosacV_YcC9uSPlE9y4a3I1OiQkgXdhtzvvpROJ7D89f3X8k2NPSylW-IvjPalVAo4B1J4hFnaEJZbY2Yuq3_5plxrtTvV3e1_eekBO-_3OoEMNrtbd9gFbM9z8YVzly1mowncQ1Mz0_dz5ebs7VmrwU8Ukosu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVkJw4B8RfheJn0vdZm1n7SBxaBtMSpMU-kNzW3bt2WKV2FXiQMOpj4DEi_ACPASv0Cdh1o5Ng4SQkHrgZHk9Hq92ZzwzuzPfEvJIgdZNyZjFtaMsFApt-X4UWU30bTWEPLKVWdDv9nh7133Vb_TnyLeyFqbAh6gW3Ixm5P9ro-CHkV7-BRoqI20qyZmB4GL2NK1yAyafMGgbPV9v4Qw_tu3gxc5a25qeK2CFvO7YliN9LZUC7gEoyV0UwboCF6AB4LjKN7Wj6OdrzRkLm8qTOa4bGvKw4SnXjRzke44suLzeNIdFtLYqwCrmecU-Nmcmo4z1S5jIur08298ZM7hgZvRoxsc97Snnpi64TH6Ug1RkuBwsjTO1FH7-DT_yfxrFK-TS1O-mK4WiXCVzkFwjF0-hMV4n31fjAWAscnL8tahQDWlQpq49o5sJnBx_MUlxtJ0O0gLblgZl7SeVSUTjbERbyO0jRLQLoxRjG0O0Y9ZchxNsQu508yiOgKJVw4cRxZiBmlwb5L2GfkuIQdFi2bCFccBizriTJvuGYoJ9x2sn1kA7cfY-Hg_odoZavA83yO6ZjN9NMp-kCdwi1OPStlEZPVO22PSRFJ1iDGWlciWTLqsRqxQ2EU6h380JJB9EAVptCyMGohKDGnla0R8WoCd_pHySy25FJocHJlXQa4i93kvBux2nvbr3RrytkYelcAv8gZldKZkAzoFgvkEsbTDHqxE7F9W_fFOstIJudXf7X156QM6_bgWis97buEMuYHOeiM_4XTKfDcdwD_3MTN3PVZuSd2etBT8B4TKJ3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetal-Organic+Framework%3A+One-Step+Homogenous+Formation+and+its+Derived+Mesoporous+Ternary+Metal+Oxide+Nanorod+for+High-Capacity%2C+High-Rate%2C+and+Long-Cycle-Life+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Hao&rft.au=Liang%2C+Ming&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2016-02-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=7&rft.spage=1098&rft.epage=1103&rft_id=info:doi/10.1002%2Fadfm.201504312&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon