Bimetal-Organic Framework: One-Step Homogenous Formation and its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The C...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 7; pp. 1098 - 1103 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
16.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g−1 after 200 repetitive cycles at a small current of 100 mA g−1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g−1 can also be retained after 500 cycles at large currents of 2 and 5 A g−1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.
Microwave‐assisted one‐step formation of bimetallic Co/Ni‐metal–organic framework‐74 is used to fabricate a mesoporous Co–Ni–O nanorod, which delivers higher‐than‐theoretical reversible capacities, with excellent high‐rate performances for lithium‐ion batteries. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3−xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g−1 after 200 repetitive cycles at a small current of 100 mA g−1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g−1 can also be retained after 500 cycles at large currents of 2 and 5 A g−1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.
Microwave‐assisted one‐step formation of bimetallic Co/Ni‐metal–organic framework‐74 is used to fabricate a mesoporous Co–Ni–O nanorod, which delivers higher‐than‐theoretical reversible capacities, with excellent high‐rate performances for lithium‐ion batteries. Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous Ni x Co 3− x O 4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni 0.3 Co 2.7 O 4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g −1 after 200 repetitive cycles at a small current of 100 mA g −1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g −1 can also be retained after 500 cycles at large currents of 2 and 5 A g −1 , respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components. Metal-organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous Ni sub(x)Co sub(3-x)O sub(4) nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni-MOFs are prepared by a one-step facile microwave-assisted solvothermal method rather than surface metallic cation exchange on the preformed one-metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni sub(0.3)Co sub(2.7)O sub(4) nanorod delivers a larger-than-theoretical reversible capacity of 1410 mAh g super(-1) after 200 repetitive cycles at a small current of 100 mA g super(-1) with an excellent high-rate capability for lithium-ion batteries. Large reversible capacities of 812 and 656 mAh g super(-1) can also be retained after 500 cycles at large currents of 2 and 5 A g super(-1), respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle-integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components. Microwave-assisted one-step formation of bimetallic Co/Ni-metal-organic framework-74 is used to fabricate a mesoporous Co-Ni-O nanorod, which delivers higher-than-theoretical reversible capacities, with excellent high-rate performances for lithium-ion batteries. |
Author | Liang, Ming Wang, Yong Li, Hao Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Hao surname: Li fullname: Li, Hao organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China – sequence: 2 givenname: Ming surname: Liang fullname: Liang, Ming organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei email: vivisun@shu.edu.cn organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China – sequence: 4 givenname: Yong surname: Wang fullname: Wang, Yong email: vivisun@shu.edu.cn organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, 200444, Shanghai, P. R. China |
BookMark | eNqFkV9v0zAUxSM0JLbBK89-5GEudpw4KW9bR9dJ6SrYYLxZN8lNZpbYwXbZ-rH2DUlXVCEkxJP_nd-58jlH0YGxBqPoLWcTzlj8Huqmn8SMpywRPH4RHXLJJRUszg_2e_7tVXTk_XfGeJaJ5DB6OtM9BujoyrVgdEXmDnp8sO7-A1kZpNcBB7KwvW3R2LUnc-t6CNoaAqYmOnhyjk7_xJos0dvBuq3oBp0BtxmvRmeyetQ1kisw42NNGuvIQrd3dAYDVDpsTnbHzxDw5Nm0sKals03VIS10g6TQ4U6ve3IdrIMWX0cvG-g8vvm9Hkdf5h9vZgtarC4uZ6cFrSQTMRWQN1CWKDPEEmQiRc5KTBBTRJGUeZrHXMayaSTn1bTMgLE8ZdOpqNKsTJJaHEfvdr6Dsz_W6IPqta-w68Dg-EnFc8aSLOUiG6WTnbRy1nuHjRqc7scEFGdq243adqP23YxA8hcwJvEca3Cgu39j0x32oDvc_GeIOj2fL_9k6Y7VPuDjngV3r2QmslTdXl0ouSzE4uz2k_oqfgEbmbdL |
CitedBy_id | crossref_primary_10_1039_C6TA09060E crossref_primary_10_1002_smtd_202000637 crossref_primary_10_1016_j_ensm_2019_09_005 crossref_primary_10_1021_acscatal_7b03795 crossref_primary_10_1016_j_jpowsour_2016_11_114 crossref_primary_10_1016_j_jpowsour_2023_232918 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1016_j_jallcom_2021_160126 crossref_primary_10_1021_acsami_7b04045 crossref_primary_10_1016_j_jallcom_2018_09_082 crossref_primary_10_1016_j_ensm_2017_12_027 crossref_primary_10_1007_s10853_020_05428_2 crossref_primary_10_1016_j_jmst_2021_04_033 crossref_primary_10_1002_anie_201607271 crossref_primary_10_1016_j_electacta_2016_08_051 crossref_primary_10_1016_j_jpowsour_2020_227727 crossref_primary_10_1016_j_electacta_2017_07_007 crossref_primary_10_1016_j_ica_2022_120890 crossref_primary_10_1016_j_jallcom_2020_156823 crossref_primary_10_1039_C9NR03088C crossref_primary_10_1016_j_microc_2022_108067 crossref_primary_10_1039_C7NR08882E crossref_primary_10_1039_C8TA01426D crossref_primary_10_1016_j_cclet_2017_09_024 crossref_primary_10_1039_C8TA02919A crossref_primary_10_1039_D3TA05478K crossref_primary_10_1016_j_jallcom_2024_177004 crossref_primary_10_1002_adhm_202300887 crossref_primary_10_1002_cssc_202401612 crossref_primary_10_1016_j_cej_2020_124681 crossref_primary_10_1016_j_matchemphys_2019_03_070 crossref_primary_10_1039_C6RA28296B crossref_primary_10_1039_C8NR02686F crossref_primary_10_1016_j_est_2024_110947 crossref_primary_10_1016_j_gee_2018_01_005 crossref_primary_10_1002_adma_201607015 crossref_primary_10_1016_j_carbpol_2022_119682 crossref_primary_10_1021_acsami_6b15757 crossref_primary_10_1088_1755_1315_634_1_012042 crossref_primary_10_1016_j_mcat_2021_111614 crossref_primary_10_1016_j_poly_2022_115996 crossref_primary_10_1002_adfm_202006761 crossref_primary_10_1002_smll_202101080 crossref_primary_10_1039_D0CE00170H crossref_primary_10_1016_j_colsurfb_2019_110764 crossref_primary_10_1021_acssuschemeng_8b04685 crossref_primary_10_2174_1385272823666190709113758 crossref_primary_10_3389_fmats_2020_00194 crossref_primary_10_3920_WMJ2020_2578 crossref_primary_10_1039_C6TA03429B crossref_primary_10_1039_C8TA00612A crossref_primary_10_1039_C7TA08868J crossref_primary_10_1039_D0NR01152E crossref_primary_10_1002_eom2_12133 crossref_primary_10_1021_acsnano_1c07943 crossref_primary_10_1002_celc_201900848 crossref_primary_10_1021_acsaem_0c02303 crossref_primary_10_1002_batt_202000094 crossref_primary_10_1007_s10853_018_2550_7 crossref_primary_10_1007_s40820_018_0234_0 crossref_primary_10_1016_j_cej_2024_156303 crossref_primary_10_1038_srep40574 crossref_primary_10_1007_s41918_018_0024_x crossref_primary_10_1016_j_inoche_2019_107538 crossref_primary_10_1016_j_jpcs_2023_111728 crossref_primary_10_1002_smll_201800589 crossref_primary_10_1016_j_cej_2018_03_062 crossref_primary_10_1021_acsami_9b08694 crossref_primary_10_1016_j_cis_2021_102562 crossref_primary_10_1002_smll_201702150 crossref_primary_10_1016_j_ccr_2020_213372 crossref_primary_10_1002_adfm_201704440 crossref_primary_10_1002_chem_201904077 crossref_primary_10_1021_acs_chemmater_2c01481 crossref_primary_10_1016_j_elecom_2017_09_019 crossref_primary_10_1002_smll_202403767 crossref_primary_10_1016_j_cej_2017_12_049 crossref_primary_10_1039_C8TA11982A crossref_primary_10_1021_acsaem_0c02379 crossref_primary_10_1039_C9TA00054B crossref_primary_10_1039_D2AY01058E crossref_primary_10_1016_j_jelechem_2024_118258 crossref_primary_10_1016_j_vacuum_2019_108959 crossref_primary_10_1002_smll_202304477 crossref_primary_10_1021_acsaem_8b01613 crossref_primary_10_1021_acsami_8b03104 crossref_primary_10_1016_j_cclet_2025_111012 crossref_primary_10_3390_nano13081432 crossref_primary_10_1016_j_ccr_2019_02_029 crossref_primary_10_1016_j_fuel_2020_119910 crossref_primary_10_1039_C7TA00855D crossref_primary_10_1002_aenm_202002961 crossref_primary_10_1002_smll_201604270 crossref_primary_10_1002_smll_201801454 crossref_primary_10_1016_j_matchar_2017_08_026 crossref_primary_10_1002_aenm_202100154 crossref_primary_10_1039_C8CC00789F crossref_primary_10_1007_s10904_023_02898_0 crossref_primary_10_1016_j_ensm_2017_01_011 crossref_primary_10_1016_j_jcis_2020_01_108 crossref_primary_10_1002_asia_202400161 crossref_primary_10_1021_acsami_2c14286 crossref_primary_10_1016_j_ensm_2018_05_024 crossref_primary_10_1039_C6MH00534A crossref_primary_10_1039_C9DT03995C crossref_primary_10_1016_j_electacta_2019_04_121 crossref_primary_10_1016_j_flatc_2021_100332 crossref_primary_10_1016_j_cej_2018_06_093 crossref_primary_10_1039_C7CC09602J crossref_primary_10_1088_1361_6528_aafe42 crossref_primary_10_1016_j_jechem_2017_10_012 crossref_primary_10_1038_natrevmats_2017_75 crossref_primary_10_1039_C8DT05055D crossref_primary_10_1016_j_cej_2019_03_162 crossref_primary_10_1016_j_cej_2019_03_163 crossref_primary_10_1002_ange_201607271 crossref_primary_10_1021_acsami_6b15719 crossref_primary_10_1039_C8DT04716B crossref_primary_10_1016_j_apcata_2022_118805 crossref_primary_10_1016_j_memsci_2017_09_056 crossref_primary_10_1021_acsaem_8b00103 crossref_primary_10_1021_acsami_7b02176 crossref_primary_10_1021_acsami_8b21369 crossref_primary_10_1016_j_electacta_2020_135824 crossref_primary_10_1007_s41918_021_00113_7 crossref_primary_10_1002_adma_202201779 crossref_primary_10_1002_smll_201700521 crossref_primary_10_1039_D0QI00929F crossref_primary_10_1002_ange_202209335 crossref_primary_10_1016_j_ccr_2020_213434 crossref_primary_10_1002_cssc_201903029 crossref_primary_10_1007_s10854_020_04495_0 crossref_primary_10_1002_adma_202209924 crossref_primary_10_1002_anie_202209335 crossref_primary_10_1016_j_electacta_2016_06_082 crossref_primary_10_1039_D0QM00710B crossref_primary_10_1002_adfm_201605332 crossref_primary_10_1002_advs_201802373 crossref_primary_10_1021_acsomega_3c06408 crossref_primary_10_1016_j_talanta_2024_125836 crossref_primary_10_1016_j_jallcom_2018_02_112 crossref_primary_10_1002_celc_202100687 crossref_primary_10_1002_smll_201805277 crossref_primary_10_1016_j_cej_2017_12_014 crossref_primary_10_1016_j_jallcom_2023_169679 crossref_primary_10_20964_2019_03_28 crossref_primary_10_1016_j_cej_2018_08_037 crossref_primary_10_1016_j_enchem_2019_100001 crossref_primary_10_1039_C9RA02163A crossref_primary_10_1021_acsnano_7b01152 crossref_primary_10_1021_acssuschemeng_8b05980 crossref_primary_10_1039_C7RA05090A crossref_primary_10_1016_j_cej_2019_03_263 crossref_primary_10_1002_adma_201604437 crossref_primary_10_1016_j_jhazmat_2019_121143 crossref_primary_10_1016_j_cej_2019_123597 crossref_primary_10_1016_j_jallcom_2020_157177 crossref_primary_10_1016_j_seppur_2023_123998 crossref_primary_10_1016_j_apcatb_2019_118570 crossref_primary_10_1016_j_apsusc_2018_09_122 crossref_primary_10_1021_acs_energyfuels_3c00801 crossref_primary_10_3390_ma14112771 crossref_primary_10_1016_j_cej_2018_05_091 crossref_primary_10_1039_D0NJ01027H crossref_primary_10_1016_j_mseb_2017_12_018 crossref_primary_10_1016_j_pmatsci_2020_100671 crossref_primary_10_1016_j_ccr_2022_214741 crossref_primary_10_1039_C8RA04081H crossref_primary_10_1016_j_electacta_2018_12_020 crossref_primary_10_1016_j_jechem_2017_02_001 crossref_primary_10_1007_s11581_019_03152_9 crossref_primary_10_1016_j_cej_2018_08_024 crossref_primary_10_1016_j_matchar_2019_03_032 crossref_primary_10_1002_elsa_202100001 crossref_primary_10_1007_s13369_017_2611_2 crossref_primary_10_1039_C7TA09676C crossref_primary_10_1039_C8QM00366A crossref_primary_10_1016_j_inoche_2024_112688 crossref_primary_10_1002_celc_201700041 crossref_primary_10_1021_acsami_9b11547 |
Cites_doi | 10.1002/adma.201306126 10.1021/nn501783n 10.1002/smll.201303520 10.1039/C4CC03807J 10.1126/science.1230444 10.1039/C5TA03256C 10.1039/C4NR00930D 10.1039/C4TA02874K 10.1039/C4TA04809A 10.1002/adma.201104407 10.1039/c3ta11672g 10.1039/C4TA01966K 10.1039/c0cs00147c 10.1002/adma.201500783 10.1021/cm400858d 10.1002/adma.201202146 10.1039/C4TA05520A 10.1002/adma.201002854 10.1021/nl302618s 10.1002/aenm.201300958 10.1002/adfm.201304206 10.1039/C4NR06321J 10.1002/chem.201300967 10.1039/c3ta11549f 10.1021/jacs.5b02465 10.1021/nn9012675 10.1039/C5TA03605D 10.1002/adma.200702412 10.1002/chem.200901632 10.1002/adma.201202271 10.1002/adfm.201303138 10.1002/chem.201200770 10.1039/C4NR02999B 10.1021/ja506230r 10.1002/adma.201402322 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201504312 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 1103 |
ExternalDocumentID | 10_1002_adfm_201504312 ADFM201504312 ark_67375_WNG_6ML3HBWQ_V |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Municipal Government funderid: 13YZ012; 15520720600 – fundername: National Natural Science Foundation of China funderid: 51271105; 51201095 – fundername: Innovative Research Team funderid: IRT13078 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c6032-3a8fabbe67eeba646380be4ee5ee34b85821626ff611c9b7a00850993c57b44d3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 01:34:23 EDT 2025 Tue Jul 01 01:30:22 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:25:13 EST 2025 Wed Oct 30 09:56:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6032-3a8fabbe67eeba646380be4ee5ee34b85821626ff611c9b7a00850993c57b44d3 |
Notes | ArticleID:ADFM201504312 istex:D4275D3EB3907AB3F40A9244304DE983D93ED875 National Natural Science Foundation of China - No. 51271105; No. 51201095 Innovative Research Team - No. IRT13078 Shanghai Municipal Government - No. 13YZ012; No. 15520720600 ark:/67375/WNG-6ML3HBWQ-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1800475137 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1800475137 crossref_primary_10_1002_adfm_201504312 crossref_citationtrail_10_1002_adfm_201504312 wiley_primary_10_1002_adfm_201504312_ADFM201504312 istex_primary_ark_67375_WNG_6ML3HBWQ_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 16, 2016 |
PublicationDateYYYYMMDD | 2016-02-16 |
PublicationDate_xml | – month: 02 year: 2016 text: February 16, 2016 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | B. L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 2014, 26, 3368. R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, F. S. Xiao, J. Mater. Chem. A 2013, 1, 9037. J. Shao, Z. M. Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu, H. H. Zheng, J. Mater. Chem. A 2014, 2, 12194. L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 15030. W. F. Yang, G. H. Cheng, C. Q. Dong, Q. G. Bai, X. T. Chen, Z. Q. Peng, Z. H. Zhang, J. Mater. Chem. A 2014, 2, 20022. H. Guo, L. X. Liu, T. T. Li, W. W. Chen, J. J. Liu, Y. Y. Guo, Y. C. Guo, Nanoscale 2014, 6, 5491. F. Zou, X. L. Hu, Z. Li, L. Qie, C. C. Hu, R. Zeng, Y. Jiang, Y. H. Huang, Adv. Mater. 2014, 26, 6622. L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745. R. B. Wu, X. K. Qian, K. Zhou, J. Wei, J. Lou, P. M. Ajayan, ACS Nano 2014, 8, 6297. F. C. Zheng, M. N. He, Y. Yang, Q. W. Chen, Nanoscale 2015, 7, 3410. L. Hu, N. Yan, Q. W. Chen, P. Zhang, H. Zhong, X. R. Zheng, Y. Li, X. Y. Hu, Chem. Eur. J. 2012, 18, 8971. O. Shekhah, J. Liu, R. A. Fischer, C. WöII, Chem. Soc. Rev. 2011, 40, 1081. L. X. Liu, H. Guo, J. J. Liu, F. Qian, C. H. Zhang, T. T. Li, W. W. Chen, X. J. Yang, Y. C. Guo, Chem. Commun. 2014, 50, 9485. H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 4706. H. Hu, B. Y. Guan, B. Y. Xia, X. W. D. Lou, J. Am. Chem. Soc. 2015, 137, 5590. C. K. Brozek, A. F. Cozzolino, S. J. Teat, Y. S. Chen, M. Dincă, Chem. Mater. 2013, 25, 2998. Y. Wang, H. Xia, L. Lu, J. Y. Lin, ACS Nano 2010, 4, 1425. X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258. M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. H. Gordon, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2014, 136, 12119. X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, Y. D. Li, Adv. Mater. 2012, 24, 5762. Y. Xiao, C. W. Hu, M. H. Cao, Chem. Eur. J. 2013, 19, 10193. L. L. Li, Y. L. Cheah, Y. Ko, P. Teh, G. Wee, C. L. Wong, S. J. Peng, M. Srinivasan, J. Mater. Chem. A 2013, 1, 10935. L. Zhang, H. B. Wu, X. W. D. Lou, Adv. Energy Mater. 2014, 4, 1300958. R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang, Y. Z. Huang, Small 2014, 10, 1932. R. B. Wu, D. P. Wang, X. H. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Y. Yan, J. Wei, Z. Chen, Adv. Mater. 2015, 27, 3038. W. W. Sun, Y. Wang, Nanoscale 2014, 6, 11528. P. P. Su, S. C. Liao, F. Rong, F. Q. Wang, J. Chen, C. Li, Q. H. Yang, J. Mater. Chem. A 2014, 2, 17408. X. D. Xu, R. G. Cao, S. Jeong, J. Cho, Nano Lett. 2012, 12, 4988. F. Y. Jin, Y. Wang, J. Mater. Chem. A 2015, 3, 14741. L. F. Shen, Q. Che, H. S. Li, X. G. Zhang, Adv. Funct. Mater. 2014, 24, 2630. C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, T. H. Wang, Chem. Eur. J. 2010, 16, 5215. S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249. D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang, C. W. Cheng, Adv. Funct. Mater. 2014, 24, 3815. J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. D. Lou, Adv. Mater. 2012, 24, 5166. 2010; 16 2013; 25 2013; 1 2015; 3 2011; 40 2014; 26 2014; 24 2012; 18 2013; 341 2012; 12 2015; 7 2014; 136 2013; 19 2015; 27 2014; 4 2014; 2 2015; 137 2011; 23 2008; 20 2012; 24 2014; 8 2014; 50 2014; 6 2010; 4 2014; 10 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, Z. B. Hu, Y. D. Li, Adv. Mater. 2012, 24, 5762. – reference: X. D. Xu, R. G. Cao, S. Jeong, J. Cho, Nano Lett. 2012, 12, 4988. – reference: L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 4706. – reference: J. Shao, Z. M. Wan, H. M. Liu, H. Y. Zheng, T. Gao, M. Shen, Q. T. Qu, H. H. Zheng, J. Mater. Chem. A 2014, 2, 12194. – reference: R. B. Wu, X. K. Qian, X. H. Rui, H. Liu, B. Yadian, K. Zhou, J. Wei, Q. Y. Yan, X. Q. Feng, Y. Long, L. Y. Wang, Y. Z. Huang, Small 2014, 10, 1932. – reference: L. Guo, Y. Wang, J. Mater. Chem. A 2015, 3, 15030. – reference: L. Hu, N. Yan, Q. W. Chen, P. Zhang, H. Zhong, X. R. Zheng, Y. Li, X. Y. Hu, Chem. Eur. J. 2012, 18, 8971. – reference: L. L. Li, Y. L. Cheah, Y. Ko, P. Teh, G. Wee, C. L. Wong, S. J. Peng, M. Srinivasan, J. Mater. Chem. A 2013, 1, 10935. – reference: B. L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 2014, 26, 3368. – reference: C. K. Brozek, A. F. Cozzolino, S. J. Teat, Y. S. Chen, M. Dincă, Chem. Mater. 2013, 25, 2998. – reference: R. F. Nie, J. J. Shi, W. C. Du, W. S. Ning, Z. Y. Hou, F. S. Xiao, J. Mater. Chem. A 2013, 1, 9037. – reference: F. Y. Jin, Y. Wang, J. Mater. Chem. A 2015, 3, 14741. – reference: F. C. Zheng, M. N. He, Y. Yang, Q. W. Chen, Nanoscale 2015, 7, 3410. – reference: X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258. – reference: H. Hu, B. Y. Guan, B. Y. Xia, X. W. D. Lou, J. Am. Chem. Soc. 2015, 137, 5590. – reference: C. C. Li, X. M. Yin, L. B. Chen, Q. H. Li, T. H. Wang, Chem. Eur. J. 2010, 16, 5215. – reference: M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. H. Gordon, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2014, 136, 12119. – reference: R. B. Wu, X. K. Qian, K. Zhou, J. Wei, J. Lou, P. M. Ajayan, ACS Nano 2014, 8, 6297. – reference: O. Shekhah, J. Liu, R. A. Fischer, C. WöII, Chem. Soc. Rev. 2011, 40, 1081. – reference: D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang, C. W. Cheng, Adv. Funct. Mater. 2014, 24, 3815. – reference: W. W. Sun, Y. Wang, Nanoscale 2014, 6, 11528. – reference: H. Guo, L. X. Liu, T. T. Li, W. W. Chen, J. J. Liu, Y. Y. Guo, Y. C. Guo, Nanoscale 2014, 6, 5491. – reference: H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444. – reference: W. F. Yang, G. H. Cheng, C. Q. Dong, Q. G. Bai, X. T. Chen, Z. Q. Peng, Z. H. Zhang, J. Mater. Chem. A 2014, 2, 20022. – reference: L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745. – reference: L. Zhang, H. B. Wu, X. W. D. Lou, Adv. Energy Mater. 2014, 4, 1300958. – reference: L. X. Liu, H. Guo, J. J. Liu, F. Qian, C. H. Zhang, T. T. Li, W. W. Chen, X. J. Yang, Y. C. Guo, Chem. Commun. 2014, 50, 9485. – reference: Y. Wang, H. Xia, L. Lu, J. Y. Lin, ACS Nano 2010, 4, 1425. – reference: S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249. – reference: L. F. Shen, Q. Che, H. S. Li, X. G. Zhang, Adv. Funct. Mater. 2014, 24, 2630. – reference: P. P. Su, S. C. Liao, F. Rong, F. Q. Wang, J. Chen, C. Li, Q. H. Yang, J. Mater. Chem. A 2014, 2, 17408. – reference: R. B. Wu, D. P. Wang, X. H. Rui, B. Liu, K. Zhou, A. W. K. Law, Q. Y. Yan, J. Wei, Z. Chen, Adv. Mater. 2015, 27, 3038. – reference: J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C. Z. Yuan, X. W. D. Lou, Adv. Mater. 2012, 24, 5166. – reference: F. Zou, X. L. Hu, Z. Li, L. Qie, C. C. Hu, R. Zeng, Y. Jiang, Y. H. Huang, Adv. Mater. 2014, 26, 6622. – reference: Y. Xiao, C. W. Hu, M. H. Cao, Chem. Eur. J. 2013, 19, 10193. – volume: 136 start-page: 12119 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 10935 year: 2013 publication-title: J. Mater. Chem. A – volume: 27 start-page: 3038 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 17408 year: 2014 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1425 year: 2010 publication-title: ACS Nano – volume: 7 start-page: 3410 year: 2015 publication-title: Nanoscale – volume: 50 start-page: 9485 year: 2014 publication-title: Chem. Commun. – volume: 3 start-page: 14741 year: 2015 publication-title: J. Mater. Chem. A – volume: 18 start-page: 8971 year: 2012 publication-title: Chem. Eur. J. – volume: 3 start-page: 15030 year: 2015 publication-title: J. Mater. Chem. A – volume: 25 start-page: 2998 year: 2013 publication-title: Chem. Mater. – volume: 3 start-page: 4706 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 5491 year: 2014 publication-title: Nanoscale – volume: 2 start-page: 20022 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 start-page: 11528 year: 2014 publication-title: Nanoscale – volume: 20 start-page: 258 year: 2008 publication-title: Adv. Mater. – volume: 23 start-page: 249 year: 2011 publication-title: Adv. Mater. – volume: 24 start-page: 5166 year: 2012 publication-title: Adv. Mater. – volume: 341 start-page: 1230444 year: 2013 publication-title: Science – volume: 24 start-page: 5762 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 6297 year: 2014 publication-title: ACS Nano – volume: 24 start-page: 2630 year: 2014 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 5215 year: 2010 publication-title: Chem. Eur. J. – volume: 137 start-page: 5590 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 9037 year: 2013 publication-title: J. Mater. Chem. A – volume: 24 start-page: 3815 year: 2014 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 10193 year: 2013 publication-title: Chem. Eur. J. – volume: 2 start-page: 12194 year: 2014 publication-title: J. Mater. Chem. A – volume: 26 start-page: 3368 year: 2014 publication-title: Adv. Mater. – volume: 40 start-page: 1081 year: 2011 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 1932 year: 2014 publication-title: Small – volume: 12 start-page: 4988 year: 2012 publication-title: Nano Lett. – volume: 4 start-page: 1300958 year: 2014 publication-title: Adv. Energy Mater. – volume: 24 start-page: 745 year: 2012 publication-title: Adv. Mater. – volume: 26 start-page: 6622 year: 2014 publication-title: Adv. Mater. – ident: e_1_2_6_14_1 doi: 10.1002/adma.201306126 – ident: e_1_2_6_30_1 doi: 10.1021/nn501783n – ident: e_1_2_6_10_1 doi: 10.1002/smll.201303520 – ident: e_1_2_6_18_1 doi: 10.1039/C4CC03807J – ident: e_1_2_6_1_1 doi: 10.1126/science.1230444 – ident: e_1_2_6_23_1 doi: 10.1039/C5TA03256C – ident: e_1_2_6_34_1 doi: 10.1039/C4NR00930D – ident: e_1_2_6_5_1 doi: 10.1039/C4TA02874K – ident: e_1_2_6_15_1 doi: 10.1039/C4TA04809A – ident: e_1_2_6_31_1 doi: 10.1002/adma.201104407 – ident: e_1_2_6_33_1 doi: 10.1039/c3ta11672g – ident: e_1_2_6_9_1 doi: 10.1039/C4TA01966K – ident: e_1_2_6_3_1 doi: 10.1039/c0cs00147c – ident: e_1_2_6_6_1 doi: 10.1002/adma.201500783 – ident: e_1_2_6_11_1 doi: 10.1021/cm400858d – ident: e_1_2_6_17_1 doi: 10.1002/adma.201202146 – ident: e_1_2_6_24_1 doi: 10.1039/C4TA05520A – ident: e_1_2_6_2_1 doi: 10.1002/adma.201002854 – ident: e_1_2_6_8_1 doi: 10.1021/nl302618s – ident: e_1_2_6_13_1 doi: 10.1002/aenm.201300958 – ident: e_1_2_6_16_1 doi: 10.1002/adfm.201304206 – ident: e_1_2_6_21_1 doi: 10.1039/C4NR06321J – ident: e_1_2_6_25_1 doi: 10.1002/chem.201300967 – ident: e_1_2_6_35_1 doi: 10.1039/c3ta11549f – ident: e_1_2_6_4_1 doi: 10.1021/jacs.5b02465 – ident: e_1_2_6_26_1 doi: 10.1021/nn9012675 – ident: e_1_2_6_22_1 doi: 10.1039/C5TA03605D – ident: e_1_2_6_29_1 doi: 10.1002/adma.200702412 – ident: e_1_2_6_27_1 doi: 10.1002/chem.200901632 – ident: e_1_2_6_12_1 doi: 10.1002/adma.201202271 – ident: e_1_2_6_20_1 doi: 10.1002/adfm.201303138 – ident: e_1_2_6_28_1 doi: 10.1002/chem.201200770 – ident: e_1_2_6_19_1 doi: 10.1039/C4NR02999B – ident: e_1_2_6_32_1 doi: 10.1021/ja506230r – ident: e_1_2_6_7_1 doi: 10.1002/adma.201402322 |
SSID | ssj0017734 |
Score | 2.585909 |
Snippet | Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This... Metal-organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1098 |
SubjectTerms | Bimetals Cobalt cobalt oxide Formations Lithium batteries lithium-ion batteries mesoporous nanorods Metal oxides metal-organic frameworks Nanostructure Nickel nickel oxide Rechargeable batteries |
Title | Bimetal-Organic Framework: One-Step Homogenous Formation and its Derived Mesoporous Ternary Metal Oxide Nanorod for High-Capacity, High-Rate, and Long-Cycle-Life Lithium Storage |
URI | https://api.istex.fr/ark:/67375/WNG-6ML3HBWQ-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201504312 https://www.proquest.com/docview/1800475137 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQe4EDb8TyqIyE4NK06zycLLdtl7BCm1b0Qfdm2cmkjcomaDeLWk79CUj8Hv5MfwkzySbsIiEkOEVxxo6TGduf7ZnPjL00kKY9LYQlU8dYaBSpFQRJYvUQ26YQy8Q2tKAf7cnhsft-7I2Xovhrfoh2wY1aRtVfUwPXZrb9izRUJylFkgui4KqOGSaHLUJFBy1_lPD9eltZCnLwEuOGtbFrb69mXxmV1ukHX6xAzmXgWo084R2mmzrXDifnW_PSbMVff6Nz_J-PustuL2Ap79d2dI_dgPw-u7VEVviA_djJJoBQ_frqex3AGfOw8ex6w_dzuL76Rj5jfFhMipr6lYdNaCTXecKzcsYHWNoXSHgEswKhPwkd0ZLk9BKTsHS-f5ElwLHTx4cJR0jNyRUFy97FYT3GOcNmk3CAMHmzKnhU5KckcYl1x-soS4GPsvIsm0_4YYlGfgoP2XH49mh3aC0Of7Bi2XVsy9FBqo0B6QMYLV3sJ7oGXAAPwHFNQAG-OBlLUylE3DO-rsj3EG3Fnm9cN3EesbW8yOEx477Uto226lNUXy9AUcSMONPTxtVCu6LDrEb5Kl4wo9MBHZ9UzelsK1KLatXSYa9b-c81J8gfJV9VttSK6ek5edL5njrZe6dkNHKGOycf1McOe9EYm8L2TZs2OgfUgRIBEXp6wvE7zK5M5y_vVP1BGLV3T_4l01N2U1SMA7Yl5DO2Vk7n8ByxV2k22Hp_EI0ON6p29hNVRC7k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6V9gAc-EeE30Xi51K3WduxHSQObUNwqZOKNqW5Lbv2uFglDkocaDj1EZB4Eh6Al-AR-iTM2LFpkBASUg-cLK_H49XujHdmduZbxh5piOOmEsJwYksbKBSx4XlRZDTRto0hdCJTU0C_03X8PftVv9FfYN_KWpgCH6IKuJFm5P9rUnAKSK_-Qg1VUUyl5IIwuIQ5y6vcgukn9NrGzzdbOMWPTbP9orfhG7ODBYzQqVumYSkvVlqD4wJo5dgog3UNNkADwLK1R8WjaOjHsSNE2NSuyoHdcCUPG6627chCvufYEh0jTnD9rZ0KsUq4brGR7QhKKRP9Eieybq7O93duHVyiKT2aM3JPm8r5Wte-zH6Uo1SkuByuTDK9En7-DUDyvxrGK-zSzPLma4WqXGULkF5jF0_hMV5n39eTAaA3cnL8tahRDXm7TF57xrdTODn-Qmlx3B8OhgW6LW-X1Z9cpRFPsjFvIbePEPEOjIfo3RBRj6Kuoyk2IXe-fZREwHFdw4cRR6-BU7YN8t5AyyVEt2i5bNhBT2A5ZxwM0wOimGLf8RokMfAgyd4lkwHfzVCPD-AG2zuT8bvJFtNhCrcYdx1lmqiOLhUuNj0kRbMYnVmlbSWULWrMKKVNhjPwdzqD5L0sYKtNSWIgKzGosacV_YcC9uSPlE9y4a3I1OiQkgXdhtzvvpROJ7D89f3X8k2NPSylW-IvjPalVAo4B1J4hFnaEJZbY2Yuq3_5plxrtTvV3e1_eekBO-_3OoEMNrtbd9gFbM9z8YVzly1mowncQ1Mz0_dz5ebs7VmrwU8Ukosu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVkJw4B8RfheJn0vdZm1n7SBxaBtMSpMU-kNzW3bt2WKV2FXiQMOpj4DEi_ACPASv0Cdh1o5Ng4SQkHrgZHk9Hq92ZzwzuzPfEvJIgdZNyZjFtaMsFApt-X4UWU30bTWEPLKVWdDv9nh7133Vb_TnyLeyFqbAh6gW3Ixm5P9ro-CHkV7-BRoqI20qyZmB4GL2NK1yAyafMGgbPV9v4Qw_tu3gxc5a25qeK2CFvO7YliN9LZUC7gEoyV0UwboCF6AB4LjKN7Wj6OdrzRkLm8qTOa4bGvKw4SnXjRzke44suLzeNIdFtLYqwCrmecU-Nmcmo4z1S5jIur08298ZM7hgZvRoxsc97Snnpi64TH6Ug1RkuBwsjTO1FH7-DT_yfxrFK-TS1O-mK4WiXCVzkFwjF0-hMV4n31fjAWAscnL8tahQDWlQpq49o5sJnBx_MUlxtJ0O0gLblgZl7SeVSUTjbERbyO0jRLQLoxRjG0O0Y9ZchxNsQu508yiOgKJVw4cRxZiBmlwb5L2GfkuIQdFi2bCFccBizriTJvuGYoJ9x2sn1kA7cfY-Hg_odoZavA83yO6ZjN9NMp-kCdwi1OPStlEZPVO22PSRFJ1iDGWlciWTLqsRqxQ2EU6h380JJB9EAVptCyMGohKDGnla0R8WoCd_pHySy25FJocHJlXQa4i93kvBux2nvbr3RrytkYelcAv8gZldKZkAzoFgvkEsbTDHqxE7F9W_fFOstIJudXf7X156QM6_bgWis97buEMuYHOeiM_4XTKfDcdwD_3MTN3PVZuSd2etBT8B4TKJ3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetal-Organic+Framework%3A+One-Step+Homogenous+Formation+and+its+Derived+Mesoporous+Ternary+Metal+Oxide+Nanorod+for+High-Capacity%2C+High-Rate%2C+and+Long-Cycle-Life+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Hao&rft.au=Liang%2C+Ming&rft.au=Sun%2C+Weiwei&rft.au=Wang%2C+Yong&rft.date=2016-02-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=7&rft.spage=1098&rft.epage=1103&rft_id=info:doi/10.1002%2Fadfm.201504312&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |