Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress
Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in fie...
Saved in:
Published in | Plant direct Vol. 5; no. 3; pp. e00310 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.03.2021
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance. |
---|---|
AbstractList | Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance. Abstract Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance. Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross-sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross-sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross-sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross-sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross-sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross-sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance. |
Author | Schneider, Hannah M. Brown, Kathleen M. Lynch, Jonathan P. Yang, Jennifer T. |
AuthorAffiliation | 2 Present address: Wellesley College Wellesley MA USA 1 Department of Plant Science The Pennsylvania State University University Park PA USA |
AuthorAffiliation_xml | – name: 1 Department of Plant Science The Pennsylvania State University University Park PA USA – name: 2 Present address: Wellesley College Wellesley MA USA |
Author_xml | – sequence: 1 givenname: Hannah M. orcidid: 0000-0003-4655-6250 surname: Schneider fullname: Schneider, Hannah M. organization: The Pennsylvania State University – sequence: 2 givenname: Jennifer T. surname: Yang fullname: Yang, Jennifer T. organization: The Pennsylvania State University – sequence: 3 givenname: Kathleen M. orcidid: 0000-0002-4960-5292 surname: Brown fullname: Brown, Kathleen M. organization: The Pennsylvania State University – sequence: 4 givenname: Jonathan P. orcidid: 0000-0002-7265-9790 surname: Lynch fullname: Lynch, Jonathan P. email: jpl4@psu.edu organization: The Pennsylvania State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33748655$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1848272$$D View this record in Osti.gov |
BookMark | eNqFkstuFDEQRVsoiIQQiS9AFmzCYga_2nZvkFB4RRoBC9iwsfzqGUfd9mC7iYavx82EkEQgVi5XnbqlKt2HzUGIwTXNYwSXCEL8YjtYsiQI3muOMOXtgtK2PbgRHzYnOV_AiiLOoGgfNIeEcCpY2x41-UO0agApxgKsV6MrLgEVLAjROhCmUde_D2BU_ocDp1-dquEug9XyeU1XWJkCSqxxP0wuGAe2gwoFrFO8LBswBVv7gy8prl0AuSSX86Pmfq-G7E6u3uPmy9s3n8_eL1Yf352fvVotDIMELozoeqZ0R3rEKLQMUcKw4gQKS6HSSHfa9EJjbLq-pYxr1nFILdNI9KKjlBw353tdG9WF3CY_qrSTUXn5KxHTWqpUvBmc5D1ExiIElcCUGq6gYzWlNYa219ZUrZd7re2kR2eNCyWp4Zbo7UrwG7mO3yXvGEG4rQJP9wIxFy-z8cWZjYkhOFMkElRgjit0ejUlxW-Ty0WOPhs31JO6OGWJORIEM9jy_6MtJIwLxmb02R30Ik4p1NPPVDUCq3qVenJzw-vVfnvlz0STYs7J9dcIgnJ2opydKKsTK7q8g9Z9VfFxvo0f_taw2Ddc-sHt_iksP61ek5n_Cc0z7Jc |
CitedBy_id | crossref_primary_10_1007_s00122_024_04606_z crossref_primary_10_3389_fpls_2023_1244281 crossref_primary_10_1093_aob_mcab144 crossref_primary_10_1007_s12298_021_00995_3 crossref_primary_10_1016_j_heliyon_2025_e42340 crossref_primary_10_3390_agronomy12061472 crossref_primary_10_1093_jxb_erae298 crossref_primary_10_1021_acsomega_2c00269 crossref_primary_10_46909_alse_573143 crossref_primary_10_1002_ldr_5465 crossref_primary_10_1016_j_eja_2024_127298 crossref_primary_10_1016_j_fcr_2022_108603 crossref_primary_10_1111_pce_14175 crossref_primary_10_3389_fpls_2022_1067498 crossref_primary_10_47280_RevFacAgron_LUZ__v41_n4_03 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1093_insilicoplants_diae018 crossref_primary_10_3390_stresses3010011 crossref_primary_10_1002_jsfa_11892 crossref_primary_10_1038_s41598_024_61765_1 crossref_primary_10_1007_s11104_023_06301_2 |
Cites_doi | 10.1093/aob/mcs293 10.1146/annurev.es.16.110185.002051 10.1051/agro:19860913 10.1093/biosci/bix010 10.1080/07352688509382196 10.18174/njas.v10i5.17581 10.1111/nph.15738 10.1111/j.1365-3040.2007.01639.x 10.1007/s00122-006-0260-z 10.1016/j.tplants.2017.02.001 10.2135/cropsci2016.08.0704 10.1111/j.1439-037X.1992.tb00987.x 10.1038/nrg3901 10.3389/fpls.2020.01247 10.1093/aob/mcy092 10.1016/0098-8472(93)90060-S 10.1046/j.1469-8137.2000.00686.x 10.1093/jxb/erv241 10.1093/jxb/erz258 10.1093/oxfordjournals.aob.a088407 10.1016/j.fcr.2012.09.010 10.1093/jxb/erw243 10.3389/fpls.2013.00355 10.1093/jxb/erv074 10.1093/jxb/erz271 10.1007/s11104-010-0623-8 10.1111/pce.12439 10.1007/BF00010551 10.1104/pp.114.250449 10.1104/pp.114.241711 10.1007/978-3-319-24277-4 10.1093/aob/mch056 10.1016/j.fcr.2012.03.008 10.1104/pp.18.00234 10.1111/j.1365-3040.2011.02409.x 10.1093/jxb/ery048 10.1007/BF00009374 10.1016/S1161-0301(14)80115-9 10.1111/pce.12451 10.3390/su3091452 10.2134/agronj2016.03.0139 10.1023/A:1012728819326 10.3389/fpls.2013.00193 10.1104/pp.15.00145 10.2135/cropsci2010.12.0686 10.1093/jxb/eru508 10.1093/jxb/erv007 10.1104/pp.113.233916 10.1007/s11427-010-4097-y 10.1104/pp.114.249037 10.1139/b86-335 10.1104/pp.113.232603 10.1093/aob/mcw112 10.1093/jxb/erv121 10.1093/jxb/erz293 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. 2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | 24P AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 OIOZB OTOTI 5PM DOA |
DOI | 10.1002/pld3.310 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Biological Science Collection Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | SCHNEIDER et al |
EISSN | 2475-4455 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7f01cd110a8244c7a0e6f01bb20dfbdc PMC7963125 1848272 33748655 10_1002_pld3_310 PLD3310 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Howard G Buffett Foundation – fundername: USDA | National Institute of Food and Agriculture (NIFA) funderid: 2013‐02682; 2014‐67013‐21572; Pen04732 – fundername: U.S. Department of Energy (DOE) funderid: DE‐AR0000821 – fundername: USDA | National Institute of Food and Agriculture (NIFA) grantid: 2013‐02682; 2014‐67013‐21572; Pen04732 – fundername: U.S. Department of Energy (DOE) grantid: DE‐AR0000821 |
GroupedDBID | 0R~ 1OC 24P 8FE 8FH AAMMB ACCMX ACGFS ACXQS ADBBV ADKYN ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU EBS ECGQY EJD GROUPED_DOAJ HCIFZ HYE IAO IGS ITC LK8 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQGLB PROAC RPM WIN AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 OIOZB OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c6030-c89f6ab93f1640d614362a7308d40ab1b9bcf8b22c9f5467b69704d6b18f89443 |
IEDL.DBID | BENPR |
ISSN | 2475-4455 |
IngestDate | Wed Aug 27 01:28:39 EDT 2025 Thu Aug 21 13:43:33 EDT 2025 Fri May 19 01:41:26 EDT 2023 Fri Jul 11 18:30:04 EDT 2025 Fri Jul 11 01:00:16 EDT 2025 Wed Aug 13 04:30:12 EDT 2025 Wed Feb 19 02:07:12 EST 2025 Tue Jul 01 01:17:42 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | trait interactions root number root cross‐sectional area maize nitrogen stress |
Language | English |
License | Attribution 2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6030-c89f6ab93f1640d614362a7308d40ab1b9bcf8b22c9f5467b69704d6b18f89443 |
Notes | Hannah M. Schneider and Jennifer T. Yang contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AR0000821; 2013-02682; 2014-67013-21572 USDOE Advanced Research Projects Agency - Energy (ARPA-E) USDA National Institute of Food and Agriculture (NIFA) |
ORCID | 0000-0003-4655-6250 0000-0002-4960-5292 0000-0002-7265-9790 0000000272659790 0000000249605292 0000000346556250 |
OpenAccessLink | https://www.proquest.com/docview/2504866573?pq-origsite=%requestingapplication% |
PMID | 33748655 |
PQID | 2504866573 |
PQPubID | 4370295 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f01cd110a8244c7a0e6f01bb20dfbdc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7963125 osti_scitechconnect_1848272 proquest_miscellaneous_2718326057 proquest_miscellaneous_2503678667 proquest_journals_2504866573 pubmed_primary_33748655 crossref_primary_10_1002_pld3_310 crossref_citationtrail_10_1002_pld3_310 wiley_primary_10_1002_pld3_310_PLD3310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: United States – name: Hoboken |
PublicationTitle | Plant direct |
PublicationTitleAlternate | Plant Direct |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley – name: John Wiley and Sons Inc |
References | 2018; 122 2010; 53 2015; 38 2013; 4 2016; 108 1992; 168 2020; 11 2007; 30 2018; 177 2018; 3 2012; 133 2016; 118 1993; 33 1986; 6 2013; 112 2014; 166 1985; 16 2019; 70 2015; 16 2019; 31 1985; 2 2017; 22 2015; 167 1992; 147 2017; 67 2019; 223 2011; 34 2013; 140 1962; 10 2011; 3 2018; 69 2014b; 166 2006; 113 1942; 6 2004; 93 2000; 147 1986; 64 2015; 66 2017; 57 2011; 51 2018 2014a; 166 2016 2015 2014 1994; 3 2001; 236 1993; 153 2016; 67 2011; 341 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 Hall B. (e_1_2_7_22_1) 2019; 31 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 York L. (e_1_2_7_56_1) 2014 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 193 year: 2013 article-title: Root traits for infertile soils publication-title: Frontiers in Plant Science – volume: 70 start-page: 5311 year: 2019 end-page: 5325 article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific publication-title: Journal of Experimental Botany – volume: 3 start-page: 1 issue: 3 year: 2018 – volume: 70 start-page: 5327 year: 2019 end-page: 5342 article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms publication-title: Journal of Experimental Botany – volume: 341 start-page: 75 year: 2011 end-page: 87 article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field publication-title: Plant and Soil – volume: 93 start-page: 359 year: 2004 end-page: 368 article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes publication-title: Annals of Botany – volume: 11 start-page: 1 year: 2020 end-page: 13 article-title: Spatio‐temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil publication-title: Frontiers in Plant Science – volume: 67 start-page: 4545 year: 2016 end-page: 4587 article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.) publication-title: Journal of Experimental Botany – volume: 166 start-page: 726 year: 2014 end-page: 735 article-title: Root cortical aerenchyma enhances nitrogen acquisition from low‐nitrogen soils in maize publication-title: Plant Physiology – volume: 108 start-page: 2165 year: 2016 end-page: 2173 article-title: Variability in optimum nitrogen rates for maize publication-title: Agronomy Journal – volume: 22 start-page: 433 year: 2017 end-page: 443 article-title: Toward an integrated root ideotype for irrigated systems publication-title: Trends in Plant Science – year: 2018 – year: 2014 – volume: 64 start-page: 2524 year: 1986 end-page: 2537 article-title: The nodal roots of : Their development in relation to structural features of the stem publication-title: Canadian Journal of Botany – volume: 166 start-page: 2166 year: 2014b end-page: 2178 article-title: Large root cortical cell size improves drought tolerance in maize publication-title: Plant Physiology – volume: 66 start-page: 3151 year: 2015 end-page: 3162 article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize ( ) publication-title: Journal of Experimental Botany – volume: 118 start-page: 401 year: 2016 end-page: 414 article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions publication-title: Annals of Botany – volume: 112 start-page: 347 year: 2013 end-page: 357 article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems publication-title: Annals of Botany – volume: 167 start-page: 1430 year: 2015 end-page: 1439 article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition publication-title: Plant Physiology – volume: 51 start-page: 2780 year: 2011 end-page: 2795 article-title: The nitrogen adaptation strategy of the wild teosinte ancestor of modern maize, Zea Mays Subsp. Parviglumis publication-title: Crop Science – volume: 53 start-page: 1369 year: 2010 end-page: 1373 article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems publication-title: Science China Life Sciences – volume: 70 start-page: 5299 year: 2019 end-page: 5309 article-title: Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth publication-title: Journal of Experimental Botany – volume: 177 year: 2018 article-title: Large crown root number improves topsoil foraging and phosphorus acquisition publication-title: Plant Physiology – volume: 3 start-page: 1452 year: 2011 end-page: 1485 article-title: Improving nitrogen use efficiency in crops for sustainable agriculture publication-title: Sustainability – volume: 4 start-page: 355 year: 2013 article-title: Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition publication-title: Frontiers in Plant Science – volume: 66 start-page: 5493 year: 2015 end-page: 5505 article-title: Intensive field phenotyping of maize ( L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition publication-title: Journal of Experimental Botany – volume: 38 start-page: 740 year: 2015 end-page: 750 article-title: A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress publication-title: Plant, Cell and Environment – volume: 67 start-page: 386 year: 2017 end-page: 391 article-title: Agriculture in 2050: Recalibrating targets for sustainable intensification publication-title: BioScience – volume: 16 start-page: 237 year: 2015 end-page: 251 article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability publication-title: Nature Reviews: Genetics – volume: 236 start-page: 221 year: 2001 end-page: 235 article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approach publication-title: Plant and Soil – volume: 166 start-page: 581 year: 2014 end-page: 589 article-title: Low crown root number enhances nitrogen acquisition from low‐nitrogen soils in maize publication-title: Plant Physiology – volume: 30 start-page: 580 year: 2007 end-page: 589 article-title: Trade‐off between root porosity and mechanical strength in species with different types of aerenchyma publication-title: Plant, Cell and Environment – year: 2015 – volume: 34 start-page: 2122 year: 2011 end-page: 2137 article-title: Novel temporal, fine‐scale and growth variation phenotypes in roots of adult‐stage maize ( L.) in response to low nitrogen stress publication-title: Plant, Cell & Environment – volume: 168 start-page: 113 year: 1992 end-page: 118 article-title: Root morphology of maize and its relationship to root lodging publication-title: Journal of Agronomy and Crop Science – volume: 69 start-page: 3279 year: 2018 end-page: 3292 article-title: Rightsizing root phenotypes for drought resistance publication-title: Journal of Experimental Botany – volume: 31 year: 2019 article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique publication-title: Journal of Laser Applications – volume: 223 start-page: 548 year: 2019 end-page: 564 article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture publication-title: New Phytologist – volume: 66 start-page: 2347 year: 2015 end-page: 2358 article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress publication-title: Journal of Experimental Botany – volume: 16 start-page: 363 year: 1985 end-page: 392 article-title: Resource limitation in plants–An economic analogy publication-title: Annual Review of Ecology and Systematics – year: 2016 – volume: 147 start-page: 87 year: 1992 end-page: 93 article-title: Effect of mutual shading on the emergence of nodal roots and the root/shoot ratio of maize publication-title: Plant and Soil – volume: 140 start-page: 18 year: 2013 end-page: 31 article-title: Maize root growth angles become steeper under low N conditions publication-title: Field Crops Research – volume: 33 start-page: 121 year: 1993 end-page: 130 article-title: Carbon nutrition, root branching and elongation: Can the present state of knowledge allow a preditive approach at a whole‐plant level? publication-title: Environmental and Experimental Botany – volume: 66 start-page: 2055 year: 2015 end-page: 2065 article-title: Reduced frequency of lateral root branching improves N capture from low N soils in maize publication-title: Journal of Experimental Botany – volume: 166 start-page: 1943 year: 2014a end-page: 1955 article-title: Reduced root cortical cell file number improves drought tolerance in maize publication-title: Plant Physiology – volume: 2 start-page: 199 year: 1985 end-page: 238 article-title: Breeding crop varieties for stress environments publication-title: Critical Reviews in Plant Sciences – volume: 57 start-page: 1431 year: 2017 end-page: 1446 article-title: Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest publication-title: Crop Science – volume: 166 start-page: 590 year: 2014 end-page: 602 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability publication-title: Plant Physiology – volume: 6 start-page: 245 year: 1942 end-page: 282 article-title: Developmental anatomy of the shoot of L. publication-title: Annals of Botany – volume: 153 start-page: 125 year: 1993 end-page: 143 article-title: Maize nodal root ramification: Absence of dormant primordia, root classification using histological parameters and consequences on sap conduction publication-title: Plant and Soil – volume: 10 start-page: 399 year: 1962 end-page: 408 article-title: Nutritive influences on the distribution of dry matter in the plant publication-title: Netherlands Journal of Agricultural Science – volume: 122 start-page: 485 year: 2018 end-page: 499 article-title: Co‐optimisation of axial root phenotypes for nitrogen and phosphorus acquisition in common bean publication-title: Annals Botany – volume: 133 start-page: 48 year: 2012 end-page: 67 article-title: Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review publication-title: Field Crops Research – volume: 147 start-page: 33 year: 2000 end-page: 42 article-title: Building roots in a changing environment: Implications for root longevity publication-title: New Phytologist – volume: 113 start-page: 1 year: 2006 end-page: 10 article-title: Detection of quantitative trait loci for seminal root traits in maize ( L.) seedlings grown under differential phosphorus levels publication-title: Theoretical and Applied Genetics – volume: 3 start-page: 101 year: 1994 end-page: 110 article-title: Number of maize nodal roots as affected by plant density and nitrogen fertilization: Relationships with shoot growth publication-title: European Journal of Agronomy – volume: 66 start-page: 2199 year: 2015 end-page: 2210 article-title: Opportunities and challenges in the subsoil: Pathways to deeper rooted crops publication-title: Journal of Experimental Botany – volume: 6 start-page: 873 year: 1986 end-page: 875 article-title: Harmonisation des notations concernant la description morphologique d ’ un pied de maïs ( L.) publication-title: Agronomie – volume: 38 start-page: 1775 year: 2015 end-page: 1784 article-title: Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture publication-title: Plant Cell & Environment – ident: e_1_2_7_28_1 doi: 10.1093/aob/mcs293 – ident: e_1_2_7_3_1 doi: 10.1146/annurev.es.16.110185.002051 – ident: e_1_2_7_20_1 doi: 10.1051/agro:19860913 – ident: e_1_2_7_26_1 doi: 10.1093/biosci/bix010 – ident: e_1_2_7_4_1 doi: 10.1080/07352688509382196 – ident: e_1_2_7_5_1 doi: 10.18174/njas.v10i5.17581 – ident: e_1_2_7_31_1 doi: 10.1111/nph.15738 – ident: e_1_2_7_48_1 doi: 10.1111/j.1365-3040.2007.01639.x – ident: e_1_2_7_61_1 doi: 10.1007/s00122-006-0260-z – ident: e_1_2_7_44_1 doi: 10.1016/j.tplants.2017.02.001 – ident: e_1_2_7_11_1 doi: 10.2135/cropsci2016.08.0704 – ident: e_1_2_7_47_1 doi: 10.1111/j.1439-037X.1992.tb00987.x – volume-title: Integration of root phenes affecting nitrogen acquisition in maize year: 2014 ident: e_1_2_7_56_1 – ident: e_1_2_7_35_1 doi: 10.1038/nrg3901 – ident: e_1_2_7_45_1 doi: 10.3389/fpls.2020.01247 – ident: e_1_2_7_39_1 – ident: e_1_2_7_40_1 doi: 10.1093/aob/mcy092 – ident: e_1_2_7_2_1 doi: 10.1016/0098-8472(93)90060-S – ident: e_1_2_7_14_1 doi: 10.1046/j.1469-8137.2000.00686.x – ident: e_1_2_7_58_1 doi: 10.1093/jxb/erv241 – ident: e_1_2_7_21_1 doi: 10.1093/jxb/erz258 – ident: e_1_2_7_46_1 doi: 10.1093/oxfordjournals.aob.a088407 – ident: e_1_2_7_52_1 doi: 10.1016/j.fcr.2012.09.010 – ident: e_1_2_7_17_1 doi: 10.1093/jxb/erw243 – ident: e_1_2_7_41_1 – ident: e_1_2_7_59_1 doi: 10.3389/fpls.2013.00355 – ident: e_1_2_7_57_1 doi: 10.1093/jxb/erv074 – ident: e_1_2_7_49_1 doi: 10.1093/jxb/erz271 – ident: e_1_2_7_51_1 doi: 10.1007/s11104-010-0623-8 – ident: e_1_2_7_16_1 doi: 10.1111/pce.12439 – ident: e_1_2_7_27_1 doi: 10.1007/BF00010551 – ident: e_1_2_7_7_1 doi: 10.1104/pp.114.250449 – ident: e_1_2_7_42_1 doi: 10.1104/pp.114.241711 – ident: e_1_2_7_54_1 doi: 10.1007/978-3-319-24277-4 – ident: e_1_2_7_24_1 doi: 10.1093/aob/mch056 – ident: e_1_2_7_9_1 doi: 10.1016/j.fcr.2012.03.008 – ident: e_1_2_7_50_1 doi: 10.1104/pp.18.00234 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-3040.2011.02409.x – ident: e_1_2_7_30_1 doi: 10.1093/jxb/ery048 – ident: e_1_2_7_12_1 doi: 10.1007/BF00009374 – ident: e_1_2_7_37_1 doi: 10.1016/S1161-0301(14)80115-9 – ident: e_1_2_7_29_1 doi: 10.1111/pce.12451 – ident: e_1_2_7_23_1 doi: 10.3390/su3091452 – ident: e_1_2_7_13_1 doi: 10.2134/agronj2016.03.0139 – volume: 31 year: 2019 ident: e_1_2_7_22_1 article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique publication-title: Journal of Laser Applications – ident: e_1_2_7_33_1 doi: 10.1023/A:1012728819326 – ident: e_1_2_7_53_1 doi: 10.3389/fpls.2013.00193 – ident: e_1_2_7_36_1 doi: 10.1104/pp.15.00145 – ident: e_1_2_7_19_1 doi: 10.2135/cropsci2010.12.0686 – ident: e_1_2_7_32_1 doi: 10.1093/jxb/eru508 – ident: e_1_2_7_60_1 doi: 10.1093/jxb/erv007 – ident: e_1_2_7_38_1 doi: 10.1104/pp.113.233916 – ident: e_1_2_7_34_1 doi: 10.1007/s11427-010-4097-y – ident: e_1_2_7_6_1 doi: 10.1104/pp.114.249037 – ident: e_1_2_7_25_1 doi: 10.1139/b86-335 – ident: e_1_2_7_43_1 doi: 10.1104/pp.113.232603 – ident: e_1_2_7_10_1 doi: 10.1093/aob/mcw112 – ident: e_1_2_7_8_1 doi: 10.1093/jxb/erv121 – ident: e_1_2_7_15_1 – ident: e_1_2_7_55_1 doi: 10.1093/jxb/erz293 |
SSID | ssj0002176085 |
Score | 2.2798731 |
Snippet | Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and... Abstract Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e00310 |
SubjectTerms | Agricultural production BASIC BIOLOGICAL SCIENCES Corn Costs Experiments Genotypes greenhouses maize Metabolism Nitrogen nitrogen content nitrogen stress Nutrient uptake Original Research Phenotypes Phosphorus Plant growth plant sciences Resource allocation root cross-sectional area root growth root number Rooting Roots Seeds soil stele stress tolerance trait interactions Zea mays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiNfSFhkJ8TiEZuPEjo-8qgqVigOVKi6Wn3SlbbLaTQ_w6_kmya52RYELp0T2HJx5jzL-hrHntRCltSpkiDZlVqYpbK4KOnOiVjqmShSCLgp_PpMn5-Wni-pia9QX9YQN8MAD445Uyqc-IEjZGpHIK5tHiSXnijwkFzx5X8S8rWKKfDASbYlkYo02mxdHi3kQKFDznfjTw_Tj0cKcbkoxf--U3M5g-xB0fJfdGXNH_nY48z12Kzb32eqsDVhEAtxxyPqK2lu4bQJv2hD5MPCDzxp-ZWc_I3_1LVq8_ljx0zevOWFF0C0p3rV4H6eV8MUc3ObfUZ93l5zumC057H7ZQtX4cLXkATs__vj1_Uk2TlLIvIQVZ77WSVqnRUJ1lAeEZMQtC-OuQ5lbN3Xa-VS7ovA6VXCdTmqVl0G6aZ1qXZbiIdtr2iY-ZlzW2pYRaVEieaSItDdV2kmX62hdXkzYyzV_jR9hxmnaxdwMAMmFIUkYSGLCnm0oFwO0xg0070hEm30Cw-4XoCJmVBHzLxWZsH0SsEFOQcC4njqIfGdQ29aFwoEP1nI3o_2uDAG7ERKgEjjlZhuWR79TbBPb655GINRLqf5Co8hlomQEzaNBlTbfIgj5R1bVhKkdJdv52N2dZnbZI4AruE2IYMJe9Or4R_aZL6cfBJ5P_gcb99ntghp6-ga8A7bXLa_jITKyzj3tje8XEXU01A priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQuXBBVLxCCzIS4nEIzfoZH3lVFSpVD1SquFh-tittk9VueoBfz0ySDawoiFMieyI5Ho_nm2TmMyEvas6FczqW4G1EKfIMbE5GU3pea5Oy5IxjofCXE3V0Jj6fy_MxqxJrYQZ-iOmDG1pGv1-jgTu_PvhFGrpcRA4RJ4Trt7GyFtP5mDidvq8A1FZVfyInE1qWQki54Z6t2MHm4S1v1JP2w6UF47oJcP6ZN_k7nu0d0uE9cndEkvTdoPpdcis198n6pI3QCHC4o6D5K0x2oa6JtGljosPxH3Te0Cs3_5Ho62_Jwe33NT1--4YicwTWTNGuhfvx7BK6XMDc0wuI1rtLihVnKwq7wKqFhUeHQpMH5Ozw09cPR-V4rkIZFNh0GWqTlfOGZ4iVqggOGryYA1Ovo6icn3njQ649Y8FkCRupV0ZXIio_q3NthOAPyU7TNukxoao2TiQASbkGnJATgOAsjVe-Msn5ihXk1WZ-bRhJx_Hsi4Ud6JKZRU1Y0ERBnk-Sy4Fo4waZ96iiqR-psfuGdnVhR0uzOlezEAHVOBxS0K5KCpq8Z1XMPoaC7KGCLSAMpMkNmE8UOguRbs00DHh_o3c7WvPaIs0b8gJqDqOcusEO8eeKa1J73ctwcPxK6X_IaNxAIYAEmUfDUprehSMPkJKyIHprkW297HZPM7_s-cA1bKKggoK87JfjX6fPnh5_5HB98r-Ce-QOwxSePuVun-x0q-v0FDBY55_1xvYTmtgsmg priority: 102 providerName: Wiley-Blackwell |
Title | Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.310 https://www.ncbi.nlm.nih.gov/pubmed/33748655 https://www.proquest.com/docview/2504866573 https://www.proquest.com/docview/2503678667 https://www.proquest.com/docview/2718326057 https://www.osti.gov/servlets/purl/1848272 https://pubmed.ncbi.nlm.nih.gov/PMC7963125 https://doaj.org/article/7f01cd110a8244c7a0e6f01bb20dfbdc |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFgXiFlpWREI9DaDZO_DghCq0qVFYrRKWKi-Vnu9I2WXbTA_x6ZpJsYEXpKZHtg-3xzHy2x98Q8lIyVhgjfArepkiLOAGdK71KLZNChViynOFD4S9TfnJWfD4vz_sDt3UfVrmxia2h9rXDM_IDpNpCbjbB3i9_pJg1Cm9X-xQaO2QXTLCUI7J7eDSdfR1OWQBwcwAVG9bZLD9YLjyDjWq25Ydaun741KBWN0HNfyMm_0ayrSs6vk_u9RiSfuiE_oDcCdVD0kxrD4UAhBsKMr_CMBdqKk-r2gfaJf6g84pemfmvQN_Q78HA_881PX33liJpBD6Xok0N_33aErpcwLTTC9ioN5cUH5utKBiAVQ1rjnZvTB6Rs-Ojbx9P0j6lQuo4qHPqpIrcWMUibJMyD74ZHJgBLZe-yIydWGVdlDbPnYol2FDLlcgKz-1ERqmKgj0mo6quwlNCuVSmCICPogSIEAPg31gqy22mgrFZnpDXmwnWrucbx7QXC90xJecaRaFBFAl5MbRcdhwbN7Q5RBkN9ciK3RbUqwvdK5kWMZs4D4DGYJecMFngUGRtnvlovUvIHkpYA7hAhlyHoUSu0bDJlbmADu9vBK97RV7rP8sOejlUgwrivYqpQn3dtmHg8zkXt7QRaDth7whtnnRraRgLQwogXpYJEVurbGuw2zXV_LKlAhdgP0EECXnVrsf_Tp-enX5i8H12-xj3yN0cY3baGLt9MmpW1-E5gK7GjslOXszGvX6N26OL3-86Lrs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCDQuZQOMxPUhzLUTJ3lAiN3Usa6a0CZNezF2bG-VuqS0mabxo_iNnJNLoWLsbU-JbCeyfS7-nBx_h5DXiRCh1rENYLUJg9D3wOYimwZGJHHqfCS4wIPC-0PZPwq_HkfHS-RXexYGwypbn1g5altk-I18Ham2kJstFp8nPwLMGoV_V9sUGrVa7LmrS9iyzT7tboF833C-s3242Q-arAJBJkGjgyxJvdQmFR52CszC8gQ-XIOiJzZk2vRMajKfGM6z1EfgRoxMYxZaaXqJT9IwFPDeO2QZnmK8Q5Y3tocH3-ZfdQDgSwAxLcst4-uTsRWwMWYL616VHgAuBZjxddD23wjNv5FztfTtPCD3G8xKv9RK9pAsuXyFlMPCQiEA75KCjp1jWA3VuaV5YR2tE43QUU7P9eino-_pidNwfzWjg48fKJJU4PEsWhZw36RJoZMxiJmeTovL8ozi4bYpBYczLUDHaX2m5RE5upXJfkw6eZG7p4TKJNWhAzzmE4Ak3gHe9lFqpGGp04bxLnnXTrDKGn5zTLMxVjUzM1coCgWi6JJX85aTmtPjmjYbKKN5PbJwVwXF9FQ1Rq1iz3qZBQClsUtZrJmTUGQMZ9Ybm3XJKkpYAZhBRt4MQ5eyUsGmOuExdHitFbxqHMdM_VFz6OW8Gkwe_-Po3BUXVRsBGEPK-IY2Mfpq2KtCmye1Ls3HIpBySEZRl8QLWrYw2MWafHRWUY_H4K9BBF3yttLH_06fOhhsCbg-u3mML8nd_uH-QA12h3ur5B7HeKEqvm-NdMrphXsOgK80Lxoro-T7bRv2b8BeaAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEIhb2QAjcX0ITePEjh8QYnTVxko1ISZNezF2bG-VuqS0mabx0_h1nJNLoWLsbU-JbCuKfS7-TnL8HUJepIzFWgsbwG4TB7Hvg80lVgaGpUI6n7CI4UHhL2O-cxB_PkwO18iv9iwMplW2PrFy1LbI8Bt5D6m2kJtNsJ5v0iL2B8MPsx8BVpDCP61tOY1aRfbcxTmEb4v3uwOQ9csoGm5_-7QTNBUGgoyDdgdZKj3XRjIPUUNoYasCf65B6VMbh9r0jTSZT00UZdIn4FIMlyKMLTf91Kcyjhk89wZZFxgVdcj61vZ4_-vyCw-AfQ6ApmW8DaPebGoZBMnhyh5YlQqASwEmfRnM_Tdb828UXW2DwzvkdoNf6cda4e6SNZffI-W4sNAIILykoG-nmGJDdW5pXlhH66IjdJLTUz356egbeuQ03F8s6OjdW4qEFXhUi5YF3DclU-hsCiKnx_PivDyheNBtTsH5zAvQd1qfb7lPDq5lsR-QTl7k7hGhPJU6doDNfArwxDvA3j6RhptQOm3CqEtetwussobrHEtuTFXN0hwpFIUCUXTJ8-XIWc3vccmYLZTRsh8ZuauGYn6sGgNXwof9zAKY0vhKmdCh49BkTBRab2zWJRsoYQXABtl5M0xjykoFAXYaCXjhzVbwqnEiC_VH5eEtl91g_vhPR-euOKvGMMAbnIsrxgj02xC3wpiHtS4t58KQfognSZeIFS1bmexqTz45qWjIBfhuEEGXvKr08b_Lp_ZHAwbXx1fP8Rm5CQatRrvjvQ1yK8LUoSrVb5N0yvmZewLYrzRPGyOj5Pt12_Vvk0VsOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nodal+root+diameter+and+node+number+in+maize+%28Zea+mays+L.%29+interact+to+influence+plant+growth+under+nitrogen+stress&rft.jtitle=Plant+direct&rft.au=Schneider%2C+Hannah+M.&rft.au=Yang%2C+Jennifer+T.&rft.au=Brown%2C+Kathleen+M.&rft.au=Lynch%2C+Jonathan+P.&rft.date=2021-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2475-4455&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1002%2Fpld3.310&rft_id=info%3Apmid%2F33748655&rft.externalDocID=PMC7963125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4455&client=summon |