Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress

Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in fie...

Full description

Saved in:
Bibliographic Details
Published inPlant direct Vol. 5; no. 3; pp. e00310 - n/a
Main Authors Schneider, Hannah M., Yang, Jennifer T., Brown, Kathleen M., Lynch, Jonathan P.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.03.2021
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.
AbstractList Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.
Abstract Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross‐sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross‐sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross‐sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.
Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross-sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross-sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross-sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and anatomical phenotypes for nitrogen acquisition are not well understood. Nodal root number and root cross-sectional area were evaluated in maize in field and greenhouse environments. Nodal root number and root cross-sectional area were inversely correlated under both high and low nitrogen conditions. Attenuated emergence of root nodes, as opposed to differences in the number of axial roots per node, was associated with substantially reduced root number. Greater root cross-sectional area was associated with a greater stele area and number of cortical cell files. Genotypes that produced few, thick nodal roots rather than many, thin nodal roots had deeper rooting and better shoot growth in low nitrogen environments. Fewer nodal roots offset the respiratory and nitrogen costs of thicker diameter roots, since total nodal root respiration and nitrogen content was similar for genotypes with many, thin and few, thick nodal roots. We propose that few, thick nodal roots may enable greater capture of deep soil nitrogen and improve plant performance under nitrogen stress. Synergistic interactions between an architectural and anatomical trait may be an important strategy for nitrogen acquisition. Understanding trait interactions among different root nodes has important implications in for improving crop nutrient uptake and stress tolerance.
Author Schneider, Hannah M.
Brown, Kathleen M.
Lynch, Jonathan P.
Yang, Jennifer T.
AuthorAffiliation 2 Present address: Wellesley College Wellesley MA USA
1 Department of Plant Science The Pennsylvania State University University Park PA USA
AuthorAffiliation_xml – name: 1 Department of Plant Science The Pennsylvania State University University Park PA USA
– name: 2 Present address: Wellesley College Wellesley MA USA
Author_xml – sequence: 1
  givenname: Hannah M.
  orcidid: 0000-0003-4655-6250
  surname: Schneider
  fullname: Schneider, Hannah M.
  organization: The Pennsylvania State University
– sequence: 2
  givenname: Jennifer T.
  surname: Yang
  fullname: Yang, Jennifer T.
  organization: The Pennsylvania State University
– sequence: 3
  givenname: Kathleen M.
  orcidid: 0000-0002-4960-5292
  surname: Brown
  fullname: Brown, Kathleen M.
  organization: The Pennsylvania State University
– sequence: 4
  givenname: Jonathan P.
  orcidid: 0000-0002-7265-9790
  surname: Lynch
  fullname: Lynch, Jonathan P.
  email: jpl4@psu.edu
  organization: The Pennsylvania State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33748655$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1848272$$D View this record in Osti.gov
BookMark eNqFkstuFDEQRVsoiIQQiS9AFmzCYga_2nZvkFB4RRoBC9iwsfzqGUfd9mC7iYavx82EkEQgVi5XnbqlKt2HzUGIwTXNYwSXCEL8YjtYsiQI3muOMOXtgtK2PbgRHzYnOV_AiiLOoGgfNIeEcCpY2x41-UO0agApxgKsV6MrLgEVLAjROhCmUde_D2BU_ocDp1-dquEug9XyeU1XWJkCSqxxP0wuGAe2gwoFrFO8LBswBVv7gy8prl0AuSSX86Pmfq-G7E6u3uPmy9s3n8_eL1Yf352fvVotDIMELozoeqZ0R3rEKLQMUcKw4gQKS6HSSHfa9EJjbLq-pYxr1nFILdNI9KKjlBw353tdG9WF3CY_qrSTUXn5KxHTWqpUvBmc5D1ExiIElcCUGq6gYzWlNYa219ZUrZd7re2kR2eNCyWp4Zbo7UrwG7mO3yXvGEG4rQJP9wIxFy-z8cWZjYkhOFMkElRgjit0ejUlxW-Ty0WOPhs31JO6OGWJORIEM9jy_6MtJIwLxmb02R30Ik4p1NPPVDUCq3qVenJzw-vVfnvlz0STYs7J9dcIgnJ2opydKKsTK7q8g9Z9VfFxvo0f_taw2Ddc-sHt_iksP61ek5n_Cc0z7Jc
CitedBy_id crossref_primary_10_1007_s00122_024_04606_z
crossref_primary_10_3389_fpls_2023_1244281
crossref_primary_10_1093_aob_mcab144
crossref_primary_10_1007_s12298_021_00995_3
crossref_primary_10_1016_j_heliyon_2025_e42340
crossref_primary_10_3390_agronomy12061472
crossref_primary_10_1093_jxb_erae298
crossref_primary_10_1021_acsomega_2c00269
crossref_primary_10_46909_alse_573143
crossref_primary_10_1002_ldr_5465
crossref_primary_10_1016_j_eja_2024_127298
crossref_primary_10_1016_j_fcr_2022_108603
crossref_primary_10_1111_pce_14175
crossref_primary_10_3389_fpls_2022_1067498
crossref_primary_10_47280_RevFacAgron_LUZ__v41_n4_03
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1093_insilicoplants_diae018
crossref_primary_10_3390_stresses3010011
crossref_primary_10_1002_jsfa_11892
crossref_primary_10_1038_s41598_024_61765_1
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.1093/aob/mcs293
10.1146/annurev.es.16.110185.002051
10.1051/agro:19860913
10.1093/biosci/bix010
10.1080/07352688509382196
10.18174/njas.v10i5.17581
10.1111/nph.15738
10.1111/j.1365-3040.2007.01639.x
10.1007/s00122-006-0260-z
10.1016/j.tplants.2017.02.001
10.2135/cropsci2016.08.0704
10.1111/j.1439-037X.1992.tb00987.x
10.1038/nrg3901
10.3389/fpls.2020.01247
10.1093/aob/mcy092
10.1016/0098-8472(93)90060-S
10.1046/j.1469-8137.2000.00686.x
10.1093/jxb/erv241
10.1093/jxb/erz258
10.1093/oxfordjournals.aob.a088407
10.1016/j.fcr.2012.09.010
10.1093/jxb/erw243
10.3389/fpls.2013.00355
10.1093/jxb/erv074
10.1093/jxb/erz271
10.1007/s11104-010-0623-8
10.1111/pce.12439
10.1007/BF00010551
10.1104/pp.114.250449
10.1104/pp.114.241711
10.1007/978-3-319-24277-4
10.1093/aob/mch056
10.1016/j.fcr.2012.03.008
10.1104/pp.18.00234
10.1111/j.1365-3040.2011.02409.x
10.1093/jxb/ery048
10.1007/BF00009374
10.1016/S1161-0301(14)80115-9
10.1111/pce.12451
10.3390/su3091452
10.2134/agronj2016.03.0139
10.1023/A:1012728819326
10.3389/fpls.2013.00193
10.1104/pp.15.00145
10.2135/cropsci2010.12.0686
10.1093/jxb/eru508
10.1093/jxb/erv007
10.1104/pp.113.233916
10.1007/s11427-010-4097-y
10.1104/pp.114.249037
10.1139/b86-335
10.1104/pp.113.232603
10.1093/aob/mcw112
10.1093/jxb/erv121
10.1093/jxb/erz293
ContentType Journal Article
Copyright 2021 The Authors. published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Pennsylvania State Univ., University Park, PA (United States)
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
OIOZB
OTOTI
5PM
DOA
DOI 10.1002/pld3.310
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Biological Science Collection
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Publicly Available Content Database

AGRICOLA

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate SCHNEIDER et al
EISSN 2475-4455
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7f01cd110a8244c7a0e6f01bb20dfbdc
PMC7963125
1848272
33748655
10_1002_pld3_310
PLD3310
Genre article
Journal Article
GrantInformation_xml – fundername: Howard G Buffett Foundation
– fundername: USDA | National Institute of Food and Agriculture (NIFA)
  funderid: 2013‐02682; 2014‐67013‐21572; Pen04732
– fundername: U.S. Department of Energy (DOE)
  funderid: DE‐AR0000821
– fundername: USDA | National Institute of Food and Agriculture (NIFA)
  grantid: 2013‐02682; 2014‐67013‐21572; Pen04732
– fundername: U.S. Department of Energy (DOE)
  grantid: DE‐AR0000821
GroupedDBID 0R~
1OC
24P
8FE
8FH
AAMMB
ACCMX
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBS
ECGQY
EJD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IGS
ITC
LK8
M7P
M~E
O9-
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
WIN
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
OIOZB
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c6030-c89f6ab93f1640d614362a7308d40ab1b9bcf8b22c9f5467b69704d6b18f89443
IEDL.DBID BENPR
ISSN 2475-4455
IngestDate Wed Aug 27 01:28:39 EDT 2025
Thu Aug 21 13:43:33 EDT 2025
Fri May 19 01:41:26 EDT 2023
Fri Jul 11 18:30:04 EDT 2025
Fri Jul 11 01:00:16 EDT 2025
Wed Aug 13 04:30:12 EDT 2025
Wed Feb 19 02:07:12 EST 2025
Tue Jul 01 01:17:42 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords trait interactions
root number
root cross‐sectional area
maize
nitrogen stress
Language English
License Attribution
2021 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6030-c89f6ab93f1640d614362a7308d40ab1b9bcf8b22c9f5467b69704d6b18f89443
Notes Hannah M. Schneider and Jennifer T. Yang contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AR0000821; 2013-02682; 2014-67013-21572
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
USDA National Institute of Food and Agriculture (NIFA)
ORCID 0000-0003-4655-6250
0000-0002-4960-5292
0000-0002-7265-9790
0000000272659790
0000000249605292
0000000346556250
OpenAccessLink https://www.proquest.com/docview/2504866573?pq-origsite=%requestingapplication%
PMID 33748655
PQID 2504866573
PQPubID 4370295
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7f01cd110a8244c7a0e6f01bb20dfbdc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7963125
osti_scitechconnect_1848272
proquest_miscellaneous_2718326057
proquest_miscellaneous_2503678667
proquest_journals_2504866573
pubmed_primary_33748655
crossref_primary_10_1002_pld3_310
crossref_citationtrail_10_1002_pld3_310
wiley_primary_10_1002_pld3_310_PLD3310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: United States
– name: Hoboken
PublicationTitle Plant direct
PublicationTitleAlternate Plant Direct
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
– name: John Wiley and Sons Inc
References 2018; 122
2010; 53
2015; 38
2013; 4
2016; 108
1992; 168
2020; 11
2007; 30
2018; 177
2018; 3
2012; 133
2016; 118
1993; 33
1986; 6
2013; 112
2014; 166
1985; 16
2019; 70
2015; 16
2019; 31
1985; 2
2017; 22
2015; 167
1992; 147
2017; 67
2019; 223
2011; 34
2013; 140
1962; 10
2011; 3
2018; 69
2014b; 166
2006; 113
1942; 6
2004; 93
2000; 147
1986; 64
2015; 66
2017; 57
2011; 51
2018
2014a; 166
2016
2015
2014
1994; 3
2001; 236
1993; 153
2016; 67
2011; 341
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
Hall B. (e_1_2_7_22_1) 2019; 31
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
York L. (e_1_2_7_56_1) 2014
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 193
  year: 2013
  article-title: Root traits for infertile soils
  publication-title: Frontiers in Plant Science
– volume: 70
  start-page: 5311
  year: 2019
  end-page: 5325
  article-title: Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific
  publication-title: Journal of Experimental Botany
– volume: 3
  start-page: 1
  issue: 3
  year: 2018
– volume: 70
  start-page: 5327
  year: 2019
  end-page: 5342
  article-title: Laser ablation tomography for visualization of root colonization by edaphic organisms
  publication-title: Journal of Experimental Botany
– volume: 341
  start-page: 75
  year: 2011
  end-page: 87
  article-title: Shovelomics: High throughput phenotyping of maize ( L.) root architecture in the field
  publication-title: Plant and Soil
– volume: 93
  start-page: 359
  year: 2004
  end-page: 368
  article-title: Genetic dissection of root formation in maize ( ) reveals root‐type specific developmental programmes
  publication-title: Annals of Botany
– volume: 11
  start-page: 1
  year: 2020
  end-page: 13
  article-title: Spatio‐temporal variation in water uptake in seminal and nodal root systems of barley plants grown in soil
  publication-title: Frontiers in Plant Science
– volume: 67
  start-page: 4545
  year: 2016
  end-page: 4587
  article-title: Reduced crown root number improves water acquisition under water deficit stress in maize ( L.)
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 726
  year: 2014
  end-page: 735
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low‐nitrogen soils in maize
  publication-title: Plant Physiology
– volume: 108
  start-page: 2165
  year: 2016
  end-page: 2173
  article-title: Variability in optimum nitrogen rates for maize
  publication-title: Agronomy Journal
– volume: 22
  start-page: 433
  year: 2017
  end-page: 443
  article-title: Toward an integrated root ideotype for irrigated systems
  publication-title: Trends in Plant Science
– year: 2018
– year: 2014
– volume: 64
  start-page: 2524
  year: 1986
  end-page: 2537
  article-title: The nodal roots of : Their development in relation to structural features of the stem
  publication-title: Canadian Journal of Botany
– volume: 166
  start-page: 2166
  year: 2014b
  end-page: 2178
  article-title: Large root cortical cell size improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 66
  start-page: 3151
  year: 2015
  end-page: 3162
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize ( )
  publication-title: Journal of Experimental Botany
– volume: 118
  start-page: 401
  year: 2016
  end-page: 414
  article-title: Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions
  publication-title: Annals of Botany
– volume: 112
  start-page: 347
  year: 2013
  end-page: 357
  article-title: Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems
  publication-title: Annals of Botany
– volume: 167
  start-page: 1430
  year: 2015
  end-page: 1439
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition
  publication-title: Plant Physiology
– volume: 51
  start-page: 2780
  year: 2011
  end-page: 2795
  article-title: The nitrogen adaptation strategy of the wild teosinte ancestor of modern maize, Zea Mays Subsp. Parviglumis
  publication-title: Crop Science
– volume: 53
  start-page: 1369
  year: 2010
  end-page: 1373
  article-title: Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems
  publication-title: Science China Life Sciences
– volume: 70
  start-page: 5299
  year: 2019
  end-page: 5309
  article-title: Maize with fewer nodal roots allocates mass to more lateral and deep roots that improve nitrogen uptake and shoot growth
  publication-title: Journal of Experimental Botany
– volume: 177
  year: 2018
  article-title: Large crown root number improves topsoil foraging and phosphorus acquisition
  publication-title: Plant Physiology
– volume: 3
  start-page: 1452
  year: 2011
  end-page: 1485
  article-title: Improving nitrogen use efficiency in crops for sustainable agriculture
  publication-title: Sustainability
– volume: 4
  start-page: 355
  year: 2013
  article-title: Integration of root phenes for soil resource acquisition Integration of root phenes for soil resource acquisition
  publication-title: Frontiers in Plant Science
– volume: 66
  start-page: 5493
  year: 2015
  end-page: 5505
  article-title: Intensive field phenotyping of maize ( L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition
  publication-title: Journal of Experimental Botany
– volume: 38
  start-page: 740
  year: 2015
  end-page: 750
  article-title: A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress
  publication-title: Plant, Cell and Environment
– volume: 67
  start-page: 386
  year: 2017
  end-page: 391
  article-title: Agriculture in 2050: Recalibrating targets for sustainable intensification
  publication-title: BioScience
– volume: 16
  start-page: 237
  year: 2015
  end-page: 251
  article-title: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability
  publication-title: Nature Reviews: Genetics
– volume: 236
  start-page: 221
  year: 2001
  end-page: 235
  article-title: Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling approach
  publication-title: Plant and Soil
– volume: 166
  start-page: 581
  year: 2014
  end-page: 589
  article-title: Low crown root number enhances nitrogen acquisition from low‐nitrogen soils in maize
  publication-title: Plant Physiology
– volume: 30
  start-page: 580
  year: 2007
  end-page: 589
  article-title: Trade‐off between root porosity and mechanical strength in species with different types of aerenchyma
  publication-title: Plant, Cell and Environment
– year: 2015
– volume: 34
  start-page: 2122
  year: 2011
  end-page: 2137
  article-title: Novel temporal, fine‐scale and growth variation phenotypes in roots of adult‐stage maize ( L.) in response to low nitrogen stress
  publication-title: Plant, Cell & Environment
– volume: 168
  start-page: 113
  year: 1992
  end-page: 118
  article-title: Root morphology of maize and its relationship to root lodging
  publication-title: Journal of Agronomy and Crop Science
– volume: 69
  start-page: 3279
  year: 2018
  end-page: 3292
  article-title: Rightsizing root phenotypes for drought resistance
  publication-title: Journal of Experimental Botany
– volume: 31
  year: 2019
  article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique
  publication-title: Journal of Laser Applications
– volume: 223
  start-page: 548
  year: 2019
  end-page: 564
  article-title: Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture
  publication-title: New Phytologist
– volume: 66
  start-page: 2347
  year: 2015
  end-page: 2358
  article-title: Evolution of US maize ( L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 363
  year: 1985
  end-page: 392
  article-title: Resource limitation in plants–An economic analogy
  publication-title: Annual Review of Ecology and Systematics
– year: 2016
– volume: 147
  start-page: 87
  year: 1992
  end-page: 93
  article-title: Effect of mutual shading on the emergence of nodal roots and the root/shoot ratio of maize
  publication-title: Plant and Soil
– volume: 140
  start-page: 18
  year: 2013
  end-page: 31
  article-title: Maize root growth angles become steeper under low N conditions
  publication-title: Field Crops Research
– volume: 33
  start-page: 121
  year: 1993
  end-page: 130
  article-title: Carbon nutrition, root branching and elongation: Can the present state of knowledge allow a preditive approach at a whole‐plant level?
  publication-title: Environmental and Experimental Botany
– volume: 66
  start-page: 2055
  year: 2015
  end-page: 2065
  article-title: Reduced frequency of lateral root branching improves N capture from low N soils in maize
  publication-title: Journal of Experimental Botany
– volume: 166
  start-page: 1943
  year: 2014a
  end-page: 1955
  article-title: Reduced root cortical cell file number improves drought tolerance in maize
  publication-title: Plant Physiology
– volume: 2
  start-page: 199
  year: 1985
  end-page: 238
  article-title: Breeding crop varieties for stress environments
  publication-title: Critical Reviews in Plant Sciences
– volume: 57
  start-page: 1431
  year: 2017
  end-page: 1446
  article-title: Grain yield and nitrogen accumulation in maize hybrids released during 1934 to 2013 in the US Midwest
  publication-title: Crop Science
– volume: 166
  start-page: 590
  year: 2014
  end-page: 602
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability
  publication-title: Plant Physiology
– volume: 6
  start-page: 245
  year: 1942
  end-page: 282
  article-title: Developmental anatomy of the shoot of L.
  publication-title: Annals of Botany
– volume: 153
  start-page: 125
  year: 1993
  end-page: 143
  article-title: Maize nodal root ramification: Absence of dormant primordia, root classification using histological parameters and consequences on sap conduction
  publication-title: Plant and Soil
– volume: 10
  start-page: 399
  year: 1962
  end-page: 408
  article-title: Nutritive influences on the distribution of dry matter in the plant
  publication-title: Netherlands Journal of Agricultural Science
– volume: 122
  start-page: 485
  year: 2018
  end-page: 499
  article-title: Co‐optimisation of axial root phenotypes for nitrogen and phosphorus acquisition in common bean
  publication-title: Annals Botany
– volume: 133
  start-page: 48
  year: 2012
  end-page: 67
  article-title: Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review
  publication-title: Field Crops Research
– volume: 147
  start-page: 33
  year: 2000
  end-page: 42
  article-title: Building roots in a changing environment: Implications for root longevity
  publication-title: New Phytologist
– volume: 113
  start-page: 1
  year: 2006
  end-page: 10
  article-title: Detection of quantitative trait loci for seminal root traits in maize ( L.) seedlings grown under differential phosphorus levels
  publication-title: Theoretical and Applied Genetics
– volume: 3
  start-page: 101
  year: 1994
  end-page: 110
  article-title: Number of maize nodal roots as affected by plant density and nitrogen fertilization: Relationships with shoot growth
  publication-title: European Journal of Agronomy
– volume: 66
  start-page: 2199
  year: 2015
  end-page: 2210
  article-title: Opportunities and challenges in the subsoil: Pathways to deeper rooted crops
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 873
  year: 1986
  end-page: 875
  article-title: Harmonisation des notations concernant la description morphologique d ’ un pied de maïs ( L.)
  publication-title: Agronomie
– volume: 38
  start-page: 1775
  year: 2015
  end-page: 1784
  article-title: Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture
  publication-title: Plant Cell & Environment
– ident: e_1_2_7_28_1
  doi: 10.1093/aob/mcs293
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev.es.16.110185.002051
– ident: e_1_2_7_20_1
  doi: 10.1051/agro:19860913
– ident: e_1_2_7_26_1
  doi: 10.1093/biosci/bix010
– ident: e_1_2_7_4_1
  doi: 10.1080/07352688509382196
– ident: e_1_2_7_5_1
  doi: 10.18174/njas.v10i5.17581
– ident: e_1_2_7_31_1
  doi: 10.1111/nph.15738
– ident: e_1_2_7_48_1
  doi: 10.1111/j.1365-3040.2007.01639.x
– ident: e_1_2_7_61_1
  doi: 10.1007/s00122-006-0260-z
– ident: e_1_2_7_44_1
  doi: 10.1016/j.tplants.2017.02.001
– ident: e_1_2_7_11_1
  doi: 10.2135/cropsci2016.08.0704
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1439-037X.1992.tb00987.x
– volume-title: Integration of root phenes affecting nitrogen acquisition in maize
  year: 2014
  ident: e_1_2_7_56_1
– ident: e_1_2_7_35_1
  doi: 10.1038/nrg3901
– ident: e_1_2_7_45_1
  doi: 10.3389/fpls.2020.01247
– ident: e_1_2_7_39_1
– ident: e_1_2_7_40_1
  doi: 10.1093/aob/mcy092
– ident: e_1_2_7_2_1
  doi: 10.1016/0098-8472(93)90060-S
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1469-8137.2000.00686.x
– ident: e_1_2_7_58_1
  doi: 10.1093/jxb/erv241
– ident: e_1_2_7_21_1
  doi: 10.1093/jxb/erz258
– ident: e_1_2_7_46_1
  doi: 10.1093/oxfordjournals.aob.a088407
– ident: e_1_2_7_52_1
  doi: 10.1016/j.fcr.2012.09.010
– ident: e_1_2_7_17_1
  doi: 10.1093/jxb/erw243
– ident: e_1_2_7_41_1
– ident: e_1_2_7_59_1
  doi: 10.3389/fpls.2013.00355
– ident: e_1_2_7_57_1
  doi: 10.1093/jxb/erv074
– ident: e_1_2_7_49_1
  doi: 10.1093/jxb/erz271
– ident: e_1_2_7_51_1
  doi: 10.1007/s11104-010-0623-8
– ident: e_1_2_7_16_1
  doi: 10.1111/pce.12439
– ident: e_1_2_7_27_1
  doi: 10.1007/BF00010551
– ident: e_1_2_7_7_1
  doi: 10.1104/pp.114.250449
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.114.241711
– ident: e_1_2_7_54_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_7_24_1
  doi: 10.1093/aob/mch056
– ident: e_1_2_7_9_1
  doi: 10.1016/j.fcr.2012.03.008
– ident: e_1_2_7_50_1
  doi: 10.1104/pp.18.00234
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-3040.2011.02409.x
– ident: e_1_2_7_30_1
  doi: 10.1093/jxb/ery048
– ident: e_1_2_7_12_1
  doi: 10.1007/BF00009374
– ident: e_1_2_7_37_1
  doi: 10.1016/S1161-0301(14)80115-9
– ident: e_1_2_7_29_1
  doi: 10.1111/pce.12451
– ident: e_1_2_7_23_1
  doi: 10.3390/su3091452
– ident: e_1_2_7_13_1
  doi: 10.2134/agronj2016.03.0139
– volume: 31
  year: 2019
  ident: e_1_2_7_22_1
  article-title: Three‐dimensional analysis of biological systems via a novel laser ablation technique
  publication-title: Journal of Laser Applications
– ident: e_1_2_7_33_1
  doi: 10.1023/A:1012728819326
– ident: e_1_2_7_53_1
  doi: 10.3389/fpls.2013.00193
– ident: e_1_2_7_36_1
  doi: 10.1104/pp.15.00145
– ident: e_1_2_7_19_1
  doi: 10.2135/cropsci2010.12.0686
– ident: e_1_2_7_32_1
  doi: 10.1093/jxb/eru508
– ident: e_1_2_7_60_1
  doi: 10.1093/jxb/erv007
– ident: e_1_2_7_38_1
  doi: 10.1104/pp.113.233916
– ident: e_1_2_7_34_1
  doi: 10.1007/s11427-010-4097-y
– ident: e_1_2_7_6_1
  doi: 10.1104/pp.114.249037
– ident: e_1_2_7_25_1
  doi: 10.1139/b86-335
– ident: e_1_2_7_43_1
  doi: 10.1104/pp.113.232603
– ident: e_1_2_7_10_1
  doi: 10.1093/aob/mcw112
– ident: e_1_2_7_8_1
  doi: 10.1093/jxb/erv121
– ident: e_1_2_7_15_1
– ident: e_1_2_7_55_1
  doi: 10.1093/jxb/erz293
SSID ssj0002176085
Score 2.2798731
Snippet Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and...
Abstract Under nitrogen limitation, plants increase resource allocation to root growth relative to shoot growth. The utility of various root architectural and...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e00310
SubjectTerms Agricultural production
BASIC BIOLOGICAL SCIENCES
Corn
Costs
Experiments
Genotypes
greenhouses
maize
Metabolism
Nitrogen
nitrogen content
nitrogen stress
Nutrient uptake
Original Research
Phenotypes
Phosphorus
Plant growth
plant sciences
Resource allocation
root cross-sectional area
root growth
root number
Rooting
Roots
Seeds
soil
stele
stress tolerance
trait interactions
Zea mays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiNfSFhkJ8TiEZuPEjo-8qgqVigOVKi6Wn3SlbbLaTQ_w6_kmya52RYELp0T2HJx5jzL-hrHntRCltSpkiDZlVqYpbK4KOnOiVjqmShSCLgp_PpMn5-Wni-pia9QX9YQN8MAD445Uyqc-IEjZGpHIK5tHiSXnijwkFzx5X8S8rWKKfDASbYlkYo02mxdHi3kQKFDznfjTw_Tj0cKcbkoxf--U3M5g-xB0fJfdGXNH_nY48z12Kzb32eqsDVhEAtxxyPqK2lu4bQJv2hD5MPCDzxp-ZWc_I3_1LVq8_ljx0zevOWFF0C0p3rV4H6eV8MUc3ObfUZ93l5zumC057H7ZQtX4cLXkATs__vj1_Uk2TlLIvIQVZ77WSVqnRUJ1lAeEZMQtC-OuQ5lbN3Xa-VS7ovA6VXCdTmqVl0G6aZ1qXZbiIdtr2iY-ZlzW2pYRaVEieaSItDdV2kmX62hdXkzYyzV_jR9hxmnaxdwMAMmFIUkYSGLCnm0oFwO0xg0070hEm30Cw-4XoCJmVBHzLxWZsH0SsEFOQcC4njqIfGdQ29aFwoEP1nI3o_2uDAG7ERKgEjjlZhuWR79TbBPb655GINRLqf5Co8hlomQEzaNBlTbfIgj5R1bVhKkdJdv52N2dZnbZI4AruE2IYMJe9Or4R_aZL6cfBJ5P_gcb99ntghp6-ga8A7bXLa_jITKyzj3tje8XEXU01A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQuXBBVLxCCzIS4nEIzfoZH3lVFSpVD1SquFh-tittk9VueoBfz0ySDawoiFMieyI5Ho_nm2TmMyEvas6FczqW4G1EKfIMbE5GU3pea5Oy5IxjofCXE3V0Jj6fy_MxqxJrYQZ-iOmDG1pGv1-jgTu_PvhFGrpcRA4RJ4Trt7GyFtP5mDidvq8A1FZVfyInE1qWQki54Z6t2MHm4S1v1JP2w6UF47oJcP6ZN_k7nu0d0uE9cndEkvTdoPpdcis198n6pI3QCHC4o6D5K0x2oa6JtGljosPxH3Te0Cs3_5Ho62_Jwe33NT1--4YicwTWTNGuhfvx7BK6XMDc0wuI1rtLihVnKwq7wKqFhUeHQpMH5Ozw09cPR-V4rkIZFNh0GWqTlfOGZ4iVqggOGryYA1Ovo6icn3njQ649Y8FkCRupV0ZXIio_q3NthOAPyU7TNukxoao2TiQASbkGnJATgOAsjVe-Msn5ihXk1WZ-bRhJx_Hsi4Ud6JKZRU1Y0ERBnk-Sy4Fo4waZ96iiqR-psfuGdnVhR0uzOlezEAHVOBxS0K5KCpq8Z1XMPoaC7KGCLSAMpMkNmE8UOguRbs00DHh_o3c7WvPaIs0b8gJqDqOcusEO8eeKa1J73ctwcPxK6X_IaNxAIYAEmUfDUprehSMPkJKyIHprkW297HZPM7_s-cA1bKKggoK87JfjX6fPnh5_5HB98r-Ce-QOwxSePuVun-x0q-v0FDBY55_1xvYTmtgsmg
  priority: 102
  providerName: Wiley-Blackwell
Title Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.310
https://www.ncbi.nlm.nih.gov/pubmed/33748655
https://www.proquest.com/docview/2504866573
https://www.proquest.com/docview/2503678667
https://www.proquest.com/docview/2718326057
https://www.osti.gov/servlets/purl/1848272
https://pubmed.ncbi.nlm.nih.gov/PMC7963125
https://doaj.org/article/7f01cd110a8244c7a0e6f01bb20dfbdc
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbo9sIFgXiFlpWREI9DaDZO_DghCq0qVFYrRKWKi-Vnu9I2WXbTA_x6ZpJsYEXpKZHtg-3xzHy2x98Q8lIyVhgjfArepkiLOAGdK71KLZNChViynOFD4S9TfnJWfD4vz_sDt3UfVrmxia2h9rXDM_IDpNpCbjbB3i9_pJg1Cm9X-xQaO2QXTLCUI7J7eDSdfR1OWQBwcwAVG9bZLD9YLjyDjWq25Ydaun741KBWN0HNfyMm_0ayrSs6vk_u9RiSfuiE_oDcCdVD0kxrD4UAhBsKMr_CMBdqKk-r2gfaJf6g84pemfmvQN_Q78HA_881PX33liJpBD6Xok0N_33aErpcwLTTC9ioN5cUH5utKBiAVQ1rjnZvTB6Rs-Ojbx9P0j6lQuo4qHPqpIrcWMUibJMyD74ZHJgBLZe-yIydWGVdlDbPnYol2FDLlcgKz-1ERqmKgj0mo6quwlNCuVSmCICPogSIEAPg31gqy22mgrFZnpDXmwnWrucbx7QXC90xJecaRaFBFAl5MbRcdhwbN7Q5RBkN9ciK3RbUqwvdK5kWMZs4D4DGYJecMFngUGRtnvlovUvIHkpYA7hAhlyHoUSu0bDJlbmADu9vBK97RV7rP8sOejlUgwrivYqpQn3dtmHg8zkXt7QRaDth7whtnnRraRgLQwogXpYJEVurbGuw2zXV_LKlAhdgP0EECXnVrsf_Tp-enX5i8H12-xj3yN0cY3baGLt9MmpW1-E5gK7GjslOXszGvX6N26OL3-86Lrs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wAvCDQuZQOMxPUhzLUTJ3lAiN3Usa6a0CZNezF2bG-VuqS0mabxo_iNnJNLoWLsbU-JbCeyfS7-nBx_h5DXiRCh1rENYLUJg9D3wOYimwZGJHHqfCS4wIPC-0PZPwq_HkfHS-RXexYGwypbn1g5altk-I18Ham2kJstFp8nPwLMGoV_V9sUGrVa7LmrS9iyzT7tboF833C-s3242Q-arAJBJkGjgyxJvdQmFR52CszC8gQ-XIOiJzZk2vRMajKfGM6z1EfgRoxMYxZaaXqJT9IwFPDeO2QZnmK8Q5Y3tocH3-ZfdQDgSwAxLcst4-uTsRWwMWYL616VHgAuBZjxddD23wjNv5FztfTtPCD3G8xKv9RK9pAsuXyFlMPCQiEA75KCjp1jWA3VuaV5YR2tE43QUU7P9eino-_pidNwfzWjg48fKJJU4PEsWhZw36RJoZMxiJmeTovL8ozi4bYpBYczLUDHaX2m5RE5upXJfkw6eZG7p4TKJNWhAzzmE4Ak3gHe9lFqpGGp04bxLnnXTrDKGn5zTLMxVjUzM1coCgWi6JJX85aTmtPjmjYbKKN5PbJwVwXF9FQ1Rq1iz3qZBQClsUtZrJmTUGQMZ9Ybm3XJKkpYAZhBRt4MQ5eyUsGmOuExdHitFbxqHMdM_VFz6OW8Gkwe_-Po3BUXVRsBGEPK-IY2Mfpq2KtCmye1Ls3HIpBySEZRl8QLWrYw2MWafHRWUY_H4K9BBF3yttLH_06fOhhsCbg-u3mML8nd_uH-QA12h3ur5B7HeKEqvm-NdMrphXsOgK80Lxoro-T7bRv2b8BeaAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEIhb2QAjcX0ITePEjh8QYnTVxko1ISZNezF2bG-VuqS0mabx0_h1nJNLoWLsbU-JbCuKfS7-TnL8HUJepIzFWgsbwG4TB7Hvg80lVgaGpUI6n7CI4UHhL2O-cxB_PkwO18iv9iwMplW2PrFy1LbI8Bt5D6m2kJtNsJ5v0iL2B8MPsx8BVpDCP61tOY1aRfbcxTmEb4v3uwOQ9csoGm5_-7QTNBUGgoyDdgdZKj3XRjIPUUNoYasCf65B6VMbh9r0jTSZT00UZdIn4FIMlyKMLTf91Kcyjhk89wZZFxgVdcj61vZ4_-vyCw-AfQ6ApmW8DaPebGoZBMnhyh5YlQqASwEmfRnM_Tdb828UXW2DwzvkdoNf6cda4e6SNZffI-W4sNAIILykoG-nmGJDdW5pXlhH66IjdJLTUz356egbeuQ03F8s6OjdW4qEFXhUi5YF3DclU-hsCiKnx_PivDyheNBtTsH5zAvQd1qfb7lPDq5lsR-QTl7k7hGhPJU6doDNfArwxDvA3j6RhptQOm3CqEtetwussobrHEtuTFXN0hwpFIUCUXTJ8-XIWc3vccmYLZTRsh8ZuauGYn6sGgNXwof9zAKY0vhKmdCh49BkTBRab2zWJRsoYQXABtl5M0xjykoFAXYaCXjhzVbwqnEiC_VH5eEtl91g_vhPR-euOKvGMMAbnIsrxgj02xC3wpiHtS4t58KQfognSZeIFS1bmexqTz45qWjIBfhuEEGXvKr08b_Lp_ZHAwbXx1fP8Rm5CQatRrvjvQ1yK8LUoSrVb5N0yvmZewLYrzRPGyOj5Pt12_Vvk0VsOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nodal+root+diameter+and+node+number+in+maize+%28Zea+mays+L.%29+interact+to+influence+plant+growth+under+nitrogen+stress&rft.jtitle=Plant+direct&rft.au=Schneider%2C+Hannah+M.&rft.au=Yang%2C+Jennifer+T.&rft.au=Brown%2C+Kathleen+M.&rft.au=Lynch%2C+Jonathan+P.&rft.date=2021-03-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2475-4455&rft.volume=5&rft.issue=3&rft_id=info:doi/10.1002%2Fpld3.310&rft_id=info%3Apmid%2F33748655&rft.externalDocID=PMC7963125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4455&client=summon