求解多目标作业车间调度问题的混合变异杂草优化算法

针对多目标作业车间调度问题,提出一种混合变异杂草优化算法。该算法采用基于各子目标熵值权重的欧氏贴近度作为适应度值计算方法,引导种群向Pareto前端进化。在进化过程中,运用快速非支配排序策略构建Pareto档案,并利用进化种群中最优个体实时更新Pareto最优解集,提升算法的优化性能;同时通过引入变异算子增加种群多样性,避免算法陷入局部最优。最后,基于Benchmark算例的仿真实验,验证了该算法求解多目标作业车间调度问题的有效性。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 12; pp. 3623 - 3627
Main Author 黄霞;叶春明;曹磊
Format Journal Article
LanguageChinese
Published 上海理工大学管理学院,上海200093 2017
江苏科技大学张家港校区,江苏张家港215600%上海理工大学管理学院,上海,200093
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 针对多目标作业车间调度问题,提出一种混合变异杂草优化算法。该算法采用基于各子目标熵值权重的欧氏贴近度作为适应度值计算方法,引导种群向Pareto前端进化。在进化过程中,运用快速非支配排序策略构建Pareto档案,并利用进化种群中最优个体实时更新Pareto最优解集,提升算法的优化性能;同时通过引入变异算子增加种群多样性,避免算法陷入局部最优。最后,基于Benchmark算例的仿真实验,验证了该算法求解多目标作业车间调度问题的有效性。
AbstractList TP391; 针对多目标作业车间调度问题,提出一种混合变异杂草优化算法.该算法采用基于各子目标熵值权重的欧氏贴近度作为适应度值计算方法,引导种群向Pareto前端进化.在进化过程中,运用快速非支配排序策略构建Pareto档案,并利用进化种群中最优个体实时更新Pareto最优解集,提升算法的优化性能;同时通过引入变异算子增加种群多样性,避免算法陷入局部最优.最后,基于Benchmark算例的仿真实验,验证了该算法求解多目标作业车间调度问题的有效性.
针对多目标作业车间调度问题,提出一种混合变异杂草优化算法。该算法采用基于各子目标熵值权重的欧氏贴近度作为适应度值计算方法,引导种群向Pareto前端进化。在进化过程中,运用快速非支配排序策略构建Pareto档案,并利用进化种群中最优个体实时更新Pareto最优解集,提升算法的优化性能;同时通过引入变异算子增加种群多样性,避免算法陷入局部最优。最后,基于Benchmark算例的仿真实验,验证了该算法求解多目标作业车间调度问题的有效性。
Abstract_FL To solve multi-objective Job-Shop scheduling problem,this paper proposed a composite mutation invasive weed optimization algorithm.The method adopted a fitness calculating method of Euclidean approach degree to help population move towards the Pareto front.In each generation of the evolving process,the algorithm presented a fast non-dominated sorting approach to improve the efficiency of constructing Pareto optimal solutions.It integrated the global best solution of evolutionary population into updating Pareto optimal solutions instantly to enhance performance of the optimization algorithm,and introduced the mutation operator to increase population diversity,avoiding being trapped in local optimum.The experimental resuits of the Benchmark instances demonstrate the effectiveness of the algorithm proposed on solving multi-objective Job-Shop scheduling problems.
Author 黄霞;叶春明;曹磊
AuthorAffiliation 上海理工大学管理学院,上海200093;江苏科技大学张家港校区,江苏张家港215600
AuthorAffiliation_xml – name: 上海理工大学管理学院,上海200093;江苏科技大学张家港校区,江苏张家港215600%上海理工大学管理学院,上海,200093
Author_FL Huang Xia
Cao Lei
Ye Chunming
Author_FL_xml – sequence: 1
  fullname: Huang Xia
– sequence: 2
  fullname: Ye Chunming
– sequence: 3
  fullname: Cao Lei
Author_xml – sequence: 1
  fullname: 黄霞;叶春明;曹磊
BookMark eNo9j81Kw0AAhPdQwbb6EuLBS-L-JJvuUYpaoeCl97LJbmqCbrVBJNcqqFDRi7ZUBVHRW1AUKtK-TZOmb2Gk4mmG4WOGKYCcaioJwDKCOmGUrfq6FwRKRxAijVBm6hgiS0dYh5jkQP4_nweFIPAhNDBiMA8qyXs7fX2Kn_uT2yh5OB2P7sZf_XT0Mu1-pm_H8Xdmouljb9I_SQaD-OosvuzFw3Zy304vzsfDXty5mUTd5ON6Acy5fDeQi39aBLWN9Vq5olW3N7fKa1XNoZBogpRYiWMmbYmwxaRrM2gQioXBHcqFyamQ1JaODZkpDCYdQwiMLcc1XYohsUgRrMxqj7hyuWrU_eZhS2WDdT_wwzD0f28jnJ3O0KUZ6uw0VePAy-D9lrfHW2GdWqSEMaSU_AC05nej
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.12.023
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Composite mutation invasive weed optimization algorithm for multi-objective Job-Shop scheduling problem
EndPage 3627
ExternalDocumentID jsjyyyj201712023
673822066
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 上海市一流学科资助项目; 沪江基金资助项目; 江苏省现教课题项目; 江苏省高等教育科学研究“十三五”规划课题项目
  funderid: (71271138); (S1201YLXK); (A14006); (48888); (16YB064)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c603-d3898a29ebe1279efb904362d4ac6ad5a6de6becb095d49ec4dd227cf5f620373
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:56:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords invasive weed optimization algorithm
Euclidean approach degree
入侵杂草优化算法
欧氏贴近度
Job-Shop scheduling
多目标优化
multi-objective optimization
作业车间调度
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603-d3898a29ebe1279efb904362d4ac6ad5a6de6becb095d49ec4dd227cf5f620373
Notes 51-1196/TP
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201712023
chongqing_primary_673822066
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 上海理工大学管理学院,上海200093
江苏科技大学张家港校区,江苏张家港215600%上海理工大学管理学院,上海,200093
Publisher_xml – name: 江苏科技大学张家港校区,江苏张家港215600%上海理工大学管理学院,上海,200093
– name: 上海理工大学管理学院,上海200093
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0617702
Snippet ...
TP391;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3623
SubjectTerms 作业车间调度
入侵杂草优化算法
多目标优化
欧氏贴近度
Title 求解多目标作业车间调度问题的混合变异杂草优化算法
URI http://lib.cqvip.com/qk/93231X/201712/673822066.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201712023
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDxItvMUYlQvq4cbenpx_Hns2EIOgpQm7LPBNy2KiJh8RbFFRQ9KIJUUFU9BYUhYgkf5PdbP7C6prO7iSKRGEZip6a6nrMdj2Y7iJkVNd8BWF2WhFZNa_wJI0qURbzSgahNYTXeZRh15IbN8XkLX592p_u679f3l2yGI8ly3_cV_I_VoUxsKvdJfsPlu0ShQGAwb5wBQvD9Ug2pqGgQY0qRkNFjaTGo6FPDafa0FBSHVATWhxTpZDzh5wG41TXEVCIo-yIETTUVEsacBwBZKQTmN4tS0dTw6hWSNlQxXF2aX-ArOEpZQE1gTjweB0ZE1SPOw4VABpnrzscBYCwBIE-zGIJerRoh7kfMaNoITW1A2ggBbBXMKk5ssSpQd5A2GLEaBp0646W_SBArrV9Woe9O8h0IJAuTOY7QJVQhFVmoJGsR5UpF0uKXaH4YjvVKoOi-KgbiboRyKxE6mgig2ozhfplT8QusulaBhXP6r8TZ1gqKvkV--WaJ5wCneNxVVz3B2MlNwJRhVcKSTxRlGkPuztPC43uzs4x1p3DfrAosci9T-XAgeJzC3NLS0tzFqnGAKWfDDLIscCrDZpgPJjoRdMQfJZPV2T24KJe9mpbD4iSu7D9EMH_dd2FX_Okj80VisCIw83icBDH5zEy6oS49jcR7Kkns_PNmTsQy-HWumYeNWdKUeDUKXLCpW8jpvgvniZ9y7NnyMn91igjzlOeJZPtryudzx9aH9d3X2-03z3a2X6z82O9s_1pb_V758uD1k8ANvber-2uP2xvbrZePG49X2ttrbTfrnSePdnZWms9fbW7sdr-9vIcmZoIp-qTFde0pJKIqldJIQFQEdOwNtaY1Fkea9vkgaU8SkSU-pFIMwHrZgypTcp1lvA0ZUwmuZ8LVvWkd54MNOeb2QUyIgUsmHGaRknGbZ_XWCZRLY-Zzqsq0VwOkeGuXhq3i7Np7GeaEPJDHjFErjpNNdyKtdA4bPmLR8AZJsctXFQdL5GBxbv3sssQhy_GV9z78gvdQK_M
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B1%82%E8%A7%A3%E5%A4%9A%E7%9B%AE%E6%A0%87%E4%BD%9C%E4%B8%9A%E8%BD%A6%E9%97%B4%E8%B0%83%E5%BA%A6%E9%97%AE%E9%A2%98%E7%9A%84%E6%B7%B7%E5%90%88%E5%8F%98%E5%BC%82%E6%9D%82%E8%8D%89%E4%BC%98%E5%8C%96%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E9%BB%84%E9%9C%9E&rft.au=%E5%8F%B6%E6%98%A5%E6%98%8E&rft.au=%E6%9B%B9%E7%A3%8A&rft.date=2017&rft.pub=%E4%B8%8A%E6%B5%B7%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7200093&rft.issn=1001-3695&rft.volume=34&rft.issue=12&rft.spage=3623&rft.epage=3646&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.12.023&rft.externalDocID=jsjyyyj201712023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg