广义非局部均值算法的图像去噪

TP391.41; NLM (non-local means)滤波成为图像去噪关注的热点.该方法利用在图像中的结构特征冗余,对消除白噪声的效果较好,但对有色噪声效果不理想.对其作了改进,引入广义高斯分布模型以及马氏距离来取代欧氏距离,并且将其推广到图像序列的去噪领域中.结果表明,相较于NLM方法,该方法能够较好地抑制有色噪声,明显地改善了去除噪声效果,在保留图像纹理边缘的同时,有效地去除了图像中的噪声信息....

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 7; pp. 2218 - 2221
Main Author 郭红涛 王小伟 章勇勤
Format Journal Article
LanguageChinese
Published 华北水利水电大学软件学院,郑州,450045%郑州大学体育学院现代教育技术中心,郑州,450044%北京大学计算机科学技术研究所,北京,100080 2015
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.07.073

Cover

Loading…
Abstract TP391.41; NLM (non-local means)滤波成为图像去噪关注的热点.该方法利用在图像中的结构特征冗余,对消除白噪声的效果较好,但对有色噪声效果不理想.对其作了改进,引入广义高斯分布模型以及马氏距离来取代欧氏距离,并且将其推广到图像序列的去噪领域中.结果表明,相较于NLM方法,该方法能够较好地抑制有色噪声,明显地改善了去除噪声效果,在保留图像纹理边缘的同时,有效地去除了图像中的噪声信息.
AbstractList TP391.41; NLM (non-local means)滤波成为图像去噪关注的热点.该方法利用在图像中的结构特征冗余,对消除白噪声的效果较好,但对有色噪声效果不理想.对其作了改进,引入广义高斯分布模型以及马氏距离来取代欧氏距离,并且将其推广到图像序列的去噪领域中.结果表明,相较于NLM方法,该方法能够较好地抑制有色噪声,明显地改善了去除噪声效果,在保留图像纹理边缘的同时,有效地去除了图像中的噪声信息.
NLM(non-local means)滤波成为图像去噪关注的热点。该方法利用在图像中的结构特征冗余,对消除白噪声的效果较好,但对有色噪声效果不理想。对其作了改进,引入广义高斯分布模型以及马氏距离来取代欧氏距离,并且将其推广到图像序列的去噪领域中。结果表明,相较于NLM方法,该方法能够较好地抑制有色噪声,明显地改善了去除噪声效果,在保留图像纹理边缘的同时,有效地去除了图像中的噪声信息。
Author 郭红涛 王小伟 章勇勤
AuthorAffiliation 华北水利水电大学软件学院,郑州450045 郑州大学体育学院现代教育技术中心,郑州450044 北京大学计算机科学技术研究所,北京100080
AuthorAffiliation_xml – name: 华北水利水电大学软件学院,郑州,450045%郑州大学体育学院现代教育技术中心,郑州,450044%北京大学计算机科学技术研究所,北京,100080
Author_FL Zhang Yongqin
Guo Hongtao
Wang Xiaowei
Author_FL_xml – sequence: 1
  fullname: Guo Hongtao
– sequence: 2
  fullname: Wang Xiaowei
– sequence: 3
  fullname: Zhang Yongqin
Author_xml – sequence: 1
  fullname: 郭红涛 王小伟 章勇勤
BookMark eNo9j89Kw0AYxPdQwbb6EuJBhMTvyza7m6MU_0HBS-9hu9nUBN1ogkhuhQripZ5EVOpZPAjiqSj6Mq6lb2GkIgwMDD9mmAapmcxoQlYRXBqwYCN1k6IwLgKgQ1ngux6g7wKvRGuk_p8vkkZRpAAtDwOok3U7-fyaXM7GD_ZlMBs-2vGFHbxPn2--X6-nd-f2_sMOr-zozd4-LZGFWB4WevnPm6S7vdVt7zqd_Z299mbHUQyoE1FA5SmBIkbNIya4EkzFPqM68oFHQntCMR2hjP2WQtHrUca0APQk4xAgbZK1ee2ZNLE0_TDNTnNTDYZpkZZlmf4eA17dqtCVOaoOMtM_SSr4OE-OZF6GjPkIHBHoDzlEYQk
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.07.073
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Generalized non-local means algorithm for image denoising
DocumentTitle_FL Generalized non-local means algorithm for image denoising
EndPage 2221
ExternalDocumentID jsjyyyj201507073
665107110
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 河南省科技攻关计划资助项目; 河南省教育厅自然科学研究计划资助项目
  funderid: (51079055); (132102210044); (14A520010)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c603-d301c2c818f1e7d687c86cf563ed507d8e28c6ed1af54c18bb366e8012a670913
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:29:31 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 图像去噪
广义高斯模型
generalized Gaussian model
非局部均值
non-local means
信噪比
image denoising
signal to noise ratio
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c603-d301c2c818f1e7d687c86cf563ed507d8e28c6ed1af54c18bb366e8012a670913
Notes Image denoising is an important problem in computer vision and image processing. The non-local means (NLM) has received great attention in recent years, which makes use of the structural characteristics of image redundancy unlike conventional denoising algorithms based on local neighborhood. However, the NLM has good results to eliminate the white noise, whereas it is not effective for the colored noise. To solve this problem, this paper proposed a novel generalized nonlocal means denoising (GNLM) algorithm for noise removal of noisy images. With the introduction of generalized Gaussian distribution model,the proposed algorithm used the Mahalanobis distance instead of the Euclidean distance, and was also extended image sequence denoising. The experimental results show that the proposed algorithm improves the effect of the noise removal, and can do better on suppressing colored noise. The proposed algorithm can effectively eliminate image noise and significantly improve the image visual effect.
51-1196/TP
Guo Ho
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201507073
chongqing_primary_665107110
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 华北水利水电大学软件学院,郑州,450045%郑州大学体育学院现代教育技术中心,郑州,450044%北京大学计算机科学技术研究所,北京,100080
Publisher_xml – name: 华北水利水电大学软件学院,郑州,450045%郑州大学体育学院现代教育技术中心,郑州,450044%北京大学计算机科学技术研究所,北京,100080
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.9811271
Snippet NLM(non-local...
TP391.41; NLM (non-local...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2218
SubjectTerms 信噪比
图像去噪
广义高斯模型
非局部均值
Title 广义非局部均值算法的图像去噪
URI http://lib.cqvip.com/qk/93231X/201507/665107110.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201507073
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdFhaEC9-i7UqK3QuSurmazJznNnNUgQ9rdDbspkkLT1sq909bE-FCuJFTyIq1at4EMRTUfTPGEv_he9NZrOxSFEvYfa9ycubvOz7GOa9R8hSlrpRriE6Sd2QO0GiuZPkXDs8z9F-Mz4w-RX37rOVB8Hd1XC10XhXO7U0HiXLeuePeSX_I1WAgVwxS_YfJFsRBQCMQb5wBQnD9a9kTOOQKkFVl8YBDrigsaCiQ0VsUC6eYwAI96nkCAEUBP8wALhq0ziiMqYCIIwqn4oQIUJSHpjJiipDB27nXTOIqVIGJaiUdb-WxhxJSfc3mqJNlTScSCoCQzwwnMCcloVI4L_aHZwy20EM3CQ9wxpQUrcRBAxww4BqGZYCXIXoGpxUSBS5VNNFAiSob2uUKZ1WB-MpL5-VvTenSnq2CTqeHi22Gtez-juzP8uE6-OWwRdMGMuAj1iuHoFn-0JTvbVsqHKs9jZjoLIiF1P45j2IQ0Dzz0vVUd2ZxwkOWr0CoYfFfWYRHpbnZzWVij0DwUZUKjV0_Sg0DQhK5yEAZFlAwzJ4iixZ7u-cxDtWBlnfHK49BH_HpJ8N88FwreYp9c6RMzbEacryez1PGjvrF8jZafuQprUmF8mt4uD7j4OnR_tvi0-7R3vvi_0nxe7Xw48vf35-cfj6cfHmW7H3vHj2pXj14RLpdeNee8WxrTsczVq-k4LZ0J4GZzB3syhlPNKc6TxkfpZCAJLyzOOagZ4Y5GGgXZ4kPmMZOksDrCfo-pfJ3HBzmF0hTc_NkhSCdnBtwagPPKEjISLtwvQ09aJ0gSxWK-9vlRVa-pXcFshN-y769n-73d_Y3phMJhv49rDWlX_1RAqL5DTOLHfdrpG50aNxdh380FFyw34LvwCBgWP1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B9%BF%E4%B9%89%E9%9D%9E%E5%B1%80%E9%83%A8%E5%9D%87%E5%80%BC%E7%AE%97%E6%B3%95%E7%9A%84%E5%9B%BE%E5%83%8F%E5%8E%BB%E5%99%AA&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E9%83%AD%E7%BA%A2%E6%B6%9B+%E7%8E%8B%E5%B0%8F%E4%BC%9F+%E7%AB%A0%E5%8B%87%E5%8B%A4&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=7&rft.spage=2218&rft.epage=2221&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.07.073&rft.externalDocID=665107110
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg