21st Century alpine climate change
A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8...
Saved in:
Published in | Climate dynamics Vol. 60; no. 1-2; pp. 65 - 86 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8.5). The core simulation ensemble has been subject to a dedicated evaluation exercise carried out in the frame of the CH2018 Climate Scenarios for Switzerland. Results reveal that the entire Alpine region will face a warmer climate in the course of the twenty-first century for all emission scenarios considered. Strongest warming is projected for the summer season, for regions south of the main Alpine ridge and for the high-end RCP 8.5 scenario. Depending on the season, medium to high elevations might experience an amplified warming. Model uncertainty can be considerable, but the major warming patterns are consistent across the ensemble. For precipitation, a seasonal shift of precipitation amounts from summer to winter over most parts of the domain is projected. However, model uncertainty is high and individual simulations can show change signals of opposite sign. Daily precipitation intensity is projected to increase in all seasons and all sub-domains, while the wet-day frequency will decrease in the summer season. The projected temperature change in summer is negatively correlated with the precipitation change, i.e. simulations and/or regions with a strong seasonal mean warming typically show a stronger precipitation decrease. By contrast, a positive correlation between temperature change and precipitation change is found for winter. Among other indicators, snow cover will be strongly affected by the projected climatic changes and will be subject to a widespread decrease except for very high elevation settings. In general and for all indicators, the magnitude of the change signals increases with the assumed greenhouse gas forcing, i.e., is smallest for RCP 2.6 and largest for RCP 8.5 with RCP 4.5 being located in between. These results largely agree with previous works based on older generations of RCM ensembles but, due to the comparatively large ensemble size and the high spatial resolution, allow for a more decent assessment of inherent projection uncertainties and of spatial details of future Alpine climate change. |
---|---|
AbstractList | A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8.5). The core simulation ensemble has been subject to a dedicated evaluation exercise carried out in the frame of the CH2018 Climate Scenarios for Switzerland. Results reveal that the entire Alpine region will face a warmer climate in the course of the twenty-first century for all emission scenarios considered. Strongest warming is projected for the summer season, for regions south of the main Alpine ridge and for the high-end RCP 8.5 scenario. Depending on the season, medium to high elevations might experience an amplified warming. Model uncertainty can be considerable, but the major warming patterns are consistent across the ensemble. For precipitation, a seasonal shift of precipitation amounts from summer to winter over most parts of the domain is projected. However, model uncertainty is high and individual simulations can show change signals of opposite sign. Daily precipitation intensity is projected to increase in all seasons and all sub-domains, while the wet-day frequency will decrease in the summer season. The projected temperature change in summer is negatively correlated with the precipitation change, i.e. simulations and/or regions with a strong seasonal mean warming typically show a stronger precipitation decrease. By contrast, a positive correlation between temperature change and precipitation change is found for winter. Among other indicators, snow cover will be strongly affected by the projected climatic changes and will be subject to a widespread decrease except for very high elevation settings. In general and for all indicators, the magnitude of the change signals increases with the assumed greenhouse gas forcing, i.e., is smallest for RCP 2.6 and largest for RCP 8.5 with RCP 4.5 being located in between. These results largely agree with previous works based on older generations of RCM ensembles but, due to the comparatively large ensemble size and the high spatial resolution, allow for a more decent assessment of inherent projection uncertainties and of spatial details of future Alpine climate change. A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8.5). The core simulation ensemble has been subject to a dedicated evaluation exercise carried out in the frame of the CH2018 Climate Scenarios for Switzerland. Results reveal that the entire Alpine region will face a warmer climate in the course of the twenty-first century for all emission scenarios considered. Strongest warming is projected for the summer season, for regions south of the main Alpine ridge and for the high-end RCP 8.5 scenario. Depending on the season, medium to high elevations might experience an amplified warming. Model uncertainty can be considerable, but the major warming patterns are consistent across the ensemble. For precipitation, a seasonal shift of precipitation amounts from summer to winter over most parts of the domain is projected. However, model uncertainty is high and individual simulations can show change signals of opposite sign. Daily precipitation intensity is projected to increase in all seasons and all sub-domains, while the wet-day frequency will decrease in the summer season. The projected temperature change in summer is negatively correlated with the precipitation change, i.e. simulations and/or regions with a strong seasonal mean warming typically show a stronger precipitation decrease. By contrast, a positive correlation between temperature change and precipitation change is found for winter. Among other indicators, snow cover will be strongly affected by the projected climatic changes and will be subject to a widespread decrease except for very high elevation settings. In general and for all indicators, the magnitude of the change signals increases with the assumed greenhouse gas forcing, i.e., is smallest for RCP 2.6 and largest for RCP 8.5 with RCP 4.5 being located in between. These results largely agree with previous works based on older generations of RCM ensembles but, due to the comparatively large ensemble size and the high spatial resolution, allow for a more decent assessment of inherent projection uncertainties and of spatial details of future Alpine climate change. Abstract A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate model ensemble available at two grid spacings (12.5 and 50 km) and for three different greenhouse gas emission scenarios (RCPs 2.6, 4.5 and 8.5). The core simulation ensemble has been subject to a dedicated evaluation exercise carried out in the frame of the CH2018 Climate Scenarios for Switzerland. Results reveal that the entire Alpine region will face a warmer climate in the course of the twenty-first century for all emission scenarios considered. Strongest warming is projected for the summer season, for regions south of the main Alpine ridge and for the high-end RCP 8.5 scenario. Depending on the season, medium to high elevations might experience an amplified warming. Model uncertainty can be considerable, but the major warming patterns are consistent across the ensemble. For precipitation, a seasonal shift of precipitation amounts from summer to winter over most parts of the domain is projected. However, model uncertainty is high and individual simulations can show change signals of opposite sign. Daily precipitation intensity is projected to increase in all seasons and all sub-domains, while the wet-day frequency will decrease in the summer season. The projected temperature change in summer is negatively correlated with the precipitation change, i.e. simulations and/or regions with a strong seasonal mean warming typically show a stronger precipitation decrease. By contrast, a positive correlation between temperature change and precipitation change is found for winter. Among other indicators, snow cover will be strongly affected by the projected climatic changes and will be subject to a widespread decrease except for very high elevation settings. In general and for all indicators, the magnitude of the change signals increases with the assumed greenhouse gas forcing, i.e., is smallest for RCP 2.6 and largest for RCP 8.5 with RCP 4.5 being located in between. These results largely agree with previous works based on older generations of RCM ensembles but, due to the comparatively large ensemble size and the high spatial resolution, allow for a more decent assessment of inherent projection uncertainties and of spatial details of future Alpine climate change. |
Audience | Academic |
Author | Samacoïts, Raphaëlle Olefs, Marc Morin, Samuel Rajczak, Jan Kotlarski, Sven Gobiet, Andreas |
Author_xml | – sequence: 1 givenname: Sven orcidid: 0000-0001-9542-6781 surname: Kotlarski fullname: Kotlarski, Sven email: sven.kotlarski@meteoswiss.ch organization: Federal Office of Meteorology and Climatology MeteoSwiss – sequence: 2 givenname: Andreas orcidid: 0000-0001-5751-2961 surname: Gobiet fullname: Gobiet, Andreas organization: Zentralanstalt Für Meteorologie Und Geodynamik (ZAMG) – sequence: 3 givenname: Samuel orcidid: 0000-0002-1781-687X surname: Morin fullname: Morin, Samuel organization: Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d’Études de La Neige – sequence: 4 givenname: Marc orcidid: 0000-0002-5813-236X surname: Olefs fullname: Olefs, Marc organization: Zentralanstalt Für Meteorologie Und Geodynamik (ZAMG) – sequence: 5 givenname: Jan orcidid: 0000-0002-8893-0012 surname: Rajczak fullname: Rajczak, Jan organization: Federal Office of Meteorology and Climatology MeteoSwiss, Institute for Atmospheric and Climate Science, ETH Zurich – sequence: 6 givenname: Raphaëlle surname: Samacoïts fullname: Samacoïts, Raphaëlle organization: Météo-France |
BackLink | https://meteofrance.hal.science/meteo-03664434$$DView record in HAL |
BookMark | eNp9kV1rFDEUhoNUcFv9A14tCqLI1DP5mszlsqgtLAh-XIds5sxuSnayTjJi_72njqLbixJCOOF5wsl5z9nZkAZk7HkNlzVA8y4DCMMr4LS1AFGJR2xRS0GlaeUZW0AroGpUo56w85xvAGqpG75gL3idy3KNQ5nG26WLxzDg0sdwcIXOvRt2-JQ97l3M-OzPecG-fXj_dX1VbT59vF6vNpXXwEuFHjrf9ahh651EI7ampXqrBPRguOFgoO2w9yhV06HX26ZrjVLeb6UwCsUFezu_u3fRHkdqYby1yQV7tdrYAxZMFoTWUgr5oyb69Uwfx_R9wlzsIWSPMboB05QtN0Jy3UIjCX15D71J0zjQXyxvtOK1kQqIupypnYtow9CnMjpPq8ND8DTuPtD9qhGCa65aQ8KbE4GYgj_Lzk052-svn0_ZV_-xe3Sx7HOKUwlpyKegmUE_ppxH7K0Pxd1h1E2ItgZ7F7idA7cUuP0duBWk8nvq3yE-KIlZygRT2OO_2Txg_QJ-gLq0 |
CitedBy_id | crossref_primary_10_5194_nhess_25_77_2025 crossref_primary_10_1016_j_scitotenv_2024_175769 crossref_primary_10_1002_asl_1240 crossref_primary_10_1016_j_geoderma_2024_116993 crossref_primary_10_1016_j_atmosres_2025_107912 crossref_primary_10_3389_ffgc_2023_1240235 crossref_primary_10_5194_nhess_24_1975_2024 crossref_primary_10_3389_past_2024_12848 crossref_primary_10_1016_j_jenvman_2025_124600 crossref_primary_10_3390_rs15143542 crossref_primary_10_1016_j_coldregions_2024_104355 crossref_primary_10_1016_j_earscirev_2024_104886 crossref_primary_10_5194_hess_27_4257_2023 crossref_primary_10_1016_j_flora_2023_152441 crossref_primary_10_1016_j_scitotenv_2024_170391 crossref_primary_10_1080_27669645_2024_2308371 crossref_primary_10_5194_tc_17_3617_2023 crossref_primary_10_1016_j_cliser_2023_100405 crossref_primary_10_1021_acsestwater_4c00585 crossref_primary_10_1007_s10113_024_02259_8 crossref_primary_10_1002_hyp_15279 crossref_primary_10_1088_1748_9326_ad25a4 crossref_primary_10_1016_j_biocon_2023_110267 crossref_primary_10_1007_s00382_024_07556_w crossref_primary_10_1029_2023JD039637 crossref_primary_10_5194_hess_28_139_2024 crossref_primary_10_1111_plb_13630 crossref_primary_10_1038_s41558_022_01575_3 crossref_primary_10_1016_j_agrformet_2024_110126 crossref_primary_10_1007_s00382_024_07156_8 crossref_primary_10_1007_s10661_023_12175_9 crossref_primary_10_5194_tc_19_565_2025 crossref_primary_10_5194_tc_17_4691_2023 crossref_primary_10_1002_joc_8222 crossref_primary_10_1016_j_geomorph_2024_109329 crossref_primary_10_1007_s11629_023_7951_7 crossref_primary_10_3389_ejcmp_2024_12057 crossref_primary_10_5194_bg_20_2919_2023 crossref_primary_10_3897_italianbotanist_15_97630 crossref_primary_10_1007_s00382_024_07376_y crossref_primary_10_1088_1748_9326_acdb88 crossref_primary_10_1136_bmjgh_2023_014431 crossref_primary_10_3390_geohazards5040053 crossref_primary_10_3390_cli12090147 crossref_primary_10_1038_s41598_024_80139_1 crossref_primary_10_1038_s41558_023_01759_5 crossref_primary_10_1007_s10530_024_03424_0 crossref_primary_10_1038_s41558_024_02026_x crossref_primary_10_1016_j_ejrh_2024_101755 crossref_primary_10_1016_j_ecolind_2024_112154 crossref_primary_10_1002_esp_5859 crossref_primary_10_1007_s00506_024_01089_6 crossref_primary_10_3389_ffgc_2024_1332941 crossref_primary_10_1016_j_gloplacha_2024_104529 crossref_primary_10_1016_j_funeco_2023_101300 crossref_primary_10_3390_seeds2030027 crossref_primary_10_3390_f16010184 crossref_primary_10_1111_nph_20247 crossref_primary_10_1016_j_ecoser_2024_101641 crossref_primary_10_5194_tc_18_5495_2024 crossref_primary_10_1016_j_jnc_2024_126746 crossref_primary_10_1002_joc_8002 crossref_primary_10_1016_j_coldregions_2025_104424 crossref_primary_10_1038_s41467_024_54831_9 crossref_primary_10_5194_nhess_23_2749_2023 crossref_primary_10_5194_deuquasp_5_3_2024 |
Cites_doi | 10.1007/s10113-013-0499-2 10.1175/2009JCLI3361.1 10.1088/1748-9326/aacc77 10.1002/joc.769 10.1002/2015JD024634 10.1016/j.earscirev.2010.02.004 10.1016/j.cliser.2020.100179 10.5194/gmd-10-4257-2017 10.1007/s00382-020-05153-1 10.1175/2009BAMS2607.1 10.1002/joc.1179 10.1038/nature08823 10.5194/tc-12-1-2018 10.1038/s41598-019-44068-8 10.1002/wcc.731 10.1007/s10584-012-0419-3 10.1088/2515-7620/ac4fb9 10.1002/2014GL059724 10.5194/gmd-7-1297-2014 10.1007/s10584-013-1017-8 10.1007/s10113-020-01606-9 10.5194/tc-6-713-2012 10.1029/2019JD032344 10.1007/s00382-021-05657-4 10.5194/gmd-10-2379-2017 10.1093/acrefore/9780190228620.013.762 10.1002/2017JD027176 10.5194/tc-12-1249-2018 10.1017/9781009157964.004 10.1002/2014RG000475 10.1175/JCLI-D-18-0606.1 10.5194/tc-14-3979-2020 10.3390/atmos10080463 10.1007/s00382-012-1583-x 10.1016/j.cliser.2022.100288 10.2800/12552 10.1002/joc.4254 10.3390/atmos11121330 10.1016/j.cliser.2020.100196 10.1029/2020RG000730 10.5194/gmd-5-773-2012 10.1175/BAMS-D-15-0004.1 10.1007/s00704-017-2093-x 10.1126/science.1115602 10.1007/s10584-015-1582-0 10.1007/s10584-006-9210-7 10.1088/1748-9326/ab4949 10.1175/BAMS-D-11-00094.1 10.1007/s00704-015-1411-4 10.1007/s00382-018-4339-4 10.1002/2015JD024727 10.1007/s10584-011-0195-5 10.1038/nclimate2563 10.1038/nature01092 10.1002/joc.1377 10.1175/JCLI-D-18-0431.1 10.1007/s00382-021-05708-w 10.1007/s00382-016-3130-7 10.1002/joc.5970 10.1002/joc.5902 10.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9 10.3390/atmos10110682 10.1007/s10584-016-1806-y 10.1029/2019JD032356 10.5194/gmd-9-4087-2016 10.1007/s00382-020-05240-3 10.1007/s00382-012-1545-3 10.5194/hess-21-2649-2017 10.1002/joc.5460 10.1093/acrefore/9780190228620.013.767 10.5194/tc-15-1343-2021 10.1007/s00382-018-4521-8 10.1007/s00382-016-3276-3 10.1002/jgrd.50297 10.1175/JHM-D-16-0188.1 10.1002/joc.4162 10.1016/j.scitotenv.2013.07.050 10.5194/essd-14-1707-2022 10.1002/2014GL062588 10.1029/2011GL046976 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2023 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2023 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | C6C AAYXX CITATION ISR 3V. 7TG 7TN 7UA 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U 7S9 L.6 1XC VOOES |
DOI | 10.1007/s00382-022-06303-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Military Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Oceanography |
EISSN | 1432-0894 |
EndPage | 86 |
ExternalDocumentID | oai_HAL_meteo_03664434v1 A733262598 10_1007_s00382_022_06303_3 |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GrantInformation_xml | – fundername: Klima- und Energiefonds funderid: http://dx.doi.org/10.13039/100008559 |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IEP IFM IHE IHR IHW IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z92 ZMTXR ~02 ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7TG 7TN 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c602t-ec0dcdfe60bca4e83b89cdfb530f082820809defce457dec6b7d9855ccb4385e3 |
IEDL.DBID | U2A |
ISSN | 0930-7575 |
IngestDate | Thu Jul 10 08:57:40 EDT 2025 Fri Jul 11 05:00:14 EDT 2025 Fri Jul 25 09:55:15 EDT 2025 Tue Jun 10 21:04:28 EDT 2025 Fri Jun 27 05:27:23 EDT 2025 Thu May 22 21:24:09 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 01:29:32 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Climate change Temperature Precipitation Uncertainty European Alps EURO-CORDEX Snow cover |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-ec0dcdfe60bca4e83b89cdfb530f082820809defce457dec6b7d9855ccb4385e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1781-687X 0000-0001-5751-2961 0000-0001-9542-6781 0000-0002-5813-236X 0000-0002-8893-0012 |
OpenAccessLink | https://link.springer.com/10.1007/s00382-022-06303-3 |
PQID | 2765218450 |
PQPubID | 54165 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_meteo_03664434v1 proquest_miscellaneous_2834269074 proquest_journals_2765218450 gale_infotracacademiconefile_A733262598 gale_incontextgauss_ISR_A733262598 gale_healthsolutions_A733262598 crossref_citationtrail_10_1007_s00382_022_06303_3 crossref_primary_10_1007_s00382_022_06303_3 springer_journals_10_1007_s00382_022_06303_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Observational, Theoretical and Computational Research on the Climate System |
PublicationTitle | Climate dynamics |
PublicationTitleAbbrev | Clim Dyn |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
References | KotlarskiSBosshardTLüthiDPallPSchärCElevation gradients of European climate change in the regional climate model COSMO-CLMClim Change201211218921510.1007/s10584-011-0195-5 ArmstrongRLBrunESnow and climate: physical processes, surface energy exchange and modeling2008CambridgeCambridge University Press VernayMLafaysseMMonteiroDHagenmullerPNheiliRSamacoïtsRVerfaillieDMorinSThe S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluationEarth Syst Sci Dat2022141707170310.5194/essd-14-1707-2022 MatiuMCrespiABertoldiGCarmagnolaCMMartyCMorinSSchönerWCat BerroDChiognaGDe GregorioLKotlarskiSMajoneBReschGTerzagoSValtMBeozzoWCianfarraPGouttevinIMarcoliniGNotarnicolaCPetittaMScherrerSCStrasserUWinklerMZebischMCicognaACremoniniRDebernardiAFalettoMGaddoMGiovanniniLMercalliLSoubeyrouxJ-MSušnikATrentiAUrbaniSWeilguniVObserved snow depth trends in the European Alps: 1971 to 2019Cryosphere2021151343138210.5194/tc-15-1343-2021 WarscherMWagnerSMarkeTLauxPSmiatekGStrasserUKunstmannHA 5 km resolution regional climate simulation for central Europe: performance in high mountain areas and seasonal regional and elevation-dependent variationsAtmosphere2019101168210.3390/atmos10110682 FreiCSchärCA precipitation climatology of the Alps from high-resolution rain-gauge observationsInt J Climatol19981887390010.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9 BanNSchmidliJSchärCHeavy precipitation in a changing climate: does short-term summer precipitation increase faster?Geophys Res Lett2015421165117210.1002/2014GL062588 KnuttiRFurrerRTebaldiCCermakJMeehlGAChallenges in combining projections from multiple climate modelsJ Clim201023102739275810.1175/2009JCLI3361.1 RajczakJSchärCProjections of future precipitation extremes over Europe: a multimodel assessment of climate simulationsJ Geophys Res Atm201710.1002/2017JD027176 ScherrerSCHirschiMSpirigCMaurerFKotlarskiSTrends and drivers of recent summer drying in SwitzerlandEnviron Res Commun2022410.1088/2515-7620/ac4fb9 GiorgiFJonesCAsrarGRAddressing climate information needs at the regional level: the CORDEX frameworkWMO Bulletin2009583175183 MendlikTGobietASelecting climate simulations for impact studies based on multivariate patterns of climate changeClim Change201613538139310.1007/s10584-015-1582-0 SerquetGMartyCDulexJ-PRebetezMSeasonal trends and temperature dependence of the snowfall/precipitation-day ratio in SwitzerlandGeophy Res Lett201138L0770310.1029/2011GL046976 GutowskiWJJrGiorgiFTimbalBFrigonAJacobDKangH-SRaghavanKLeeBLennardCNikulinGO’RourkeERixenMSolmanSStephensonTTangangFWCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6Geosci Model Dev201694087409510.5194/gmd-9-4087-2016 PreinAFRasmussenRCastroCLDaiAMinderJSpecial issue: advances in convection-permitting climate modelingClim Dyn2020551210.1007/s00382-020-05240-3 de VriesHHaarsmaRJHazelegerWOn the future reduction of snowfall in western and central EuropeClim Dyn2013412319233010.1007/s00382-012-1583-x SeneviratneSICortiTDavinELHirschiMJaegerEBLehnerIOrlowskyBTeulingAJInvestigating soil moisture–climate interactions in a changing climate: a reviewEarth Sci Rev2010993–412516110.1016/j.earscirev.2010.02.004 SodenBJJacksonDLRamaswamyVSchwarzkopfMDHuangXThe radiative signature of upper tropospheric moisteningScience200531084184410.1126/science.1115602 BegertMFreiCLong-term area-mean temperature series for Switzerland—combining homogenized station data and high resolution grid dataInt J Climatol2018382792280710.1002/joc.5460 SchmidliJSchmutzCFreiCWannerHSchärCMesoscale precipitation variability in the region of the European Alps during the 20th centuryInt J Climatol2002221049107410.1002/joc.769 TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull Am Meteorol Soc20129348549810.1175/BAMS-D-11-00094.1 LüthiSBanNKotlarskiSStegerCRSchärCProjections of Alpine snow-cover in a high-resolution climate simulationAtmosphere20191046310.3390/atmos10080463 Chimani B, Heinrich G, Hofstätter M, Kerschbaumer M, Kienberger S, Leuprecht A, Lexer A, Peßenteiner S, Poetsch MS, Salzmann M, Spiekermann R, Switanek M, Truhetz H (2016) ÖKS15—Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse. Project report (in German), Vienna, Austria. Available from https://data.ccca.ac.at/dataset/endbericht-oks15-klimaszenarien-fur-osterreich-daten-methoden-klimaanalyse-v01. Accessed 28 September 2021 HockRRasulGAdlerCCáceresBGruberSHirabayashiYJacksonMKääbAKangSKutuzovSMilnerAIMolauUMorinSOrloveBSteltzerHPörtnerH-ORobertsDCMasson-DelmotteVZhaiPTignorMPoloczanskaEMintenbeckKAlegríaANicolaiMOkemAPetzoldJRamaBWeyerNMHigh mountain areasIPCC special report on the ocean and cryosphere in a changing climate2019Cambridge, New YorkCambridge University Press13120210.1017/9781009157964.004 GobietAKotlarskiSBenistonMHeinrichGRajczakJStoffelM21st century climate change in the European Alps: a reviewSci Total Environ20144931138115110.1016/j.scitotenv.2013.07.050 Koch R, Gobiet A, Olefs M (2020b) Studie zur vergangenen und zukünftigen Schneedeckenentwicklung im Skigebiet Brunnalm-Veitsch. Available from https://fuse-at.ccca.ac.at/wp-content/uploads/2021/02/fuse_veitsch_001_2020b1001.pdf. Accessed 28 September 2021 CH2018 (2018) CH2018—climate scenarios for Switzerland. Technical report, National Centre for climate services, Zurich, 271 pp. Avaiulable from https://www.nccs.admin.ch/nccs/en/home/climate-change-and-impacts/swiss-climate-change-scenarios/technical-report.html. Accessed 28 September 2021 EEA (2008) Regional climate change and adaptation: the Alps facing the challenge of changing water resources. EEA Report No. 8/2009. https://doi.org/10.2800/12552 VerfaillieDDéquéMMorinSLafaysseMThe method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface modelsGeosci Model Dev2017104257428310.5194/gmd-10-4257-2017 Koch R, Gobiet A, Olefs M (2020a) Studie zur vergangenen und zukünftigen Schneedeckenentwicklung im Skigebiet Obergurgl. Available from: https://fuse-at.ccca.ac.at/wp-content/uploads/2021/02/fuse_obergurgl_001_2020a1001.pdf. Accessed 28 September 2021 PiazzaMBoéJTerrayLPagéCSanchez-GomezEDéquéMProjected 21st century snowfall changes over the French Alps and related uncertaintiesClim Change201412258359410.1007/s10584-013-1017-8 KrönerNKotlarskiSFischerELüthiDZublerESchärCSeparating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climateClim Dyn2017483425344010.1007/s00382-016-3276-3 PichelliECoppolaESobolowskiS(2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitationClim Dyn2021563581360210.1007/s00382-021-05657-4 BrogliRKrönerNSørlandSLLüthiDSchärCThe role of hadley circulation and lapse-rate changes for the future European summer climateJ Clim201932238540410.1175/JCLI-D-18-0431.1 KotlarskiSLüthiDSchärCThe elevation dependency of 21st century European climate change: an RCM ensemble perspectiveInt J Climatol201535133902392010.1002/joc.4254 AuerIBöhmRJurkovicAHISTALP—historical instrumental climatological surface time series of the greater Alpine regionInt J Climatol200727174610.1002/joc.1377 HieblJFreiCDaily temperature grids for Austria since 1961—concept, creation and applicabilityTheor Appl Climatol201612416117810.1007/s00704-015-1411-4 KotlarskiSKeulerKChristensenOBColetteADéquéMGobietAGoergenKJacobDLüthiDvan MeijgaardENikulinGSchärCTeichmannCVautardRWarrach-SagiKWulfmeyerVRegional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensembleGeosci Model Dev201471297133310.5194/gmd-7-1297-2014 KendonEJBanNRobertsNMFowlerHJRobertsMJChanSCEvansJFosserGWilkinsonJMDo convection-permitting regional climate models improve projections of future precipitation change?Bull Am Meteorol so2017981799310.1175/BAMS-D-15-0004.1 MossRHEdmondsJAHibbardKAThe next generation of scenarios for climate change research and assessmentNature201046374775610.1038/nature08823 ScherrerSCFischerEMPosseltRLinigerMACroci-MaspoliMKnuttiREmerging trends in heavy precipitation and hot temperature extremes in SwitzerlandJ Geophys Res Atmos20161212626263710.1002/2015JD024634 EvinGHingrayBBlanchetJEckertNMorinSVerfaillieDPartitioning uncertainty components of an incomplete ensemble of climate projections using data augmentationJ Clim20193282423244010.1175/JCLI-D-18-0606.1 SchwingshacklCDavinELHirschiMSørlandSLWartenburgerRSeneviratneSIRegional climate model projections underestimate future warming due to missing plant physiological CO2 responseEnviron Res Lett20191410.1088/1748-9326/ab4949 ChristensenJHChristensenOBA summary of the PRUDENCE model projections of changes in European climate by the end of this centuryClim Change20078173010.1007/s10584-006-9210-7 HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull Am Meteorol Soc20099081095110810.1175/2009BAMS2607.1 PepinNCArnoneEGobietAHaslingerKKotlarskiSNotarnicolaCPalazziESeibertPSerafinSSchönerWTerzagoSThorntonJMVuilleMAdlerCClimate changes and their elevational patterns in the mountains of the worldRev Geophys2022602020RG00073010.1029/2020RG000730 VionnetVBrunEMorinSBooneAFarouxSLe MoignePMartinEWillemetJ-MThe detailed snowpack scheme Crocus and its implementation in SURFEX v7.2Geosci Model Dev2012577379110.5194/gmd-5-773-2012 JacobDPetersenJEggertBAliasAChristensenOBBouwerLMBraunAColetteADéquéMGeorgievskiGGeorgopoulouEGobietAMenutLNikulinGHaenslerAHempelmannNJonesCKeulerKKovatsSKrönerNKotlarskiSKriegsmannAMartinEvan MeijgaardEMoseleyCPfeiferSPreuschmannSRadermacherCRadtkeKRechidDRounsevellMSamuelssonPSomotSSoussanaJ-FTeichmannCValentiniRVautardRWeberBYiouPEURO-CORDEX: new high-resolution climate change projections for European impact researchReg Environ Change20141456357810.1007/s10113-013-0499-2 BanNCaillaudCCoppolaEThe first multi-model ensemble of regional climate simulations at E Pichelli (6303_CR61) 2021; 56 J Schmidli (6303_CR72) 2005; 25 H de Vries (6303_CR18) 2013; 41 C Schär (6303_CR69) 1998 SL Sørland (6303_CR80) 2018; 13 J Schmidli (6303_CR73) 2002; 22 D Verfaillie (6303_CR88) 2018; 12 G Klein (6303_CR40) 2016; 139 KE Taylor (6303_CR85) 2012; 93 C Schwingshackl (6303_CR75) 2019; 14 R Brogli (6303_CR11) 2019; 32 T Mendlik (6303_CR54) 2016; 135 AF Prein (6303_CR63) 2020; 55 A Gobiet (6303_CR28) 2020 M Begert (6303_CR9) 2018; 38 6303_CR20 E Hawkins (6303_CR31) 2009; 90 6303_CR23 J Hiebl (6303_CR32) 2016; 124 C Frei (6303_CR24) 1998; 18 W Schöner (6303_CR74) 2018; 39 I Auer (6303_CR5) 2007; 27 RH Moss (6303_CR55) 2010; 463 M Vernay (6303_CR1) 2022; 14 6303_CR2 I Rangwala (6303_CR66) 2012; 114 S Kotlarski (6303_CR46) 2015; 35 J Rajczak (6303_CR64) 2017 6303_CR35 BJ Soden (6303_CR79) 2005; 310 J Hiebl (6303_CR33) 2018; 132 F Giorgi (6303_CR27) 2009; 58 M Warscher (6303_CR90) 2019; 10 AM Fischer (6303_CR22) 2015; 35 M Matiu (6303_CR53) 2021; 15 SC Scherrer (6303_CR70) 2016; 121 J Boé (6303_CR10) 2020; 54 BN Sanderson (6303_CR68) 2017; 10 AM Fischer (6303_CR92) 2022; 26 V Peyaud (6303_CR59) 2020; 14 D Jacob (6303_CR38) 2020; 20 AF Prein (6303_CR62) 2015; 53 SI Seneviratne (6303_CR76) 2010; 99 SL Sørland (6303_CR81) 2020; 20 EJ Kendon (6303_CR39) 2017; 98 E Coppola (6303_CR17) 2021 G Serquet (6303_CR77) 2011; 38 KJPM Winter (6303_CR91) 2017; 48 P Frei (6303_CR26) 2018; 12 M Olefs (6303_CR57) 2020; 11 S Lüthi (6303_CR51) 2019; 10 C Steger (6303_CR83) 2013; 41 S Kotlarski (6303_CR45) 2014; 7 M Kuhn (6303_CR48) 2020 6303_CR49 S Kotlarski (6303_CR44) 2012; 112 N Ban (6303_CR7) 2020; 55 Mountain Research Initiative EDW Working Group (6303_CR56) 2015; 5 WJ Gutowski Jr (6303_CR30) 2016; 9 6303_CR42 M Piazza (6303_CR60) 2014; 122 6303_CR43 V Vionnet (6303_CR89) 2012; 5 H de Vries (6303_CR19) 2014; 41 G Smiatek (6303_CR78) 2016 D Verfaillie (6303_CR87) 2017; 10 R Knutti (6303_CR41) 2010; 23 E Coppola (6303_CR16) 2020; 55 P Lucas-Picher (6303_CR50) 2021 B Chimani (6303_CR13) 2020; 19 R Hock (6303_CR34) 2019 6303_CR14 G Evin (6303_CR21) 2019; 32 C Marty (6303_CR52) 2017; 18 M Allen (6303_CR3) 2002; 419 N Kröner (6303_CR47) 2017; 48 MB Switanek (6303_CR84) 2017; 21 J Rajczak (6303_CR65) 2013; 118 D Jacob (6303_CR37) 2014; 14 C Frei (6303_CR25) 2006; 32 A Gobiet (6303_CR29) 2014; 493 R Vautard (6303_CR86) 2021; 126 NC Pepin (6303_CR58) 2022; 60 JH Christensen (6303_CR15) 2007; 81 SC Scherrer (6303_CR71) 2022; 4 P Spandre (6303_CR82) 2019; 9 N Ban (6303_CR8) 2021; 57 6303_CR12 M Huss (6303_CR36) 2012; 6 E Rottler (6303_CR67) 2019; 39 RL Armstrong (6303_CR4) 2008 N Ban (6303_CR6) 2015; 42 |
References_xml | – reference: EvinGHingrayBBlanchetJEckertNMorinSVerfaillieDPartitioning uncertainty components of an incomplete ensemble of climate projections using data augmentationJ Clim20193282423244010.1175/JCLI-D-18-0606.1 – reference: KotlarskiSLüthiDSchärCThe elevation dependency of 21st century European climate change: an RCM ensemble perspectiveInt J Climatol201535133902392010.1002/joc.4254 – reference: PreinAFRasmussenRCastroCLDaiAMinderJSpecial issue: advances in convection-permitting climate modelingClim Dyn2020551210.1007/s00382-020-05240-3 – reference: Koch R, Gobiet A, Olefs M (2020b) Studie zur vergangenen und zukünftigen Schneedeckenentwicklung im Skigebiet Brunnalm-Veitsch. Available from https://fuse-at.ccca.ac.at/wp-content/uploads/2021/02/fuse_veitsch_001_2020b1001.pdf. Accessed 28 September 2021 – reference: RangwalaIMillerJRClimate change in mountains: a review of elevation-dependent warming and its possible causesClim Change201211452754710.1007/s10584-012-0419-3 – reference: Mountain Research Initiative EDW Working GroupElevation-dependent warming in mountain regions of the worldNature Clim Change2015542443010.1038/nclimate2563 – reference: VionnetVBrunEMorinSBooneAFarouxSLe MoignePMartinEWillemetJ-MThe detailed snowpack scheme Crocus and its implementation in SURFEX v7.2Geosci Model Dev2012577379110.5194/gmd-5-773-2012 – reference: SeneviratneSICortiTDavinELHirschiMJaegerEBLehnerIOrlowskyBTeulingAJInvestigating soil moisture–climate interactions in a changing climate: a reviewEarth Sci Rev2010993–412516110.1016/j.earscirev.2010.02.004 – reference: VerfaillieDDéquéMMorinSLafaysseMThe method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface modelsGeosci Model Dev2017104257428310.5194/gmd-10-4257-2017 – reference: de VriesHLenderinkGvan MeijgaardEFuture snowfall in western and central Europe projected with a high-resolution regional climate model ensembleGeophys Res Lett2014414294429910.1002/2014GL059724 – reference: SmiatekGKunstmannHSenatoreAEURO-CORDEX regional climate model analysis for the Greater Alpine region: performance and expected future changeJ Geophys Res Atm201610.1002/2015JD024727 – reference: BrogliRKrönerNSørlandSLLüthiDSchärCThe role of hadley circulation and lapse-rate changes for the future European summer climateJ Clim201932238540410.1175/JCLI-D-18-0431.1 – reference: van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160pp. Available from http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf. Accessed 28 September 2021 – reference: AuerIBöhmRJurkovicAHISTALP—historical instrumental climatological surface time series of the greater Alpine regionInt J Climatol200727174610.1002/joc.1377 – reference: SodenBJJacksonDLRamaswamyVSchwarzkopfMDHuangXThe radiative signature of upper tropospheric moisteningScience200531084184410.1126/science.1115602 – reference: PichelliECoppolaESobolowskiS(2021) The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitationClim Dyn2021563581360210.1007/s00382-021-05657-4 – reference: GiorgiFJonesCAsrarGRAddressing climate information needs at the regional level: the CORDEX frameworkWMO Bulletin2009583175183 – reference: ChristensenJHChristensenOBA summary of the PRUDENCE model projections of changes in European climate by the end of this centuryClim Change20078173010.1007/s10584-006-9210-7 – reference: SørlandSLSchärCLüthiDKjellströmEBias patterns and climate change signals in GCM-RCM model chainsEnviron Res Lett20181310.1088/1748-9326/aacc77 – reference: MatiuMCrespiABertoldiGCarmagnolaCMMartyCMorinSSchönerWCat BerroDChiognaGDe GregorioLKotlarskiSMajoneBReschGTerzagoSValtMBeozzoWCianfarraPGouttevinIMarcoliniGNotarnicolaCPetittaMScherrerSCStrasserUWinklerMZebischMCicognaACremoniniRDebernardiAFalettoMGaddoMGiovanniniLMercalliLSoubeyrouxJ-MSušnikATrentiAUrbaniSWeilguniVObserved snow depth trends in the European Alps: 1971 to 2019Cryosphere2021151343138210.5194/tc-15-1343-2021 – reference: ScherrerSCFischerEMPosseltRLinigerMACroci-MaspoliMKnuttiREmerging trends in heavy precipitation and hot temperature extremes in SwitzerlandJ Geophys Res Atmos20161212626263710.1002/2015JD024634 – reference: MossRHEdmondsJAHibbardKAThe next generation of scenarios for climate change research and assessmentNature201046374775610.1038/nature08823 – reference: VerfaillieDLafaysseMDéquéMEckertNLejeuneYMorinSMulti-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French AlpsCryosphere2018121249127110.5194/tc-12-1249-2018 – reference: SandersonBNWehnerMKnuttiRSkill and independence weighting for multi-model assessmentsGeosci Model Dev20171062379239510.5194/gmd-10-2379-2017 – reference: BoéJSomotSCorreLNabatPLarge discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequencesClim Dyn2020542981300210.1007/s00382-020-05153-1 – reference: PreinAFLanghansWFosserGFerroneABanNGoergenKKellerMTölleMGutjahrOFeserFBrissonEKolletSSchmidliJvan LipzigNPMLeungRA review on regional convection-permitting climate modeling: demonstrations, prospects, and challengesRev Geophys20155332336110.1002/2014RG000475 – reference: BegertMFreiCLong-term area-mean temperature series for Switzerland—combining homogenized station data and high resolution grid dataInt J Climatol2018382792280710.1002/joc.5460 – reference: RajczakJPallPSchärCProjections of extreme precipitation events in regional climate simulations for Europe and the Alpine RegionJ Geophys Res Atmos20131183610362610.1002/jgrd.50297 – reference: WinterKJPMKotlarskiSScherrerSCSchärCThe Alpine snow-albedo feedback in regional climate modelsClim Dyn201748110910.1007/s00382-016-3130-7 – reference: RottlerEKormannCFranckeTBronstertAElevation-dependent warming in the Swiss Alps 1981–2017: features, forcings and feedbacksInt J Climatol2019392556256810.1002/joc.5970 – reference: SchmidliJSchmutzCFreiCWannerHSchärCMesoscale precipitation variability in the region of the European Alps during the 20th centuryInt J Climatol2002221049107410.1002/joc.769 – reference: VernayMLafaysseMMonteiroDHagenmullerPNheiliRSamacoïtsRVerfaillieDMorinSThe S2M meteorological and snow cover reanalysis over the French mountainous areas, description and evaluationEarth Syst Sci Dat2022141707170310.5194/essd-14-1707-2022 – reference: WarscherMWagnerSMarkeTLauxPSmiatekGStrasserUKunstmannHA 5 km resolution regional climate simulation for central Europe: performance in high mountain areas and seasonal regional and elevation-dependent variationsAtmosphere2019101168210.3390/atmos10110682 – reference: BanNCaillaudCCoppolaEThe first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitationClim Dyn20215727530210.1007/s00382-021-05708-w – reference: GutowskiWJJrGiorgiFTimbalBFrigonAJacobDKangH-SRaghavanKLeeBLennardCNikulinGO’RourkeERixenMSolmanSStephensonTTangangFWCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6Geosci Model Dev201694087409510.5194/gmd-9-4087-2016 – reference: KuhnMOlefsMElevation-dependent climate change in the European AlpsOxf Res Encycl Clim Sci202010.1093/acrefore/9780190228620.013.762 – reference: MendlikTGobietASelecting climate simulations for impact studies based on multivariate patterns of climate changeClim Change201613538139310.1007/s10584-015-1582-0 – reference: FischerAMStrassmannKMCroci-MaspoliMHamaAMKnuttiRKotlarskiSSchärCSchnadt PoberajCBanNBavayMBeyerleUBreschDNBrönnimannSBurlandoPCasanuevaAFatichiSFeigenwinterIFischerEMHirschiMLinigerMAMartyCMedhaugIPelegNPicklMRaibleCCRajczakJRösslerOScherrerSCSchwierzCSeneviratneSISkeltonMSørlandSLSpirigCTschurrFZederJZublerEMClimate scenarios for Switzerland CH2018—Approach and ImplicationsClim.Serv20222610028810.1016/j.cliser.2022.100288 – reference: CH2018 (2018) CH2018—climate scenarios for Switzerland. Technical report, National Centre for climate services, Zurich, 271 pp. Avaiulable from https://www.nccs.admin.ch/nccs/en/home/climate-change-and-impacts/swiss-climate-change-scenarios/technical-report.html. Accessed 28 September 2021 – reference: SchmidliJFreiCTrends of heavy precipitation and wet and dry spells in Switzerland during the 20th centuryInt J Climatol20052575377110.1002/joc.1179 – reference: Chimani B, Heinrich G, Hofstätter M, Kerschbaumer M, Kienberger S, Leuprecht A, Lexer A, Peßenteiner S, Poetsch MS, Salzmann M, Spiekermann R, Switanek M, Truhetz H (2016) ÖKS15—Klimaszenarien für Österreich. Daten, Methoden und Klimaanalyse. Project report (in German), Vienna, Austria. Available from https://data.ccca.ac.at/dataset/endbericht-oks15-klimaszenarien-fur-osterreich-daten-methoden-klimaanalyse-v01. Accessed 28 September 2021 – reference: PeyaudVBouchayerCGagliardiniOVincentCGillet-ChauletFSixDLaarmanONumerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolutionCryosphere2020143979399410.5194/tc-14-3979-2020 – reference: ArmstrongRLBrunESnow and climate: physical processes, surface energy exchange and modeling2008CambridgeCambridge University Press – reference: FreiCSchmidliJDas Niederschlagsklima der Alpen: wo sich extreme nahe kommenPromet2006321–26167 – reference: ChimaniBMatullaCHieblJSchellander-GorgasTMaraunDMendlikTEitzingerJKubuGThalerSCompilation of a guideline providing comprehensive information on freely available climate change data and facilitating their efficient retrievalClim Serv20201910.1016/j.cliser.2020.100179 – reference: ScherrerSCHirschiMSpirigCMaurerFKotlarskiSTrends and drivers of recent summer drying in SwitzerlandEnviron Res Commun2022410.1088/2515-7620/ac4fb9 – reference: SpandrePFrançoisHVerfaillieDLafaysseMDéquéMEckertNGeorgeEMorinSClimate controls on snow reliability in French Alps ski resortsSci Rep20199804310.1038/s41598-019-44068-8 – reference: CoppolaENogherottoRCiarlòJMGiorgiFvan MeijgaardEKadygrovNAssessment of the European climate projections as simulated by the large EURO-CORDEX regional and global climate model ensembleJ Geophys Res Atmos202110.1029/2019JD032356 – reference: PepinNCArnoneEGobietAHaslingerKKotlarskiSNotarnicolaCPalazziESeibertPSerafinSSchönerWTerzagoSThorntonJMVuilleMAdlerCClimate changes and their elevational patterns in the mountains of the worldRev Geophys2022602020RG00073010.1029/2020RG000730 – reference: SerquetGMartyCDulexJ-PRebetezMSeasonal trends and temperature dependence of the snowfall/precipitation-day ratio in SwitzerlandGeophy Res Lett201138L0770310.1029/2011GL046976 – reference: KotlarskiSBosshardTLüthiDPallPSchärCElevation gradients of European climate change in the regional climate model COSMO-CLMClim Change201211218921510.1007/s10584-011-0195-5 – reference: OlefsMKochRSchönerWMarkeTChanges in snow depth, snow cover duration, and potential snowmaking conditions in Austria, 1961–2020—a model based approachAtmosphere202011133010.3390/atmos11121330 – reference: Adler C, Wester P, Bhatt I, Huggel C, Insarov G, Morecroft M, Muccione V, Prakash A (in press) Cross-Chapter Paper 5: Mountains, in IPCC 6th Assessment Report, Working Group 2 “Impacts, adaptation and vulnerability” 2022 https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_CrossChapterPaper5.pdf. Accessed 28 February 2022. – reference: CoppolaESobolowskiSPichelliEA first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the mediterraneanClim Dyn20205533410.1007/s00382-018-4521-8 – reference: Fischer AM, Liniger MA, Appenzeller C (2016) Climate scenarios of seasonal means: inter-variable and inter-seasonal correlations of change estimates. CH2011 extension series No. 3, Zurich, 19 pp. Available from https://www.ch2011.ch/pdf/CH2011plus_No3_Fischer_etal_2016.pdf. Accessed 15 March 2022 – reference: KnuttiRFurrerRTebaldiCCermakJMeehlGAChallenges in combining projections from multiple climate modelsJ Clim201023102739275810.1175/2009JCLI3361.1 – reference: VautardRKadygrovNIlesCBobergFBuonomoEBülowKEvaluation of the large EURO-CORDEX regional climate model ensembleJ Geophys Res: Atmos.2021126e2019JD03234410.1029/2019JD032344 – reference: HussMExtrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100Cryosphere2012671372710.5194/tc-6-713-2012 – reference: HockRRasulGAdlerCCáceresBGruberSHirabayashiYJacksonMKääbAKangSKutuzovSMilnerAIMolauUMorinSOrloveBSteltzerHPörtnerH-ORobertsDCMasson-DelmotteVZhaiPTignorMPoloczanskaEMintenbeckKAlegríaANicolaiMOkemAPetzoldJRamaBWeyerNMHigh mountain areasIPCC special report on the ocean and cryosphere in a changing climate2019Cambridge, New YorkCambridge University Press13120210.1017/9781009157964.004 – reference: PiazzaMBoéJTerrayLPagéCSanchez-GomezEDéquéMProjected 21st century snowfall changes over the French Alps and related uncertaintiesClim Change201412258359410.1007/s10584-013-1017-8 – reference: GobietAKotlarskiSFuture climate change in the European AlpsOxf Res Encycl Clim Sci202010.1093/acrefore/9780190228620.013.767 – reference: StegerCKotlarskiSJonasTSchärCAlpine snow cover in a changing climate: a regional climate model perspectiveClim Dyn20134173575410.1007/s00382-012-1545-3 – reference: HieblJFreiCDaily precipitation grids for Austria since 1961—development and evaluation of a spatial dataset for hydroclimatic monitoring and modellingTheor Appl Climatol201813232734510.1007/s00704-017-2093-x – reference: SchönerWKochRMatullaCMartyCTilgA-MSpatiotemporal patterns of snow depth within the Swiss-Austrian Alps for the past half century (1961 to 2012) and linkages to climate changeInt J Climatol2018391589160310.1002/joc.5902 – reference: LüthiSBanNKotlarskiSStegerCRSchärCProjections of Alpine snow-cover in a high-resolution climate simulationAtmosphere20191046310.3390/atmos10080463 – reference: Hofstätter M, Jacobeit J, Homann M, Lexer A, Chimani B, Philipp A, Beck C, Ganekind M (2015) WETRAX WEather Patterns, CycloneTRAcks and related precipitation Extremes. Großflächige Starkniederschlagsereignisse im Klimawandel in Mitteleuropa. Final project report. Geographica Augustana, 19, University of Augsburg. Available from https://www.zamg.ac.at/cms/de/forschung/klima/zeitliche-klimaanalyse/wetrax. Accessed 28 September 2021 – reference: FreiCSchärCA precipitation climatology of the Alps from high-resolution rain-gauge observationsInt J Climatol19981887390010.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9 – reference: HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull Am Meteorol Soc20099081095110810.1175/2009BAMS2607.1 – reference: SørlandSLFischerAMKotlarskiSKünschHRLinigerMARajczakJSchärCSpirigCStrassmannKKnuttiRCH2018—National climate scenarios for Switzerland: how to construct consistent multi-model projections from ensembles of opportunityClim Serv20202010.1016/j.cliser.2020.100196 – reference: AllenMIngramWConstraints on future changes in climate and the hydrologic cycleNature200241922823210.1038/nature01092 – reference: BanNRajczakJSchmidliJSchärCAnalysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulationsClim Dyn202055617510.1007/s00382-018-4339-4 – reference: SwitanekMBTrochPACastroCLLeuprechtAChangH-IMukherjeeRDemariaEMCScaled distribution mapping: a bias correction method that preserves raw climate model projected changesHydrol Earth Syst Sci2017212649266610.5194/hess-21-2649-2017 – reference: KrönerNKotlarskiSFischerELüthiDZublerESchärCSeparating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climateClim Dyn2017483425344010.1007/s00382-016-3276-3 – reference: FischerAMKellerDELinigerMARajczakJSchärCAppenzellerCProjected changes in precipitation intensity and frequency in Switzerland: a multi-model perspectiveInt J Climatol2015353204321910.1002/joc.4162 – reference: de VriesHHaarsmaRJHazelegerWOn the future reduction of snowfall in western and central EuropeClim Dyn2013412319233010.1007/s00382-012-1583-x – reference: TaylorKEStoufferRJMeehlGAAn overview of CMIP5 and the experiment designBull Am Meteorol Soc20129348549810.1175/BAMS-D-11-00094.1 – reference: BanNSchmidliJSchärCHeavy precipitation in a changing climate: does short-term summer precipitation increase faster?Geophys Res Lett2015421165117210.1002/2014GL062588 – reference: EEA (2008) Regional climate change and adaptation: the Alps facing the challenge of changing water resources. EEA Report No. 8/2009. https://doi.org/10.2800/12552 – reference: Koch R, Gobiet A, Olefs M (2020a) Studie zur vergangenen und zukünftigen Schneedeckenentwicklung im Skigebiet Obergurgl. Available from: https://fuse-at.ccca.ac.at/wp-content/uploads/2021/02/fuse_obergurgl_001_2020a1001.pdf. Accessed 28 September 2021 – reference: GobietAKotlarskiSBenistonMHeinrichGRajczakJStoffelM21st century climate change in the European Alps: a reviewSci Total Environ20144931138115110.1016/j.scitotenv.2013.07.050 – reference: KendonEJBanNRobertsNMFowlerHJRobertsMJChanSCEvansJFosserGWilkinsonJMDo convection-permitting regional climate models improve projections of future precipitation change?Bull Am Meteorol so2017981799310.1175/BAMS-D-15-0004.1 – reference: SchwingshacklCDavinELHirschiMSørlandSLWartenburgerRSeneviratneSIRegional climate model projections underestimate future warming due to missing plant physiological CO2 responseEnviron Res Lett20191410.1088/1748-9326/ab4949 – reference: HieblJFreiCDaily temperature grids for Austria since 1961—concept, creation and applicabilityTheor Appl Climatol201612416117810.1007/s00704-015-1411-4 – reference: JacobDTeichmannCSobolowskiSRegional climate downscaling over Europe: perspectives from the EURO-CORDEX communityReg Environ Change2020205110.1007/s10113-020-01606-9 – reference: MartyCTilgA-MJonasTRecent evidence of large-scale receding snow water equivalents in the European AlpsJ Hydromet2017181021103110.1175/JHM-D-16-0188.1 – reference: RajczakJSchärCProjections of future precipitation extremes over Europe: a multimodel assessment of climate simulationsJ Geophys Res Atm201710.1002/2017JD027176 – reference: SchärCDaviesTDFreiCWannerHWidmannMWildMDaviesHCCebonPDahindenUDaviesHCImbodenDMJägerCCurrent Alpine climateViews from the Alps: regional perspectives on climate change1998BostonMIT Press2172 – reference: KleinGVitasseYRixenCMartyCRebetezMShorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onsetClim Change201613963764910.1007/s10584-016-1806-y – reference: KotlarskiSKeulerKChristensenOBColetteADéquéMGobietAGoergenKJacobDLüthiDvan MeijgaardENikulinGSchärCTeichmannCVautardRWarrach-SagiKWulfmeyerVRegional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensembleGeosci Model Dev201471297133310.5194/gmd-7-1297-2014 – reference: JacobDPetersenJEggertBAliasAChristensenOBBouwerLMBraunAColetteADéquéMGeorgievskiGGeorgopoulouEGobietAMenutLNikulinGHaenslerAHempelmannNJonesCKeulerKKovatsSKrönerNKotlarskiSKriegsmannAMartinEvan MeijgaardEMoseleyCPfeiferSPreuschmannSRadermacherCRadtkeKRechidDRounsevellMSamuelssonPSomotSSoussanaJ-FTeichmannCValentiniRVautardRWeberBYiouPEURO-CORDEX: new high-resolution climate change projections for European impact researchReg Environ Change20141456357810.1007/s10113-013-0499-2 – reference: FreiPKotlarskiSLinigerMASchärCFuture snowfall in the Alps: projections based on the EURO-CORDEX regional climate modelsCryosphere20181212410.5194/tc-12-1-2018 – reference: Lucas-PicherPArguesoDBrissonETramblayYBergPLemonsuAKotlarskiSCaillaudCConvection-permitting modelling with regional climate models: latest developments and further stepsWiley Interdiscip Rev Clim Change202110.1002/wcc.731 – volume: 14 start-page: 563 year: 2014 ident: 6303_CR37 publication-title: Reg Environ Change doi: 10.1007/s10113-013-0499-2 – volume: 23 start-page: 2739 issue: 10 year: 2010 ident: 6303_CR41 publication-title: J Clim doi: 10.1175/2009JCLI3361.1 – volume: 13 year: 2018 ident: 6303_CR80 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aacc77 – volume: 22 start-page: 1049 year: 2002 ident: 6303_CR73 publication-title: Int J Climatol doi: 10.1002/joc.769 – volume: 121 start-page: 2626 year: 2016 ident: 6303_CR70 publication-title: J Geophys Res Atmos doi: 10.1002/2015JD024634 – volume: 99 start-page: 125 issue: 3–4 year: 2010 ident: 6303_CR76 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2010.02.004 – volume: 19 year: 2020 ident: 6303_CR13 publication-title: Clim Serv doi: 10.1016/j.cliser.2020.100179 – volume: 10 start-page: 4257 year: 2017 ident: 6303_CR87 publication-title: Geosci Model Dev doi: 10.5194/gmd-10-4257-2017 – volume: 54 start-page: 2981 year: 2020 ident: 6303_CR10 publication-title: Clim Dyn doi: 10.1007/s00382-020-05153-1 – volume: 90 start-page: 1095 issue: 8 year: 2009 ident: 6303_CR31 publication-title: Bull Am Meteorol Soc doi: 10.1175/2009BAMS2607.1 – volume: 25 start-page: 753 year: 2005 ident: 6303_CR72 publication-title: Int J Climatol doi: 10.1002/joc.1179 – volume: 463 start-page: 747 year: 2010 ident: 6303_CR55 publication-title: Nature doi: 10.1038/nature08823 – volume: 12 start-page: 1 year: 2018 ident: 6303_CR26 publication-title: Cryosphere doi: 10.5194/tc-12-1-2018 – ident: 6303_CR12 – volume: 9 start-page: 8043 year: 2019 ident: 6303_CR82 publication-title: Sci Rep doi: 10.1038/s41598-019-44068-8 – year: 2021 ident: 6303_CR50 publication-title: Wiley Interdiscip Rev Clim Change doi: 10.1002/wcc.731 – volume: 114 start-page: 527 year: 2012 ident: 6303_CR66 publication-title: Clim Change doi: 10.1007/s10584-012-0419-3 – ident: 6303_CR35 – volume: 4 year: 2022 ident: 6303_CR71 publication-title: Environ Res Commun doi: 10.1088/2515-7620/ac4fb9 – volume: 41 start-page: 4294 year: 2014 ident: 6303_CR19 publication-title: Geophys Res Lett doi: 10.1002/2014GL059724 – volume: 7 start-page: 1297 year: 2014 ident: 6303_CR45 publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1297-2014 – volume: 122 start-page: 583 year: 2014 ident: 6303_CR60 publication-title: Clim Change doi: 10.1007/s10584-013-1017-8 – volume: 20 start-page: 51 year: 2020 ident: 6303_CR38 publication-title: Reg Environ Change doi: 10.1007/s10113-020-01606-9 – volume: 32 start-page: 61 issue: 1–2 year: 2006 ident: 6303_CR25 publication-title: Promet – ident: 6303_CR49 – volume: 6 start-page: 713 year: 2012 ident: 6303_CR36 publication-title: Cryosphere doi: 10.5194/tc-6-713-2012 – volume: 126 start-page: e2019JD032344 year: 2021 ident: 6303_CR86 publication-title: J Geophys Res: Atmos. doi: 10.1029/2019JD032344 – start-page: 21 volume-title: Views from the Alps: regional perspectives on climate change year: 1998 ident: 6303_CR69 – volume: 56 start-page: 3581 year: 2021 ident: 6303_CR61 publication-title: Clim Dyn doi: 10.1007/s00382-021-05657-4 – volume: 10 start-page: 2379 issue: 6 year: 2017 ident: 6303_CR68 publication-title: Geosci Model Dev doi: 10.5194/gmd-10-2379-2017 – year: 2020 ident: 6303_CR48 publication-title: Oxf Res Encycl Clim Sci doi: 10.1093/acrefore/9780190228620.013.762 – year: 2017 ident: 6303_CR64 publication-title: J Geophys Res Atm doi: 10.1002/2017JD027176 – volume: 12 start-page: 1249 year: 2018 ident: 6303_CR88 publication-title: Cryosphere doi: 10.5194/tc-12-1249-2018 – start-page: 131 volume-title: IPCC special report on the ocean and cryosphere in a changing climate year: 2019 ident: 6303_CR34 doi: 10.1017/9781009157964.004 – volume: 53 start-page: 323 year: 2015 ident: 6303_CR62 publication-title: Rev Geophys doi: 10.1002/2014RG000475 – volume: 32 start-page: 2423 issue: 8 year: 2019 ident: 6303_CR21 publication-title: J Clim doi: 10.1175/JCLI-D-18-0606.1 – volume: 14 start-page: 3979 year: 2020 ident: 6303_CR59 publication-title: Cryosphere doi: 10.5194/tc-14-3979-2020 – volume: 10 start-page: 463 year: 2019 ident: 6303_CR51 publication-title: Atmosphere doi: 10.3390/atmos10080463 – volume: 41 start-page: 2319 year: 2013 ident: 6303_CR18 publication-title: Clim Dyn doi: 10.1007/s00382-012-1583-x – volume: 26 start-page: 100288 year: 2022 ident: 6303_CR92 publication-title: Clim.Serv doi: 10.1016/j.cliser.2022.100288 – ident: 6303_CR20 doi: 10.2800/12552 – volume: 35 start-page: 3902 issue: 13 year: 2015 ident: 6303_CR46 publication-title: Int J Climatol doi: 10.1002/joc.4254 – volume: 11 start-page: 1330 year: 2020 ident: 6303_CR57 publication-title: Atmosphere doi: 10.3390/atmos11121330 – volume: 20 year: 2020 ident: 6303_CR81 publication-title: Clim Serv doi: 10.1016/j.cliser.2020.100196 – volume: 60 start-page: 2020RG000730 year: 2022 ident: 6303_CR58 publication-title: Rev Geophys doi: 10.1029/2020RG000730 – volume: 5 start-page: 773 year: 2012 ident: 6303_CR89 publication-title: Geosci Model Dev doi: 10.5194/gmd-5-773-2012 – volume: 98 start-page: 79 issue: 1 year: 2017 ident: 6303_CR39 publication-title: Bull Am Meteorol so doi: 10.1175/BAMS-D-15-0004.1 – volume: 132 start-page: 327 year: 2018 ident: 6303_CR33 publication-title: Theor Appl Climatol doi: 10.1007/s00704-017-2093-x – volume: 310 start-page: 841 year: 2005 ident: 6303_CR79 publication-title: Science doi: 10.1126/science.1115602 – volume: 135 start-page: 381 year: 2016 ident: 6303_CR54 publication-title: Clim Change doi: 10.1007/s10584-015-1582-0 – volume: 81 start-page: 7 year: 2007 ident: 6303_CR15 publication-title: Clim Change doi: 10.1007/s10584-006-9210-7 – ident: 6303_CR23 – volume: 14 year: 2019 ident: 6303_CR75 publication-title: Environ Res Lett doi: 10.1088/1748-9326/ab4949 – ident: 6303_CR42 – volume: 93 start-page: 485 year: 2012 ident: 6303_CR85 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-11-00094.1 – volume: 124 start-page: 161 year: 2016 ident: 6303_CR32 publication-title: Theor Appl Climatol doi: 10.1007/s00704-015-1411-4 – volume: 55 start-page: 61 year: 2020 ident: 6303_CR7 publication-title: Clim Dyn doi: 10.1007/s00382-018-4339-4 – year: 2016 ident: 6303_CR78 publication-title: J Geophys Res Atm doi: 10.1002/2015JD024727 – volume: 112 start-page: 189 year: 2012 ident: 6303_CR44 publication-title: Clim Change doi: 10.1007/s10584-011-0195-5 – volume: 5 start-page: 424 year: 2015 ident: 6303_CR56 publication-title: Nature Clim Change doi: 10.1038/nclimate2563 – volume: 58 start-page: 175 issue: 3 year: 2009 ident: 6303_CR27 publication-title: WMO Bulletin – volume: 419 start-page: 228 year: 2002 ident: 6303_CR3 publication-title: Nature doi: 10.1038/nature01092 – volume: 27 start-page: 17 year: 2007 ident: 6303_CR5 publication-title: Int J Climatol doi: 10.1002/joc.1377 – volume: 32 start-page: 385 issue: 2 year: 2019 ident: 6303_CR11 publication-title: J Clim doi: 10.1175/JCLI-D-18-0431.1 – volume: 57 start-page: 275 year: 2021 ident: 6303_CR8 publication-title: Clim Dyn doi: 10.1007/s00382-021-05708-w – ident: 6303_CR14 – volume: 48 start-page: 1109 year: 2017 ident: 6303_CR91 publication-title: Clim Dyn doi: 10.1007/s00382-016-3130-7 – volume: 39 start-page: 2556 year: 2019 ident: 6303_CR67 publication-title: Int J Climatol doi: 10.1002/joc.5970 – volume: 39 start-page: 1589 year: 2018 ident: 6303_CR74 publication-title: Int J Climatol doi: 10.1002/joc.5902 – volume: 18 start-page: 873 year: 1998 ident: 6303_CR24 publication-title: Int J Climatol doi: 10.1002/(SICI)1097-0088(19980630)18:8%3C873::AID-JOC255%3E3.0.CO;2-9 – volume: 10 start-page: 682 issue: 11 year: 2019 ident: 6303_CR90 publication-title: Atmosphere doi: 10.3390/atmos10110682 – volume: 139 start-page: 637 year: 2016 ident: 6303_CR40 publication-title: Clim Change doi: 10.1007/s10584-016-1806-y – year: 2021 ident: 6303_CR17 publication-title: J Geophys Res Atmos doi: 10.1029/2019JD032356 – volume: 9 start-page: 4087 year: 2016 ident: 6303_CR30 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-4087-2016 – volume: 55 start-page: 1 year: 2020 ident: 6303_CR63 publication-title: Clim Dyn doi: 10.1007/s00382-020-05240-3 – volume: 41 start-page: 735 year: 2013 ident: 6303_CR83 publication-title: Clim Dyn doi: 10.1007/s00382-012-1545-3 – volume: 21 start-page: 2649 year: 2017 ident: 6303_CR84 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-21-2649-2017 – volume: 38 start-page: 2792 year: 2018 ident: 6303_CR9 publication-title: Int J Climatol doi: 10.1002/joc.5460 – year: 2020 ident: 6303_CR28 publication-title: Oxf Res Encycl Clim Sci doi: 10.1093/acrefore/9780190228620.013.767 – volume: 15 start-page: 1343 year: 2021 ident: 6303_CR53 publication-title: Cryosphere doi: 10.5194/tc-15-1343-2021 – volume: 55 start-page: 3 year: 2020 ident: 6303_CR16 publication-title: Clim Dyn doi: 10.1007/s00382-018-4521-8 – ident: 6303_CR43 – ident: 6303_CR2 – volume: 48 start-page: 3425 year: 2017 ident: 6303_CR47 publication-title: Clim Dyn doi: 10.1007/s00382-016-3276-3 – volume: 118 start-page: 3610 year: 2013 ident: 6303_CR65 publication-title: J Geophys Res Atmos doi: 10.1002/jgrd.50297 – volume: 18 start-page: 1021 year: 2017 ident: 6303_CR52 publication-title: J Hydromet doi: 10.1175/JHM-D-16-0188.1 – volume: 35 start-page: 3204 year: 2015 ident: 6303_CR22 publication-title: Int J Climatol doi: 10.1002/joc.4162 – volume-title: Snow and climate: physical processes, surface energy exchange and modeling year: 2008 ident: 6303_CR4 – volume: 493 start-page: 1138 year: 2014 ident: 6303_CR29 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.07.050 – volume: 14 start-page: 1707 year: 2022 ident: 6303_CR1 publication-title: Earth Syst Sci Dat doi: 10.5194/essd-14-1707-2022 – volume: 42 start-page: 1165 year: 2015 ident: 6303_CR6 publication-title: Geophys Res Lett doi: 10.1002/2014GL062588 – volume: 38 start-page: L07703 year: 2011 ident: 6303_CR77 publication-title: Geophy Res Lett doi: 10.1029/2011GL046976 |
SSID | ssj0014672 |
Score | 2.6289504 |
Snippet | A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional climate... Abstract A comprehensive assessment of twenty-first century climate change in the European Alps is presented. The analysis is based on the EURO-CORDEX regional... |
SourceID | hal proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 65 |
SubjectTerms | 21st century Alpine climates Alpine regions altitude atmospheric precipitation climate Climate change Climate models Climatic changes Climatology Daily precipitation Domains Earth and Environmental Science Earth Sciences Emissions Environmental aspects Geophysics/Geodesy Greenhouse effect greenhouse gas emissions Greenhouse gases Indicators Influence model uncertainty Oceanography Precipitation Precipitation (Meteorology) Rainfall intensity Regional climate models Regional climates Sciences of the Universe Seasons Simulation Snow cover snowpack Spatial discrimination Spatial resolution Summer Switzerland Temperature Temperature changes Uncertainty Winter |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_Y9sILggGiMEaZJniAiDYfTfqEbqdNB2ITGkzaW9Sk6UA62mO94--fneY6Dok9VWmdNnUS-5c4tgk5bKyweaM8tbVUFPR1TjXcolx46TQofKvQ3_n0rJhdiM-X8jJuuPXxWOVaJgZBXXcO98g_MFVIXI7I7OPiN8WsUWhdjSk0tsgOiGANi6-do-Ozr-ejHQHEQLAjlDyjCpBJdJsJznNoFGMUT7Nj3ClO-YZqigJ66weej_wLfP5jLw1q6OQheRDxYzoZOvwRuefbXZKcAvTtrsMOefomnc5_Ag4NpcfkgOX9Mp0OuiWt5guAlakLFHANvgVPyMXJ8ffpjMbECNQVGVtS77La1Y0vMusq4TW3uoSylTxrMCQdAxhY1r5xXkhVe1cAw0stpXNWcC09f0q22671z0iaMys01OK4tGKyqjJXK8eKspKceaESkq95YlyMGo7JK-ZmjHcc-GiAjybw0fCEvBvrLIaYGXdSv0JWm8Hvc5xwZqI4QEtYnemEHAQKDFfR4nmYq2rV9-bTt_MNoreRqOmgga6K7gXwmxjhaoPyEDp1bBnG155Nvphf2FMGFDogRC7-5AnZW_e6ifO6N7ejMCGvx8cwI9HMUrW-WwGN5ugfDNgsIe_Xo-X2Ff_nxPO7v_iC3Mdc98P-zx7ZXl6v_EtAREu7H4f9DUVYAoo priority: 102 providerName: ProQuest |
Title | 21st Century alpine climate change |
URI | https://link.springer.com/article/10.1007/s00382-022-06303-3 https://www.proquest.com/docview/2765218450 https://www.proquest.com/docview/2834269074 https://meteofrance.hal.science/meteo-03664434 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7QUhITZABEYXpgkewFJix_l4TLOW8rGBBpXGkxU7zkAq6bS0_P2cHSejCJB4spKcI-fs8_2c8_0McFzLSIZ1oomseELQX4ckxVuERZqrFB2-TEy-8-lZPF9Eby_4hUsKa_vd7n1I0s7UQ7KbCWJRYnafG54oRtgIdrlZu-MoXtB8iB2g6dvYQcYCkiAacakyf37Hljtyk_Loq9kT-Qvg_C1Gal3P7B7cdZjRz7tO3oNbutkH7xTh7ura_hX3n_vF8htiT3u1D3c-KF02joz6PhzRsF37Rede_HJ5hcjSV7YClja94AEsZtPPxZy4sxGIigO6JloFlapqHQdSlZFOmUwzvJacBbVhpaOIBLNK10pHPKm0ilHnWcq5UjJiKdfsIew0q0Y_Aj-kMkqxFjOrK8rLMlBVomiclZxRHSUehL2KhHLE4eb8iqUYKI-tWgWqVVi1CubBy6HOVUeb8U_pQ6N50aV-DjYn8oQhusQFWurBkZUwjBWN2RJzWW7aVrz5dL4l9MIJ1StsoCpdhgF-piG52pI8xj4eWmYotuf5e_HddJxAn44gkUU_Qg8O-kEgnGm3giYxN-tiHnjwbHiMRmkiLWWjVxuUSZlJEUZ45sGrfvDcvOLvmnj8f-JP4DYaAOt-CR3Azvp6o58iSFrLMezmk5PJzJSvv7ybYjmZnn08H8OoiIuxtZifFsUIdQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9t3QO8ID5FYLAwDXgAi8SO8_GAUCmbWtZWaGzS3kziOBtSacrSgvin-Bu5cz5GkdjbniIn58Q523e_8_nOAHtFFmR-ERmW5TJiqK99FuMtJgIjdYwKP4so3nkyDYcnwcdTeboBv9tYGNpW2cpEK6jzUtMa-RsehZLMEem9W3xndGoUeVfbIzTqYXFofv1Ek616O_qA_fuc84P948GQNacKMB16fMmM9nKdFyb0Mp0GJhZZnGA5k8IrKJ8bRwyV5KbQJpBRbnSIrU1iKbXOAhFLI_C9m7AVCDRlerD1fn_66ajzW6DYsX6LRHgsQiTUhOnYYD1ywnFGu-cpz5VgYk0VNgph85z2Y_4Fdv_xz1q1d3AbbjV41e3XA-wObJj5XXAmCLXLC7si775wB7OviHtt6R7scr9auoNal7npbIEw1tWWAq82luE-nFwLyx5Ab17OzUNwfZ4FMdYSZMpxmaaeziPNwySVgpsgcsBveaJ0k6WcDsuYqS6_suWjQj4qy0clHHjV1VnUOTqupN4hVqs6zrSb4KofCYSyaA3GDuxaCkqPMaf9N2fpqqrU6PPRGtHLhqgosYE6bcIZ8Dcpo9Ya5R52atcyyuc97I_VN-ophQACEakIfvgObLe9rho5UqnLUe_As-4xSgBy66RzU66QJhYUj4xY0IHX7Wi5fMX_OfHo6i_uwI3h8WSsxqPp4WO4yRHd1WtP29BbXqzME0Rjy-xpMwVc-HLds-4PO29B5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnYR4QXyKwGBhGvAA1hI7zscDQqVb1bKtmgaT9mYSx2GTSlOWFsS_xl_HnfMxisTe9hQluSTO2Xf3O5_vDLBTZEHmF5FhWS4jhvbaZzFeYiIwUsdo8LOI8p2PJuHoNPh4Js_W4HebC0PLKludaBV1XmqaI9_lUSjJHZHebtEsizjeG76ff2e0gxRFWtvtNOohcmB-_UT3rXo33sO-fsn5cP_zYMSaHQaYDj2-YEZ7uc4LE3qZTgMTiyxO8DyTwiuothtHPJXkptAmkFFudIgtT2Iptc4CEUsj8L3rsBGhV-T1YOPD_uT4pIthoAqyMYxEeCxCVNSk7NjEPQrIcUYr6anmlWBixSw2xmH9nNZm_gV8_4nVWhM4vAt3Guzq9uvBdg_WzOw-OEcIu8tLOzvvvnIH0wvEwPbsAWxzv1q4g9quuel0jpDW1ZYCjzav4SGc3gjLHkFvVs7MY3B9ngUxPiXIreMyTT2dR5qHSSoFN0HkgN_yROmmYjltnDFVXa1ly0eFfFSWj0o48KZ7Zl7X67iWeotYreqc007YVT8SCGvRM4wd2LYUVCpjRoPua7qsKjX-dLJC9LohKkpsoE6b1Ab8TaqutUK5g53atYxqe4_6h-ob9ZRCMIHoVAQ_fAc2215XjU6p1JUEOPCiu43agEI86cyUS6SJBeUmIy504G07Wq5e8X9OPLn-i1twC6VNHY4nB0_hNkegV09DbUJvcbk0zxCYLbLnjQS48OWmhe4PegtGGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=21st+Century+alpine+climate+change&rft.jtitle=Climate+dynamics&rft.au=Kotlarski%2C+Sven&rft.au=Gobiet%2C+Andreas&rft.au=Morin%2C+Samuel&rft.au=Olefs%2C+Marc&rft.date=2023-01-01&rft.pub=Springer&rft.issn=0930-7575&rft.volume=60&rft.issue=1-2&rft.spage=65&rft_id=info:doi/10.1007%2Fs00382-022-06303-3&rft.externalDBID=ISR&rft.externalDocID=A733262598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon |