Induction of Caspase Activation and Cleavage of the Viral Nucleocapsid Protein in Different Cell Types during Crimean-Congo Hemorrhagic Fever Virus Infection
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection...
Saved in:
Published in | The Journal of biological chemistry Vol. 286; no. 5; pp. 3227 - 3234 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.02.2011
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80–90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. |
---|---|
AbstractList | Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of similar to 80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro . This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80–90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ∼80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases. |
Author | Karlberg, Helen Mirazimi, Ali Tan, Yee-Joo |
Author_xml | – sequence: 1 givenname: Helen surname: Karlberg fullname: Karlberg, Helen organization: From the Swedish Institute for Infectious Disease control, SE-171 82 Solna, Sweden – sequence: 2 givenname: Yee-Joo surname: Tan fullname: Tan, Yee-Joo organization: the Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore – sequence: 3 givenname: Ali surname: Mirazimi fullname: Mirazimi, Ali email: Ali.Mirazimi@smi.se organization: From the Swedish Institute for Infectious Disease control, SE-171 82 Solna, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21123175$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1vFCEUJaaN3VaffVPefJoWhplZeDFpRttuUj8SW-MbYeEySzMLK8xs0h_jf5XZbY2aNAIJAc45nJtzj9GBDx4QekXJKSXz6uxuqU8_0ulUCdaIZ2hGCWcFq-n3AzQjpKSFKGt-hI5TuiN5VII-R0clpSWj83qGfi68GfXggsfB4laljUqAz_PNVu1ulTe47UFtVQcTZFgB_uai6vGnUfcQtNokZ_CXGAZwHuf13lkLEfyAW-h7fHO_gYTNGJ3vcBvdGpQv2uC7gK9gHWJcqc5pfAFbiJPymPDCW9h5eoEOreoTvHzYT9DtxYeb9qq4_ny5aM-vC92QcihA8Kq0gjFFFOOqbOZMGcNNQ0AQ3tSMM04NYZbrqhGWWwAoRUOqqmqaZW3ZCXq3192MyzUYnc3nCuUmu1XxXgbl5N8v3q1kF7aSkTzLeRZ4-yAQw48R0iDXLulcvvIQxiQFmb7KsfwXySvecE7ZhHz9p6nfbh7Dy4B6D9AxpBTBSu2GXWrZo-slJXJqEpmbRE5NIvdNknln__AepZ9mvNkzrApSddElefu1JJQRKlhdU5IRYo-AHNPWQZRJO_AajIs5S2mCe1L9F5pf3Vw |
CitedBy_id | crossref_primary_10_1097_INF_0000000000000530 crossref_primary_10_1073_pnas_1200808109 crossref_primary_10_1371_journal_pone_0029712 crossref_primary_10_1016_j_coviro_2022_101278 crossref_primary_10_1128_JVI_00616_19 crossref_primary_10_1080_20477724_2021_1944539 crossref_primary_10_1099_jgv_0_000403 crossref_primary_10_1016_j_onehlt_2023_100529 crossref_primary_10_1099_jgv_0_000011 crossref_primary_10_1007_s00705_013_1940_z crossref_primary_10_1080_21645515_2015_1078045 crossref_primary_10_1038_s41541_024_00931_y crossref_primary_10_1038_s41579_023_00871_9 crossref_primary_10_1016_j_jsb_2016_09_013 crossref_primary_10_1074_jbc_M115_667436 crossref_primary_10_1128_JVI_01929_12 crossref_primary_10_1016_j_virs_2023_08_006 crossref_primary_10_1016_j_antiviral_2022_105244 crossref_primary_10_3201_eid2502_171999 crossref_primary_10_1007_s12250_018_0020_7 crossref_primary_10_1128_JVI_01680_15 crossref_primary_10_3390_v8040106 crossref_primary_10_12688_f1000research_16189_1 crossref_primary_10_1016_j_ttbdis_2020_101448 crossref_primary_10_1128_JVI_01864_13 crossref_primary_10_1371_journal_pntd_0009973 crossref_primary_10_1038_s41426_018_0192_0 crossref_primary_10_1128_JVI_01555_12 crossref_primary_10_1038_cddis_2012_18 crossref_primary_10_1089_vbz_2011_0766 crossref_primary_10_3390_v8060164 crossref_primary_10_1007_s00705_019_04236_7 crossref_primary_10_28982_josam_567579 crossref_primary_10_5812_jjm_59412 crossref_primary_10_7554_eLife_63906 crossref_primary_10_1038_cdd_2017_59 crossref_primary_10_1128_JVI_01627_12 crossref_primary_10_1128_jvi_01975_23 crossref_primary_10_1016_j_micinf_2017_10_002 crossref_primary_10_1016_j_antiviral_2015_05_005 crossref_primary_10_1002_jmv_24446 crossref_primary_10_1371_journal_pone_0108419 crossref_primary_10_1016_j_jcv_2014_08_029 crossref_primary_10_1371_journal_pone_0204264 crossref_primary_10_1186_s12985_023_02089_w crossref_primary_10_1371_journal_ppat_1004879 crossref_primary_10_1128_JVI_01638_21 crossref_primary_10_1002_jmv_25467 crossref_primary_10_1016_j_antiviral_2013_07_006 crossref_primary_10_1080_01919512_2020_1822149 crossref_primary_10_1177_0300985815570068 crossref_primary_10_3390_v17020178 crossref_primary_10_1128_JVI_00081_19 |
Cites_doi | 10.1016/S0163-7258(01)00159-0 10.1007/BF02255946 10.1074/jbc.M109.068221 10.1016/j.virol.2010.02.018 10.1055/s-0037-1613397 10.1038/nbt1291-1356 10.1007/s10549-008-0217-9 10.1586/14787210.4.6.917 10.1128/JVI.02310-09 10.1006/viro.1994.1309 10.1128/MMBR.00027-06 10.1002/jmv.20347 10.1002/jmv.10560 10.1002/jmv.21222 10.1016/S1473-3099(06)70435-2 10.1126/science.281.5381.1312 10.1099/0022-1317-71-3-501 10.1016/S0168-1702(02)00049-7 10.1006/viro.1999.9896 10.1128/JVI.73.12.10158-10163.1999 10.1128/JVI.77.14.7999-8008.2003 10.1146/annurev.micro.62.081307.163009 10.1128/CMR.14.4.778-809.2001 10.1016/j.semcdb.2004.11.011 10.1128/JVI.78.8.4323-4329.2004 10.1016/S1074-5521(98)90615-9 10.1016/j.biocel.2005.02.018 10.1128/jvi.70.8.5329-5335.1996 10.1371/journal.pone.0002032 10.1016/j.virusres.2009.12.013 10.1128/JVI.74.9.3975-3983.2000 10.1038/nature07013 10.1128/JVI.01238-07 10.1128/JVI.02575-06 |
ContentType | Journal Article |
Copyright | 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2011 by The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2011 by The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U9 H94 5PM |
DOI | 10.1074/jbc.M110.149369 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Caspase-3 Activation during CCHFV Infection |
EISSN | 1083-351X |
EndPage | 3234 |
ExternalDocumentID | PMC3030327 21123175 10_1074_jbc_M110_149369 US201301935510 S0021925820540271 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XFK XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .GJ 186 3O- 41~ 6TJ AAYJJ AAYOK ABFSI ABPTK ABTAH ACSFO ACYGS AEQTP AFDAS AFFNX AFMIJ AI. E.L F20 FA8 FBQ J5H MVM NHB OHT QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM Z5M 7X8 7U9 H94 5PM |
ID | FETCH-LOGICAL-c602t-e9842f933a0a38a2673add8d60e9086538381d03f8c469f8feee296044466b5f3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:35:07 EDT 2025 Thu Jul 10 18:29:35 EDT 2025 Fri Jul 11 06:55:03 EDT 2025 Wed Feb 19 02:29:58 EST 2025 Thu Apr 24 22:58:20 EDT 2025 Tue Jul 01 01:53:51 EDT 2025 Wed Dec 27 19:17:23 EST 2023 Fri Feb 23 02:46:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Viral Replication Negative-strand RNA Viruses CCHFV Nucleocapsid Protein Caspase Crimean-Congo Hemorrhagic Fever Virus Apoptosis Protein Assembly |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c602t-e9842f933a0a38a2673add8d60e9086538381d03f8c469f8feee296044466b5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M110.149369 |
PMID | 21123175 |
PQID | 848688131 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3030327 proquest_miscellaneous_904466351 proquest_miscellaneous_848688131 pubmed_primary_21123175 crossref_citationtrail_10_1074_jbc_M110_149369 crossref_primary_10_1074_jbc_M110_149369 fao_agris_US201301935510 elsevier_sciencedirect_doi_10_1074_jbc_M110_149369 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-04 |
PublicationDateYYYYMMDD | 2011-02-04 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2011 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Samuel (bib30) 2001; 14 Kohl, Clayton, Weber, Bridgen, Randall, Elliott (bib34) 2003; 77 Ergönül (bib19) 2006; 6 Schnittler, Feldmann (bib14) 2003; 89 Liljeström, Garoff (bib17) 1991; 9 Barry, Fragkoudis, Ferguson, Lulla, Merits, Kohl, Fazakerley (bib18) 2010; 84 Bray, Geisbert (bib20) 2005; 37 Kang, Park, Lee, Ahn (bib11) 1999; 264 García, Gil, Ventoso, Guerra, Domingo, Rivas, Esteban (bib31) 2006; 70 Clemens (bib33) 2005; 16 Bray, Pilch (bib21) 2006; 4 Majerciak, Kruhlak, Dagur, McCoy, Zheng (bib29) 2010; 285 Lei, Yeh, Liu, Lin, Chen, Liu (bib24) 2001; 8 Thornberry, Lazebnik (bib3) 1998; 281 Zhirnov, Konakova, Garten, Klenk (bib27) 1999; 73 Thornberry (bib2) 1998; 5 Andersson, Karlberg, Mousavi-Jazi, Martínez-Sobrido, Weber, Mirazimi (bib32) 2008; 80 Tarodi, Subramanian, Chinnadurai (bib4) 1994; 201 Won, Ikegami, Peters, Makino (bib8) 2007; 81 Jänicke (bib28) 2009; 117 Habjan, Andersson, Klingström, Schümann, Martin, Zimmermann, Wagner, Pichlmair, Schneider, Mühlberger, Mirazimi, Weber (bib35) 2008; 3 Ontiveros, Li, Jonsson (bib13) 2010; 401 Andersson, Bladh, Mousavi-Jazi, Magnusson, Lundkvist, Haller, Mirazimi (bib16) 2004; 78 Pekosz, Phillips, Pleasure, Merry, Gonzalez-Scarano (bib7) 1996; 70 Eléouët, Slee, Saurini, Castagné, Poncet, Garrido, Solary, Martin (bib26) 2000; 74 Gadaleta, Vacotto, Coulombié (bib5) 2002; 86 Hardestam, Klingström, Mattsson, Lundkvist (bib12) 2005; 76 Akhmatova, Yusupova, Khaiboullina, Sibiryak (bib10) 2003; 8 Chen, Lin, Huang, Wu, Cheng, Lei, Lee, Chiou, Wong, Hsieh (bib22) 2008; 453 Zimmermann, Bonzon, Green (bib1) 2001; 92 Acrani, Gomes, Proença-Módena, da Silva, Carminati, Silva, Santos, Arruda (bib9) 2010; 149 Andersson, Simon, Lundkvist, Nilsson, Holmström, Elgh, Mirazimi (bib15) 2004; 72 Elliott (bib6) 1990; 71 Best (bib25) 2008; 62 Chen, Hofman, Kung, Lin, Wu-Hsieh (bib23) 2007; 81 Zhirnov (10.1074/jbc.M110.149369_bib27) 1999; 73 Lei (10.1074/jbc.M110.149369_bib24) 2001; 8 Won (10.1074/jbc.M110.149369_bib8) 2007; 81 Samuel (10.1074/jbc.M110.149369_bib30) 2001; 14 Chen (10.1074/jbc.M110.149369_bib22) 2008; 453 Gadaleta (10.1074/jbc.M110.149369_bib5) 2002; 86 Andersson (10.1074/jbc.M110.149369_bib16) 2004; 78 Bray (10.1074/jbc.M110.149369_bib21) 2006; 4 Pekosz (10.1074/jbc.M110.149369_bib7) 1996; 70 Tarodi (10.1074/jbc.M110.149369_bib4) 1994; 201 Ergönül (10.1074/jbc.M110.149369_bib19) 2006; 6 Akhmatova (10.1074/jbc.M110.149369_bib10) 2003; 8 Hardestam (10.1074/jbc.M110.149369_bib12) 2005; 76 Thornberry (10.1074/jbc.M110.149369_bib3) 1998; 281 Eléouët (10.1074/jbc.M110.149369_bib26) 2000; 74 Elliott (10.1074/jbc.M110.149369_bib6) 1990; 71 Barry (10.1074/jbc.M110.149369_bib18) 2010; 84 Best (10.1074/jbc.M110.149369_bib25) 2008; 62 Bray (10.1074/jbc.M110.149369_bib20) 2005; 37 Clemens (10.1074/jbc.M110.149369_bib33) 2005; 16 Kohl (10.1074/jbc.M110.149369_bib34) 2003; 77 Kang (10.1074/jbc.M110.149369_bib11) 1999; 264 Habjan (10.1074/jbc.M110.149369_bib35) 2008; 3 Zimmermann (10.1074/jbc.M110.149369_bib1) 2001; 92 García (10.1074/jbc.M110.149369_bib31) 2006; 70 Liljeström (10.1074/jbc.M110.149369_bib17) 1991; 9 Andersson (10.1074/jbc.M110.149369_bib15) 2004; 72 Chen (10.1074/jbc.M110.149369_bib23) 2007; 81 Ontiveros (10.1074/jbc.M110.149369_bib13) 2010; 401 Acrani (10.1074/jbc.M110.149369_bib9) 2010; 149 Thornberry (10.1074/jbc.M110.149369_bib2) 1998; 5 Majerciak (10.1074/jbc.M110.149369_bib29) 2010; 285 Schnittler (10.1074/jbc.M110.149369_bib14) 2003; 89 Jänicke (10.1074/jbc.M110.149369_bib28) 2009; 117 Andersson (10.1074/jbc.M110.149369_bib32) 2008; 80 |
References_xml | – volume: 117 start-page: 219 year: 2009 end-page: 221 ident: bib28 publication-title: Breast Cancer Res. Treat. – volume: 73 start-page: 10158 year: 1999 end-page: 10163 ident: bib27 publication-title: J. Virol. – volume: 80 start-page: 1397 year: 2008 end-page: 1404 ident: bib32 publication-title: J. Med. Virol. – volume: 401 start-page: 165 year: 2010 end-page: 178 ident: bib13 publication-title: Virology – volume: 37 start-page: 1560 year: 2005 end-page: 1566 ident: bib20 publication-title: Int. J. Biochem. Cell Biol. – volume: 4 start-page: 917 year: 2006 end-page: 921 ident: bib21 publication-title: Expert Rev. Anti Infect. Ther. – volume: 16 start-page: 13 year: 2005 end-page: 20 ident: bib33 publication-title: Semin. Cell Dev. Biol. – volume: 92 start-page: 57 year: 2001 end-page: 70 ident: bib1 publication-title: Pharmacol. Ther. – volume: 78 start-page: 4323 year: 2004 end-page: 4329 ident: bib16 publication-title: J. Virol. – volume: 5 start-page: R97 year: 1998 end-page: R103 ident: bib2 publication-title: Chem. Biol. – volume: 14 start-page: 778 year: 2001 end-page: 809 ident: bib30 publication-title: Clin. Microbiol. Rev. – volume: 76 start-page: 234 year: 2005 end-page: 240 ident: bib12 publication-title: J. Med. Virol. – volume: 3 start-page: e2032 year: 2008 ident: bib35 publication-title: PLoS ONE – volume: 72 start-page: 83 year: 2004 end-page: 93 ident: bib15 publication-title: J. Med. Virol. – volume: 62 start-page: 171 year: 2008 end-page: 192 ident: bib25 publication-title: Annu. Rev. Microbiol. – volume: 77 start-page: 7999 year: 2003 end-page: 8008 ident: bib34 publication-title: J. Virol. – volume: 84 start-page: 7369 year: 2010 end-page: 7377 ident: bib18 publication-title: J. Virol. – volume: 453 start-page: 672 year: 2008 end-page: 676 ident: bib22 publication-title: Nature – volume: 70 start-page: 5329 year: 1996 end-page: 5335 ident: bib7 publication-title: J. Virol. – volume: 201 start-page: 404 year: 1994 end-page: 407 ident: bib4 publication-title: Virology – volume: 8 start-page: 37 year: 2003 end-page: 46 ident: bib10 publication-title: Russ. J. Immunol. – volume: 74 start-page: 3975 year: 2000 end-page: 3983 ident: bib26 publication-title: J. Virol. – volume: 6 start-page: 203 year: 2006 end-page: 214 ident: bib19 publication-title: Lancet Infect. Dis. – volume: 8 start-page: 377 year: 2001 end-page: 388 ident: bib24 publication-title: J. Biomed. Sci. – volume: 71 start-page: 501 year: 1990 end-page: 522 ident: bib6 publication-title: J. Gen. Virol. – volume: 281 start-page: 1312 year: 1998 end-page: 1316 ident: bib3 publication-title: Science – volume: 264 start-page: 99 year: 1999 end-page: 105 ident: bib11 publication-title: Virology – volume: 81 start-page: 5518 year: 2007 end-page: 5526 ident: bib23 publication-title: J. Virol. – volume: 81 start-page: 13335 year: 2007 end-page: 13345 ident: bib8 publication-title: J. Virol. – volume: 9 start-page: 1356 year: 1991 end-page: 1361 ident: bib17 publication-title: Biotechnology – volume: 285 start-page: 11297 year: 2010 end-page: 11307 ident: bib29 publication-title: J. Biol. Chem. – volume: 86 start-page: 87 year: 2002 end-page: 92 ident: bib5 publication-title: Virus Res. – volume: 89 start-page: 967 year: 2003 end-page: 972 ident: bib14 publication-title: Thromb. Haemost. – volume: 149 start-page: 56 year: 2010 end-page: 63 ident: bib9 publication-title: Virus Res. – volume: 70 start-page: 1032 year: 2006 end-page: 1060 ident: bib31 publication-title: Microbiol. Mol. Biol. Rev. – volume: 92 start-page: 57 year: 2001 ident: 10.1074/jbc.M110.149369_bib1 publication-title: Pharmacol. Ther. doi: 10.1016/S0163-7258(01)00159-0 – volume: 8 start-page: 377 year: 2001 ident: 10.1074/jbc.M110.149369_bib24 publication-title: J. Biomed. Sci. doi: 10.1007/BF02255946 – volume: 285 start-page: 11297 year: 2010 ident: 10.1074/jbc.M110.149369_bib29 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.068221 – volume: 401 start-page: 165 year: 2010 ident: 10.1074/jbc.M110.149369_bib13 publication-title: Virology doi: 10.1016/j.virol.2010.02.018 – volume: 89 start-page: 967 year: 2003 ident: 10.1074/jbc.M110.149369_bib14 publication-title: Thromb. Haemost. doi: 10.1055/s-0037-1613397 – volume: 9 start-page: 1356 year: 1991 ident: 10.1074/jbc.M110.149369_bib17 publication-title: Biotechnology doi: 10.1038/nbt1291-1356 – volume: 117 start-page: 219 year: 2009 ident: 10.1074/jbc.M110.149369_bib28 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-008-0217-9 – volume: 4 start-page: 917 year: 2006 ident: 10.1074/jbc.M110.149369_bib21 publication-title: Expert Rev. Anti Infect. Ther. doi: 10.1586/14787210.4.6.917 – volume: 84 start-page: 7369 year: 2010 ident: 10.1074/jbc.M110.149369_bib18 publication-title: J. Virol. doi: 10.1128/JVI.02310-09 – volume: 8 start-page: 37 year: 2003 ident: 10.1074/jbc.M110.149369_bib10 publication-title: Russ. J. Immunol. – volume: 201 start-page: 404 year: 1994 ident: 10.1074/jbc.M110.149369_bib4 publication-title: Virology doi: 10.1006/viro.1994.1309 – volume: 70 start-page: 1032 year: 2006 ident: 10.1074/jbc.M110.149369_bib31 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00027-06 – volume: 76 start-page: 234 year: 2005 ident: 10.1074/jbc.M110.149369_bib12 publication-title: J. Med. Virol. doi: 10.1002/jmv.20347 – volume: 72 start-page: 83 year: 2004 ident: 10.1074/jbc.M110.149369_bib15 publication-title: J. Med. Virol. doi: 10.1002/jmv.10560 – volume: 80 start-page: 1397 year: 2008 ident: 10.1074/jbc.M110.149369_bib32 publication-title: J. Med. Virol. doi: 10.1002/jmv.21222 – volume: 6 start-page: 203 year: 2006 ident: 10.1074/jbc.M110.149369_bib19 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(06)70435-2 – volume: 281 start-page: 1312 year: 1998 ident: 10.1074/jbc.M110.149369_bib3 publication-title: Science doi: 10.1126/science.281.5381.1312 – volume: 71 start-page: 501 year: 1990 ident: 10.1074/jbc.M110.149369_bib6 publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-71-3-501 – volume: 86 start-page: 87 year: 2002 ident: 10.1074/jbc.M110.149369_bib5 publication-title: Virus Res. doi: 10.1016/S0168-1702(02)00049-7 – volume: 264 start-page: 99 year: 1999 ident: 10.1074/jbc.M110.149369_bib11 publication-title: Virology doi: 10.1006/viro.1999.9896 – volume: 73 start-page: 10158 year: 1999 ident: 10.1074/jbc.M110.149369_bib27 publication-title: J. Virol. doi: 10.1128/JVI.73.12.10158-10163.1999 – volume: 77 start-page: 7999 year: 2003 ident: 10.1074/jbc.M110.149369_bib34 publication-title: J. Virol. doi: 10.1128/JVI.77.14.7999-8008.2003 – volume: 62 start-page: 171 year: 2008 ident: 10.1074/jbc.M110.149369_bib25 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.62.081307.163009 – volume: 14 start-page: 778 year: 2001 ident: 10.1074/jbc.M110.149369_bib30 publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.14.4.778-809.2001 – volume: 16 start-page: 13 year: 2005 ident: 10.1074/jbc.M110.149369_bib33 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2004.11.011 – volume: 78 start-page: 4323 year: 2004 ident: 10.1074/jbc.M110.149369_bib16 publication-title: J. Virol. doi: 10.1128/JVI.78.8.4323-4329.2004 – volume: 5 start-page: R97 year: 1998 ident: 10.1074/jbc.M110.149369_bib2 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(98)90615-9 – volume: 37 start-page: 1560 year: 2005 ident: 10.1074/jbc.M110.149369_bib20 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2005.02.018 – volume: 70 start-page: 5329 year: 1996 ident: 10.1074/jbc.M110.149369_bib7 publication-title: J. Virol. doi: 10.1128/jvi.70.8.5329-5335.1996 – volume: 3 start-page: e2032 year: 2008 ident: 10.1074/jbc.M110.149369_bib35 publication-title: PLoS ONE doi: 10.1371/journal.pone.0002032 – volume: 149 start-page: 56 year: 2010 ident: 10.1074/jbc.M110.149369_bib9 publication-title: Virus Res. doi: 10.1016/j.virusres.2009.12.013 – volume: 74 start-page: 3975 year: 2000 ident: 10.1074/jbc.M110.149369_bib26 publication-title: J. Virol. doi: 10.1128/JVI.74.9.3975-3983.2000 – volume: 453 start-page: 672 year: 2008 ident: 10.1074/jbc.M110.149369_bib22 publication-title: Nature doi: 10.1038/nature07013 – volume: 81 start-page: 13335 year: 2007 ident: 10.1074/jbc.M110.149369_bib8 publication-title: J. Virol. doi: 10.1128/JVI.01238-07 – volume: 81 start-page: 5518 year: 2007 ident: 10.1074/jbc.M110.149369_bib23 publication-title: J. Virol. doi: 10.1128/JVI.02575-06 |
SSID | ssj0000491 |
Score | 2.265215 |
Snippet | Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3227 |
SubjectTerms | Animals Apoptosis Caspase Caspase 3 - metabolism Caspase inhibitors Caspase-3 CCHFV Cell Line Cell Line, Tumor Cell survival Chlorocebus aethiops Conserved sequence Crimean-Congo Hemorrhagic Fever Virus Data processing Defense mechanisms Enzyme Activation Hemorrhagic fever Hemorrhagic Fever Virus, Crimean-Congo - pathogenicity Hemorrhagic Fever, Crimean - immunology Hemorrhagic Fever, Crimean - pathology Host-Pathogen Interactions - immunology Humans Hydrolysis Infection Microbiology Negative-strand RNA Viruses Nucleocapsid Protein Nucleocapsid Proteins - metabolism Nucleocapsids Pathogens Peptide Hydrolases Progeny Protein Assembly Proteolysis Replication RNA Site-directed mutagenesis Vero Cells Viral Replication |
Title | Induction of Caspase Activation and Cleavage of the Viral Nucleocapsid Protein in Different Cell Types during Crimean-Congo Hemorrhagic Fever Virus Infection |
URI | https://dx.doi.org/10.1074/jbc.M110.149369 https://www.ncbi.nlm.nih.gov/pubmed/21123175 https://www.proquest.com/docview/848688131 https://www.proquest.com/docview/904466351 https://pubmed.ncbi.nlm.nih.gov/PMC3030327 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2l5QFeKmiBhpv2ASGkysHedXx5rEKjqrRFiASFJ2vtrFNLiV0lDhL9Az6Cf2Vm12s7pREXKbJiZ-04meO57M6cIeQ14xKsmBNaoPg8yw36qRVLAcEKF4nD09CTHtY7X1x6p2P3bNKfdDo_WllL6zLuJTd31pX8j1ThGMgVq2T_QbL1ReEAvAf5whYkDNu_kjH23UiMyzcQoByQZiQxHcvUwsBgLsU3MauTAb5kWJJ_iTTGYMau4aaxWAB7XuLUx_uqX0p5NMBJPYxSV6aUETuASZFbgyKfFWCvFsVyeSVAcx4NJfx1eOX1ChSOzu7K225vU4CmXF_N_KS5SUzDuVrzi-Xc5Jwpm9jMLSgF-VVK66woaqDAz7nJFpku1snakxg4K8ss3Xa4LipwrJBpFnejmFlFkp21176VmgUt5LdMNmd6QvQ3cwD-EZqDOOktHNx3sX1hY_nMav_lx2g4Pj-PRieT0Q65xyDiwGYYHz41xPMQSOnmi9V9GpYo33136_LbHJydVBR3hTG3s3Fb7s3oIdmrhEOPNcgekY7M98nBcS7KYvGdvqEqU1gtweyT-wMjtAPys8YgLVJaYZA2GKSAQWowiEMAg1RhkLYxSCsMUnjVGKSIQaowSDUG6QYGaQuDVGGQKgzSGoOPyXh4MhqcWlXLDyvxbFZaMgxcloacC1vwQDDP52CAg6lnyxCCb7DO4GFObZ4GieuFaZBKKRnyC2FaQtxP-ROymxe5PCQ08ZmTxHDmNGAuZ3bMwfXymevJQPAkdrukZ-QUJRUfPrZlmUcqL8N3IxBsdOHgnhJsl7ytT7jWVDDbhzIj-KjyZLWHGgEyt590CBCJxAysezT-zDCnwMH2B47dJdTgJgL54pqeyGWxXkWBG3hB4HBn-5BQ5WzwPgx5qpFW3z6DaAsDiC7xNzBYD0Dy-c1P8uxKkdCD62tz5j_789c-Jw-aR_4F2S2Xa_kSPPkyfqWesV8Akfd- |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+Caspase+Activation+and+Cleavage+of+the+Viral+Nucleocapsid+Protein+in+Different+Cell+Types+during+Crimean-Congo+Hemorrhagic+Fever+Virus+Infection&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Karlberg%2C+Helen&rft.au=Tan%2C+Yee-Joo&rft.au=Mirazimi%2C+Ali&rft.date=2011-02-04&rft.issn=0021-9258&rft.volume=286&rft.issue=5&rft.spage=3227&rft.epage=3234&rft_id=info:doi/10.1074%2Fjbc.m110.149369&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |