Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images

With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 28; no. 9; pp. 1436 - 1447
Main Authors Garvin, M.K., Abramoff, M.D., Xiaodong Wu, Russell, S.R., Burns, T.L., Sonka, M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.
AbstractList With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm.
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCTOBER Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 ± 2.41 µm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 ± 1.98 µm.
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. [...] the need for 3-D segmentation methods for processing such data is becoming increasingly important.
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm.With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm.
Author Xiaodong Wu
Burns, T.L.
Garvin, M.K.
Russell, S.R.
Sonka, M.
Abramoff, M.D.
Author_xml – sequence: 1
  givenname: M.K.
  surname: Garvin
  fullname: Garvin, M.K.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA
– sequence: 2
  givenname: M.D.
  surname: Abramoff
  fullname: Abramoff, M.D.
– sequence: 3
  surname: Xiaodong Wu
  fullname: Xiaodong Wu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA
– sequence: 4
  givenname: S.R.
  surname: Russell
  fullname: Russell, S.R.
– sequence: 5
  givenname: T.L.
  surname: Burns
  fullname: Burns, T.L.
– sequence: 6
  givenname: M.
  surname: Sonka
  fullname: Sonka, M.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19278927$$D View this record in MEDLINE/PubMed
BookMark eNqFkktrGzEUhUVJaZy0-0KhDF20q0mv3tKmEJw-DA5Z1IXuhCzfsRVmRs48Cv73lbGbtlkkC0mg-50j6eqckZM2tUjIawoXlIL9uLieXTAAmyeqrDTPyIRKaUomxc8TMgGmTQmg2Ck56_tbACok2BfklNpcyWNC6stxSI0fcFXw8qqYtUPnOxxi6-ti7nfYFd9x3WA7-CGmtkhVce3DWPu8v8WQ4bq8yvrYFjfbIYasmqYNdtgGLBapSevObze7Ytb4NfYvyfPK1z2-Oq7n5MeXz4vpt3J-83U2vZyXQQEbyqArWikjFAevxdIGLvJrK2DKrLQRngFfViazInjJVtwyar0CiqA9Qwn8nHw6-G7HZYOrgPtX1W7bxcZ3O5d8dP9X2rhx6_TLMUup4TobfDgadOluxH5wTewD1rVvMY29M1pQSxlnT5KaC6BWGZXJ94-SXIKSwsCTIKNUGqb2ju8egLdp7PLP5QtKLWROgczQ2397cd-EPxHIAByA0KW-77D6i4Dbp8zllLl9ytwxZVmiHkhCPAQkdzPWjwnfHIQREe_PEdpaqhn_DT4D3ZE
CODEN ITMID4
CitedBy_id crossref_primary_10_1364_BOE_467563
crossref_primary_10_1016_j_media_2019_05_002
crossref_primary_10_1109_TMI_2010_2058861
crossref_primary_10_1177_25158414221083363
crossref_primary_10_1364_BOE_408590
crossref_primary_10_1109_TMI_2018_2877080
crossref_primary_10_1177_1120672119894887
crossref_primary_10_1016_j_preteyeres_2015_07_007
crossref_primary_10_1109_TMI_2014_2359980
crossref_primary_10_1364_BOE_9_003464
crossref_primary_10_1007_s00415_019_09627_z
crossref_primary_10_1364_BOE_10_005042
crossref_primary_10_1038_s41598_021_91097_3
crossref_primary_10_1007_s11517_021_02364_4
crossref_primary_10_1016_j_compmedimag_2014_06_012
crossref_primary_10_1002_aur_3204
crossref_primary_10_1142_S1793545816500085
crossref_primary_10_1364_BOE_10_005832
crossref_primary_10_1364_BOE_493047
crossref_primary_10_1016_j_cmpb_2019_105101
crossref_primary_10_3390_mi15070902
crossref_primary_10_1016_j_oret_2018_07_006
crossref_primary_10_1136_bmjopen_2022_067283
crossref_primary_10_1364_BOE_9_003590
crossref_primary_10_1364_BOE_8_003292
crossref_primary_10_1007_s00371_018_1486_x
crossref_primary_10_1016_j_cmpb_2017_10_010
crossref_primary_10_1016_j_media_2024_103296
crossref_primary_10_1167_tvst_1_1_3
crossref_primary_10_3341_jkos_2016_57_8_1260
crossref_primary_10_1038_s41598_020_66355_5
crossref_primary_10_1080_09500340_2015_1011246
crossref_primary_10_1088_0957_0233_26_3_035701
crossref_primary_10_1117_1_JBO_22_7_076014
crossref_primary_10_1109_ACCESS_2020_2981206
crossref_primary_10_1364_BOE_2_002403
crossref_primary_10_1016_j_media_2017_09_008
crossref_primary_10_3389_fneur_2020_00035
crossref_primary_10_3390_bioengineering12010065
crossref_primary_10_1364_JOSAA_31_000217
crossref_primary_10_1167_tvst_3_5_8
crossref_primary_10_1016_j_neurol_2010_03_024
crossref_primary_10_1016_j_ajo_2017_03_019
crossref_primary_10_3390_bioengineering11030240
crossref_primary_10_1007_s10916_019_1452_9
crossref_primary_10_1371_journal_pone_0145628
crossref_primary_10_1016_j_media_2019_01_010
crossref_primary_10_1016_j_ophtha_2020_03_010
crossref_primary_10_1364_BOE_487518
crossref_primary_10_3341_jkos_2014_55_10_1476
crossref_primary_10_3390_diagnostics12061504
crossref_primary_10_1038_s41598_021_85110_y
crossref_primary_10_1364_BOE_8_004257
crossref_primary_10_1109_ACCESS_2023_3317011
crossref_primary_10_1002_hbm_23946
crossref_primary_10_1038_s41598_019_49353_0
crossref_primary_10_1016_j_media_2014_03_004
crossref_primary_10_1109_ACCESS_2019_2893954
crossref_primary_10_1016_j_media_2023_103019
crossref_primary_10_1109_TMI_2012_2191302
crossref_primary_10_1097_IAE_0000000000002043
crossref_primary_10_1016_j_biosystemseng_2015_04_001
crossref_primary_10_1097_IAE_0000000000004105
crossref_primary_10_1016_j_compmedimag_2016_06_007
crossref_primary_10_1016_j_neucom_2024_128059
crossref_primary_10_1016_j_nicl_2022_103010
crossref_primary_10_1364_BOE_10_005291
crossref_primary_10_1097_IAE_0000000000002717
crossref_primary_10_1371_journal_pone_0224410
crossref_primary_10_1109_ACCESS_2017_2712767
crossref_primary_10_1111_aos_12596
crossref_primary_10_1364_BOE_485327
crossref_primary_10_1109_TMI_2017_2703147
crossref_primary_10_1364_BOE_9_004429
crossref_primary_10_1007_s11548_018_1795_6
crossref_primary_10_1167_tvst_9_8_34
crossref_primary_10_1155_2020_9232157
crossref_primary_10_1016_j_ajo_2024_02_018
crossref_primary_10_1364_OE_18_024595
crossref_primary_10_1109_RBME_2021_3110958
crossref_primary_10_1016_j_compmedimag_2018_01_001
crossref_primary_10_1017_S0952523816000067
crossref_primary_10_1007_s10278_020_00383_5
crossref_primary_10_3390_genes12030330
crossref_primary_10_1038_eye_2017_61
crossref_primary_10_1097_OPX_0000000000001347
crossref_primary_10_1097_WNO_0000000000001087
crossref_primary_10_1117_1_JBO_19_8_086020
crossref_primary_10_1097_IAE_0000000000000705
crossref_primary_10_1109_TMI_2015_2412881
crossref_primary_10_1109_TMI_2010_2087390
crossref_primary_10_1038_eye_2012_59
crossref_primary_10_1364_BOE_4_002712
crossref_primary_10_1364_BOE_426650
crossref_primary_10_1016_j_neucom_2019_07_079
crossref_primary_10_3390_s21238027
crossref_primary_10_1016_j_cmpb_2022_106801
crossref_primary_10_1117_1_JBO_21_10_101407
crossref_primary_10_1364_JOSAA_31_002551
crossref_primary_10_3389_fmed_2022_958469
crossref_primary_10_1016_j_oret_2017_03_015
crossref_primary_10_1038_s41598_020_73645_5
crossref_primary_10_1109_LSP_2020_3000933
crossref_primary_10_1002_ima_22840
crossref_primary_10_1016_j_ogla_2020_04_003
crossref_primary_10_1049_iet_ipr_2018_6634
crossref_primary_10_1364_BOE_8_004061
crossref_primary_10_1002_mp_14720
crossref_primary_10_1364_BOE_9_004481
crossref_primary_10_1016_j_ijleo_2020_165227
crossref_primary_10_1364_OE_23_031216
crossref_primary_10_1364_BOE_450193
crossref_primary_10_1097_IAE_0000000000001246
crossref_primary_10_1117_1_JBO_21_12_126017
crossref_primary_10_1016_j_neucom_2020_04_044
crossref_primary_10_3390_diagnostics14212395
crossref_primary_10_1016_j_ophtha_2010_03_067
crossref_primary_10_1016_j_media_2024_103092
crossref_primary_10_1364_BOE_4_002729
crossref_primary_10_1364_BOE_516045
crossref_primary_10_1109_TMI_2017_2700213
crossref_primary_10_1016_j_oret_2021_12_007
crossref_primary_10_1016_j_compmedimag_2016_07_006
crossref_primary_10_1016_j_xops_2024_100615
crossref_primary_10_1007_s40123_024_00956_5
crossref_primary_10_1016_j_compmedimag_2024_102452
crossref_primary_10_3390_life13040976
crossref_primary_10_1038_s41433_022_02077_4
crossref_primary_10_1016_j_jneumeth_2013_09_021
crossref_primary_10_1002_jbio_201960187
crossref_primary_10_1007_s11263_021_01520_5
crossref_primary_10_1364_BOE_4_002383
crossref_primary_10_1167_tvst_13_1_13
crossref_primary_10_1364_BOE_521154
crossref_primary_10_1167_tvst_10_4_24
crossref_primary_10_1255_jnirs_975
crossref_primary_10_1371_journal_pone_0231552
crossref_primary_10_1038_s41598_020_60612_3
crossref_primary_10_1038_s41598_023_35230_4
crossref_primary_10_1016_j_bspc_2025_107519
crossref_primary_10_1167_tvst_9_11_12
crossref_primary_10_1109_TMI_2012_2227120
crossref_primary_10_1167_iovs_18_24643
crossref_primary_10_1111_aos_15279
crossref_primary_10_1109_JBHI_2018_2810379
crossref_primary_10_1038_s41598_021_92713_y
crossref_primary_10_1155_2020_8826087
crossref_primary_10_1371_journal_pone_0168275
crossref_primary_10_1109_TMI_2017_2666045
crossref_primary_10_1111_ceo_14389
crossref_primary_10_1038_s41598_021_01105_9
crossref_primary_10_1109_JBHI_2018_2803063
crossref_primary_10_1038_s41598_022_05550_y
crossref_primary_10_1016_j_media_2020_101856
crossref_primary_10_1017_S0952523816000092
crossref_primary_10_3390_electronics13132516
crossref_primary_10_3390_jimaging8050139
crossref_primary_10_1109_TMI_2018_2884142
crossref_primary_10_1109_JBHI_2020_2981562
crossref_primary_10_1109_TMI_2014_2336246
crossref_primary_10_1097_IAE_0000000000001036
crossref_primary_10_1109_TMI_2019_2901398
crossref_primary_10_1097_WNO_0000000000000422
crossref_primary_10_1109_TMI_2010_2047023
crossref_primary_10_1097_WNO_0000000000001078
crossref_primary_10_1007_s40135_013_0014_4
crossref_primary_10_1364_BOE_7_004827
crossref_primary_10_1109_TMI_2023_3240757
crossref_primary_10_3390_bioengineering10101177
crossref_primary_10_1109_ACCESS_2018_2889321
crossref_primary_10_1117_1_NPh_4_1_011012
crossref_primary_10_1016_j_biopsych_2024_04_014
crossref_primary_10_1371_journal_pone_0193324
crossref_primary_10_1097_IAE_0000000000002531
crossref_primary_10_1167_tvst_10_13_9
crossref_primary_10_1364_BOE_524603
crossref_primary_10_1016_j_media_2024_103104
crossref_primary_10_1016_j_visres_2010_08_024
crossref_primary_10_1016_j_jaapos_2017_06_024
crossref_primary_10_1109_TMI_2019_2919951
crossref_primary_10_1371_journal_pone_0229977
crossref_primary_10_1364_BOE_2_002493
crossref_primary_10_1109_TMI_2012_2206822
crossref_primary_10_1364_BOE_5_002196
crossref_primary_10_1117_1_JBO_21_7_076015
crossref_primary_10_1152_japplphysiol_00132_2022
crossref_primary_10_1109_JBHI_2022_3217962
crossref_primary_10_1364_BOE_7_005252
crossref_primary_10_1016_j_ins_2016_04_017
crossref_primary_10_1038_s41598_020_69814_1
crossref_primary_10_1111_aos_14153
crossref_primary_10_1016_j_jcjo_2023_12_007
crossref_primary_10_1016_j_ophtha_2017_10_031
crossref_primary_10_1038_s41598_023_33694_y
crossref_primary_10_1364_BOE_487206
crossref_primary_10_1109_ACCESS_2021_3076427
crossref_primary_10_1016_j_cmpb_2020_105788
crossref_primary_10_1364_BOE_4_001133
crossref_primary_10_1016_j_neurobiolaging_2023_01_015
crossref_primary_10_1097_IAE_0000000000003082
crossref_primary_10_1371_journal_pone_0082922
crossref_primary_10_3390_app9132700
crossref_primary_10_3390_cells11111733
crossref_primary_10_1167_tvst_10_8_21
crossref_primary_10_1167_iovs_18_25092
crossref_primary_10_1117_1_JBO_22_2_025004
crossref_primary_10_1038_srep21739
crossref_primary_10_1167_tvst_3_1_1
crossref_primary_10_1371_journal_pone_0128925
crossref_primary_10_1109_TMI_2023_3330576
crossref_primary_10_1364_BOE_9_003049
crossref_primary_10_1109_TBME_2012_2184759
crossref_primary_10_3341_jkos_2015_56_9_1400
crossref_primary_10_1016_j_artmed_2020_101871
crossref_primary_10_1016_j_preteyeres_2024_101305
crossref_primary_10_3389_fimmu_2021_630022
crossref_primary_10_3233_JAD_190152
crossref_primary_10_1016_j_compbiomed_2014_08_028
crossref_primary_10_1016_j_exer_2020_108123
crossref_primary_10_1364_BOE_7_001525
crossref_primary_10_1364_BOE_8_001926
crossref_primary_10_1117_1_JBO_20_9_096014
crossref_primary_10_1364_OE_18_019413
crossref_primary_10_1364_OE_18_021293
crossref_primary_10_1016_j_compmedimag_2015_09_008
crossref_primary_10_3389_fnins_2019_00298
crossref_primary_10_1016_j_mvr_2025_104793
crossref_primary_10_1097_OPX_0b013e3181fc3625
crossref_primary_10_1109_JBHI_2018_2856276
crossref_primary_10_1016_j_media_2017_04_007
crossref_primary_10_1055_a_2227_3742
crossref_primary_10_1136_bjo_2023_325115
crossref_primary_10_1364_BOE_417212
crossref_primary_10_1364_BOE_8_000281
crossref_primary_10_1016_j_cmpb_2018_09_004
crossref_primary_10_1364_BOE_9_006205
crossref_primary_10_1109_JBHI_2020_3023308
crossref_primary_10_1097_IAE_0000000000000018
crossref_primary_10_1136_bjophthalmol_2018_312349
crossref_primary_10_1109_TMI_2009_2031324
crossref_primary_10_1016_S2213_8587_15_00136_9
crossref_primary_10_1371_journal_pone_0162001
crossref_primary_10_1016_j_health_2023_100289
crossref_primary_10_1109_JBHI_2020_3023144
crossref_primary_10_1364_AO_426053
crossref_primary_10_1111_aos_16667
crossref_primary_10_1016_j_media_2015_08_011
crossref_primary_10_1109_TMI_2012_2203922
crossref_primary_10_1109_TMI_2012_2225152
crossref_primary_10_1097_IAE_0000000000003385
crossref_primary_10_1364_OE_444369
crossref_primary_10_1002_jbio_201500239
crossref_primary_10_1038_s41598_022_13662_8
crossref_primary_10_1118_1_4962470
crossref_primary_10_1016_j_xops_2024_100670
crossref_primary_10_1002_alz_13100
crossref_primary_10_1364_BOE_9_006497
crossref_primary_10_1364_OE_472154
crossref_primary_10_1167_iovs_62_1_3
crossref_primary_10_1364_BOE_2_001743
crossref_primary_10_1364_OE_23_008974
crossref_primary_10_1212_WNL_0000000000004500
crossref_primary_10_1016_j_ophtha_2019_12_015
crossref_primary_10_1167_iovs_18_23813
crossref_primary_10_1371_journal_pone_0222347
crossref_primary_10_1016_j_heliyon_2019_e01271
crossref_primary_10_1038_s41531_022_00325_8
crossref_primary_10_1016_j_media_2019_02_004
crossref_primary_10_1109_RBME_2010_2084567
crossref_primary_10_1364_BOE_5_001062
crossref_primary_10_1038_s41598_020_62329_9
crossref_primary_10_1016_j_media_2015_08_008
crossref_primary_10_1016_j_media_2017_02_002
crossref_primary_10_1038_s41598_019_56996_6
crossref_primary_10_1186_s40478_021_01290_8
crossref_primary_10_1109_TMI_2016_2611503
crossref_primary_10_1080_09273948_2023_2199334
crossref_primary_10_1364_BOE_8_001874
crossref_primary_10_1364_BOE_9_000962
crossref_primary_10_1109_TMI_2024_3390940
crossref_primary_10_3390_s23063144
crossref_primary_10_1016_j_patcog_2017_07_004
crossref_primary_10_1038_s41433_023_02554_4
crossref_primary_10_1371_journal_pone_0278679
crossref_primary_10_1016_j_cmpb_2025_108586
crossref_primary_10_1167_tvst_14_2_4
crossref_primary_10_1016_j_xops_2023_100294
crossref_primary_10_1364_BOE_7_004490
crossref_primary_10_1038_s41598_017_02971_y
crossref_primary_10_1016_j_bspc_2023_104604
crossref_primary_10_1016_j_compbiomed_2022_105368
crossref_primary_10_1097_IAE_0000000000001535
crossref_primary_10_1109_ACCESS_2018_2825397
crossref_primary_10_1109_RBME_2018_2798701
crossref_primary_10_1117_1_JBO_29_6_066002
crossref_primary_10_1109_TIM_2021_3072121
crossref_primary_10_1016_j_bbe_2020_07_010
crossref_primary_10_1109_TIP_2018_2860255
crossref_primary_10_1167_tvst_9_2_23
crossref_primary_10_1109_TBME_2017_2695461
crossref_primary_10_1038_srep09269
crossref_primary_10_3389_fnins_2021_797166
crossref_primary_10_1016_j_adro_2023_101336
crossref_primary_10_1364_BOE_2_001524
crossref_primary_10_1364_BOE_10_001064
crossref_primary_10_1364_OE_18_023435
crossref_primary_10_1007_s12553_020_00428_3
crossref_primary_10_1109_TIP_2020_2967589
crossref_primary_10_1364_BOE_10_000642
crossref_primary_10_1371_journal_pone_0107763
crossref_primary_10_1371_journal_pone_0181059
crossref_primary_10_1364_BOE_426803
crossref_primary_10_1364_BOE_4_002795
crossref_primary_10_3390_info10090266
crossref_primary_10_1109_JBHI_2020_3000136
crossref_primary_10_1371_journal_pone_0133908
crossref_primary_10_1364_BOE_9_001111
crossref_primary_10_3390_jimaging10010006
crossref_primary_10_1167_tvst_9_2_13
crossref_primary_10_1167_tvst_13_9_23
crossref_primary_10_1364_BOE_399949
crossref_primary_10_1038_s41598_024_81835_8
crossref_primary_10_1080_09286586_2016_1258082
crossref_primary_10_1364_BOE_9_004509
crossref_primary_10_1364_BOE_409004
Cites_doi 10.1016/j.medengphy.2006.06.003
10.1007/978-3-540-73273-0_50
10.1142/S0218195907002331
10.1109/CVPR.2008.4587464
10.1109/TMI.2005.848655
10.1097/00006982-200607000-00011
10.1109/TIP.2002.804276
10.1109/TPAMI.2006.19
10.1109/ICCV.2001.937505
10.1016/j.ajo.2005.01.012
10.1167/iovs.08-3143
10.1364/OL.28.002067
10.1117/12.710231
10.1109/TMI.2008.923966
10.1007/978-3-540-75757-3_30
10.1016/j.preteyeres.2007.07.005
10.1364/OPEX.13.010200
10.1117/1.1482379
10.1109/TVCG.2007.70590
10.1007/11866565_98
10.1167/iovs.04-0335
10.1109/CVPR.2000.854849
10.1109/42.952728
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
2009 IEEE 2009
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009
– notice: 2009 IEEE 2009
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2009.2016958
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database

Technology Research Database

Engineering Research Database
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1447
ExternalDocumentID PMC2911837
2295054271
19278927
10_1109_TMI_2009_2016958
4799172
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB004640
– fundername: NEI NIH HHS
  grantid: R01 EY017066
– fundername: NIBIB NIH HHS
  grantid: R01-EB004640-01
– fundername: NCI NIH HHS
  grantid: K25 CA123112
– fundername: NCI NIH HHS
  grantid: K25-CA123112
– fundername: NEI NIH HHS
  grantid: R01-EY017066
– fundername: National Cancer Institute : NCI
  grantid: K25 CA123112-01A1 || CA
– fundername: National Eye Institute : NEI
  grantid: R01 EY017066-01 || EY
– fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB
  grantid: R01 EB004640-01A2 || EB
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c602t-c7f1f684630a74b9c34110f0268d784a203bf8c604ca52d39219a601e07a2e503
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:24:02 EDT 2025
Fri Jul 11 08:15:19 EDT 2025
Fri Jul 11 15:25:30 EDT 2025
Fri Jul 11 16:20:15 EDT 2025
Fri Jul 11 08:49:59 EDT 2025
Mon Jun 30 06:22:43 EDT 2025
Mon Jul 21 05:29:02 EDT 2025
Tue Jul 01 03:15:47 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Aug 26 16:47:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-c7f1f684630a74b9c34110f0268d784a203bf8c604ca52d39219a601e07a2e503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1109/TMI.2009.2016958
PMID 19278927
PQID 857452545
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_874191232
proquest_miscellaneous_734019686
pubmed_primary_19278927
crossref_primary_10_1109_TMI_2009_2016958
crossref_citationtrail_10_1109_TMI_2009_2016958
proquest_journals_857452545
ieee_primary_4799172
proquest_miscellaneous_21158266
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2911837
proquest_miscellaneous_35065480
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-09-01
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 2009-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2009
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
shahidi (ref10) 2005; 139
ref2
ref1
ref17
ref16
ref18
ref24
ref23
ref25
ref20
ref22
wu (ref19) 0
ref8
ref7
ref9
ref4
ref3
donato (ref21) 2002
haeker (ref13) 2006; 4190
ref6
ref5
References_xml – ident: ref11
  doi: 10.1016/j.medengphy.2006.06.003
– ident: ref17
  doi: 10.1007/978-3-540-73273-0_50
– ident: ref20
  doi: 10.1142/S0218195907002331
– ident: ref24
  doi: 10.1109/CVPR.2008.4587464
– ident: ref8
  doi: 10.1109/TMI.2005.848655
– ident: ref7
  doi: 10.1097/00006982-200607000-00011
– ident: ref22
  doi: 10.1109/TIP.2002.804276
– ident: ref16
  doi: 10.1109/TPAMI.2006.19
– ident: ref23
  doi: 10.1109/ICCV.2001.937505
– volume: 139
  start-page: 1056
  year: 2005
  ident: ref10
  article-title: quantitative thickness measurement of retinal layers imaged by optical coherence tomography
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2005.01.012
– start-page: 1029
  year: 0
  ident: ref19
  publication-title: Proceedings of the 29th International Colloquium on Automata Languages and Programming (ICALP) LNCS 2380
– ident: ref25
  doi: 10.1167/iovs.08-3143
– ident: ref2
  doi: 10.1364/OL.28.002067
– ident: ref14
  doi: 10.1117/12.710231
– ident: ref15
  doi: 10.1109/TMI.2008.923966
– start-page: 21
  year: 2002
  ident: ref21
  publication-title: Proceedings of the 7th European Conference on Computer Vision (ECCV 2002) Part III LNCS 2352
– ident: ref18
  doi: 10.1007/978-3-540-75757-3_30
– ident: ref3
  doi: 10.1016/j.preteyeres.2007.07.005
– ident: ref9
  doi: 10.1364/OPEX.13.010200
– ident: ref1
  doi: 10.1117/1.1482379
– ident: ref12
  doi: 10.1109/TVCG.2007.70590
– volume: 4190
  start-page: 800
  year: 2006
  ident: ref13
  publication-title: Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006) Part I
  doi: 10.1007/11866565_98
– ident: ref6
  doi: 10.1167/iovs.04-0335
– ident: ref4
  doi: 10.1109/CVPR.2000.854849
– ident: ref5
  doi: 10.1109/42.952728
SSID ssj0014509
Score 2.5107548
Snippet With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1436
SubjectTerms Algorithms
Analysis of Variance
Biomedical imaging
Biomedical optical imaging
Cities and towns
Cost function
Databases, Factual
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Information Storage and Retrieval
Macula Lutea - anatomy & histology
Oncology
Ophthalmology
optical coherence tomography
Optical sensors
Reproducibility of Results
retina
Retina - anatomy & histology
segmentation
spectral-domain
Studies
Testing
three-dimensional (3-D) graph search
Time domain analysis
Tomography
Tomography, Optical Coherence - methods
Title Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images
URI https://ieeexplore.ieee.org/document/4799172
https://www.ncbi.nlm.nih.gov/pubmed/19278927
https://www.proquest.com/docview/857452545
https://www.proquest.com/docview/21158266
https://www.proquest.com/docview/35065480
https://www.proquest.com/docview/734019686
https://www.proquest.com/docview/874191232
https://pubmed.ncbi.nlm.nih.gov/PMC2911837
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoTx84IJEdr2JHdvHilJ1EYEDW6m3yHFsqOgmVTe59Ncz42TDtuoibitlslrvjONvMvN9Q8h7q4Xz3vNYC1_GPLMu1nA0xNp6URpfeSmQ4Jx_y05O-ZczcbZDPo5cGOdcaD5zE_wYavlVYzt8VTblEtCMhAfuPUjceq7WWDHgom_nSFAxlmXJuiTJ9HSRz3thygSlR0QY0aeRAYqjZDZOozBe5S6kebthcuMEOn5M8vVv7xtPfk-6tpzY61uyjv-7uCfk0QBF6WEfO0_Jjqv3yMMNgcI9cj8fSu_75OKwaxuAt66iaXxE54Gvj3xp-IqvBoA7_eF-LgcmU00bT3MTelwpjrjH9cRHcP95Tb9fhvfnFJkhgWtIF81yUM6m8yU84FbPyOnx58Wnk3gY1RDbjCVtbKWf-QywTMqM5KW2cDjOmIcET1VScZOwtPQKbLk1IqkAlM20gVzQMWkSJ1j6nOzWTe1eElqmVakqmxpVWp4xXzKR2KwyzqrEzDyLyHTtssIOOuY4TuOiCPkM0wX4G6dr6mLwd0Q-jHdc9hoe_7DdR9eMdoNXInKwjopi2OSrQgmJVWEuIvJuvAq7E0supnZNtyogvRaQwGXbLVKB9F4Fy6JbLGTKUcRIZdtNFOBCjeA4Ii_6SP270CHSIyJvxPBogPriN6_U57-CzngCB6FK5au7_5ID8qCvrGG_3Wuy21517g0AtLZ8G3bmHz07OAM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemIfFx4GPjIwyYD1yQSOs6dmwfJ8bUQjMOdNJukePYY2JNJppc-Ot5dtLQTSviVikvVd33nPdz3vv9HkLvjeLWOcdixV0Rs9TYWEFqiJVxvNCudIJ7gnN2mk7P2Jdzfr6DPg5cGGttaD6zI_8x1PLL2rT-VdmYCUAzAh649yDvc9qxtYaaAeNdQwf1mrEkpeuiJFHjRTbrpCmpFx_hYUif8hxQP0xmIx-FASt3Yc3bLZMbOejkCcrWv75rPfk5aptiZH7fEnb83-U9RY97MIqPuuh5hnZstYcebUgU7qH7WV9830dXR21TA8C1JU7iYzwLjH3PmIavmGuA7vi7vVj2XKYK1w5nOnS5Yj_k3q8nPob7Lyv87Tq8QceeGxLYhnhRL3vtbDxbwiNu9RydnXxefJrG_bCG2KSENrERbuJSQDMJ0YIVykB6nBAHRzxZCsk0JUnhJNgyozktAZZNlIbToCVCU8tJ8gLtVnVlXyFcJGUhS5NoWRiWElcQTk1aamsk1RNHIjReuyw3vZK5H6hxlYcTDVE5-NvP11R57-8IfRjuuO5UPP5hu-9dM9j1XonQwToq8n6br3LJha8LMx6hw-Eq7E9fdNGVrdtVDgdsDke4dLtFwj3BV8Ky8BYLkTAvYyTT7SYSkKHy8DhCL7tI_bvQPtIjJG7E8GDgFcZvXqkufwSlcQqpUCbi9d1_ySF6MF1k83w-O_16gB52dTbfffcG7Ta_WvsW4FpTvAu79A-anDtN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+3-D+Intraretinal+Layer+Segmentation+of+Macular+Spectral-Domain+Optical+Coherence+Tomography+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Garvin%2C+M.K.&rft.au=Abramoff%2C+M.D.&rft.au=Xiaodong+Wu&rft.au=Russell%2C+S.R.&rft.date=2009-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=28&rft.issue=9&rft.spage=1436&rft.epage=1447&rft_id=info:doi/10.1109%2FTMI.2009.2016958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2009_2016958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon