Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images
With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 28; no. 9; pp. 1436 - 1447 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum. |
---|---|
AbstractList | With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm. With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum. With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCTOBER Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum. With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 ± 2.41 µm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 ± 1.98 µm. With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. [...] the need for 3-D segmentation methods for processing such data is becoming increasingly important. With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm.With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69+/-2.41 microm was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71+/-1.98 microm. |
Author | Xiaodong Wu Burns, T.L. Garvin, M.K. Russell, S.R. Sonka, M. Abramoff, M.D. |
Author_xml | – sequence: 1 givenname: M.K. surname: Garvin fullname: Garvin, M.K. organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA – sequence: 2 givenname: M.D. surname: Abramoff fullname: Abramoff, M.D. – sequence: 3 surname: Xiaodong Wu fullname: Xiaodong Wu organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA – sequence: 4 givenname: S.R. surname: Russell fullname: Russell, S.R. – sequence: 5 givenname: T.L. surname: Burns fullname: Burns, T.L. – sequence: 6 givenname: M. surname: Sonka fullname: Sonka, M. organization: Dept. of Electr. & Comput. Eng., Univ. of Iowa, Iowa City, IA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19278927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktrGzEUhUVJaZy0-0KhDF20q0mv3tKmEJw-DA5Z1IXuhCzfsRVmRs48Cv73lbGbtlkkC0mg-50j6eqckZM2tUjIawoXlIL9uLieXTAAmyeqrDTPyIRKaUomxc8TMgGmTQmg2Ck56_tbACok2BfklNpcyWNC6stxSI0fcFXw8qqYtUPnOxxi6-ti7nfYFd9x3WA7-CGmtkhVce3DWPu8v8WQ4bq8yvrYFjfbIYasmqYNdtgGLBapSevObze7Ytb4NfYvyfPK1z2-Oq7n5MeXz4vpt3J-83U2vZyXQQEbyqArWikjFAevxdIGLvJrK2DKrLQRngFfViazInjJVtwyar0CiqA9Qwn8nHw6-G7HZYOrgPtX1W7bxcZ3O5d8dP9X2rhx6_TLMUup4TobfDgadOluxH5wTewD1rVvMY29M1pQSxlnT5KaC6BWGZXJ94-SXIKSwsCTIKNUGqb2ju8egLdp7PLP5QtKLWROgczQ2397cd-EPxHIAByA0KW-77D6i4Dbp8zllLl9ytwxZVmiHkhCPAQkdzPWjwnfHIQREe_PEdpaqhn_DT4D3ZE |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1364_BOE_467563 crossref_primary_10_1016_j_media_2019_05_002 crossref_primary_10_1109_TMI_2010_2058861 crossref_primary_10_1177_25158414221083363 crossref_primary_10_1364_BOE_408590 crossref_primary_10_1109_TMI_2018_2877080 crossref_primary_10_1177_1120672119894887 crossref_primary_10_1016_j_preteyeres_2015_07_007 crossref_primary_10_1109_TMI_2014_2359980 crossref_primary_10_1364_BOE_9_003464 crossref_primary_10_1007_s00415_019_09627_z crossref_primary_10_1364_BOE_10_005042 crossref_primary_10_1038_s41598_021_91097_3 crossref_primary_10_1007_s11517_021_02364_4 crossref_primary_10_1016_j_compmedimag_2014_06_012 crossref_primary_10_1002_aur_3204 crossref_primary_10_1142_S1793545816500085 crossref_primary_10_1364_BOE_10_005832 crossref_primary_10_1364_BOE_493047 crossref_primary_10_1016_j_cmpb_2019_105101 crossref_primary_10_3390_mi15070902 crossref_primary_10_1016_j_oret_2018_07_006 crossref_primary_10_1136_bmjopen_2022_067283 crossref_primary_10_1364_BOE_9_003590 crossref_primary_10_1364_BOE_8_003292 crossref_primary_10_1007_s00371_018_1486_x crossref_primary_10_1016_j_cmpb_2017_10_010 crossref_primary_10_1016_j_media_2024_103296 crossref_primary_10_1167_tvst_1_1_3 crossref_primary_10_3341_jkos_2016_57_8_1260 crossref_primary_10_1038_s41598_020_66355_5 crossref_primary_10_1080_09500340_2015_1011246 crossref_primary_10_1088_0957_0233_26_3_035701 crossref_primary_10_1117_1_JBO_22_7_076014 crossref_primary_10_1109_ACCESS_2020_2981206 crossref_primary_10_1364_BOE_2_002403 crossref_primary_10_1016_j_media_2017_09_008 crossref_primary_10_3389_fneur_2020_00035 crossref_primary_10_3390_bioengineering12010065 crossref_primary_10_1364_JOSAA_31_000217 crossref_primary_10_1167_tvst_3_5_8 crossref_primary_10_1016_j_neurol_2010_03_024 crossref_primary_10_1016_j_ajo_2017_03_019 crossref_primary_10_3390_bioengineering11030240 crossref_primary_10_1007_s10916_019_1452_9 crossref_primary_10_1371_journal_pone_0145628 crossref_primary_10_1016_j_media_2019_01_010 crossref_primary_10_1016_j_ophtha_2020_03_010 crossref_primary_10_1364_BOE_487518 crossref_primary_10_3341_jkos_2014_55_10_1476 crossref_primary_10_3390_diagnostics12061504 crossref_primary_10_1038_s41598_021_85110_y crossref_primary_10_1364_BOE_8_004257 crossref_primary_10_1109_ACCESS_2023_3317011 crossref_primary_10_1002_hbm_23946 crossref_primary_10_1038_s41598_019_49353_0 crossref_primary_10_1016_j_media_2014_03_004 crossref_primary_10_1109_ACCESS_2019_2893954 crossref_primary_10_1016_j_media_2023_103019 crossref_primary_10_1109_TMI_2012_2191302 crossref_primary_10_1097_IAE_0000000000002043 crossref_primary_10_1016_j_biosystemseng_2015_04_001 crossref_primary_10_1097_IAE_0000000000004105 crossref_primary_10_1016_j_compmedimag_2016_06_007 crossref_primary_10_1016_j_neucom_2024_128059 crossref_primary_10_1016_j_nicl_2022_103010 crossref_primary_10_1364_BOE_10_005291 crossref_primary_10_1097_IAE_0000000000002717 crossref_primary_10_1371_journal_pone_0224410 crossref_primary_10_1109_ACCESS_2017_2712767 crossref_primary_10_1111_aos_12596 crossref_primary_10_1364_BOE_485327 crossref_primary_10_1109_TMI_2017_2703147 crossref_primary_10_1364_BOE_9_004429 crossref_primary_10_1007_s11548_018_1795_6 crossref_primary_10_1167_tvst_9_8_34 crossref_primary_10_1155_2020_9232157 crossref_primary_10_1016_j_ajo_2024_02_018 crossref_primary_10_1364_OE_18_024595 crossref_primary_10_1109_RBME_2021_3110958 crossref_primary_10_1016_j_compmedimag_2018_01_001 crossref_primary_10_1017_S0952523816000067 crossref_primary_10_1007_s10278_020_00383_5 crossref_primary_10_3390_genes12030330 crossref_primary_10_1038_eye_2017_61 crossref_primary_10_1097_OPX_0000000000001347 crossref_primary_10_1097_WNO_0000000000001087 crossref_primary_10_1117_1_JBO_19_8_086020 crossref_primary_10_1097_IAE_0000000000000705 crossref_primary_10_1109_TMI_2015_2412881 crossref_primary_10_1109_TMI_2010_2087390 crossref_primary_10_1038_eye_2012_59 crossref_primary_10_1364_BOE_4_002712 crossref_primary_10_1364_BOE_426650 crossref_primary_10_1016_j_neucom_2019_07_079 crossref_primary_10_3390_s21238027 crossref_primary_10_1016_j_cmpb_2022_106801 crossref_primary_10_1117_1_JBO_21_10_101407 crossref_primary_10_1364_JOSAA_31_002551 crossref_primary_10_3389_fmed_2022_958469 crossref_primary_10_1016_j_oret_2017_03_015 crossref_primary_10_1038_s41598_020_73645_5 crossref_primary_10_1109_LSP_2020_3000933 crossref_primary_10_1002_ima_22840 crossref_primary_10_1016_j_ogla_2020_04_003 crossref_primary_10_1049_iet_ipr_2018_6634 crossref_primary_10_1364_BOE_8_004061 crossref_primary_10_1002_mp_14720 crossref_primary_10_1364_BOE_9_004481 crossref_primary_10_1016_j_ijleo_2020_165227 crossref_primary_10_1364_OE_23_031216 crossref_primary_10_1364_BOE_450193 crossref_primary_10_1097_IAE_0000000000001246 crossref_primary_10_1117_1_JBO_21_12_126017 crossref_primary_10_1016_j_neucom_2020_04_044 crossref_primary_10_3390_diagnostics14212395 crossref_primary_10_1016_j_ophtha_2010_03_067 crossref_primary_10_1016_j_media_2024_103092 crossref_primary_10_1364_BOE_4_002729 crossref_primary_10_1364_BOE_516045 crossref_primary_10_1109_TMI_2017_2700213 crossref_primary_10_1016_j_oret_2021_12_007 crossref_primary_10_1016_j_compmedimag_2016_07_006 crossref_primary_10_1016_j_xops_2024_100615 crossref_primary_10_1007_s40123_024_00956_5 crossref_primary_10_1016_j_compmedimag_2024_102452 crossref_primary_10_3390_life13040976 crossref_primary_10_1038_s41433_022_02077_4 crossref_primary_10_1016_j_jneumeth_2013_09_021 crossref_primary_10_1002_jbio_201960187 crossref_primary_10_1007_s11263_021_01520_5 crossref_primary_10_1364_BOE_4_002383 crossref_primary_10_1167_tvst_13_1_13 crossref_primary_10_1364_BOE_521154 crossref_primary_10_1167_tvst_10_4_24 crossref_primary_10_1255_jnirs_975 crossref_primary_10_1371_journal_pone_0231552 crossref_primary_10_1038_s41598_020_60612_3 crossref_primary_10_1038_s41598_023_35230_4 crossref_primary_10_1016_j_bspc_2025_107519 crossref_primary_10_1167_tvst_9_11_12 crossref_primary_10_1109_TMI_2012_2227120 crossref_primary_10_1167_iovs_18_24643 crossref_primary_10_1111_aos_15279 crossref_primary_10_1109_JBHI_2018_2810379 crossref_primary_10_1038_s41598_021_92713_y crossref_primary_10_1155_2020_8826087 crossref_primary_10_1371_journal_pone_0168275 crossref_primary_10_1109_TMI_2017_2666045 crossref_primary_10_1111_ceo_14389 crossref_primary_10_1038_s41598_021_01105_9 crossref_primary_10_1109_JBHI_2018_2803063 crossref_primary_10_1038_s41598_022_05550_y crossref_primary_10_1016_j_media_2020_101856 crossref_primary_10_1017_S0952523816000092 crossref_primary_10_3390_electronics13132516 crossref_primary_10_3390_jimaging8050139 crossref_primary_10_1109_TMI_2018_2884142 crossref_primary_10_1109_JBHI_2020_2981562 crossref_primary_10_1109_TMI_2014_2336246 crossref_primary_10_1097_IAE_0000000000001036 crossref_primary_10_1109_TMI_2019_2901398 crossref_primary_10_1097_WNO_0000000000000422 crossref_primary_10_1109_TMI_2010_2047023 crossref_primary_10_1097_WNO_0000000000001078 crossref_primary_10_1007_s40135_013_0014_4 crossref_primary_10_1364_BOE_7_004827 crossref_primary_10_1109_TMI_2023_3240757 crossref_primary_10_3390_bioengineering10101177 crossref_primary_10_1109_ACCESS_2018_2889321 crossref_primary_10_1117_1_NPh_4_1_011012 crossref_primary_10_1016_j_biopsych_2024_04_014 crossref_primary_10_1371_journal_pone_0193324 crossref_primary_10_1097_IAE_0000000000002531 crossref_primary_10_1167_tvst_10_13_9 crossref_primary_10_1364_BOE_524603 crossref_primary_10_1016_j_media_2024_103104 crossref_primary_10_1016_j_visres_2010_08_024 crossref_primary_10_1016_j_jaapos_2017_06_024 crossref_primary_10_1109_TMI_2019_2919951 crossref_primary_10_1371_journal_pone_0229977 crossref_primary_10_1364_BOE_2_002493 crossref_primary_10_1109_TMI_2012_2206822 crossref_primary_10_1364_BOE_5_002196 crossref_primary_10_1117_1_JBO_21_7_076015 crossref_primary_10_1152_japplphysiol_00132_2022 crossref_primary_10_1109_JBHI_2022_3217962 crossref_primary_10_1364_BOE_7_005252 crossref_primary_10_1016_j_ins_2016_04_017 crossref_primary_10_1038_s41598_020_69814_1 crossref_primary_10_1111_aos_14153 crossref_primary_10_1016_j_jcjo_2023_12_007 crossref_primary_10_1016_j_ophtha_2017_10_031 crossref_primary_10_1038_s41598_023_33694_y crossref_primary_10_1364_BOE_487206 crossref_primary_10_1109_ACCESS_2021_3076427 crossref_primary_10_1016_j_cmpb_2020_105788 crossref_primary_10_1364_BOE_4_001133 crossref_primary_10_1016_j_neurobiolaging_2023_01_015 crossref_primary_10_1097_IAE_0000000000003082 crossref_primary_10_1371_journal_pone_0082922 crossref_primary_10_3390_app9132700 crossref_primary_10_3390_cells11111733 crossref_primary_10_1167_tvst_10_8_21 crossref_primary_10_1167_iovs_18_25092 crossref_primary_10_1117_1_JBO_22_2_025004 crossref_primary_10_1038_srep21739 crossref_primary_10_1167_tvst_3_1_1 crossref_primary_10_1371_journal_pone_0128925 crossref_primary_10_1109_TMI_2023_3330576 crossref_primary_10_1364_BOE_9_003049 crossref_primary_10_1109_TBME_2012_2184759 crossref_primary_10_3341_jkos_2015_56_9_1400 crossref_primary_10_1016_j_artmed_2020_101871 crossref_primary_10_1016_j_preteyeres_2024_101305 crossref_primary_10_3389_fimmu_2021_630022 crossref_primary_10_3233_JAD_190152 crossref_primary_10_1016_j_compbiomed_2014_08_028 crossref_primary_10_1016_j_exer_2020_108123 crossref_primary_10_1364_BOE_7_001525 crossref_primary_10_1364_BOE_8_001926 crossref_primary_10_1117_1_JBO_20_9_096014 crossref_primary_10_1364_OE_18_019413 crossref_primary_10_1364_OE_18_021293 crossref_primary_10_1016_j_compmedimag_2015_09_008 crossref_primary_10_3389_fnins_2019_00298 crossref_primary_10_1016_j_mvr_2025_104793 crossref_primary_10_1097_OPX_0b013e3181fc3625 crossref_primary_10_1109_JBHI_2018_2856276 crossref_primary_10_1016_j_media_2017_04_007 crossref_primary_10_1055_a_2227_3742 crossref_primary_10_1136_bjo_2023_325115 crossref_primary_10_1364_BOE_417212 crossref_primary_10_1364_BOE_8_000281 crossref_primary_10_1016_j_cmpb_2018_09_004 crossref_primary_10_1364_BOE_9_006205 crossref_primary_10_1109_JBHI_2020_3023308 crossref_primary_10_1097_IAE_0000000000000018 crossref_primary_10_1136_bjophthalmol_2018_312349 crossref_primary_10_1109_TMI_2009_2031324 crossref_primary_10_1016_S2213_8587_15_00136_9 crossref_primary_10_1371_journal_pone_0162001 crossref_primary_10_1016_j_health_2023_100289 crossref_primary_10_1109_JBHI_2020_3023144 crossref_primary_10_1364_AO_426053 crossref_primary_10_1111_aos_16667 crossref_primary_10_1016_j_media_2015_08_011 crossref_primary_10_1109_TMI_2012_2203922 crossref_primary_10_1109_TMI_2012_2225152 crossref_primary_10_1097_IAE_0000000000003385 crossref_primary_10_1364_OE_444369 crossref_primary_10_1002_jbio_201500239 crossref_primary_10_1038_s41598_022_13662_8 crossref_primary_10_1118_1_4962470 crossref_primary_10_1016_j_xops_2024_100670 crossref_primary_10_1002_alz_13100 crossref_primary_10_1364_BOE_9_006497 crossref_primary_10_1364_OE_472154 crossref_primary_10_1167_iovs_62_1_3 crossref_primary_10_1364_BOE_2_001743 crossref_primary_10_1364_OE_23_008974 crossref_primary_10_1212_WNL_0000000000004500 crossref_primary_10_1016_j_ophtha_2019_12_015 crossref_primary_10_1167_iovs_18_23813 crossref_primary_10_1371_journal_pone_0222347 crossref_primary_10_1016_j_heliyon_2019_e01271 crossref_primary_10_1038_s41531_022_00325_8 crossref_primary_10_1016_j_media_2019_02_004 crossref_primary_10_1109_RBME_2010_2084567 crossref_primary_10_1364_BOE_5_001062 crossref_primary_10_1038_s41598_020_62329_9 crossref_primary_10_1016_j_media_2015_08_008 crossref_primary_10_1016_j_media_2017_02_002 crossref_primary_10_1038_s41598_019_56996_6 crossref_primary_10_1186_s40478_021_01290_8 crossref_primary_10_1109_TMI_2016_2611503 crossref_primary_10_1080_09273948_2023_2199334 crossref_primary_10_1364_BOE_8_001874 crossref_primary_10_1364_BOE_9_000962 crossref_primary_10_1109_TMI_2024_3390940 crossref_primary_10_3390_s23063144 crossref_primary_10_1016_j_patcog_2017_07_004 crossref_primary_10_1038_s41433_023_02554_4 crossref_primary_10_1371_journal_pone_0278679 crossref_primary_10_1016_j_cmpb_2025_108586 crossref_primary_10_1167_tvst_14_2_4 crossref_primary_10_1016_j_xops_2023_100294 crossref_primary_10_1364_BOE_7_004490 crossref_primary_10_1038_s41598_017_02971_y crossref_primary_10_1016_j_bspc_2023_104604 crossref_primary_10_1016_j_compbiomed_2022_105368 crossref_primary_10_1097_IAE_0000000000001535 crossref_primary_10_1109_ACCESS_2018_2825397 crossref_primary_10_1109_RBME_2018_2798701 crossref_primary_10_1117_1_JBO_29_6_066002 crossref_primary_10_1109_TIM_2021_3072121 crossref_primary_10_1016_j_bbe_2020_07_010 crossref_primary_10_1109_TIP_2018_2860255 crossref_primary_10_1167_tvst_9_2_23 crossref_primary_10_1109_TBME_2017_2695461 crossref_primary_10_1038_srep09269 crossref_primary_10_3389_fnins_2021_797166 crossref_primary_10_1016_j_adro_2023_101336 crossref_primary_10_1364_BOE_2_001524 crossref_primary_10_1364_BOE_10_001064 crossref_primary_10_1364_OE_18_023435 crossref_primary_10_1007_s12553_020_00428_3 crossref_primary_10_1109_TIP_2020_2967589 crossref_primary_10_1364_BOE_10_000642 crossref_primary_10_1371_journal_pone_0107763 crossref_primary_10_1371_journal_pone_0181059 crossref_primary_10_1364_BOE_426803 crossref_primary_10_1364_BOE_4_002795 crossref_primary_10_3390_info10090266 crossref_primary_10_1109_JBHI_2020_3000136 crossref_primary_10_1371_journal_pone_0133908 crossref_primary_10_1364_BOE_9_001111 crossref_primary_10_3390_jimaging10010006 crossref_primary_10_1167_tvst_9_2_13 crossref_primary_10_1167_tvst_13_9_23 crossref_primary_10_1364_BOE_399949 crossref_primary_10_1038_s41598_024_81835_8 crossref_primary_10_1080_09286586_2016_1258082 crossref_primary_10_1364_BOE_9_004509 crossref_primary_10_1364_BOE_409004 |
Cites_doi | 10.1016/j.medengphy.2006.06.003 10.1007/978-3-540-73273-0_50 10.1142/S0218195907002331 10.1109/CVPR.2008.4587464 10.1109/TMI.2005.848655 10.1097/00006982-200607000-00011 10.1109/TIP.2002.804276 10.1109/TPAMI.2006.19 10.1109/ICCV.2001.937505 10.1016/j.ajo.2005.01.012 10.1167/iovs.08-3143 10.1364/OL.28.002067 10.1117/12.710231 10.1109/TMI.2008.923966 10.1007/978-3-540-75757-3_30 10.1016/j.preteyeres.2007.07.005 10.1364/OPEX.13.010200 10.1117/1.1482379 10.1109/TVCG.2007.70590 10.1007/11866565_98 10.1167/iovs.04-0335 10.1109/CVPR.2000.854849 10.1109/42.952728 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 2009 IEEE 2009 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009 – notice: 2009 IEEE 2009 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2009.2016958 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database Technology Research Database Engineering Research Database Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1447 |
ExternalDocumentID | PMC2911837 2295054271 19278927 10_1109_TMI_2009_2016958 4799172 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB004640 – fundername: NEI NIH HHS grantid: R01 EY017066 – fundername: NIBIB NIH HHS grantid: R01-EB004640-01 – fundername: NCI NIH HHS grantid: K25 CA123112 – fundername: NCI NIH HHS grantid: K25-CA123112 – fundername: NEI NIH HHS grantid: R01-EY017066 – fundername: National Cancer Institute : NCI grantid: K25 CA123112-01A1 || CA – fundername: National Eye Institute : NEI grantid: R01 EY017066-01 || EY – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: R01 EB004640-01A2 || EB |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c602t-c7f1f684630a74b9c34110f0268d784a203bf8c604ca52d39219a601e07a2e503 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:24:02 EDT 2025 Fri Jul 11 08:15:19 EDT 2025 Fri Jul 11 15:25:30 EDT 2025 Fri Jul 11 16:20:15 EDT 2025 Fri Jul 11 08:49:59 EDT 2025 Mon Jun 30 06:22:43 EDT 2025 Mon Jul 21 05:29:02 EDT 2025 Tue Jul 01 03:15:47 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Aug 26 16:47:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-c7f1f684630a74b9c34110f0268d784a203bf8c604ca52d39219a601e07a2e503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TMI.2009.2016958 |
PMID | 19278927 |
PQID | 857452545 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_874191232 proquest_miscellaneous_734019686 pubmed_primary_19278927 crossref_primary_10_1109_TMI_2009_2016958 crossref_citationtrail_10_1109_TMI_2009_2016958 proquest_journals_857452545 ieee_primary_4799172 proquest_miscellaneous_21158266 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2911837 proquest_miscellaneous_35065480 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-09-01 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: 2009-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2009 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 shahidi (ref10) 2005; 139 ref2 ref1 ref17 ref16 ref18 ref24 ref23 ref25 ref20 ref22 wu (ref19) 0 ref8 ref7 ref9 ref4 ref3 donato (ref21) 2002 haeker (ref13) 2006; 4190 ref6 ref5 |
References_xml | – ident: ref11 doi: 10.1016/j.medengphy.2006.06.003 – ident: ref17 doi: 10.1007/978-3-540-73273-0_50 – ident: ref20 doi: 10.1142/S0218195907002331 – ident: ref24 doi: 10.1109/CVPR.2008.4587464 – ident: ref8 doi: 10.1109/TMI.2005.848655 – ident: ref7 doi: 10.1097/00006982-200607000-00011 – ident: ref22 doi: 10.1109/TIP.2002.804276 – ident: ref16 doi: 10.1109/TPAMI.2006.19 – ident: ref23 doi: 10.1109/ICCV.2001.937505 – volume: 139 start-page: 1056 year: 2005 ident: ref10 article-title: quantitative thickness measurement of retinal layers imaged by optical coherence tomography publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2005.01.012 – start-page: 1029 year: 0 ident: ref19 publication-title: Proceedings of the 29th International Colloquium on Automata Languages and Programming (ICALP) LNCS 2380 – ident: ref25 doi: 10.1167/iovs.08-3143 – ident: ref2 doi: 10.1364/OL.28.002067 – ident: ref14 doi: 10.1117/12.710231 – ident: ref15 doi: 10.1109/TMI.2008.923966 – start-page: 21 year: 2002 ident: ref21 publication-title: Proceedings of the 7th European Conference on Computer Vision (ECCV 2002) Part III LNCS 2352 – ident: ref18 doi: 10.1007/978-3-540-75757-3_30 – ident: ref3 doi: 10.1016/j.preteyeres.2007.07.005 – ident: ref9 doi: 10.1364/OPEX.13.010200 – ident: ref1 doi: 10.1117/1.1482379 – ident: ref12 doi: 10.1109/TVCG.2007.70590 – volume: 4190 start-page: 800 year: 2006 ident: ref13 publication-title: Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2006) Part I doi: 10.1007/11866565_98 – ident: ref6 doi: 10.1167/iovs.04-0335 – ident: ref4 doi: 10.1109/CVPR.2000.854849 – ident: ref5 doi: 10.1109/42.952728 |
SSID | ssj0014509 |
Score | 2.5107548 |
Snippet | With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1436 |
SubjectTerms | Algorithms Analysis of Variance Biomedical imaging Biomedical optical imaging Cities and towns Cost function Databases, Factual Humans Image Processing, Computer-Assisted - methods Image segmentation Information Storage and Retrieval Macula Lutea - anatomy & histology Oncology Ophthalmology optical coherence tomography Optical sensors Reproducibility of Results retina Retina - anatomy & histology segmentation spectral-domain Studies Testing three-dimensional (3-D) graph search Time domain analysis Tomography Tomography, Optical Coherence - methods |
Title | Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images |
URI | https://ieeexplore.ieee.org/document/4799172 https://www.ncbi.nlm.nih.gov/pubmed/19278927 https://www.proquest.com/docview/857452545 https://www.proquest.com/docview/21158266 https://www.proquest.com/docview/35065480 https://www.proquest.com/docview/734019686 https://www.proquest.com/docview/874191232 https://pubmed.ncbi.nlm.nih.gov/PMC2911837 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOPFoeoTx84IJEdr2JHdvHilJ1EYEDW6m3yHFsqOgmVTe59Ncz42TDtuoibitlslrvjONvMvN9Q8h7q4Xz3vNYC1_GPLMu1nA0xNp6URpfeSmQ4Jx_y05O-ZczcbZDPo5cGOdcaD5zE_wYavlVYzt8VTblEtCMhAfuPUjceq7WWDHgom_nSFAxlmXJuiTJ9HSRz3thygSlR0QY0aeRAYqjZDZOozBe5S6kebthcuMEOn5M8vVv7xtPfk-6tpzY61uyjv-7uCfk0QBF6WEfO0_Jjqv3yMMNgcI9cj8fSu_75OKwaxuAt66iaXxE54Gvj3xp-IqvBoA7_eF-LgcmU00bT3MTelwpjrjH9cRHcP95Tb9fhvfnFJkhgWtIF81yUM6m8yU84FbPyOnx58Wnk3gY1RDbjCVtbKWf-QywTMqM5KW2cDjOmIcET1VScZOwtPQKbLk1IqkAlM20gVzQMWkSJ1j6nOzWTe1eElqmVakqmxpVWp4xXzKR2KwyzqrEzDyLyHTtssIOOuY4TuOiCPkM0wX4G6dr6mLwd0Q-jHdc9hoe_7DdR9eMdoNXInKwjopi2OSrQgmJVWEuIvJuvAq7E0supnZNtyogvRaQwGXbLVKB9F4Fy6JbLGTKUcRIZdtNFOBCjeA4Ii_6SP270CHSIyJvxPBogPriN6_U57-CzngCB6FK5au7_5ID8qCvrGG_3Wuy21517g0AtLZ8G3bmHz07OAM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLemIfFx4GPjIwyYD1yQSOs6dmwfJ8bUQjMOdNJukePYY2JNJppc-Ot5dtLQTSviVikvVd33nPdz3vv9HkLvjeLWOcdixV0Rs9TYWEFqiJVxvNCudIJ7gnN2mk7P2Jdzfr6DPg5cGGttaD6zI_8x1PLL2rT-VdmYCUAzAh649yDvc9qxtYaaAeNdQwf1mrEkpeuiJFHjRTbrpCmpFx_hYUif8hxQP0xmIx-FASt3Yc3bLZMbOejkCcrWv75rPfk5aptiZH7fEnb83-U9RY97MIqPuuh5hnZstYcebUgU7qH7WV9830dXR21TA8C1JU7iYzwLjH3PmIavmGuA7vi7vVj2XKYK1w5nOnS5Yj_k3q8nPob7Lyv87Tq8QceeGxLYhnhRL3vtbDxbwiNu9RydnXxefJrG_bCG2KSENrERbuJSQDMJ0YIVykB6nBAHRzxZCsk0JUnhJNgyozktAZZNlIbToCVCU8tJ8gLtVnVlXyFcJGUhS5NoWRiWElcQTk1aamsk1RNHIjReuyw3vZK5H6hxlYcTDVE5-NvP11R57-8IfRjuuO5UPP5hu-9dM9j1XonQwToq8n6br3LJha8LMx6hw-Eq7E9fdNGVrdtVDgdsDke4dLtFwj3BV8Ky8BYLkTAvYyTT7SYSkKHy8DhCL7tI_bvQPtIjJG7E8GDgFcZvXqkufwSlcQqpUCbi9d1_ySF6MF1k83w-O_16gB52dTbfffcG7Ta_WvsW4FpTvAu79A-anDtN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+3-D+Intraretinal+Layer+Segmentation+of+Macular+Spectral-Domain+Optical+Coherence+Tomography+Images&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Garvin%2C+M.K.&rft.au=Abramoff%2C+M.D.&rft.au=Xiaodong+Wu&rft.au=Russell%2C+S.R.&rft.date=2009-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=28&rft.issue=9&rft.spage=1436&rft.epage=1447&rft_id=info:doi/10.1109%2FTMI.2009.2016958&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2009_2016958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |