Towards a Contactless Stress Classification Using Thermal Imaging
Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an ef...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 3; p. 976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22030976 |
Cover
Loading…
Abstract | Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manner. |
---|---|
AbstractList | Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manner. Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manner.Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates the contribution given by thermal imaging for an effective automatic stress detection with the perspective of a contactless stress recognition system. To this aim, we recorded both ANS correlates (cardiac, electrodermal, and respiratory activity) and thermal images from 25 volunteers under acute stress induced by the Stroop test. We conducted a statistical analysis on the features extracted from each signal, and we implemented subject-independent classifications based on the support vector machine model with an embedded recursive feature elimination algorithm. Particularly, we trained three classifiers using different feature sets: the full set of features, only those derived from the peripheral autonomic correlates, and only those derived from the thermal images. Classification accuracy and feature selection results confirmed the relevant contribution provided by the thermal features in the acute stress detection task. Indeed, a combination of ANS correlates and thermal features achieved 97.37% of accuracy. Moreover, using only thermal features we could still successfully detect stress with an accuracy of 86.84% in a contact-free manner. |
Audience | Academic |
Author | Gioia, Federica Callara, Alejandro Luis Scilingo, Enzo Pasquale Greco, Alberto |
AuthorAffiliation | 1 Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy; alberto.greco@unipi.it (A.G.); alejandro.callara@ing.unipi.it (A.L.C.); e.scilingo@ing.unipi.it (E.P.S.) 2 Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy |
AuthorAffiliation_xml | – name: 1 Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy; alberto.greco@unipi.it (A.G.); alejandro.callara@ing.unipi.it (A.L.C.); e.scilingo@ing.unipi.it (E.P.S.) – name: 2 Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy |
Author_xml | – sequence: 1 givenname: Federica orcidid: 0000-0001-6313-5162 surname: Gioia fullname: Gioia, Federica – sequence: 2 givenname: Alberto orcidid: 0000-0002-4822-5562 surname: Greco fullname: Greco, Alberto – sequence: 3 givenname: Alejandro Luis orcidid: 0000-0003-2767-0699 surname: Callara fullname: Callara, Alejandro Luis – sequence: 4 givenname: Enzo Pasquale orcidid: 0000-0003-2588-4917 surname: Scilingo fullname: Scilingo, Enzo Pasquale |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35161722$$D View this record in MEDLINE/PubMed |
BookMark | eNptksluFDEQhi0URBY48AKoJS5wmMRLe7sgjUYsI0XiwORseeuOR912sHtAvD3uTBgyUeRD2eWv_nJZ_zk4iSl6AN4ieEmIhFcFY0ig5OwFOEMtbheiJk4e7U_BeSlbCDEhRLwCp4QihjjGZ2C5Sb91dqXRzSrFSdtp8KU0P6Y8h9WgSwldsHoKKTY3JcS-2dz6POqhWY-6r-fX4GWnh-LfPMQLcPPl82b1bXH9_et6tbxeWAbxtDCyc0YLazC1nBhsEUfOd8wIY2GrPWVWI-MJNRJz6KWVxBGMsWTGti3W5AKs97ou6a26y2HU-Y9KOqj7RMq90nkKdvAKtVQgLEjLqGtp7YFdi4i1rPOGCSer1qe91t3OjN5ZH6eshyPR45sYblWffikhiOR8FvjwIJDTz50vkxpDsX4YdPRpVxRmWEJKKcMVff8E3aZdjvWrZooLQilB_6le1wFC7FLta2dRteQCMSiFnLUun6Hqcn4MtpqiCzV_VPDu8aCHCf8ZoAIf94DNqZTsuwOCoJrNpQ7mquzVE9aG6d4Z9RVheKbiLwtzzdE |
CitedBy_id | crossref_primary_10_14326_abe_14_54 crossref_primary_10_3390_electronics13112180 crossref_primary_10_3390_electronics12061498 crossref_primary_10_1007_s11042_023_17536_7 crossref_primary_10_1109_ACCESS_2022_3217904 crossref_primary_10_1007_s10015_024_00953_8 crossref_primary_10_1016_j_procs_2023_10_242 crossref_primary_10_1109_ACCESS_2024_3452934 crossref_primary_10_3389_fpubh_2023_1302794 crossref_primary_10_1016_j_buildenv_2023_111079 crossref_primary_10_3390_ijerph192114577 crossref_primary_10_1109_TBME_2024_3486628 crossref_primary_10_3390_s23187991 crossref_primary_10_1016_j_neucom_2024_127282 |
Cites_doi | 10.1166/jmihi.2015.1490 10.30773/pi.2017.08.17 10.1016/j.infrared.2014.02.008 10.3390/s151025607 10.1016/j.infrared.2015.02.007 10.1109/TBME.1985.325532 10.1109/TITB.2011.2169804 10.1109/JAS.2019.1911447 10.1016/0301-0511(94)90024-8 10.1016/S0733-8651(18)30231-5 10.1145/3130898 10.1038/srep35174 10.1109/ACII.2017.8273639 10.1109/TBME.2007.891930 10.1177/107385840200800209 10.1371/journal.pone.0090782 10.1109/IEMBS.2006.260267 10.1109/IEMBS.2006.259421 10.5688/aj710478 10.1145/1056808.1057007 10.1098/rsta.2008.0267 10.1177/039463200802100322 10.1109/EMBC46164.2021.9630860 10.1016/j.infbeh.2007.09.001 10.1016/j.neubiorev.2011.02.003 10.1007/s10439-016-1606-6 10.3390/proceedings2019027027 10.1007/s11517-018-1879-z 10.1111/j.1469-8986.1981.tb02483.x 10.1016/j.cmpb.2013.07.024 10.1016/j.snb.2015.02.025 10.1109/MCE.2016.2590178 10.1109/FG.2018.00024 10.1159/000119004 10.1371/journal.pone.0212928 10.1016/j.neuroscience.2014.02.009 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1469-8986.2010.01043.x 10.4103/0971-6203.48720 10.1016/S0167-8760(97)00049-4 10.1214/09-SS054 10.1109/ACII.2019.8925453 10.1016/j.infrared.2017.01.002 10.1007/978-3-540-35488-8_6 10.1109/IEMBS.2007.4352392 10.1111/psyp.12243 10.3390/s17102324 10.1038/s41598-019-41172-7 10.1016/j.concog.2015.04.003 10.1093/sleep/32.11.1521 10.3233/OER-2007-7202 10.1016/j.eswa.2021.115024 10.1109/ChiCC.2016.7553952 10.1093/bioinformatics/btm344 10.1007/s00371-015-1164-1 10.1016/j.bbr.2017.12.021 10.1016/S0169-8141(96)00011-X 10.3390/s121115888 10.1037/h0054651 10.1002/clc.4960130811 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22030976 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_14581283465d45f6b2d413cc6feb68d9 PMC8839779 A781609892 35161722 10_3390_s22030976 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c602t-b9fdba8cb25c73b2c171def6b8bc04ae56ca1be35b9270e9c93d322296bc442a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:35 EDT 2025 Thu Aug 21 14:05:28 EDT 2025 Tue Aug 05 11:36:45 EDT 2025 Fri Jul 25 22:39:38 EDT 2025 Tue Jun 17 22:24:33 EDT 2025 Tue Jun 10 21:12:58 EDT 2025 Thu Apr 03 06:56:52 EDT 2025 Tue Jul 01 02:41:43 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | contactless support vector machine wearable systems stress detection thermal imaging |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-b9fdba8cb25c73b2c171def6b8bc04ae56ca1be35b9270e9c93d322296bc442a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6313-5162 0000-0003-2588-4917 0000-0003-2767-0699 0000-0002-4822-5562 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22030976 |
PMID | 35161722 |
PQID | 2627835531 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_14581283465d45f6b2d413cc6feb68d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8839779 proquest_miscellaneous_2629055562 proquest_journals_2627835531 gale_infotracmisc_A781609892 gale_infotracacademiconefile_A781609892 pubmed_primary_35161722 crossref_primary_10_3390_s22030976 crossref_citationtrail_10_3390_s22030976 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220127 |
PublicationDateYYYYMMDD | 2022-01-27 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220127 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Ori (ref_53) 1992; 10 ref_57 ref_12 (ref_32) 2021; 178 ref_10 Genno (ref_21) 1997; 19 Sloan (ref_54) 1994; 37 Benjamini (ref_44) 1995; 57 Arlot (ref_64) 2010; 4 Critchley (ref_4) 2002; 8 Peternel (ref_11) 2012; 12 Kim (ref_52) 2018; 15 Garbey (ref_17) 2007; 54 Malik (ref_43) 1990; 13 Arza (ref_14) 2019; 57 Yan (ref_45) 2015; 212 ref_60 Kirschbaum (ref_58) 1993; 28 Hong (ref_67) 2016; 32 Wallin (ref_3) 1981; 18 Greene (ref_6) 2016; 5 Merla (ref_18) 2008; 21 ref_24 Greco (ref_39) 2015; 63 ref_68 ref_66 Choi (ref_55) 2011; 16 ref_20 ref_63 Stroop (ref_34) 1935; 18 McCorry (ref_5) 2007; 71 Panasiti (ref_59) 2016; 6 ref_29 ref_28 ref_27 Liu (ref_13) 2018; 341 ref_26 Marins (ref_36) 2015; 71 Or (ref_22) 2007; 7 Cohen (ref_35) 1994; Volume 10 Vlemincx (ref_56) 2011; 48 Brunetti (ref_19) 2014; 266 ref_72 Jatupaiboon (ref_61) 2015; 5 ref_71 Cerutti (ref_15) 2009; 367 Sonkusare (ref_25) 2019; 9 (ref_31) 2017; 81 Florian (ref_40) 2016; 44 ref_33 Ferreira (ref_9) 2015; 15 ref_30 Saeys (ref_47) 2007; 23 Guyon (ref_48) 2003; 3 Nakanishi (ref_69) 2008; 31 ref_38 ref_37 Liu (ref_62) 2019; 6 Murthy (ref_16) 2009; 32 Renaud (ref_51) 1997; 27 Tarvainen (ref_41) 2014; 113 ref_46 Ioannou (ref_1) 2014; 51 ref_42 ref_2 ref_49 ref_8 Ramos (ref_23) 2015; 34 Marins (ref_70) 2014; 65 ref_7 Bagavathiappan (ref_65) 2009; 34 |
References_xml | – volume: 5 start-page: 1020 year: 2015 ident: ref_61 article-title: Subject-dependent and subject-independent emotion classification using unimodal and multimodal physiological signals publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2015.1490 – volume: 15 start-page: 235 year: 2018 ident: ref_52 article-title: Stress and heart rate variability: A meta-analysis and review of the literature publication-title: Psychiatry Investig. doi: 10.30773/pi.2017.08.17 – ident: ref_49 – volume: 65 start-page: 30 year: 2014 ident: ref_70 article-title: Time required to stabilize thermographic images at rest publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.02.008 – volume: 15 start-page: 25607 year: 2015 ident: ref_9 article-title: Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones publication-title: Sensors doi: 10.3390/s151025607 – volume: 71 start-page: 28 year: 2015 ident: ref_36 article-title: Classification of factors influencing the use of infrared thermography in humans: A review publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2015.02.007 – ident: ref_42 doi: 10.1109/TBME.1985.325532 – volume: 16 start-page: 279 year: 2011 ident: ref_55 article-title: Development and evaluation of an ambulatory stress monitor based on wearable sensors publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2169804 – volume: 6 start-page: 703 year: 2019 ident: ref_62 article-title: An embedded feature selection method for imbalanced data classification publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911447 – volume: 37 start-page: 89 year: 1994 ident: ref_54 article-title: Effect of mental stress throughout the day on cardiac autonomic control publication-title: Biol. Psychol. doi: 10.1016/0301-0511(94)90024-8 – volume: 10 start-page: 499 year: 1992 ident: ref_53 article-title: Heart rate variability: Frequency domain analysis publication-title: Cardiol. Clin. doi: 10.1016/S0733-8651(18)30231-5 – ident: ref_57 doi: 10.1145/3130898 – volume: 6 start-page: 35174 year: 2016 ident: ref_59 article-title: Thermal signatures of voluntary deception in ecological conditions publication-title: Sci. Rep. doi: 10.1038/srep35174 – ident: ref_68 doi: 10.1109/ACII.2017.8273639 – volume: 54 start-page: 1418 year: 2007 ident: ref_17 article-title: Contact-free measurement of cardiac pulse based on the analysis of thermal imagery publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.891930 – volume: 8 start-page: 132 year: 2002 ident: ref_4 article-title: Electrodermal responses: What happens in the brain publication-title: Neuroscientist doi: 10.1177/107385840200800209 – ident: ref_20 doi: 10.1371/journal.pone.0090782 – ident: ref_71 – ident: ref_33 doi: 10.1109/IEMBS.2006.260267 – ident: ref_50 doi: 10.1109/IEMBS.2006.259421 – volume: 71 start-page: 78 year: 2007 ident: ref_5 article-title: Physiology of the autonomic nervous system publication-title: Am. J. Pharm. Educ. doi: 10.5688/aj710478 – ident: ref_29 doi: 10.1145/1056808.1057007 – ident: ref_8 – volume: 367 start-page: 1337 year: 2009 ident: ref_15 article-title: Multiscale, multiorgan and multivariate complexity analyses of cardiovascular regulation publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2008.0267 – volume: 21 start-page: 679 year: 2008 ident: ref_18 article-title: Comparison of thermal infrared and laser doppler imaging in the assessment of cutaneous tissue perfusion in scleroderma patients and healthy controls publication-title: Int. J. Immunopathol. Pharmacol. doi: 10.1177/039463200802100322 – ident: ref_30 doi: 10.1109/EMBC46164.2021.9630860 – ident: ref_10 – volume: 31 start-page: 137 year: 2008 ident: ref_69 article-title: Facial skin temperature decreases in infants with joyful expression publication-title: Infant Behav. Dev. doi: 10.1016/j.infbeh.2007.09.001 – ident: ref_7 doi: 10.1016/j.neubiorev.2011.02.003 – volume: 44 start-page: 3124 year: 2016 ident: ref_40 article-title: Power spectral density analysis of electrodermal activity for sympathetic function assessment publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1606-6 – ident: ref_66 – ident: ref_38 – ident: ref_24 doi: 10.3390/proceedings2019027027 – ident: ref_72 – volume: 57 start-page: 271 year: 2019 ident: ref_14 article-title: Measuring acute stress response through physiological signals: Towards a quantitative assessment of stress publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1879-z – volume: 18 start-page: 470 year: 1981 ident: ref_3 article-title: Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1981.tb02483.x – volume: 113 start-page: 210 year: 2014 ident: ref_41 article-title: Kubios HRV–heart rate variability analysis software publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.07.024 – volume: 3 start-page: 1157 year: 2003 ident: ref_48 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 212 start-page: 353 year: 2015 ident: ref_45 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.02.025 – volume: 5 start-page: 44 year: 2016 ident: ref_6 article-title: A Survey of Affective Computing for Stress Detection: Evaluating technologies in stress detection for better health publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2016.2590178 – ident: ref_37 doi: 10.1109/FG.2018.00024 – volume: 28 start-page: 76 year: 1993 ident: ref_58 article-title: The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting publication-title: Neuropsychobiology doi: 10.1159/000119004 – ident: ref_26 doi: 10.1371/journal.pone.0212928 – volume: 266 start-page: 216 year: 2014 ident: ref_19 article-title: Thermal signature of fear conditioning in mild post traumatic stress disorder publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.02.009 – volume: 57 start-page: 289 year: 1995 ident: ref_44 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 48 start-page: 117 year: 2011 ident: ref_56 article-title: Sigh rate and respiratory variability during mental load and sustained attention publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01043.x – volume: 34 start-page: 43 year: 2009 ident: ref_65 article-title: Infrared thermal imaging for detection of peripheral vascular disorders publication-title: J. Med. Phys. doi: 10.4103/0971-6203.48720 – volume: 27 start-page: 87 year: 1997 ident: ref_51 article-title: The stress of Stroop performance: Physiological and emotional responses to color—Word interference, task pacing, and pacing speed publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(97)00049-4 – volume: 4 start-page: 40 year: 2010 ident: ref_64 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – ident: ref_27 doi: 10.1109/ACII.2019.8925453 – volume: 81 start-page: 250 year: 2017 ident: ref_31 article-title: Human emotions detection based on a smart-thermal system of thermographic images publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.01.002 – ident: ref_63 doi: 10.1007/978-3-540-35488-8_6 – ident: ref_28 doi: 10.1109/IEMBS.2007.4352392 – volume: 51 start-page: 951 year: 2014 ident: ref_1 article-title: Thermal infrared imaging in psychophysiology: Potentialities and limits publication-title: Psychophysiology doi: 10.1111/psyp.12243 – ident: ref_12 doi: 10.3390/s17102324 – volume: 9 start-page: 4729 year: 2019 ident: ref_25 article-title: Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking publication-title: Sci. Rep. doi: 10.1038/s41598-019-41172-7 – ident: ref_2 – volume: 34 start-page: 149 year: 2015 ident: ref_23 article-title: The mental and subjective skin: Emotion, empathy, feelings and thermography publication-title: Conscious. Cogn. doi: 10.1016/j.concog.2015.04.003 – volume: 32 start-page: 1521 year: 2009 ident: ref_16 article-title: Thermal infrared imaging: A novel method to monitor airflow during polysomnography publication-title: Sleep doi: 10.1093/sleep/32.11.1521 – volume: 7 start-page: 83 year: 2007 ident: ref_22 article-title: Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement publication-title: Occup. Ergon. doi: 10.3233/OER-2007-7202 – volume: 178 start-page: 115024 year: 2021 ident: ref_32 article-title: Novel expert system to study human stress based on thermographic images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115024 – volume: Volume 10 start-page: 1 year: 1994 ident: ref_35 article-title: Perceived stress scale publication-title: Measuring Stress: A Guide for Health and Social Scientists – ident: ref_46 doi: 10.1109/ChiCC.2016.7553952 – volume: 23 start-page: 2507 year: 2007 ident: ref_47 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 32 start-page: 1369 year: 2016 ident: ref_67 article-title: Real-time stress assessment using thermal imaging publication-title: Vis. Comput. doi: 10.1007/s00371-015-1164-1 – volume: 341 start-page: 50 year: 2018 ident: ref_13 article-title: Psychological stress level detection based on electrodermal activity publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2017.12.021 – volume: 63 start-page: 797 year: 2015 ident: ref_39 article-title: cvxEDA: A convex optimization approach to electrodermal activity processing publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 161 year: 1997 ident: ref_21 article-title: Using facial skin temperature to objectively evaluate sensations publication-title: Int. J. Ind. Ergon. doi: 10.1016/S0169-8141(96)00011-X – ident: ref_60 – volume: 12 start-page: 15888 year: 2012 ident: ref_11 article-title: A presence-based context-aware chronic stress recognition system publication-title: Sensors doi: 10.3390/s121115888 – volume: 18 start-page: 643 year: 1935 ident: ref_34 article-title: Studies of interference in serial verbal reactions publication-title: J. Exp. Psychol. doi: 10.1037/h0054651 – volume: 13 start-page: 570 year: 1990 ident: ref_43 article-title: Heart rate variability publication-title: Clin. Cardiol. doi: 10.1002/clc.4960130811 |
SSID | ssj0023338 |
Score | 2.448067 |
Snippet | Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 976 |
SubjectTerms | Algorithms Autonomic Nervous System Blood Cameras Classification contactless Diagnostic Imaging Experiments Humans Humidity Physiology Respiratory Rate Skin Statistical analysis Stress stress detection Support Vector Machine thermal imaging wearable systems |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3La9ZAEF-kJz2ItT6irUQR9BKafWb3-CkttVAvttDbsk8UalrM1__fmU2-kKDgxWtmErIzu_NgZ35DyPvMI3hBhA3lVDTC09g4I2UDkbEPDuJdX7reL76qsytxfi2vF6O-sCZshAceBXdMhQQfpLlQMgqZlWcR7G4IKievdCyte-DzdsnUlGpxyLxGHCEOSf3xwBheJSCwyML7FJD-P03xwhet6yQXjuf0CXk8RYz1ZvzTffIg9U_JowWO4AHZXJbi16F2NaJNuQAbYBjqb6UPpC5zL7EiqCihLkUCNWwPMMk39ZefZUzRM3J1enL5-ayZZiM0QbVs23iTo3c6eCZDxz0LtKMxgXi0D61wSargqE9cesO6NplgeMRLFaN8EII5_pzs9bd9eklqR2PrWO48FU5oROxKWRitTDY-Z9NW5ONOZjZMwOE4v-LGQgKB4rWzeCvybma9G9Ey_sb0CQU_MyDAdXkAareT2u2_1F6RD6g2i8cQfia4qZsAloSAVnbTaapaow2ryOGKE45PWJN3irfT8R0sUziARIJ9qsjbmYxvYklan27vC49BtDQFn3gx7pN5SVxi2siA0q120GrNa0r_43sB99YaQ3Lz6n8I6TV5yLBbo6UN6w7J3vbXfTqCGGrr35Tj8hsv1hiV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SZQUEBIcIkaP2Of0Ba1KkhUCFqpt8hPQCrZ0mz_PzNeb9gIxDWeRPF4nvb4G0JeJx7ACyJsKKeiEY6GxhopG4iMnbcQ77p86_3TiTo-Ex_P5XnZcBtLWeXGJmZDHZYe98j3mcKeEBJE5t3lrwa7RuHpammhcZPsggnWIOG7B4cnn79MKReHDGyNJ8Qhud8fGcMjBQQY2fJCGaz_b5O85ZPm9ZJbDujoLrlTIsd6sV7qe-RGHO6T21t4gg_I4jQXwY61rRF1ynoQhHGsv-b7IHXuf4mVQXkx6lwsUIOYgGm-qD_8zO2KHpKzo8PT98dN6ZHQeNWyVeNMCs5q75j0HXfM046GmJTTzrfCRqm8pS5y6Qzr2mi84QEPV4xyXghm-SOyMyyH-ITUlobWstQ5KqzQiNwVkzBamWRcSqatyNsNz3pfAMSxj8VFD4kEsref2FuRVxPp5Ro1419EB8j4iQCBrvOD5dW3vugNZCYSQhDNhZJBSJgXC-B2vVcpOqWDqcgbXLYe1RF-xttyqwCmhMBW_aLTVLVGG1aRvRklqJGfD28Wvi9qPPZ_hK4iL6dhfBNL04a4vM40BlHTFHzi8VpOpilxiekjg5FuJkGzOc9Hhh_fM8i31hiam6f__61n5BbD-xgtbVi3R3ZWV9fxOURJK_eiqMJvJQ4SDQ priority: 102 providerName: ProQuest |
Title | Towards a Contactless Stress Classification Using Thermal Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35161722 https://www.proquest.com/docview/2627835531 https://www.proquest.com/docview/2629055562 https://pubmed.ncbi.nlm.nih.gov/PMC8839779 https://doaj.org/article/14581283465d45f6b2d413cc6feb68d9 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wIHxHsLSxUQElwCid8-INRFWxakXSHYSr1FtpMAUkmh6Urw75lx06gRe-DSQz2p6vHYMxPPfB_A85qX6AUJNpTnIhU-L1NnpUwxMvbBYbzrY9f7-YU6m4mPcznfgy3HZqfA9trUjvikZqvFq9-__rzFDf-GMk5M2V-3jNFFgVb7cIgOSRODw7noLxMY55HQmnq6UvSH2QZgaPjowC1F9P5_z-gdJzUsoNzxSNPbcKsLJZPJZu3vwF7V3IWbOwCD92ByGati28QlBEPlAlpG2yZfYoNIEgkxqVQork4SqwcStBs8qxfJhx-Rv-g-zKanl-_O0o40IQ0qY-vU27r0zgTPZNDcs5DrvKxq5Y0PmXCVVMHlvuLSW6azygbLS7ptscoHIZjjD-CgWTbVESQuLzPHau1z4YQhKK-qFtYoW1tf1zYbwcutzorQIYoTscWiwMyC1Fv06h3Bs1705wZG4zqhE1J8L0DI1_GL5epr0W0kTFUkxiSGCyVLIXFerEQ_HIKqK69MaUfwgpatIIvBPxNc12aAUyKkq2KiTa4yaywbwfFAEvdVGA5vF77YmmXBFDGTSDy4RvC0H6YnqVatqZZXUcYSjJrCn3i4sZN-SlxSPslwRA8saDDn4Ujz_VtE_TaGYnX76H80-RhuMGrTyPKU6WM4WK-uqicYPK39GPb1XOOnmb4fw-HJ6cWnz-P4ImIcN81fi40ZtA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiDeBAgGB4BI18Sv2AaHlUe3Sx4WttLdgOw5FKtnSbIX4U_xGZpxHNwJx6zWeWPF4xjMTz3xDyIuKlWAFETaUZTzhNisTo4VIwDO2zoC_a0PV-8GhnB7xTwux2CC_-1oYTKvsz8RwUJdLh__Id6jEnhACRObt6Y8Eu0bh7WrfQqMViz3_6yeEbM2b2QfY35eU7n6cv58mXVeBxMmUrhKrq9Ia5SwVLmeWuizPSl9Jq6xLufFCOpNZz4TVNE-9dpqVeB2hpXWcU8Ng3ivkKhjeFFMI88VFgMcg3mvRixjT6U5DKV5gIJzJms0LrQH-NgBrFnCcnblm7nZvkhudnxpPWsG6RTZ8fZtsraEX3iGTeUi5bWITI8aVcSB2TRN_DtUncei2iXlIYevjkJoQg1CCITiJZ99Dc6S75OhSeHePbNbL2j8gscnK1NAqtxk3XCFOmK-4VlJX2laVTiPyuudZ4Tq4cuyacVJA2ILsLQb2RuT5QHraYnT8i-gdMn4gQFjt8GB59rXotBTiIAEOj2JcipILWBctwcg7JytvpSp1RF7hthWo_PAxznQ1DLAkhNEqJrnKZKqVphHZHlGC0rrxcL_xRXdoNMWFiEfk2TCMb2IiXO2X54FGI0abhCnut3IyLIkJDFYpjOQjCRqteTxSfzsOkOJKYSCgH_7_s56Sa9P5wX6xPzvce0SuU6wESbOE5ttkc3V27h-Df7ayT4JSxOTLZWvhH5D4Tv4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CLQQEgku0iV-xD6haKKsuhQqJVtpbsB0HkEq2NFsh_hq_jhnn0Y1A3Hpde6N4_I1nJp75hpBnFSvBCiJtKMt4wm1WJkYLkYBnbJ0Bf9eGqvcPB3LviL9biMUG-d3XwmBaZX8mhoO6XDr8Rj6hEntCCIDMpOrSIj7uznZOfiTYQQpvWvt2Gi1E9v2vnxC-Na_mu7DXzymdvT18s5d0HQYSJ1O6SqyuSmuUs1S4nFnqsjwrfSWtsi7lxgvpTGY9E1bTPPXaaVbi1YSW1nFODYPnXiKXcwZmE3QpX5wHewxiv5bJiDGdThpK8TIDqU3W7F9oE_C3MVizhuNMzTXTN7tBrnc-azxtQXaTbPj6Frm2xmR4m0wPQ_ptE5sY-a6MAwg2TfwpVKLEofMm5iQFGMQhTSEGgIJROI7n30OjpDvk6EJkd5ds1sva3yexycrU0Cq3GTdcIWeYr7hWUlfaVpVOI_Kyl1nhOupy7KBxXEAIg-ItBvFG5Okw9aTl6_jXpNco-GECUmyHH5anX4pOYyEmEuD8KMalKLmAddESDL5zsvJWqlJH5AVuW4EHAbyMM109AywJKbWKaa4ymWqlaUS2RjNBgd14uN_4ojtAmuIc7hF5MgzjPzEprvbLszBHI1-bhEfca3EyLAkQib4pjOQjBI3WPB6pv30N9OJKYVCgH_z_tR6TK6B_xfv5wf5DcpViUUiaJTTfIpur0zO_Da7ayj4KOhGTzxethH8ABelTNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Contactless+Stress+Classification+Using+Thermal+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gioia%2C+Federica&rft.au=Greco%2C+Alberto&rft.au=Callara%2C+Alejandro+Luis&rft.au=Scilingo%2C+Enzo+Pasquale&rft.date=2022-01-27&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=976&rft_id=info:doi/10.3390%2Fs22030976&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22030976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |