Design of Innovative Biocompatible Cellulose Nanostructures for the Delivery and Sustained Release of Curcumin
Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work,...
Saved in:
Published in | Pharmaceutics Vol. 15; no. 3; p. 981 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems. |
---|---|
AbstractList | Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems. Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems.Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations. Cellulose nanostructures are promising and sustainable carriers with unique features that may be used in enabling delivery strategies. In this work, cellulose nanocrystals (CNC) and cellulose nanofibers were investigated as carriers for the delivery of curcumin, a model liposoluble compound. Nanocellulose modification with the surfactant cetyltrimethylammonium bromide (CTAB), tannic acid and decylamine (TADA), and by TEMPO-mediated oxidation were also tested and compared. The carrier materials were characterized in terms of structural properties and surface charge, while the delivery systems were evaluated for their encapsulation and release properties. The release profile was assessed in conditions that mimic the gastric and intestinal fluids, and cytotoxicity studies were performed in intestinal cells to confirm safe application. Modification with CTAB and TADA resulted in high curcumin encapsulation efficiencies of 90 and 99%, respectively. While no curcumin was released from TADA-modified nanocellulose in simulated gastrointestinal conditions, CNC-CTAB allowed for a curcumin-sustained release of ca. 50% over 8 h. Furthermore, the CNC-CTAB delivery system showed no cytotoxic effects on Caco-2 intestinal cells up to 0.125 g/L, meaning that up to this concentration the system is safe to use. Overall, the use of the delivery systems allowed for the reduction in the cytotoxicity associated with higher curcumin concentrations, highlighting the potential of nanocellulose encapsulation systems. |
Audience | Academic |
Author | Castro, Pedro M. Costa, Eduardo M. Fernandes, João C. Pereira, Carla F. Ribeiro, Alessandra B. Casanova, Francisca Pintado, Manuela Freixo, Ricardo Ramos, Óscar L. |
AuthorAffiliation | CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal |
AuthorAffiliation_xml | – name: CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal |
Author_xml | – sequence: 1 givenname: Francisca orcidid: 0000-0001-7570-0384 surname: Casanova fullname: Casanova, Francisca – sequence: 2 givenname: Carla F. surname: Pereira fullname: Pereira, Carla F. – sequence: 3 givenname: Alessandra B. orcidid: 0000-0003-3822-8601 surname: Ribeiro fullname: Ribeiro, Alessandra B. – sequence: 4 givenname: Eduardo M. orcidid: 0000-0003-3121-4514 surname: Costa fullname: Costa, Eduardo M. – sequence: 5 givenname: Ricardo surname: Freixo fullname: Freixo, Ricardo – sequence: 6 givenname: Pedro M. surname: Castro fullname: Castro, Pedro M. – sequence: 7 givenname: João C. surname: Fernandes fullname: Fernandes, João C. – sequence: 8 givenname: Manuela orcidid: 0000-0002-0760-3184 surname: Pintado fullname: Pintado, Manuela – sequence: 9 givenname: Óscar L. surname: Ramos fullname: Ramos, Óscar L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36986845$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpTwBFYsNmih9xEosFKlMeI1Ug8VhbN_b1jEeJPbWTkfrv8TAtdKqKeJHEPuezztV5Xhz54LEoXlJyzrkkbzcriANonEanExWEE9nSJ8UJlVLOKsn40b3v4-IspTXJD-e05fJZccxr2dZtJU4Kf4nJLX0ZbLnwPmxhdFssP7igw7DJP12P5Rz7fupDwvIr-JDGOOlxiphKG2I5rrC8xD674k0J3pQ_pjSC82jK79gjZFdmz6eop8H5F8VTC33Cs9v3afHr08ef8y-zq2-fF_OLq5muCRtnwJmxFBsmayOY6ZpO1kICsQQqBMtrIqwBY7hGMI1sOylkR7TkCMJYJvlpsdhzTYC12kQ3QLxRAZz6sxHiUkHMw-tR1R0jTWVFJ0FXraEtY0A7QStGOiB1nVnv96zN1A1oNPoxQn8APTzxbqWWYasoIYLWLc2EN7eEGK4nTKMaXNJ5quAxTEmxRjJBCWNNlr5-IF2HKfo8q50q04Sk4p9qCTmB8zbki_UOqi6aijcNIU2bVeePqPIyODidG2Vd3j8wvLqf9G_Eu7pkwbu9QMeQUkSrtBtzS8IuuOtzYrXrp3q0n9ktHrjvLvi_7zeBxu8T |
CitedBy_id | crossref_primary_10_1016_j_compositesa_2024_108632 crossref_primary_10_3390_app142210416 crossref_primary_10_1016_j_jphotochem_2023_115407 crossref_primary_10_3390_polym15183774 crossref_primary_10_1016_j_lwt_2024_116563 crossref_primary_10_3390_pharmaceutics15122738 crossref_primary_10_1016_j_ijbiomac_2024_136660 crossref_primary_10_3390_ph16121737 |
Cites_doi | 10.1080/10408398.2018.1495174 10.1016/j.indcrop.2018.03.042 10.1016/j.foodchem.2016.11.149 10.1016/j.foodhyd.2019.105447 10.3389/fsufs.2018.00077 10.1016/j.carbpol.2015.08.035 10.1016/j.foodhyd.2017.07.002 10.1016/j.ijbiomac.2019.12.247 10.1080/17425247.2016.1182487 10.1007/s12649-018-0487-3 10.3390/nano11102593 10.1016/j.foodhyd.2018.02.042 10.1007/s10570-013-0030-4 10.1016/j.ejpb.2012.06.011 10.3183/npprj-2014-29-01-p105-118 10.1016/j.foodchem.2012.11.016 10.1016/j.carbpol.2017.01.036 10.1177/004051755902901003 10.2174/138920012798356952 10.1016/j.bmcl.2015.12.060 10.1016/j.carbpol.2016.11.005 10.1039/C4CS00185K 10.3390/molecules190914257 10.1016/j.lwt.2017.08.041 10.1007/s10570-013-9948-9 10.1021/am505681e 10.1088/2043-6262/7/3/035004 10.1016/j.fbio.2018.10.002 10.1039/C9FO01963D 10.1016/j.foodhyd.2019.105357 10.1016/j.carbpol.2018.09.036 10.1016/j.jece.2021.106043 10.1016/j.lwt.2018.03.075 10.1016/j.carbpol.2017.11.027 10.1007/s10570-017-1360-4 10.1016/j.progpolymsci.2018.09.002 10.1016/j.cis.2019.102048 10.1016/j.ijbiomac.2018.06.147 10.1007/s10570-017-1646-6 10.1016/j.ijpharm.2012.03.031 10.1016/j.micron.2015.02.003 10.1016/j.abb.2018.04.012 10.1016/j.foodhyd.2018.10.003 10.1016/j.ijpharm.2020.119136 10.1007/s10570-015-0840-7 10.3390/polym9020064 10.1016/j.ijbiomac.2019.07.035 10.1515/chem-2019-0063 10.1016/j.ejpb.2017.04.004 10.1002/jsfa.8033 10.1016/j.indcrop.2015.04.046 10.1021/ac50134a013 10.3390/su12156015 10.1021/acssuschemeng.7b00415 10.1016/j.apsusc.2016.01.133 10.1021/acs.biomac.7b01730 10.1007/s13738-014-0519-2 10.1007/s10965-017-1232-5 10.1016/j.ijpharm.2017.09.064 10.1016/j.cossms.2019.01.001 10.1016/j.jtcme.2016.05.005 10.1016/j.jconrel.2011.07.016 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/pharmaceutics15030981 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1999-4923 |
ExternalDocumentID | oai_doaj_org_article_6b2074f5b9ac48d1822a1b51420ba066 PMC10051681 A743770078 36986845 10_3390_pharmaceutics15030981 |
Genre | Journal Article |
GeographicLocations | Portugal United States--US |
GeographicLocations_xml | – name: Portugal – name: United States--US |
GrantInformation_xml | – fundername: European Regional Development Fund grantid: POCI-01-0247-FEDER-027578 – fundername: Fundação para a Ciência e a Tecnologia grantid: UID/Multi/50016/2020 – fundername: FCT grantid: UID/Multi/50016/2020 – fundername: European Regional Development Fund (ERDF) grantid: POCI-01-0247-FEDER-027578 |
GroupedDBID | --- 53G 5VS 8G5 AADQD AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS AEAQA AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX F5P FD6 GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR ITC KQ8 M2O M48 MK0 MODMG M~E OK1 P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 TUS 3V. NPM PMFND 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c602t-a32df1e7296d52db7b9659a0f0a4eaf3605fdadd3cead798b959b0c93ea5df293 |
IEDL.DBID | BENPR |
ISSN | 1999-4923 |
IngestDate | Wed Aug 27 01:27:32 EDT 2025 Thu Aug 21 18:38:03 EDT 2025 Thu Jul 10 18:19:46 EDT 2025 Mon Jun 30 11:48:49 EDT 2025 Tue Jun 17 22:24:22 EDT 2025 Tue Jun 10 21:24:57 EDT 2025 Thu Jan 02 22:52:12 EST 2025 Tue Jul 01 03:36:27 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nanocellulose delivery systems sustained release cytotoxicity curcumin |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-a32df1e7296d52db7b9659a0f0a4eaf3605fdadd3cead798b959b0c93ea5df293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0760-3184 0000-0003-3822-8601 0000-0003-3121-4514 0000-0001-7570-0384 |
OpenAccessLink | https://www.proquest.com/docview/2791685915?pq-origsite=%requestingapplication% |
PMID | 36986845 |
PQID | 2791685915 |
PQPubID | 2032349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b2074f5b9ac48d1822a1b51420ba066 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10051681 proquest_miscellaneous_2792510227 proquest_journals_2791685915 gale_infotracmisc_A743770078 gale_infotracacademiconefile_A743770078 pubmed_primary_36986845 crossref_citationtrail_10_3390_pharmaceutics15030981 crossref_primary_10_3390_pharmaceutics15030981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-18 |
PublicationDateYYYYMMDD | 2023-03-18 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Pharmaceutics |
PublicationTitleAlternate | Pharmaceutics |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zainuddin (ref_28) 2017; 163 Anarjan (ref_15) 2014; 19 Wang (ref_69) 2017; 157 ref_11 Kim (ref_53) 2021; 9 Zafar (ref_67) 2016; 13 Rehman (ref_7) 2020; 275 Lam (ref_29) 2017; 24 Ntoutoume (ref_57) 2016; 26 Kumar (ref_46) 2014; 2 Kolakovic (ref_63) 2012; 430 Amalraj (ref_9) 2017; 7 Fanta (ref_24) 2015; 74 Ghalandari (ref_56) 2015; 12 Zeng (ref_65) 2017; 117 ref_59 Isogai (ref_52) 2019; 23 Qing (ref_35) 2016; 366 Brown (ref_45) 2016; 7 Yallapu (ref_61) 2012; 13 Otsuka (ref_31) 2017; 24 Ching (ref_60) 2018; 118 Valo (ref_42) 2011; 156 Yang (ref_50) 2014; 43 Rafiee (ref_8) 2019; 59 Mohanta (ref_3) 2014; 6 (ref_14) 2013; 138 Samadi (ref_18) 2020; 579 Maqueda (ref_68) 2009; 36 Sharif (ref_26) 2017; 73 Wicaksono (ref_54) 2013; 3 Bourbon (ref_10) 2020; 11 Nam (ref_40) 2016; 135 Ho (ref_23) 2017; 86 Rezaei (ref_6) 2019; 88 Guorgui (ref_21) 2018; 648 Plackett (ref_2) 2014; 29 Esfanjani (ref_27) 2017; 221 Bakkari (ref_48) 2019; 203 Svagan (ref_5) 2017; 533 Gamelas (ref_58) 2015; 72 Salem (ref_13) 2018; 26 Martins (ref_17) 2018; 2 Yan (ref_19) 2020; 101 Xiang (ref_30) 2016; 23 Pinto (ref_20) 2018; 118 Zhou (ref_36) 2018; 19 Shea (ref_37) 1939; 11 Vicente (ref_55) 2020; 100 George (ref_12) 2020; 11 Kolakovic (ref_70) 2012; 82 Deng (ref_16) 2017; 97 Mahendra (ref_49) 2019; 17 Segal (ref_39) 1959; 29 Wang (ref_64) 2012; 7 ref_47 Luckanagul (ref_22) 2018; 181 ref_44 ref_43 Gorbunova (ref_41) 2018; 93 ref_1 Jackson (ref_34) 2011; 6 Foo (ref_4) 2019; 138 Hu (ref_38) 2017; 5 Rol (ref_32) 2019; 88 French (ref_51) 2014; 21 Atanase (ref_62) 2020; 147 Tabary (ref_33) 2018; 25 Alexandrescu (ref_66) 2013; 20 Wei (ref_25) 2018; 81 |
References_xml | – volume: 59 start-page: 3468 year: 2019 ident: ref_8 article-title: Application of Different Nanocarriers for Encapsulation of Curcumin publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1495174 – volume: 118 start-page: 149 year: 2018 ident: ref_20 article-title: Design of Multifunctional Nanostructured Lipid Carriers Enriched with α-Tocopherol Using Vegetable Oils publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.03.042 – volume: 221 start-page: 1962 year: 2017 ident: ref_27 article-title: Preparation of a Multiple Emulsion Based on Pectin-Whey Protein Complex for Encapsulation of Saffron Extract Nanodroplets publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.11.149 – volume: 101 start-page: 105447 year: 2020 ident: ref_19 article-title: Enhanced Physicochemical Stability of Lutein-Enriched Emulsions by Polyphenol-Protein-Polysaccharide Conjugates and Fat-Soluble Antioxidant publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.105447 – volume: 2 start-page: 77 year: 2018 ident: ref_17 article-title: Protein-Based Structures for Food Applications: From Macro to Nanoscale publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2018.00077 – volume: 135 start-page: 1 year: 2016 ident: ref_40 article-title: Segal Crystallinity Index Revisited by the Simulation of X-ray Diffraction Patterns of Cotton Cellulose Iβ and Cellulose II publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.08.035 – volume: 73 start-page: 274 year: 2017 ident: ref_26 article-title: Physicochemical Properties of β-Carotene and Eugenol Co-Encapsulated Flax Seed Oil Powders Using OSA Starches as Wall Material publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2017.07.002 – volume: 147 start-page: 629 year: 2020 ident: ref_62 article-title: Curcumin-Loaded Polysaccharides-Based Complex Particles Obtained by Polyelectrolyte Complexation and Ionic Gelation. I-Particles Obtaining and Characterization publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.247 – volume: 13 start-page: 1165 year: 2016 ident: ref_67 article-title: Plant Extracts: From Encapsulation to Application publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2016.1182487 – volume: 11 start-page: 851 year: 2020 ident: ref_12 article-title: Sugarcane Bagasse (SCB) Based Pristine Cellulose Hydrogel for Delivery of Grape Pomace Polyphenol Drug publication-title: Waste Biomass Valorization doi: 10.1007/s12649-018-0487-3 – ident: ref_11 doi: 10.3390/nano11102593 – volume: 81 start-page: 149 year: 2018 ident: ref_25 article-title: Structure, Physicochemical Stability and in Vitro Simulated Gastrointestinal Digestion Properties of β-Carotene Loaded Zein-Propylene Glycol Alginate Composite Nanoparticles Fabricated by Emulsification-Evaporation Method publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.02.042 – volume: 21 start-page: 885 year: 2014 ident: ref_51 article-title: Idealized Powder Diffraction Patterns for Cellulose Polymorphs publication-title: Cellulose doi: 10.1007/s10570-013-0030-4 – volume: 82 start-page: 308 year: 2012 ident: ref_70 article-title: Nanofibrillar Cellulose Films for Controlled Drug Delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2012.06.011 – volume: 29 start-page: 105 year: 2014 ident: ref_2 article-title: A Review of Nanocellulose as a Novel Vehicle for Drug Delivery publication-title: Nord. Pulp Pap. Res. J. doi: 10.3183/npprj-2014-29-01-p105-118 – ident: ref_1 – volume: 138 start-page: 1581 year: 2013 ident: ref_14 article-title: Thermal Protection of β-Carotene in Re-Assembled Casein Micelles during Different Processing Technologies Applied in Food Industry publication-title: Food Chem. doi: 10.1016/j.foodchem.2012.11.016 – volume: 163 start-page: 261 year: 2017 ident: ref_28 article-title: Hydrophobic Kenaf Nanocrystalline Cellulose for the Binding of Curcumin publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.01.036 – volume: 29 start-page: 786 year: 1959 ident: ref_39 article-title: An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-ray Diffractometer publication-title: Text Res. J. doi: 10.1177/004051755902901003 – volume: 6 start-page: 321 year: 2011 ident: ref_34 article-title: The Use of Nanocrystalline Cellulose for the Binding and Controlled Release of Drugs publication-title: Int. J. Nanomed. – volume: 13 start-page: 120 year: 2012 ident: ref_61 article-title: Design of Curcumin Loaded Cellulose Nanoparticles for Prostate Cancer publication-title: Curr. Drug Metab. doi: 10.2174/138920012798356952 – volume: 7 start-page: 4487 year: 2012 ident: ref_64 article-title: Novel Micelle Formulation of Curcumin for Enhancing Antitumor Activity and Inhibiting Colorectal Cancer Stem Cells publication-title: Int. J. Nanomed. – volume: 26 start-page: 941 year: 2016 ident: ref_57 article-title: Development of Curcumin-Cyclodextrin/Cellulose Nanocrystals Complexes: New Anticancer Drug Delivery Systems publication-title: Bioorganic Med. Chem. Lett. doi: 10.1016/j.bmcl.2015.12.060 – volume: 157 start-page: 1246 year: 2017 ident: ref_69 article-title: Chitosan-Cellulose Nanocrystal Microencapsulation to Improve Encapsulation Efficiency and Stability of Entrapped Fruit Anthocyanins publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.11.005 – volume: 43 start-page: 8271 year: 2014 ident: ref_50 article-title: Jack of All Trades: Versatile Catechol Crosslinking Mechanisms publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00185K – volume: 19 start-page: 14257 year: 2014 ident: ref_15 article-title: Preparation of Astaxanthin Nanodispersions Using Gelatin-Based Stabilizer Systems publication-title: Molecules doi: 10.3390/molecules190914257 – volume: 86 start-page: 555 year: 2017 ident: ref_23 article-title: Inclusion Complexation of Catechin by β-Cyclodextrins: Characterization and Storage Stability publication-title: LWT doi: 10.1016/j.lwt.2017.08.041 – volume: 20 start-page: 1765 year: 2013 ident: ref_66 article-title: Cytotoxicity Tests of Cellulose Nanofibril-Based Structures publication-title: Cellulose doi: 10.1007/s10570-013-9948-9 – volume: 6 start-page: 20093 year: 2014 ident: ref_3 article-title: Layer-by-Layer Assembled Thin Films and Microcapsules of Nanocrystalline Cellulose for Hydrophobic Drug Delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505681e – volume: 7 start-page: 35004 year: 2016 ident: ref_45 article-title: A Comparison of Cellulose Nanocrystals and Cellulose Nanofibres Extracted from Bagasse Using Acid and Ball Milling Methods publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6262/7/3/035004 – volume: 26 start-page: 161 year: 2018 ident: ref_13 article-title: Entrapment of β-Carotene and Zinc in Whey Protein Nanoparticles Using the PH Cycle Method: Evidence of Sustained Release Delivery in Intestinal and Gastric Fluids publication-title: Food Biosci. doi: 10.1016/j.fbio.2018.10.002 – volume: 11 start-page: 305 year: 2020 ident: ref_10 article-title: Physicochemical Characterisation and Release Behaviour of Curcumin-Loaded Lactoferrin Nanohydrogels into Food Simulants publication-title: Food Funct. doi: 10.1039/C9FO01963D – volume: 100 start-page: 105357 year: 2020 ident: ref_55 article-title: Design of β-Lactoglobulin Micro- and Nanostructures by Controlling Gelation through Physical Variables publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.105357 – volume: 203 start-page: 238 year: 2019 ident: ref_48 article-title: Preparation of Cellulose Nanofibers by TEMPO-Oxidation of Bleached Chemi-Thermomechanical Pulp for Cement Applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.09.036 – volume: 9 start-page: 106043 year: 2021 ident: ref_53 article-title: Effects of Various Types of Cellulose Nanofibers on the Physical Properties of the CNF-Based Films publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106043 – volume: 93 start-page: 442 year: 2018 ident: ref_41 article-title: Alginate-Based Encapsulation of Extracts from Beta Vulgaris Cv. Beet Greens: Stability and Controlled Release under Simulated Gastrointestinal Conditions publication-title: LWT doi: 10.1016/j.lwt.2018.03.075 – volume: 181 start-page: 1119 year: 2018 ident: ref_22 article-title: Chitosan-Based Polymer Hybrids for Thermo-Responsive Nanogel Delivery of Curcumin publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.11.027 – volume: 24 start-page: 3281 year: 2017 ident: ref_31 article-title: Simple Fabrication of Cellulose Nanofibers via Electrospinning of Dissolving Pulp and Tunicate publication-title: Cellulose doi: 10.1007/s10570-017-1360-4 – ident: ref_47 – volume: 88 start-page: 241 year: 2019 ident: ref_32 article-title: Recent Advances in Surface-Modified Cellulose Nanofibrils publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.09.002 – volume: 275 start-page: 102048 year: 2020 ident: ref_7 article-title: Carotenoid-Loaded Nanocarriers: A Comprehensive Review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.102048 – volume: 118 start-page: 1055 year: 2018 ident: ref_60 article-title: Influence of a Nonionic Surfactant on Curcumin Delivery of Nanocellulose Reinforced Chitosan Hydrogel publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.06.147 – volume: 3 start-page: 79 year: 2013 ident: ref_54 article-title: Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film publication-title: Chem. Mater. Res. – volume: 25 start-page: 1249 year: 2018 ident: ref_33 article-title: Controlled Release of Carvacrol and Curcumin: Bio-Based Food Packaging by Synergism Action of TEMPO-Oxidized Cellulose Nanocrystals and Cyclodextrin publication-title: Cellulose doi: 10.1007/s10570-017-1646-6 – volume: 430 start-page: 47 year: 2012 ident: ref_63 article-title: Spray-Dried Nanofibrillar Cellulose Microparticles for Sustained Drug Release publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.03.031 – volume: 72 start-page: 28 year: 2015 ident: ref_58 article-title: On the Morphology of Cellulose Nanofibrils Obtained by TEMPO-Mediated Oxidation and Mechanical Treatment publication-title: Micron doi: 10.1016/j.micron.2015.02.003 – volume: 2 start-page: 1 year: 2014 ident: ref_46 article-title: Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste publication-title: J. Mater. Phys. Chem. – volume: 648 start-page: 12 year: 2018 ident: ref_21 article-title: Curcumin Formulated in Solid Lipid Nanoparticles Has Enhanced Efficacy in Hodgkin’s Lymphoma in Mice publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2018.04.012 – volume: 36 start-page: 27 year: 2009 ident: ref_68 article-title: Controlled Release Formulations of Herbicides Based on Micro-Encapsulation publication-title: Cienc. e Investig. Agrar. – volume: 88 start-page: 146 year: 2019 ident: ref_6 article-title: Nanoencapsulation of Hydrophobic and Low-Soluble Food Bioactive Compounds within Different Nanocarriers publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2018.10.003 – volume: 579 start-page: 119136 year: 2020 ident: ref_18 article-title: Experimental Design in Formulation Optimization of Vitamin K1 Oxide-Loaded Nanoliposomes for Skin Delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119136 – volume: 23 start-page: 493 year: 2016 ident: ref_30 article-title: A Comparison of Cellulose Nanofibrils Produced from Cladophora Glomerata Algae and Bleached Eucalyptus Pulp publication-title: Cellulose doi: 10.1007/s10570-015-0840-7 – ident: ref_59 doi: 10.3390/polym9020064 – volume: 138 start-page: 1064 year: 2019 ident: ref_4 article-title: Surface-Modified Nanocrystalline Cellulose from Oil Palm Empty Fruit Bunch for Effective Binding of Curcumin publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.07.035 – volume: 17 start-page: 526 year: 2019 ident: ref_49 article-title: Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-Oxidized Lower Part of Empty Fruit Bunches (LEFB) publication-title: Open Chem. doi: 10.1515/chem-2019-0063 – volume: 117 start-page: 123 year: 2017 ident: ref_65 article-title: Transport of Curcumin Derivatives in Caco-2 Cell Monolayers publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2017.04.004 – volume: 97 start-page: 2230 year: 2017 ident: ref_16 article-title: Soy Protein Isolate as a Nanocarrier for Enhanced Water Dispersibility, Stability and Bioaccessibility of β -Carotene publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.8033 – volume: 74 start-page: 36 year: 2015 ident: ref_24 article-title: Nanoparticle Formation from Amylose-Fatty Acid Inclusion Complexes Prepared by Steam Jet Cooking publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2015.04.046 – volume: 11 start-page: 333 year: 1939 ident: ref_37 article-title: Dumas Method for Organic Nitrogen publication-title: Ind. Eng. Chem. Anal. Ed. doi: 10.1021/ac50134a013 – ident: ref_44 doi: 10.3390/su12156015 – volume: 5 start-page: 5018 year: 2017 ident: ref_38 article-title: One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00415 – volume: 366 start-page: 404 year: 2016 ident: ref_35 article-title: The Modified Nanocrystalline Cellulose for Hydrophobic Drug Delivery publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.133 – volume: 19 start-page: 633 year: 2018 ident: ref_36 article-title: Acid-Free Preparation of Cellulose Nanocrystals by TEMPO Oxidation and Subsequent Cavitation publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01730 – volume: 12 start-page: 613 year: 2015 ident: ref_56 article-title: β-Lactoglobulin Nanoparticle as a Chemotherapy Agent Carrier for Oral Drug Delivery System publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-014-0519-2 – volume: 24 start-page: 71 year: 2017 ident: ref_29 article-title: Effect of Varying Hydrolysis Time on Extraction of Spherical Bacterial Cellulose Nanocrystals as a Reinforcing Agent for Poly(Vinyl Alcohol) Composites publication-title: J. Polym. Res. doi: 10.1007/s10965-017-1232-5 – ident: ref_43 – volume: 533 start-page: 285 year: 2017 ident: ref_5 article-title: Cellulose Nanofibers as Excipient for the Delivery of Poorly Soluble Drugs publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.09.064 – volume: 23 start-page: 101 year: 2019 ident: ref_52 article-title: Diverse Nanocelluloses Prepared from TEMPO-Oxidized Wood Cellulose Fibers: Nanonetworks, Nanofibers, and Nanocrystals publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2019.01.001 – volume: 7 start-page: 205 year: 2017 ident: ref_9 article-title: Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives—A Review publication-title: J. Tradit. Complement. Med. doi: 10.1016/j.jtcme.2016.05.005 – volume: 156 start-page: 390 year: 2011 ident: ref_42 article-title: Immobilization of Protein-Coated Drug Nanoparticles in Nanofibrillar Cellulose Matrices-Enhanced Stability and Release publication-title: J. Control Release doi: 10.1016/j.jconrel.2011.07.016 |
SSID | ssj0000331839 |
Score | 2.3170795 |
Snippet | Poor aqueous solubility, stability and bioavailability of interesting bioactive compounds is a challenge in the development of bioactive formulations.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 981 |
SubjectTerms | Bioavailability Biocompatibility Cellulose Chemical properties curcumin cytotoxicity delivery systems Dosage and administration Drug delivery systems Drugs Evaluation Lipids Materials Morphology nanocellulose Spectrum analysis Structure Surfactants sustained release Titanium alloys Turmeric Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15Kv-s2KSqU9BI3tiTL0jHZNKSFltAmkJvRJ1lw7NBdF_bfZ8Z2dte0kEuvlrS2pKeZN8vMEyEfASbOF9ynRfQxFdKpFFDiU-8EdyjQ5SVWI3__Ic8uxber4mrrqi_MCRvkgYeFO5SWgZeLhdXGCeWBDjOTW3DzLLMG_CVaX_B5W8FUb4M5YlUPJTsc4vrD2-vNX8QLYEE80yqfOKNes_9vy7zlmqZpk1t-6PQpeTISSHo0fPgz8ig0z8n--fDe1QG92BRULQ7oPj3faFOvXpDmpM_YoG2kX8f7UP8Eejxv-1z05dzWgc5CXXd1uwgUTG87CMx2EJVT4LcU-CI9CTVmc6yoaTz9NVRgBU9_ggcDn4i_Pet-u-5m3rwkl6dfLmZn6XjlQupkxpap4czHPADjlr5g3pYWBQdNFjMjgokcgp_owSRyBwgstbK60DZzmgdT-AjU4RXZadomvCFUa--VlU6gQL4ISmkfHHNWyKgZEJGEiPu1r9yoR47XYtQVxCW4ZdU_tywhn9fDbgdBjocGHOPGrjujnnb_AFBWjSirHkJZQj4hLCo89fCRzozFCzBV1M-qjoCIlSXyrYTsTnrCaXXT5ntgVaO1WFSsBJKOQoJFQj6sm3EkZsA1oe36PkBFUfAxIa8HHK6nxKVWUgkYrSYIncx52tLMr3st8RytslT52_-xSu_IYwYcEFP0crVLdgCgYQ8429K-74_nHQX-Q4s priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELam8cIL4jeBgYyExssyUsdx7AeEto5pIA1NsEp7i_xzqxSS0TaI_vfcJWm7iAGvta-N4-9831V3nwl5AzCxLktdnAUXYi6sjAElLnaWpxYFupzAbuTTL-Jkwj9fZBdbZCWo0L_A-a2pHd4nNZmV-79-LD-Aw7_HjBNS9nfXV5t_f-dAcNJEYTP2HQhOOfrqac_428M5RRCrrpfn79aDKNWK-f95ZN-IWcN6yhsB6vg-udczS3rQQeEB2fLVQ7J71v3uco-ebzqt5nt0l55tRKuXj0h11JZy0DrQT_1FqT89PZzWbZH6YmpKT8e-LJuynnsKZ3LdKc82kK5TIL4UiCQ98iWWeSyprhz91rVmeUe_QmiDYInfPW5mtvk-rR6TyfHH8_FJ3N_FEFuRsEWsU-bCyAMVFy5jzuQGlQh1EhLNvQ4pZEXBwVmZWoBmrqRRmTKJVanXmQvAKZ6Q7aqu_DNClXJOGmE5KudzL6Vy3jJruAiKAUOJCF-9-8L2QuV4X0ZZQMKCW1bcumUR2V-bXXdKHf8zOMSNXU9Goe32g3p2WfR-WwjDgGSFzChtuXSQjTE9MsAyWWI00LWIvEVYFAhQeEir-64GWCoKaxUHwNDyHIlYRHYGM8GN7XB4Baxi5QUFy4G9o8JgFpHX62G0xNK4ytdNOwc4KipBRuRph8P1klKhpJAcrOUAoYM1D0eq6VUrMj7C41rI0fN_P9cLcpcB7cOqvJHcIdsAPf8SaNrCvGod7zd7f0JV priority: 102 providerName: Scholars Portal |
Title | Design of Innovative Biocompatible Cellulose Nanostructures for the Delivery and Sustained Release of Curcumin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36986845 https://www.proquest.com/docview/2791685915 https://www.proquest.com/docview/2792510227 https://pubmed.ncbi.nlm.nih.gov/PMC10051681 https://doaj.org/article/6b2074f5b9ac48d1822a1b51420ba066 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdge-EF8U3YmIyExsvC8uE49hNau00DaVM1NmlvUfwRVikk3dIg9b_nLnHTRSB46UNtt3F9vvvd9e53hHwEMdEmiY2fFKbwGdfCBykxvtEs1kjQZThWI59f8LNr9u0muXEBt8alVa51YqeoTa0xRn4YpQBkkGwt-bK487FrFP676lpoPCbboIIFOF_bk5OL2eUQZQlilFnZl-7E4N8fLm43oeIG0FAcSBGOjFLH3f-nhn5gosbpkw_s0ekz8tQBSXrUn_xz8shWL8j-rP_e1QG92hRWNQd0n842HNWrl6Q67jI3aF3Qr64v6i9LJ_O6y0lfzlVp6dSWZVvWjaWgguueaLYF75wCzqWAG-mxLTGrY0XzytDvfSWWNfQSLBnYRvzsaXuv25_z6hW5Pj25mp75rvWCr3kQLf08jkwRWkDe3CSRUalC4sE8KIKc2byIwQkqDKjGWIMkplIomUgVaBnbPDEFQIjXZKuqK_uWUCmNEYprhkT5zAohjdWRVowXMgJA4hG2_u0z7XjJsT1GmYF_gkeW_fXIPPJ5WLboiTn-t2CCBztMRl7t7o36_kfmrmnGVQSYqkiUzDUTBpyvKA8VgMooUDmgM498QrHI8PbDQ-rcFTHAVpFHKzsCQJamiLs8sjuaCbdWj4fXgpU5rdFkGxn3yIdhGFdiJlxl67abA5AUiR898qaXw2FLMZeCCwarxUhCR3sej1Tz245TPETtzEX47t_PtUOeRIDyMAkvFLtkC0TPvgdUtlR77urtdVENeD1n4jfY6z8r |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7QEuiDeGAosE5VJTe_3I7gGhJmmV0DaKSir15nofppGMHeIElD_Fb2TGdpxaIDj1mt1NvJ7Xt5uZbwh5C2qidOBpO0h0Yvuh4jZoiba18j2FBF06xGrks1E4uPA_XwaXW-TXuhYG0yrXPrF01DpXeEd-wDoAZJBsLfg0-25j1yj8d3XdQqNSixOz-glHtuLjsA_yfcfY8dGkN7DrrgK2Ch22sGOP6cQ1ACpDHTAtOxI59WIncWLfxIkH-D7RYPWegpfcEVyKQEhHCc_EgU4Yki-By9_xYSI4gp3u0Wh83tzqOB7aiKhKhTxPOAez683VdAHoy3MEd1tBsOwV8GdEuBES2-maN-Lf8X1yrwau9LDStAdky2QPyd64-t3VPp1sCrmKfbpHxxtO7NUjkvXLTBGaJ3RY92H9YWh3mpc58IupTA3tmTRdpnlhKLj8vCK2Xc5NQQFXU8CptG9SzCJZ0TjT9EtV-WU0PYfICbEYv7u3nKvlt2n2mFzcilCekO0sz8wzQoXQmstQ-UjM7xvOhTaKKemHiWAAgCzir999pGoedGzHkUZwHkKRRX8VmUU-NMtmFRHI_xZ0UbDNZOTxLj_I51-j2i1EoWSA4ZJAilj5XMNhj8WuBBDLHBkDGrTIe1SLCL0NPKSK66IJ2CrydkWHAAA7HcR5FtltzQQvodrDa8WKai9VRBubssibZhhXYuZdZvJlOQcgMBJNWuRppYfNlrxQ8JD7sJq3NLS15_ZINr0uOcxdjAYhd5__-7lekzuDydlpdDocnbwgdxkgTEwAdPku2QY1NC8BES7kq9oMKbm6bcv_DYfXfE0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYS4IN4YCiwSlEtN7PVr94BQkzRqKERRaaXeXO_DNJKxQ5yA8tf4dczYTlILBKdes7uJ1_P6djPzDSGvQU2UDjxtB6lObT9U3AYt0bZWvqeQoEuHWI38eRwen_sfL4KLHfJrXQuDaZVrn1g5al0ovCPvsgiADJKtBd20SYuYDIYfZt9t7CCF_7Su22nUKnJiVj_h-Fa-Hw1A1m8YGx6d9Y_tpsOArUKHLezEYzp1DQDMUAdMy0giv17ipE7imyT1AOunGjyAp-CFR4JLEQjpKOGZJNApQyImcP-7EZyKnA7Z7R2NJ6ebGx7HQ3sRddmQ5wmnO7vaXlOXgMQ8R3C3FRCrvgF_Rodr4bGdunktFg7vkjsNiKWHtdbdIzsmv0_2J_Xvrg7o2baoqzyg-3Sy5cdePSD5oMoaoUVKR01P1h-G9qZFlQ-_mMrM0L7JsmVWlIaC-y9qktvl3JQUMDYFzEoHJsOMkhVNck2_1FVgRtNTiKIQl_G7-8u5Wn6b5g_J-Y0I5RHp5EVunhAqhNZchspHkn7fcC60UUxJP0wFAzBkEX_97mPVcKJja44shrMRiiz-q8gs8m6zbFaTgvxvQQ8Fu5mMnN7VB8X8a9y4iDiUDPBcGkiRKJ9rOPixxJUAaJkjE0CGFnmLahGj54GHVElTQAFbRQ6v-BDAYBQh5rPIXmsmeAzVHl4rVtx4rDLe2pdFXm2GcSVm4eWmWFZzAA4j6aRFHtd6uNmSFwoech9W85aGtvbcHsmnVxWfuYuRIeTu038_10tyCyw-_jQanzwjtxmATcwFdPke6YAWmucADhfyRWOFlFzetOH_BugGgII |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Innovative+Biocompatible+Cellulose+Nanostructures+for+the+Delivery+and+Sustained+Release+of+Curcumin&rft.jtitle=Pharmaceutics&rft.au=Casanova%2C+Francisca&rft.au=Pereira%2C+Carla+F&rft.au=Ribeiro%2C+Alessandra+B&rft.au=Costa%2C+Eduardo+M&rft.date=2023-03-18&rft.pub=MDPI+AG&rft.eissn=1999-4923&rft.volume=15&rft.issue=3&rft.spage=981&rft_id=info:doi/10.3390%2Fpharmaceutics15030981&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon |