The Human Connectome Project's neuroimaging approach
This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate...
Saved in:
Published in | Nature neuroscience Vol. 19; no. 9; pp. 1175 - 1187 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.09.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate progress in understanding the brain in health and disease.
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. |
---|---|
AbstractList | Non-invasive human neuroimaging has yielded many exciting discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis, and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The “HCP-style” paradigm has seven core tenets: (1) collect multimodal imaging data from many subjects; (2) acquire data at high spatial and temporal resolution; (3) preprocess data to minimize distortions, blurring, and temporal artifacts; (4) represent data using the natural geometry of cortical and subcortical structures; (5) accurately align corresponding brain areas across subjects and studies; (6) analyze data using neurobiologically accurate brain parcellations; and (7) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP datasets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate progress in understanding the brain in health and disease. Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease. |
Audience | Academic |
Author | Andersson, Jesper L R Moeller, Steen Robinson, Emma C Van Essen, David C Marcus, Daniel S Smith, Stephen M Behrens, Timothy E J Coalson, Timothy S Sotiropoulos, Stamatios N Yacoub, Essa Jenkinson, Mark Glasser, Matthew F Xu, Junqian Harms, Michael P Ugurbil, Kamil Auerbach, Edward J |
AuthorAffiliation | 4 Department of Psychiatry, Washington University Medical School, Saint Louis, MO 5 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 1 Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA 2 FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK 3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA |
AuthorAffiliation_xml | – name: 3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA – name: 1 Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA – name: 2 FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK – name: 5 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA – name: 4 Department of Psychiatry, Washington University Medical School, Saint Louis, MO |
Author_xml | – sequence: 1 givenname: Matthew F surname: Glasser fullname: Glasser, Matthew F email: glasserm@wustl.edu organization: Department of Neuroscience, Washington University Medical School – sequence: 2 givenname: Stephen M orcidid: 0000-0001-8166-069X surname: Smith fullname: Smith, Stephen M organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford – sequence: 3 givenname: Daniel S surname: Marcus fullname: Marcus, Daniel S organization: Department of Radiology, Washington University Medical School – sequence: 4 givenname: Jesper L R surname: Andersson fullname: Andersson, Jesper L R organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford – sequence: 5 givenname: Edward J surname: Auerbach fullname: Auerbach, Edward J organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota – sequence: 6 givenname: Timothy E J surname: Behrens fullname: Behrens, Timothy E J organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford – sequence: 7 givenname: Timothy S surname: Coalson fullname: Coalson, Timothy S organization: Department of Neuroscience, Washington University Medical School – sequence: 8 givenname: Michael P surname: Harms fullname: Harms, Michael P organization: Department of Psychiatry, Washington University Medical School – sequence: 9 givenname: Mark surname: Jenkinson fullname: Jenkinson, Mark organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford – sequence: 10 givenname: Steen surname: Moeller fullname: Moeller, Steen organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota – sequence: 11 givenname: Emma C surname: Robinson fullname: Robinson, Emma C organization: Department of Computing, Imperial College London – sequence: 12 givenname: Stamatios N surname: Sotiropoulos fullname: Sotiropoulos, Stamatios N organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford – sequence: 13 givenname: Junqian orcidid: 0000-0001-8438-2066 surname: Xu fullname: Xu, Junqian organization: 7Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai – sequence: 14 givenname: Essa surname: Yacoub fullname: Yacoub, Essa organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota – sequence: 15 givenname: Kamil surname: Ugurbil fullname: Ugurbil, Kamil organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota – sequence: 16 givenname: David C surname: Van Essen fullname: Van Essen, David C email: vanessen@wustl.edu organization: Department of Neuroscience, Washington University Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27571196$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt-L1DAQx4OceD8U_wMp-HD60DVpkzR9EY5FvYMDRc_nME2n3Sxtsiat6H9vyu6J6_kgeciQ-cx3wnfmnJw475CQ54yuGC3VG-dWvJTsETljgsucVYU8STGtq1wWQp6S8xi3lNJKqPoJOS0qUTFWyzPC7zaYXc8juGztnUMz-RGzT8FvU3gZM4dz8HaE3ro-g90ueDCbp-RxB0PEZ4f7gnx9_-5ufZ3ffvxws766zY2kxZQrAbKlINqiBg6KAhRNQ42iwnBTgVEcU6qBtitrwWqskHHgDZPY1bxjUF6Qt3vd3dyM2Bp0U4BB70L6UPipPVh9nHF2o3v_XcvFAMGTwKuDQPDfZoyTHm00OAzg0M9RM1VUStVc0f9AmZCqLJlK6Ms92sOA2rrOp-ZmwfUVl0xVtKALtfoHlU6LozVpfJ1N70cFr48KEjPhj6mHOUZ98-XzMfviT2d-W3I_2ATke8AEH2PAThs7wWT9YpQdNKN6WRztnF4WJ_GXf_H3kg_Jg1ExEa7HoLd-Di7twQP0F4dOzYY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_03_067 crossref_primary_10_1109_TMI_2022_3161947 crossref_primary_10_1016_j_neuroimage_2022_119087 crossref_primary_10_1016_j_jad_2022_07_049 crossref_primary_10_1002_hbm_25675 crossref_primary_10_1038_s41467_024_49823_8 crossref_primary_10_7554_eLife_62324 crossref_primary_10_3389_fnana_2017_00017 crossref_primary_10_5117_ANTW2019_3_006_UITH crossref_primary_10_1109_JBHI_2022_3207519 crossref_primary_10_1016_j_neuroimage_2020_117226 crossref_primary_10_1016_j_neuroimage_2021_117868 crossref_primary_10_1016_j_neuroimage_2020_117349 crossref_primary_10_1016_j_neuroimage_2021_118713 crossref_primary_10_1007_s00247_022_05510_8 crossref_primary_10_1016_j_neuroimage_2020_117585 crossref_primary_10_1080_21507740_2020_1740352 crossref_primary_10_1142_S0129065720500616 crossref_primary_10_1016_j_ynirp_2023_100163 crossref_primary_10_1364_BOE_10_004075 crossref_primary_10_1016_j_ynirp_2023_100160 crossref_primary_10_1073_pnas_1801582115 crossref_primary_10_1038_s41467_017_01285_x crossref_primary_10_1002_hbm_25540 crossref_primary_10_1016_j_neuroimage_2023_120360 crossref_primary_10_1002_hbm_26753 crossref_primary_10_7554_eLife_75897 crossref_primary_10_1016_j_euroneuro_2019_07_238 crossref_primary_10_1002_hbm_26630 crossref_primary_10_1016_j_gpb_2018_11_005 crossref_primary_10_1002_hipo_23501 crossref_primary_10_1007_s00429_022_02536_4 crossref_primary_10_1371_journal_pbio_3000678 crossref_primary_10_1016_j_neuroimage_2020_117329 crossref_primary_10_1002_jnr_24988 crossref_primary_10_1016_j_media_2023_102829 crossref_primary_10_1093_scan_nsac028 crossref_primary_10_1016_j_media_2017_09_006 crossref_primary_10_1109_JBHI_2021_3124733 crossref_primary_10_1002_hbm_25776 crossref_primary_10_1016_j_neuroimage_2020_117693 crossref_primary_10_1016_j_neuroimage_2023_120236 crossref_primary_10_1016_j_media_2018_03_014 crossref_primary_10_1093_schbul_sbz053 crossref_primary_10_3390_app13095284 crossref_primary_10_1007_s00429_022_02549_z crossref_primary_10_1016_j_neuroimage_2023_120132 crossref_primary_10_1038_s41598_021_89357_3 crossref_primary_10_1186_s40537_023_00751_2 crossref_primary_10_1111_rssa_12613 crossref_primary_10_1016_j_neuroimage_2023_120377 crossref_primary_10_1162_imag_a_00504 crossref_primary_10_1016_j_neuroimage_2017_11_043 crossref_primary_10_1016_j_neuroimage_2019_05_017 crossref_primary_10_1002_hbm_26663 crossref_primary_10_1016_j_pnpbp_2022_110533 crossref_primary_10_3389_fphys_2024_1437973 crossref_primary_10_1016_j_neuron_2018_07_002 crossref_primary_10_1016_j_mex_2019_06_003 crossref_primary_10_1016_j_cpnec_2023_100223 crossref_primary_10_3389_fncom_2019_00005 crossref_primary_10_3389_fnins_2017_00222 crossref_primary_10_1038_s41592_023_02068_7 crossref_primary_10_1002_hbm_25447 crossref_primary_10_3389_fcell_2021_676911 crossref_primary_10_3390_ijms18010070 crossref_primary_10_1016_j_neuroscience_2023_07_032 crossref_primary_10_1016_j_neuroimage_2018_12_008 crossref_primary_10_1016_j_neuroimage_2024_120600 crossref_primary_10_1126_sciadv_abf2513 crossref_primary_10_1002_hbm_26771 crossref_primary_10_1038_s41562_023_01542_8 crossref_primary_10_1016_j_media_2021_102126 crossref_primary_10_1097_WCO_0000000000000834 crossref_primary_10_1002_hbm_25324 crossref_primary_10_4103_1673_5374_217321 crossref_primary_10_7554_eLife_86327 crossref_primary_10_1007_s00429_024_02811_6 crossref_primary_10_1093_cercor_bhz086 crossref_primary_10_1016_j_neuroimage_2021_117726 crossref_primary_10_1227_neu_0000000000002275 crossref_primary_10_1016_j_dcn_2024_101452 crossref_primary_10_1093_gerona_glad079 crossref_primary_10_1038_s41593_024_01624_4 crossref_primary_10_1016_j_nicl_2020_102242 crossref_primary_10_1016_j_wneu_2019_01_196 crossref_primary_10_1007_s00381_020_04880_4 crossref_primary_10_1007_s00429_020_02180_w crossref_primary_10_1002_hbm_25314 crossref_primary_10_1093_brain_aww277 crossref_primary_10_3390_diagnostics14111109 crossref_primary_10_1097_HRP_0000000000000166 crossref_primary_10_1055_s_0042_1756143 crossref_primary_10_1177_2398212818804030 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_3389_fnins_2024_1492428 crossref_primary_10_1038_s41598_020_79922_7 crossref_primary_10_1016_j_arrct_2024_100339 crossref_primary_10_3390_photonics11080761 crossref_primary_10_1016_j_neuroimage_2021_117823 crossref_primary_10_7759_cureus_55918 crossref_primary_10_1007_s12021_024_09652_y crossref_primary_10_3389_fneur_2023_1100067 crossref_primary_10_1016_j_cortex_2021_03_022 crossref_primary_10_1038_s41598_022_12142_3 crossref_primary_10_2302_kjm_2018_0011_OA crossref_primary_10_1002_hbm_25867 crossref_primary_10_1111_jcpp_13250 crossref_primary_10_1587_transfun_2021EAP1169 crossref_primary_10_3389_fpsyg_2024_1441584 crossref_primary_10_1016_j_scib_2022_01_002 crossref_primary_10_1016_j_isci_2024_111411 crossref_primary_10_1016_j_nicl_2019_101890 crossref_primary_10_1248_yakushi_17_00107 crossref_primary_10_2139_ssrn_4801540 crossref_primary_10_1016_j_neuroimage_2021_117946 crossref_primary_10_1080_26941899_2024_2412017 crossref_primary_10_12688_f1000research_24544_1 crossref_primary_10_1249_MSS_0000000000002697 crossref_primary_10_1038_s41597_022_01413_3 crossref_primary_10_1210_endrev_bnaa034 crossref_primary_10_1002_hbm_25734 crossref_primary_10_1016_j_neuroimage_2023_120436 crossref_primary_10_1007_s11682_018_9949_2 crossref_primary_10_1002_hbm_24889 crossref_primary_10_1002_hbm_24769 crossref_primary_10_1016_j_neuroimage_2022_119030 crossref_primary_10_1038_s41537_025_00597_y crossref_primary_10_1016_j_neuroimage_2023_120213 crossref_primary_10_3389_fneur_2021_713388 crossref_primary_10_1016_j_neuroimage_2018_03_049 crossref_primary_10_1007_s00415_020_10040_0 crossref_primary_10_1016_j_brs_2019_10_023 crossref_primary_10_1111_ner_13392 crossref_primary_10_3389_fninf_2024_1534396 crossref_primary_10_1002_jmri_26929 crossref_primary_10_1093_infdis_jiac418 crossref_primary_10_1016_j_jad_2023_04_099 crossref_primary_10_3233_JAD_221159 crossref_primary_10_1002_anie_202010195 crossref_primary_10_1016_j_neuroimage_2021_117914 crossref_primary_10_3389_fninf_2019_00071 crossref_primary_10_1016_j_media_2024_103085 crossref_primary_10_3389_fneur_2022_855157 crossref_primary_10_1016_j_yebeh_2020_107308 crossref_primary_10_1093_schbul_sbz103 crossref_primary_10_1002_hbm_25767 crossref_primary_10_1002_hbm_24555 crossref_primary_10_1038_s41537_023_00424_2 crossref_primary_10_1016_j_neuroimage_2024_120766 crossref_primary_10_1371_journal_pone_0293886 crossref_primary_10_1016_j_media_2017_11_004 crossref_primary_10_1016_j_neuroimage_2023_120344 crossref_primary_10_1167_18_13_23 crossref_primary_10_1038_s41598_020_79289_9 crossref_primary_10_1002_ange_202010195 crossref_primary_10_1016_j_neuroimage_2021_117926 crossref_primary_10_3389_fnhum_2021_675433 crossref_primary_10_7759_cureus_74691 crossref_primary_10_3389_fnins_2019_00536 crossref_primary_10_1007_s00429_019_01877_x crossref_primary_10_1016_j_neuroimage_2018_04_076 crossref_primary_10_1038_s41593_022_01215_1 crossref_primary_10_1093_bib_bbab459 crossref_primary_10_1002_hbm_26725 crossref_primary_10_1002_hbm_25756 crossref_primary_10_1038_s41467_022_32595_4 crossref_primary_10_1016_j_dcn_2023_101234 crossref_primary_10_1016_j_neuroimage_2023_120214 crossref_primary_10_1371_journal_pone_0260752 crossref_primary_10_1016_j_neuroimage_2022_119170 crossref_primary_10_1002_ana_25975 crossref_primary_10_1038_s41398_023_02528_w crossref_primary_10_1093_cercor_bhab362 crossref_primary_10_1002_cne_24674 crossref_primary_10_3389_fninf_2019_00005 crossref_primary_10_1016_j_jmr_2019_07_034 crossref_primary_10_3389_fnsys_2019_00065 crossref_primary_10_1016_j_clineuro_2025_108760 crossref_primary_10_1016_j_neuroimage_2023_120191 crossref_primary_10_1016_j_drugalcdep_2022_109625 crossref_primary_10_1088_1361_6560_ac9d1e crossref_primary_10_1016_j_neuroimage_2017_07_007 crossref_primary_10_1016_j_neuroimage_2019_04_027 crossref_primary_10_1016_j_neunet_2024_107100 crossref_primary_10_1016_j_nicl_2019_102090 crossref_primary_10_1093_braincomms_fcad258 crossref_primary_10_1371_journal_pone_0266349 crossref_primary_10_1523_ENEURO_0304_24_2025 crossref_primary_10_1038_s41592_024_02346_y crossref_primary_10_3389_fnins_2022_895637 crossref_primary_10_3390_brainsci13070997 crossref_primary_10_1038_s41467_020_14610_8 crossref_primary_10_1016_j_neuroimage_2017_01_047 crossref_primary_10_1080_17588928_2021_1880383 crossref_primary_10_3389_fnins_2021_642808 crossref_primary_10_1002_hipo_23467 crossref_primary_10_1038_s41598_025_90842_2 crossref_primary_10_1371_journal_pbio_3000042 crossref_primary_10_3390_brainsci12121681 crossref_primary_10_1002_hbm_24722 crossref_primary_10_1016_j_pneurobio_2024_102636 crossref_primary_10_1002_hbm_23874 crossref_primary_10_1038_s41398_021_01646_7 crossref_primary_10_1038_s41537_023_00411_7 crossref_primary_10_1016_j_bpsgos_2024_100386 crossref_primary_10_1016_j_heliyon_2023_e23405 crossref_primary_10_3389_fnagi_2021_803436 crossref_primary_10_1016_j_neuroimage_2017_01_079 crossref_primary_10_3389_fninf_2019_00029 crossref_primary_10_1097_WNR_0000000000001444 crossref_primary_10_7554_eLife_49855 crossref_primary_10_3389_fnana_2022_915877 crossref_primary_10_3389_fpsyt_2021_642847 crossref_primary_10_1016_j_celrep_2018_03_068 crossref_primary_10_1016_j_neuroimage_2019_04_046 crossref_primary_10_1007_s00406_023_01741_4 crossref_primary_10_1016_j_tics_2016_10_005 crossref_primary_10_1016_j_neuroimage_2018_09_038 crossref_primary_10_1186_s12993_022_00196_2 crossref_primary_10_1038_s41598_019_40345_8 crossref_primary_10_1016_j_neuroimage_2019_116091 crossref_primary_10_1016_j_neuroimage_2021_118533 crossref_primary_10_3390_app9081718 crossref_primary_10_1038_s41596_024_01085_w crossref_primary_10_1002_hbm_25843 crossref_primary_10_1016_j_exger_2018_11_014 crossref_primary_10_1016_j_neuroimage_2017_12_004 crossref_primary_10_1155_2022_1124927 crossref_primary_10_1016_j_cub_2024_06_072 crossref_primary_10_25259_SNI_982_2024 crossref_primary_10_1093_cercor_bhab387 crossref_primary_10_7554_eLife_68240 crossref_primary_10_1016_j_neuroimage_2024_120684 crossref_primary_10_1038_s42003_025_07793_7 crossref_primary_10_3389_fncir_2022_681544 crossref_primary_10_1093_cercor_bhab392 crossref_primary_10_1093_cercor_bhac480 crossref_primary_10_1002_mrm_28231 crossref_primary_10_1007_s00429_023_02644_9 crossref_primary_10_1016_j_neuroimage_2022_118965 crossref_primary_10_1111_adb_13439 crossref_primary_10_1016_j_schres_2018_12_001 crossref_primary_10_1038_s41598_025_91457_3 crossref_primary_10_1063_5_0025543 crossref_primary_10_3389_fninf_2019_00032 crossref_primary_10_1016_j_neuroimage_2021_118788 crossref_primary_10_1016_j_neuroimage_2020_117038 crossref_primary_10_1016_j_neuroimage_2021_118543 crossref_primary_10_1016_j_neuroimage_2021_118541 crossref_primary_10_1021_acsnano_4c10754 crossref_primary_10_1016_j_neuroimage_2020_117152 crossref_primary_10_1038_s44277_024_00011_y crossref_primary_10_1056_NEJMra1706158 crossref_primary_10_1038_s41380_021_01031_2 crossref_primary_10_1016_j_neuroimage_2023_120395 crossref_primary_10_1016_j_neuroimage_2018_01_018 crossref_primary_10_1007_s00429_024_02860_x crossref_primary_10_1097_PPO_0000000000000548 crossref_primary_10_1148_ryai_2019190012 crossref_primary_10_1002_brb3_1992 crossref_primary_10_1002_sta4_534 crossref_primary_10_1016_j_biopsych_2023_11_010 crossref_primary_10_1002_mp_15545 crossref_primary_10_1093_cercor_bhz153 crossref_primary_10_1016_j_cortex_2021_11_014 crossref_primary_10_1016_j_pneurobio_2021_102171 crossref_primary_10_1038_s41598_020_71914_x crossref_primary_10_1016_j_clineuro_2025_108726 crossref_primary_10_1016_j_neuroimage_2020_117145 crossref_primary_10_1016_j_neuropsychologia_2017_01_001 crossref_primary_10_1016_j_nicl_2018_01_032 crossref_primary_10_1038_s41593_022_01224_0 crossref_primary_10_1007_s11055_022_01241_3 crossref_primary_10_1016_j_neuroimage_2021_118750 crossref_primary_10_1016_j_neuron_2020_06_030 crossref_primary_10_1093_cercor_bhab324 crossref_primary_10_3389_fninf_2016_00046 crossref_primary_10_1093_cercor_bhaa237 crossref_primary_10_1016_j_neuroimage_2019_116150 crossref_primary_10_1016_j_dcn_2021_100974 crossref_primary_10_1016_j_compbiomed_2024_109164 crossref_primary_10_1088_1741_2552_ad6184 crossref_primary_10_1016_j_neuroimage_2019_116048 crossref_primary_10_1016_j_neuroimage_2023_120283 crossref_primary_10_1038_s41598_023_32924_7 crossref_primary_10_1007_s11060_022_04018_3 crossref_primary_10_1016_j_ajp_2020_102195 crossref_primary_10_1038_s41597_024_03629_x crossref_primary_10_1523_JNEUROSCI_1117_23_2023 crossref_primary_10_1016_j_neuroimage_2021_118519 crossref_primary_10_1016_j_neuroimage_2021_118648 crossref_primary_10_1002_hbm_24808 crossref_primary_10_3389_fnins_2022_751595 crossref_primary_10_3390_brainsci12010066 crossref_primary_10_1016_j_neuroimage_2019_04_078 crossref_primary_10_1038_s41467_018_03664_4 crossref_primary_10_3389_fncom_2018_00064 crossref_primary_10_1007_s12021_024_09666_6 crossref_primary_10_1016_j_neuroimage_2020_117493 crossref_primary_10_1002_hbm_23950 crossref_primary_10_1007_s11682_019_00042_6 crossref_primary_10_1007_s12021_021_09519_6 crossref_primary_10_3389_fninf_2017_00041 crossref_primary_10_1016_j_neuron_2024_10_005 crossref_primary_10_1002_hbm_24960 crossref_primary_10_1073_pnas_2318528121 crossref_primary_10_1016_j_neuroimage_2018_01_036 crossref_primary_10_1109_ACCESS_2024_3484928 crossref_primary_10_1016_j_brainres_2024_149265 crossref_primary_10_3389_fneur_2020_595463 crossref_primary_10_1152_physrev_00033_2019 crossref_primary_10_3390_jox15010024 crossref_primary_10_1016_j_pneurobio_2022_102385 crossref_primary_10_1002_alz_12238 crossref_primary_10_1002_hbm_25802 crossref_primary_10_1162_NETN_a_00016 crossref_primary_10_1093_neuros_nyx199 crossref_primary_10_1002_mrm_27189 crossref_primary_10_1038_s41598_020_62832_z crossref_primary_10_1162_netn_a_00215 crossref_primary_10_3389_fnins_2022_867243 crossref_primary_10_1016_j_neuroimage_2023_120060 crossref_primary_10_1016_j_pacs_2023_100506 crossref_primary_10_1016_j_plrev_2023_12_006 crossref_primary_10_1038_s41598_020_63552_0 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1016_j_neuroimage_2021_118625 crossref_primary_10_1093_gigascience_giaf010 crossref_primary_10_1016_j_media_2025_103535 crossref_primary_10_1038_s41598_022_06180_0 crossref_primary_10_1016_j_neuroimage_2021_118502 crossref_primary_10_3389_fpsyt_2023_1150973 crossref_primary_10_1016_j_yhbeh_2018_03_011 crossref_primary_10_26636_jtit_2021_154521 crossref_primary_10_1093_cercor_bhad416 crossref_primary_10_1093_cercor_bhad537 crossref_primary_10_1098_rstb_2019_0323 crossref_primary_10_1093_cercor_bhaa023 crossref_primary_10_1093_cercor_bhab113 crossref_primary_10_1002_hbm_26089 crossref_primary_10_1002_da_23143 crossref_primary_10_1038_s41467_018_06304_z crossref_primary_10_1162_NETN_a_00003 crossref_primary_10_1016_j_neuroimage_2022_119765 crossref_primary_10_3389_fpsyt_2024_1240502 crossref_primary_10_1016_j_neuroimage_2018_01_054 crossref_primary_10_1007_s10489_021_02579_w crossref_primary_10_1001_jamanetworkopen_2019_11426 crossref_primary_10_52294_001c_91292 crossref_primary_10_1016_j_jpsychires_2020_11_023 crossref_primary_10_1073_pnas_1715451115 crossref_primary_10_1016_j_mri_2019_05_016 crossref_primary_10_1016_j_neuroimage_2018_07_004 crossref_primary_10_1093_ons_opaa386 crossref_primary_10_3389_fnins_2021_777377 crossref_primary_10_1162_imag_a_00081 crossref_primary_10_14814_phy2_14819 crossref_primary_10_1093_schizbullopen_sgad019 crossref_primary_10_1523_JNEUROSCI_1580_20_2021 crossref_primary_10_1093_cercor_bhad392 crossref_primary_10_3389_fneur_2021_669076 crossref_primary_10_2463_mrms_rev_2024_0007 crossref_primary_10_1093_psyrad_kkac022 crossref_primary_10_1002_mp_13555 crossref_primary_10_1038_s41598_022_09141_9 crossref_primary_10_1016_j_neuroimage_2020_116800 crossref_primary_10_1016_j_neuron_2022_05_021 crossref_primary_10_1016_j_dcn_2021_101053 crossref_primary_10_1007_s11682_022_00691_0 crossref_primary_10_1254_fpj_153_210 crossref_primary_10_1177_0271678X17708692 crossref_primary_10_1007_s43657_022_00083_w crossref_primary_10_1016_j_bj_2019_12_001 crossref_primary_10_3389_fpsyt_2021_643193 crossref_primary_10_1093_ons_opab109 crossref_primary_10_1016_j_gpb_2019_09_003 crossref_primary_10_1093_cercor_bhae498 crossref_primary_10_3389_fpsyt_2021_680484 crossref_primary_10_1016_j_dcn_2020_100902 crossref_primary_10_1093_scan_nsz021 crossref_primary_10_1016_j_neuroimage_2018_01_078 crossref_primary_10_1093_cercor_bhac070 crossref_primary_10_3389_fneur_2023_1029732 crossref_primary_10_1097_PR9_0000000000001134 crossref_primary_10_1016_j_compbiomed_2023_107747 crossref_primary_10_1162_imag_a_00184 crossref_primary_10_1016_j_pscychresns_2024_111877 crossref_primary_10_1038_s41467_022_28323_7 crossref_primary_10_1073_pnas_2004363117 crossref_primary_10_3389_fnins_2018_00354 crossref_primary_10_1016_j_jalz_2018_03_007 crossref_primary_10_1371_journal_pone_0289406 crossref_primary_10_1162_jocn_a_01945 crossref_primary_10_1016_j_neuroimage_2019_116131 crossref_primary_10_12688_f1000research_25306_2 crossref_primary_10_12688_f1000research_25306_1 crossref_primary_10_1007_s11307_018_1259_y crossref_primary_10_1016_j_neuroimage_2023_119954 crossref_primary_10_3390_cancers14030464 crossref_primary_10_2174_1574884716666210322143458 crossref_primary_10_3389_fnins_2022_812410 crossref_primary_10_1016_j_ynirp_2021_100053 crossref_primary_10_7554_eLife_83970 crossref_primary_10_1007_s00429_021_02400_x crossref_primary_10_1162_imag_a_00078 crossref_primary_10_1016_j_ymgme_2017_09_006 crossref_primary_10_2463_mrms_rev_2021_0096 crossref_primary_10_1093_cercor_bhac496 crossref_primary_10_1111_nyas_13318 crossref_primary_10_1016_j_neuroimage_2022_119721 crossref_primary_10_6009_jjrt_2019_JSRT_75_6_555 crossref_primary_10_1002_mrm_27695 crossref_primary_10_1016_j_neuroimage_2022_118877 crossref_primary_10_1186_s13063_024_08121_w crossref_primary_10_1016_j_ynstr_2022_100448 crossref_primary_10_3233_JAD_190706 crossref_primary_10_1016_j_ynirp_2021_100004 crossref_primary_10_1016_j_bpsc_2020_04_009 crossref_primary_10_1186_s13195_019_0518_8 crossref_primary_10_1016_j_neuron_2021_12_024 crossref_primary_10_2139_ssrn_4058693 crossref_primary_10_3389_fnins_2018_00650 crossref_primary_10_1093_brain_awae334 crossref_primary_10_1093_cercor_bhac014 crossref_primary_10_1093_gigascience_giad029 crossref_primary_10_1007_s10334_020_00870_4 crossref_primary_10_1093_brain_awad123 crossref_primary_10_3389_fnins_2019_01282 crossref_primary_10_1093_cercor_bhab174 crossref_primary_10_3389_fncom_2022_887633 crossref_primary_10_1007_s10334_018_0705_9 crossref_primary_10_1016_j_neuroimage_2018_09_060 crossref_primary_10_1523_JNEUROSCI_1701_23_2024 crossref_primary_10_1007_s00415_017_8603_z crossref_primary_10_1007_s12311_022_01418_z crossref_primary_10_1002_hbm_26270 crossref_primary_10_1007_s00429_023_02720_0 crossref_primary_10_1093_cercor_bhx363 crossref_primary_10_1162_imag_a_00295 crossref_primary_10_1038_s41598_019_49286_8 crossref_primary_10_1016_j_neuroimage_2021_118246 crossref_primary_10_1016_j_neuroimage_2021_118488 crossref_primary_10_1038_s41598_023_33198_9 crossref_primary_10_1016_j_jmr_2018_02_018 crossref_primary_10_1002_jmri_27420 crossref_primary_10_1016_j_bpsgos_2023_05_007 crossref_primary_10_1016_j_mri_2021_10_028 crossref_primary_10_3389_fnins_2024_1425032 crossref_primary_10_1073_pnas_1902299116 crossref_primary_10_1080_01621459_2022_2102984 crossref_primary_10_1017_pen_2018_8 crossref_primary_10_1093_cercor_bhac266 crossref_primary_10_1109_TNSRE_2021_3120024 crossref_primary_10_1093_cercor_bhac276 crossref_primary_10_1093_cercor_bhac391 crossref_primary_10_1016_j_neuroimage_2022_118894 crossref_primary_10_1007_s00429_022_02520_y crossref_primary_10_1016_j_neuroimage_2022_119744 crossref_primary_10_4103_glioma_glioma_14_21 crossref_primary_10_1016_j_neuroimage_2016_11_049 crossref_primary_10_1177_17562864231202064 crossref_primary_10_1002_mrm_29418 crossref_primary_10_1016_j_nbd_2019_04_001 crossref_primary_10_1109_TPAMI_2022_3209686 crossref_primary_10_1111_ejn_15691 crossref_primary_10_1016_j_neuroimage_2021_118215 crossref_primary_10_1016_j_neuroimage_2021_118579 crossref_primary_10_1016_j_neuroimage_2021_118576 crossref_primary_10_1038_s41598_019_48164_7 crossref_primary_10_1093_psyrad_kkac009 crossref_primary_10_1007_s00429_020_02150_2 crossref_primary_10_1038_nmeth_4152 crossref_primary_10_1016_j_neuroimage_2021_118693 crossref_primary_10_1093_cercor_bhae217 crossref_primary_10_1177_0271678X221106277 crossref_primary_10_1016_j_jad_2023_07_068 crossref_primary_10_1007_s00429_025_02894_9 crossref_primary_10_1016_j_neuroimage_2020_117190 crossref_primary_10_3389_fninf_2022_960607 crossref_primary_10_1002_da_23294 crossref_primary_10_3389_fneur_2023_1266167 crossref_primary_10_3389_fninf_2021_802938 crossref_primary_10_1016_j_neuroimage_2018_10_070 crossref_primary_10_1002_hbm_26173 crossref_primary_10_1038_s41598_017_14613_4 crossref_primary_10_1016_j_nicl_2023_103468 crossref_primary_10_1038_nn_4419 crossref_primary_10_1038_s41593_020_00711_6 crossref_primary_10_1080_02656736_2023_2194595 crossref_primary_10_1016_j_neuroimage_2021_118467 crossref_primary_10_3389_fnana_2022_1035420 crossref_primary_10_1038_s41467_022_34371_w crossref_primary_10_1016_j_neuroimage_2018_08_050 crossref_primary_10_1089_brain_2024_0056 crossref_primary_10_3389_fnana_2023_1214629 crossref_primary_10_1002_hbm_24186 crossref_primary_10_1016_j_neures_2018_10_011 crossref_primary_10_1016_j_pediatrneurol_2019_03_001 crossref_primary_10_1016_j_intell_2022_101654 crossref_primary_10_3389_fnins_2023_1200373 crossref_primary_10_1136_bmjopen_2023_081800 crossref_primary_10_1142_S0129065724500023 crossref_primary_10_17537_2020_15_471 crossref_primary_10_1016_j_media_2021_102093 crossref_primary_10_1016_j_celrep_2022_111617 crossref_primary_10_1016_j_neubiorev_2021_08_010 crossref_primary_10_3389_fnins_2024_1389680 crossref_primary_10_1016_j_neuroimage_2024_120902 crossref_primary_10_7554_eLife_72534 crossref_primary_10_1016_j_psycr_2025_100249 crossref_primary_10_1371_journal_pbio_2007032 crossref_primary_10_1016_j_neuroimage_2022_119360 crossref_primary_10_1016_j_neuroimage_2022_119352 crossref_primary_10_1016_j_wneu_2024_05_152 crossref_primary_10_1002_hbm_25147 crossref_primary_10_1038_s41598_018_35209_6 crossref_primary_10_1002_nbm_3752 crossref_primary_10_1038_s41467_019_10597_z crossref_primary_10_18632_aging_203815 crossref_primary_10_7554_eLife_53680 crossref_primary_10_1016_j_nicl_2020_102530 crossref_primary_10_1016_j_ibneur_2022_09_001 crossref_primary_10_1109_TMI_2022_3156868 crossref_primary_10_1016_j_tics_2017_01_004 crossref_primary_10_1254_fpj_149_173 crossref_primary_10_1002_nbm_4845 crossref_primary_10_1038_s41598_019_55738_y crossref_primary_10_1016_j_orgel_2019_105389 crossref_primary_10_1016_j_neuroimage_2018_10_009 crossref_primary_10_1002_hbm_70064 crossref_primary_10_3389_fnbeh_2022_953303 crossref_primary_10_1002_dneu_22879 crossref_primary_10_1097_MD_0000000000029024 crossref_primary_10_1111_gbb_12441 crossref_primary_10_1093_brain_awab096 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_1016_j_neuroimage_2018_06_018 crossref_primary_10_1038_s41598_019_49301_y crossref_primary_10_1089_brain_2021_0129 crossref_primary_10_1177_10738584241245304 crossref_primary_10_3389_fneur_2022_836716 crossref_primary_10_1002_hbm_70056 crossref_primary_10_1016_j_neuroimage_2023_120401 crossref_primary_10_1162_imag_a_00102 crossref_primary_10_1249_MSS_0000000000002963 crossref_primary_10_1016_j_neuron_2016_10_019 crossref_primary_10_3389_fnins_2019_01260 crossref_primary_10_1002_jmri_27247 crossref_primary_10_1016_j_wneu_2023_05_070 crossref_primary_10_1016_j_neulet_2018_10_012 crossref_primary_10_1038_sdata_2018_105 crossref_primary_10_1093_pnasnexus_pgad276 crossref_primary_10_1007_s00234_022_03048_y crossref_primary_10_1016_j_neuroimage_2018_07_057 crossref_primary_10_1371_journal_pbio_3000733 crossref_primary_10_1002_jnr_70021 crossref_primary_10_1038_nn_4500 crossref_primary_10_1038_nn_4501 crossref_primary_10_1016_j_neuroimage_2020_116863 crossref_primary_10_1016_j_neuroimage_2020_116861 crossref_primary_10_1162_imag_a_00115 crossref_primary_10_1044_2018_AJSLP_16_0180 crossref_primary_10_1162_imag_a_00355 crossref_primary_10_1038_s41386_024_01894_3 crossref_primary_10_1007_s00429_018_1660_y crossref_primary_10_1038_s41467_017_01000_w crossref_primary_10_1016_j_brs_2022_09_011 crossref_primary_10_1016_j_brain_2022_100062 crossref_primary_10_18231_j_ijn_2024_005 crossref_primary_10_3389_fnsys_2021_777706 crossref_primary_10_1016_j_neuroimage_2022_119684 crossref_primary_10_1371_journal_pone_0238485 crossref_primary_10_2147_JPR_S352105 crossref_primary_10_1016_j_neuron_2019_01_045 crossref_primary_10_1038_s41467_024_53148_x crossref_primary_10_3389_fninf_2023_1104508 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1016_j_jneumeth_2019_108417 crossref_primary_10_1126_science_abj1881 crossref_primary_10_1360_TB_2023_1284 crossref_primary_10_1162_imag_a_00444 crossref_primary_10_1002_hbm_70032 crossref_primary_10_1016_j_neuroimage_2021_118196 crossref_primary_10_1002_sim_9342 crossref_primary_10_1016_j_biopsych_2020_05_016 crossref_primary_10_1038_s41598_020_62378_0 crossref_primary_10_1016_j_neuroimage_2021_118082 crossref_primary_10_1016_j_bbr_2019_03_004 crossref_primary_10_1038_s41598_017_18931_5 crossref_primary_10_1093_brain_awae173 crossref_primary_10_1038_s41598_022_18024_y crossref_primary_10_1002_hbm_26795 crossref_primary_10_7554_eLife_62116 crossref_primary_10_1016_j_brs_2021_08_010 crossref_primary_10_1002_ima_22325 crossref_primary_10_1016_j_neuroimage_2025_121094 crossref_primary_10_1111_add_16330 crossref_primary_10_1038_s41398_022_01780_w crossref_primary_10_3389_fnint_2023_1027382 crossref_primary_10_1142_S0219519421400595 crossref_primary_10_3389_fneur_2017_00489 crossref_primary_10_1002_hbm_70149 crossref_primary_10_1002_nbm_4887 crossref_primary_10_1007_s00429_021_02421_6 crossref_primary_10_1021_acscentsci_0c00027 crossref_primary_10_1016_j_beth_2017_05_003 crossref_primary_10_1007_s11571_017_9431_7 crossref_primary_10_1162_imag_a_00212 crossref_primary_10_1016_j_neubiorev_2023_105245 crossref_primary_10_1038_s41598_020_78394_z crossref_primary_10_1016_j_neuroimage_2023_119862 crossref_primary_10_1016_j_neuroimage_2022_119588 crossref_primary_10_1038_s41586_023_05964_2 crossref_primary_10_1016_j_bbr_2016_09_057 crossref_primary_10_1038_s41562_024_01908_6 crossref_primary_10_1016_j_nicl_2021_102600 crossref_primary_10_1016_j_seizure_2020_08_024 crossref_primary_10_1017_S096318011700007X crossref_primary_10_1038_s41593_021_00916_3 crossref_primary_10_1177_23982128221075430 crossref_primary_10_1097_RMR_0000000000000220 crossref_primary_10_1111_ejn_14083 crossref_primary_10_1002_hbm_25009 crossref_primary_10_1162_imag_a_00303 crossref_primary_10_1002_aur_2974 crossref_primary_10_1016_j_neuroimage_2019_06_015 crossref_primary_10_1016_j_psyneuen_2023_106056 crossref_primary_10_1073_pnas_1808121115 crossref_primary_10_1016_j_neuroimage_2024_120925 crossref_primary_10_1016_j_neubiorev_2024_105650 crossref_primary_10_1162_imag_a_00300 crossref_primary_10_1016_j_neuroimage_2017_10_037 crossref_primary_10_3171_2020_5_JNS191281 crossref_primary_10_1016_j_jad_2021_05_013 crossref_primary_10_1016_j_neuron_2017_06_011 crossref_primary_10_3389_fnhum_2017_00405 crossref_primary_10_1002_hbm_26453 crossref_primary_10_3389_fneur_2024_1460453 crossref_primary_10_1016_j_neurobiolaging_2021_06_021 crossref_primary_10_1093_cercor_bhae067 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1016_j_neuroimage_2022_119575 crossref_primary_10_1016_j_neuroimage_2019_06_007 crossref_primary_10_1162_imag_a_00437 crossref_primary_10_1016_j_neuroimage_2018_05_027 crossref_primary_10_1038_s41562_020_01003_6 crossref_primary_10_1038_sdata_2018_270 crossref_primary_10_1007_s00429_020_02181_9 crossref_primary_10_1038_s41597_019_0073_y crossref_primary_10_1073_pnas_2016271118 crossref_primary_10_1109_TSIPN_2022_3209097 crossref_primary_10_1002_hbm_25116 crossref_primary_10_3389_fnins_2017_00158 crossref_primary_10_1017_S0952523817000116 crossref_primary_10_1159_000479514 |
Cites_doi | 10.1016/j.neuroimage.2013.05.077 10.1007/s00422-014-0626-2 10.1016/j.neuroimage.2014.06.042 10.1016/j.neuroimage.2009.06.060 10.1016/j.conb.2011.08.005 10.1016/j.neuroimage.2005.06.058 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuroimage.2008.02.052 10.1016/j.neuron.2014.05.014 10.1016/j.neuroimage.2011.12.063 10.1385/NI:5:1:11 10.1016/j.neuroimage.2014.10.031 10.1016/j.neuroimage.2014.05.069 10.1371/journal.pone.0015710 10.1016/j.neuroimage.2013.07.055 10.1016/j.neuroimage.2014.12.012 10.1016/j.neuroimage.2014.07.061 10.1093/cercor/1.1.1 10.1016/j.neuroimage.2014.03.034 10.1016/j.visres.2010.08.004 10.1016/j.neuron.2011.09.006 10.1093/cercor/bhu277 10.1038/nn.4171 10.1016/j.neuroimage.2012.03.072 10.1038/nn.4164 10.1007/s00429-012-0460-z 10.1093/cercor/bhg087 10.1016/j.neuroimage.2013.04.127 10.1073/pnas.1507552112 10.1089/brain.2014.0261 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2013.10.046 10.1016/j.neuroimage.2012.01.032 10.1016/j.neuroimage.2013.08.048 10.1016/j.neuroimage.2012.01.016 10.1093/cercor/bhv121 10.1162/jocn.1993.5.2.162 10.1016/j.neuroimage.2004.12.034 10.1002/mrm.24204 10.1002/jmri.21049 10.1093/cercor/bhr291 10.1126/science.7754376 10.1016/j.neuroimage.2013.07.012 10.3389/fnhum.2013.00356 10.1109/TMI.2007.906784 10.1093/cercor/bhn011 10.1002/mrm.23097 10.1016/j.neuroimage.2012.06.019 10.1016/j.neuroimage.2013.05.033 10.1016/j.neuroimage.2011.10.018 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/S0896-6273(02)00569-X 10.1073/pnas.200033797 10.1016/j.neuroimage.2004.07.016 10.1016/j.neuroimage.2015.07.067 10.1016/j.neuroimage.2011.08.035 10.1016/j.neuroimage.2013.03.060 10.1016/j.neuroimage.2014.10.044 10.1016/j.neuroimage.2008.09.036 10.1016/j.neuroimage.2016.04.014 10.1016/j.neuron.2015.06.037 10.1038/ncomms2379 10.1089/brain.2013.0156 10.1146/annurev-neuro-071013-014111 10.1093/cercor/bhm225 10.1016/j.neuroimage.2010.08.063 10.1016/j.neuroimage.2015.04.046 10.1038/nn.4134 10.1016/j.neuron.2011.08.026 10.1523/JNEUROSCI.22-23-10416.2002 10.1126/science.aad8127 10.1002/mrm.22361 10.1523/JNEUROSCI.2180-11.2011 10.1016/j.neuroimage.2013.05.074 10.1016/j.neuroimage.2013.05.078 10.1016/j.neuroimage.2013.11.046 10.1109/TMI.2006.887364 10.1016/j.neuroimage.2015.10.019 10.1016/S0006-3495(94)80775-1 10.1038/nn.4125 10.1016/j.neuroimage.2015.08.004 10.1109/42.906426 10.1101/SQB.1990.055.01.064 10.1016/j.cub.2015.08.057 10.1016/j.neuroimage.2009.04.048 10.1523/JNEUROSCI.0493-16.2016 10.1152/jn.00338.2011 10.1073/pnas.1602413113 10.1016/j.media.2006.06.004 10.1089/brain.2012.0080 10.1016/j.neuroimage.2013.05.041 10.1038/nature07621 10.1016/j.neuroimage.2013.05.012 10.1073/pnas.1418198112 10.1016/j.neuroimage.2013.05.056 10.1016/j.neuroimage.2013.05.108 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2013.05.057 10.1006/nimg.1998.0396 10.1016/j.neuroimage.2015.05.092 10.1006/nimg.1999.0516 10.1016/j.neuroimage.2011.06.006 10.1016/B978-0-444-53839-0.00017-X 10.1093/cercor/bhj181 10.1002/mrm.24719 10.1093/cercor/bhu239 10.1016/j.neuroimage.2014.12.008 10.1007/s00429-014-0806-9 10.1016/j.neuroimage.2016.06.058 10.1007/978-3-662-45766-5_6 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2016 COPYRIGHT 2016 Nature Publishing Group |
Copyright_xml | – notice: Springer Nature America, Inc. 2016 – notice: COPYRIGHT 2016 Nature Publishing Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7TK 5PM |
DOI | 10.1038/nn.4361 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1546-1726 |
EndPage | 1187 |
ExternalDocumentID | PMC6172654 A461870208 27571196 10_1038_nn_4361 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: F30 MH097312 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: Wellcome Trust – fundername: NIBIB NIH HHS grantid: R01 EB009352 – fundername: Wellcome Trust grantid: 098369/Z/12/Z – fundername: NIMH NIH HHS grantid: R24 MH108315 – fundername: NIMH NIH HHS grantid: R01 MH060974 – fundername: NINDS NIH HHS grantid: P30 NS048056 – fundername: NIBIB NIH HHS grantid: P41 EB015894 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M AAYXX ABFSG AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c602t-85a6d0a5d29a4a80aa2bb0c805c4c7ac84ed29badf39519e7e14a4b16ef94f1a3 |
ISSN | 1097-6256 1546-1726 |
IngestDate | Thu Aug 21 18:29:58 EDT 2025 Mon Jul 21 10:04:07 EDT 2025 Fri Jul 11 11:37:11 EDT 2025 Tue Jun 17 20:52:02 EDT 2025 Tue Jun 10 20:44:38 EDT 2025 Fri Jun 27 04:00:57 EDT 2025 Mon Jul 21 05:51:55 EDT 2025 Thu Apr 24 22:50:20 EDT 2025 Tue Jul 01 03:21:43 EDT 2025 Fri Feb 21 02:39:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c602t-85a6d0a5d29a4a80aa2bb0c805c4c7ac84ed29badf39519e7e14a4b16ef94f1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Author Contributions M.F.G., S.M.S., D.S.M., K.U., and D.C.V.E. framed the issues and generated the initial draft. M.F.G., S.M.S., D.S.M., J.A., E.J.A., T.E.J.B, T.S.C., M.P.H., M.J., S.M., E.C.R., S.N.S., J.X., E.Y., K.U., and D.C.V.E. contributed novel methods or analyses. M.F.G., S.M.S., D.S.M., T.E.J.B, T.S.C., M.P.H., E.C.R., S.N.S., J.X., E.Y., K.U., and D.C.V.E. wrote the manuscript. |
ORCID | 0000-0001-8438-2066 0000-0001-8166-069X |
OpenAccessLink | https://nottingham-repository.worktribe.com/file/804345/1/GlasserNN.pdf |
PMID | 27571196 |
PQID | 1815683318 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172654 proquest_miscellaneous_1827889480 proquest_miscellaneous_1815683318 gale_infotracmisc_A461870208 gale_infotracacademiconefile_A461870208 gale_incontextgauss_ISR_A461870208 pubmed_primary_27571196 crossref_citationtrail_10_1038_nn_4361 crossref_primary_10_1038_nn_4361 springer_journals_10_1038_nn_4361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature neuroscience |
PublicationTitleAbbrev | Nat Neurosci |
PublicationTitleAlternate | Nat Neurosci |
PublicationYear | 2016 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Greve, Fischl (CR59) 2009; 48 Van Essen, Felleman, DeYoe, Olavarria, Knierim (CR33) 1990; 55 Beckmann, Smith (CR66) 2004; 23 Ugˇurbil (CR5) 2013; 80 Muckli (CR103) 2015; 25 Ségonne, Pacheco, Fischl (CR28) 2007; 26 Fischl, Sereno, Dale (CR26) 1999; 9 Power, Schlaggar, Petersen (CR63) 2015; 105 Winkler, Webster, Vidaurre, Nichols, Smith (CR67) 2015; 123 Saad (CR108) 2013; 3 Zhang (CR68) 2007; 26 Fischl (CR24) 2002; 33 Setsompop (CR45) 2013; 80 Fieremans, Jensen, Helpern (CR37) 2011; 58 Yeo (CR87) 2011; 106 De Martino (CR102) 2013; 4 Liewald, Miller, Logothetis, Wagner, Schüz (CR40) 2014; 108 Andersson, Sotiropoulos (CR61) 2016; 125 Brewer, Press, Logothetis, Wandell (CR32) 2002; 22 Nieuwenhuys (CR82) 2013; 218 Gotts (CR109) 2013; 7 Larson-Prior (CR115) 2013; 80 Frost, Goebel (CR75) 2012; 59 Fischl (CR90) 2004; 14 Glasser, Van Essen (CR20) 2011; 31 Hawrylycz (CR96) 2015; 18 Smith (CR114) 2011; 54 Power, Barnes, Snyder, Schlaggar, Petersen (CR64) 2012; 59 Laumann (CR56) 2015; 87 Sotiropoulos (CR47) 2013; 80 Barch (CR29) 2013; 80 Fischl, Dale (CR18) 2000; 97 Dale, Sereno (CR22) 1993; 5 Gordon (CR85) 2016; 26 Dale, Fischl, Sereno (CR21) 1999; 9 Wandell, Winawer (CR30) 2011; 51 Jack (CR116) 2008; 27 Wang (CR95) 2015; 18 Van Essen, Ugurbil (CR41) 2012; 62 Abdollahi (CR105) 2014; 99 Satterthwaite (CR65) 2012; 60 De Martino (CR101) 2015; 112 Basser, Mattiello, LeBihan (CR36) 1994; 66 Reveley (CR98) 2015; 112 Marcus (CR12) 2013; 80 Chang, Glover (CR112) 2009; 47 Zhang, Yushkevich, Alexander, Gee (CR69) 2006; 10 Hacker (CR88) 2013; 82 Jbabdi, Sotiropoulos, Savio, Graña, Behrens (CR57) 2012; 68 Cole, Bassett, Power, Braver, Petersen (CR89) 2014; 83 Orban, Zhu, Vanduffel (CR31) 2014; 5 Sotiropoulos (CR46) 2016; 134 Wang, Mruczek, Arcaro, Kastner (CR17) 2015; 25 Vogt, Vogt (CR83) 1919; 25 CR62 Malikovic (CR104) 2007; 17 Hillman (CR49) 2014; 37 Anticevic (CR73) 2008; 41 Turner, Geyer (CR15) 2014; 4 Smith (CR76) 2013; 80 Power (CR107) 2014; 84 Nieuwenhuys, Broere, Cerliani (CR84) 2015; 220 Sereno (CR16) 1995; 268 Griffanti (CR7) 2014; 95 Eickhoff (CR71) 2005; 25 Haxby (CR79) 2011; 72 Behrens, Sporns (CR1) 2012; 22 Smith (CR3) 2013; 80 Smith (CR93) 2015; 18 Andersson, Sotiropoulos (CR60) 2015; 122 Dalcanton (CR99) 2009; 457 CR9 Moeller (CR54) 2010; 63 Huang (CR42) 2015; 106 Van Essen (CR72) 2005; 28 CR81 Fischl, Sereno, Tootell, Dale (CR27) 1999; 8 Golestani, Chang, Kwinta, Khatamian, Jean Chen (CR113) 2015; 104 Setsompop (CR44) 2012; 67 Yeo, Krienen, Chee, Buckner (CR94) 2014; 88 Zhang, Schneider, Wheeler-Kingshott, Alexander (CR38) 2012; 61 Van Essen (CR4) 2013; 80 Xu (CR55) 2013; 83 Calabrese, Badea, Cofer, Qi, Johnson (CR34) 2015; 25 Birn (CR111) 2012; 62 Niazy, Xie, Miller, Beckmann, Smith (CR52) 2011; 193 Power (CR86) 2011; 72 CR14 Auerbach, Xu, Yacoub, Moeller, Ugˇurbil (CR53) 2013; 69 Saad (CR110) 2012; 2 Vu (CR48) 2015; 122 Felleman, Van Essen (CR78) 1991; 1 CR11 Feinberg (CR50) 2010; 5 Glasser (CR6) 2013; 80 Tavor (CR97) 2016; 352 Jbabdi, Sotiropoulos, Haber, Van Essen, Behrens (CR2) 2015; 18 Murphy, Birn, Handwerker, Jones, Bandettini (CR106) 2009; 44 McNab (CR43) 2013; 80 Fischl (CR74) 2008; 18 Hodge (CR91) 2016; 124 Glasser, Rilling (CR80) 2008; 18 Donahue (CR35) 2016; 36 Tucholka, Fritsch, Poline, Thirion (CR77) 2012; 63 Chen, Glover (CR51) 2015; 107 Glasser, Goyal, Preuss, Raichle, Van Essen (CR19) 2014; 93 Robinson (CR10) 2014; 100 Fischl (CR25) 2004; 23 Van Essen, Glasser, Dierker, Harwell, Coalson (CR39) 2012; 22 Marcus, Olsen, Ramaratnam, Buckner (CR92) 2007; 5 Jeurissen, Tournier, Dhollander, Connelly, Sijbers (CR58) 2014; 103 Amunts, Malikovic, Mohlberg, Schormann, Zilles (CR70) 2000; 11 Eklund, Nichols, Knutsson (CR13) 2016; 28 CR100 Fischl, Liu, Dale (CR23) 2001; 20 Salimi-Khorshidi (CR8) 2014; 90 A Eklund (BFnn4361_CR13) 2016; 28 TD Satterthwaite (BFnn4361_CR65) 2012; 60 B Fischl (BFnn4361_CR23) 2001; 20 C Vogt (BFnn4361_CR83) 1919; 25 GA Orban (BFnn4361_CR31) 2014; 5 SN Sotiropoulos (BFnn4361_CR46) 2016; 134 JV Haxby (BFnn4361_CR79) 2011; 72 MI Sereno (BFnn4361_CR16) 1995; 268 BT Yeo (BFnn4361_CR94) 2014; 88 DC Van Essen (BFnn4361_CR4) 2013; 80 B Fischl (BFnn4361_CR18) 2000; 97 E Calabrese (BFnn4361_CR34) 2015; 25 B Fischl (BFnn4361_CR26) 1999; 9 DC Van Essen (BFnn4361_CR33) 1990; 55 R Turner (BFnn4361_CR15) 2014; 4 CD Hacker (BFnn4361_CR88) 2013; 82 B Fischl (BFnn4361_CR25) 2004; 23 H Zhang (BFnn4361_CR68) 2007; 26 JJ Dalcanton (BFnn4361_CR99) 2009; 457 E Fieremans (BFnn4361_CR37) 2011; 58 L Griffanti (BFnn4361_CR7) 2014; 95 AM Dale (BFnn4361_CR22) 1993; 5 S Moeller (BFnn4361_CR54) 2010; 63 A Tucholka (BFnn4361_CR77) 2012; 63 ZS Saad (BFnn4361_CR108) 2013; 3 JL Andersson (BFnn4361_CR61) 2016; 125 LJ Larson-Prior (BFnn4361_CR115) 2013; 80 MF Glasser (BFnn4361_CR20) 2011; 31 J Xu (BFnn4361_CR55) 2013; 83 DA Feinberg (BFnn4361_CR50) 2010; 5 L Wang (BFnn4361_CR17) 2015; 25 R Nieuwenhuys (BFnn4361_CR84) 2015; 220 S Jbabdi (BFnn4361_CR57) 2012; 68 AT Vu (BFnn4361_CR48) 2015; 122 K Murphy (BFnn4361_CR106) 2009; 44 AA Brewer (BFnn4361_CR32) 2002; 22 SN Sotiropoulos (BFnn4361_CR47) 2013; 80 BT Yeo (BFnn4361_CR87) 2011; 106 DC Van Essen (BFnn4361_CR72) 2005; 28 AM Dale (BFnn4361_CR21) 1999; 9 EM Hillman (BFnn4361_CR49) 2014; 37 MF Glasser (BFnn4361_CR19) 2014; 93 K Setsompop (BFnn4361_CR45) 2013; 80 RK Niazy (BFnn4361_CR52) 2011; 193 B Fischl (BFnn4361_CR90) 2004; 14 B Fischl (BFnn4361_CR27) 1999; 8 TO Laumann (BFnn4361_CR56) 2015; 87 JD Power (BFnn4361_CR63) 2015; 105 DC Van Essen (BFnn4361_CR39) 2012; 22 DS Marcus (BFnn4361_CR12) 2013; 80 A Malikovic (BFnn4361_CR104) 2007; 17 BA Wandell (BFnn4361_CR30) 2011; 51 SJ Gotts (BFnn4361_CR109) 2013; 7 BFnn4361_CR9 R Nieuwenhuys (BFnn4361_CR82) 2013; 218 C Reveley (BFnn4361_CR98) 2015; 112 M Hawrylycz (BFnn4361_CR96) 2015; 18 JE Chen (BFnn4361_CR51) 2015; 107 BFnn4361_CR11 DS Marcus (BFnn4361_CR92) 2007; 5 BFnn4361_CR14 B Fischl (BFnn4361_CR24) 2002; 33 BFnn4361_CR100 F Ségonne (BFnn4361_CR28) 2007; 26 AM Golestani (BFnn4361_CR113) 2015; 104 JD Power (BFnn4361_CR107) 2014; 84 B Jeurissen (BFnn4361_CR58) 2014; 103 JL Andersson (BFnn4361_CR60) 2015; 122 S Jbabdi (BFnn4361_CR2) 2015; 18 K Setsompop (BFnn4361_CR44) 2012; 67 EJ Auerbach (BFnn4361_CR53) 2013; 69 K Amunts (BFnn4361_CR70) 2000; 11 DC Van Essen (BFnn4361_CR41) 2012; 62 TE Behrens (BFnn4361_CR1) 2012; 22 EM Gordon (BFnn4361_CR85) 2016; 26 I Tavor (BFnn4361_CR97) 2016; 352 RO Abdollahi (BFnn4361_CR105) 2014; 99 JA McNab (BFnn4361_CR43) 2013; 80 G Salimi-Khorshidi (BFnn4361_CR8) 2014; 90 D Wang (BFnn4361_CR95) 2015; 18 SM Smith (BFnn4361_CR76) 2013; 80 A Anticevic (BFnn4361_CR73) 2008; 41 MF Glasser (BFnn4361_CR6) 2013; 80 L Muckli (BFnn4361_CR103) 2015; 25 RM Birn (BFnn4361_CR111) 2012; 62 BFnn4361_CR81 ZS Saad (BFnn4361_CR110) 2012; 2 AM Winkler (BFnn4361_CR67) 2015; 123 CJ Donahue (BFnn4361_CR35) 2016; 36 D Liewald (BFnn4361_CR40) 2014; 108 H Zhang (BFnn4361_CR69) 2006; 10 SM Smith (BFnn4361_CR93) 2015; 18 CR Jack Jr. (BFnn4361_CR116) 2008; 27 H Zhang (BFnn4361_CR38) 2012; 61 F De Martino (BFnn4361_CR102) 2013; 4 SY Huang (BFnn4361_CR42) 2015; 106 CF Beckmann (BFnn4361_CR66) 2004; 23 MR Hodge (BFnn4361_CR91) 2016; 124 B Fischl (BFnn4361_CR74) 2008; 18 K Ugˇurbil (BFnn4361_CR5) 2013; 80 DN Greve (BFnn4361_CR59) 2009; 48 EC Robinson (BFnn4361_CR10) 2014; 100 SM Smith (BFnn4361_CR114) 2011; 54 F De Martino (BFnn4361_CR101) 2015; 112 MW Cole (BFnn4361_CR89) 2014; 83 DJ Felleman (BFnn4361_CR78) 1991; 1 PJ Basser (BFnn4361_CR36) 1994; 66 DM Barch (BFnn4361_CR29) 2013; 80 MA Frost (BFnn4361_CR75) 2012; 59 JD Power (BFnn4361_CR64) 2012; 59 S Smith (BFnn4361_CR3) 2013; 80 SB Eickhoff (BFnn4361_CR71) 2005; 25 BFnn4361_CR62 JD Power (BFnn4361_CR86) 2011; 72 C Chang (BFnn4361_CR112) 2009; 47 MF Glasser (BFnn4361_CR80) 2008; 18 |
References_xml | – volume: 80 start-page: 202 year: 2013 end-page: 219 ident: CR12 article-title: Human Connectome Project informatics: quality control, database services, and data visualization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.077 – volume: 108 start-page: 541 year: 2014 end-page: 557 ident: CR40 article-title: Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque publication-title: Biol. Cybern. doi: 10.1007/s00422-014-0626-2 – volume: 99 start-page: 509 year: 2014 end-page: 524 ident: CR105 article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.042 – volume: 48 start-page: 63 year: 2009 end-page: 72 ident: CR59 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 22 start-page: 144 year: 2012 end-page: 153 ident: CR1 article-title: Human connectomics publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.08.005 – volume: 28 start-page: 635 year: 2005 end-page: 662 ident: CR72 article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 80 start-page: 144 year: 2013 end-page: 168 ident: CR76 article-title: Resting-state fMRI in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 41 start-page: 835 year: 2008 end-page: 848 ident: CR73 article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.052 – volume: 83 start-page: 238 year: 2014 end-page: 251 ident: CR89 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 60 start-page: 623 year: 2012 end-page: 632 ident: CR65 article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – volume: 5 start-page: 11 year: 2007 end-page: 34 ident: CR92 article-title: The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data publication-title: Neuroinformatics doi: 10.1385/NI:5:1:11 – volume: 104 start-page: 266 year: 2015 end-page: 277 ident: CR113 article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.031 – volume: 100 start-page: 414 year: 2014 end-page: 426 ident: CR10 article-title: MSM: a new flexible framework for multimodal surface matching publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.069 – volume: 5 start-page: e15710 year: 2010 ident: CR50 article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging publication-title: PLoS One doi: 10.1371/journal.pone.0015710 – volume: 83 start-page: 991 year: 2013 end-page: 1001 ident: CR55 article-title: Evaluation of slice accelerations using multiband echo planar imaging at 3 T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.055 – volume: 25 start-page: 279 year: 1919 end-page: 468 ident: CR83 article-title: Allgemeinere Ergebnisse unserer Hirnforschung publication-title: J. Psychol. Neurol. – volume: 107 start-page: 207 year: 2015 end-page: 218 ident: CR51 article-title: BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.012 – volume: 103 start-page: 411 year: 2014 end-page: 426 ident: CR58 article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 1 start-page: 1 year: 1991 end-page: 47 ident: CR78 article-title: Distributed hierarchical processing in the primate cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: CR7 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 51 start-page: 718 year: 2011 end-page: 737 ident: CR30 article-title: Imaging retinotopic maps in the human brain publication-title: Vision Res. doi: 10.1016/j.visres.2010.08.004 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: CR86 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 25 start-page: 3911 year: 2015 end-page: 3931 ident: CR17 article-title: Probabilistic maps of visual topography in human cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu277 – volume: 18 start-page: 1832 year: 2015 end-page: 1844 ident: CR96 article-title: Canonical genetic signatures of the adult human brain publication-title: Nat. Neurosci. doi: 10.1038/nn.4171 – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: CR38 article-title: NODDI: practical neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 18 start-page: 1853 year: 2015 end-page: 1860 ident: CR95 article-title: Parcellating cortical functional networks in individuals publication-title: Nat. Neurosci. doi: 10.1038/nn.4164 – ident: CR11 – volume: 218 start-page: 303 year: 2013 end-page: 352 ident: CR82 article-title: The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data publication-title: Brain Struct. Funct. doi: 10.1007/s00429-012-0460-z – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: CR90 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: CR6 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 112 start-page: 16036 year: 2015 end-page: 16041 ident: CR101 article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1507552112 – volume: 4 start-page: 547 year: 2014 end-page: 557 ident: CR15 article-title: Comparing like with like: the power of knowing where you are publication-title: Brain Connect. doi: 10.1089/brain.2014.0261 – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: CR66 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – ident: CR100 – volume: 88 start-page: 212 year: 2014 end-page: 227 ident: CR94 article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.046 – volume: 62 start-page: 1299 year: 2012 end-page: 1310 ident: CR41 article-title: The future of the human connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.032 – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: CR107 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 62 start-page: 864 year: 2012 end-page: 870 ident: CR111 article-title: The role of physiological noise in resting-state functional connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.016 – volume: 25 start-page: 4628 year: 2015 end-page: 4637 ident: CR34 article-title: A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv121 – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: CR22 article-title: Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 25 start-page: 1325 year: 2005 end-page: 1335 ident: CR71 article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 68 start-page: 1846 year: 2012 end-page: 1855 ident: CR57 article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24204 – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: CR116 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 22 start-page: 2241 year: 2012 end-page: 2262 ident: CR39 article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr291 – volume: 268 start-page: 889 year: 1995 end-page: 893 ident: CR16 article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging publication-title: Science doi: 10.1126/science.7754376 – volume: 80 start-page: 1 year: 2013 ident: CR3 article-title: Introduction to the special issue “Mapping the Connectome” publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.012 – volume: 7 start-page: 356 year: 2013 ident: CR109 article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00356 – volume: 26 start-page: 1585 year: 2007 end-page: 1597 ident: CR68 article-title: High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906784 – volume: 18 start-page: 2471 year: 2008 end-page: 2482 ident: CR80 article-title: DTI tractography of the human brain's language pathways publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn011 – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: CR44 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 63 start-page: 1443 year: 2012 end-page: 1453 ident: CR77 article-title: An empirical comparison of surface-based and volume-based group studies in neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.019 – volume: 80 start-page: 169 year: 2013 end-page: 189 ident: CR29 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: CR64 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: CR27 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: CR24 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: CR18 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.200033797 – volume: 23 start-page: S69 issue: Suppl. 1 year: 2004 end-page: S84 ident: CR25 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 122 start-page: 166 year: 2015 end-page: 176 ident: CR60 article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.067 – volume: 59 start-page: 1369 year: 2012 end-page: 1381 ident: CR75 article-title: Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.035 – volume: 93 start-page: 165 year: 2014 end-page: 175 ident: CR19 article-title: Trends and properties of human cerebral cortex: correlations with cortical myelin content publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.060 – volume: 105 start-page: 536 year: 2015 end-page: 551 ident: CR63 article-title: Recent progress and outstanding issues in motion correction in resting state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: CR106 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 134 start-page: 396 year: 2016 end-page: 409 ident: CR46 article-title: Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.014 – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: CR56 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 4 start-page: 1386 year: 2013 ident: CR102 article-title: Spatial organization of frequency preference and selectivity in the human inferior colliculus publication-title: Nat. Commun. doi: 10.1038/ncomms2379 – volume: 3 start-page: 339 year: 2013 end-page: 352 ident: CR108 article-title: Correcting brain-wide correlation differences in resting-state FMRI publication-title: Brain Connect. doi: 10.1089/brain.2013.0156 – volume: 37 start-page: 161 year: 2014 end-page: 181 ident: CR49 article-title: Coupling mechanism and significance of the BOLD signal: a status report publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-014111 – volume: 18 start-page: 1973 year: 2008 end-page: 1980 ident: CR74 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm225 – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: CR114 article-title: Network modelling methods for FMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 124 start-page: 1102 issue: Pt B, year: 2016 end-page: 1107 ident: CR91 article-title: ConnectomeDB—sharing human brain connectivity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.046 – volume: 18 start-page: 1546 year: 2015 end-page: 1555 ident: CR2 article-title: Measuring macroscopic brain connections publication-title: Nat. Neurosci. doi: 10.1038/nn.4134 – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: CR79 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 22 start-page: 10416 year: 2002 end-page: 10426 ident: CR32 article-title: Visual areas in macaque cortex measured using functional magnetic resonance imaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-23-10416.2002 – volume: 352 start-page: 216 year: 2016 end-page: 220 ident: CR97 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – volume: 63 start-page: 1144 year: 2010 end-page: 1153 ident: CR54 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22361 – volume: 31 start-page: 11597 year: 2011 end-page: 11616 ident: CR20 article-title: Mapping human cortical areas based on myelin content as revealed by T1- and T2-weighted MRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 80 start-page: 234 year: 2013 end-page: 245 ident: CR43 article-title: The Human Connectome Project and beyond: initial applications of 300 mT/m gradients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 80 start-page: 220 year: 2013 end-page: 233 ident: CR45 article-title: Pushing the limits of diffusion MRI for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – ident: CR9 – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: CR8 article-title: . Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 26 start-page: 518 year: 2007 end-page: 529 ident: CR28 article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887364 – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: CR61 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: CR36 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: CR93 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – ident: CR81 – volume: 122 start-page: 318 year: 2015 end-page: 331 ident: CR48 article-title: High resolution whole brain diffusion imaging at 7T for the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.004 – volume: 20 start-page: 70 year: 2001 end-page: 80 ident: CR23 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906426 – volume: 55 start-page: 679 year: 1990 end-page: 696 ident: CR33 article-title: Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1990.055.01.064 – volume: 25 start-page: 2690 year: 2015 end-page: 2695 ident: CR103 article-title: Contextual feedback to superficial layers of V1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.057 – volume: 47 start-page: 1381 year: 2009 end-page: 1393 ident: CR112 article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.048 – volume: 36 start-page: 6758 year: 2016 end-page: 6770 ident: CR35 article-title: Using diffusion tractography to predict cortical connection strength and distance: A quantitative comparison with tracers in the monkey publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.0493-16.2016 – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: CR87 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 5 start-page: 695 year: 2014 ident: CR31 article-title: The transition in the ventral stream from feature to real-world entity representations publication-title: Front. Psychol. – volume: 28 start-page: 7900 year: 2016 end-page: 7905 ident: CR13 article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602413113 – ident: CR14 – volume: 10 start-page: 764 year: 2006 end-page: 785 ident: CR69 article-title: Deformable registration of diffusion tensor MR images with explicit orientation optimization publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.06.004 – volume: 2 start-page: 25 year: 2012 end-page: 32 ident: CR110 article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect. doi: 10.1089/brain.2012.0080 – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: CR4 article-title: The WU-Minn Human Connectome Project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 457 start-page: 41 year: 2009 end-page: 50 ident: CR99 article-title: 18 years of science with the Hubble Space Telescope publication-title: Nature doi: 10.1038/nature07621 – volume: 80 start-page: 80 year: 2013 end-page: 104 ident: CR5 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.012 – volume: 112 start-page: E2820 year: 2015 end-page: E2828 ident: CR98 article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1418198112 – volume: 80 start-page: 190 year: 2013 end-page: 201 ident: CR115 article-title: Adding dynamics to the Human Connectome Project with MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.056 – volume: 82 start-page: 616 year: 2013 end-page: 633 ident: CR88 article-title: Resting state network estimation in individual subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.108 – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: CR21 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: CR47 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 9 start-page: 195 year: 1999 end-page: 207 ident: CR26 article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – volume: 123 start-page: 253 year: 2015 end-page: 268 ident: CR67 article-title: Multi-level block permutation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.092 – volume: 11 start-page: 66 year: 2000 end-page: 84 ident: CR70 article-title: Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable? publication-title: Neuroimage doi: 10.1006/nimg.1999.0516 – volume: 58 start-page: 177 year: 2011 end-page: 188 ident: CR37 article-title: White matter characterization with diffusional kurtosis imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.006 – volume: 193 start-page: 259 year: 2011 end-page: 276 ident: CR52 article-title: Spectral characteristics of resting state networks publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-53839-0.00017-X – volume: 17 start-page: 562 year: 2007 end-page: 574 ident: CR104 article-title: Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj181 – volume: 69 start-page: 1261 year: 2013 end-page: 1267 ident: CR53 article-title: Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24719 – volume: 26 start-page: 288 year: 2016 end-page: 303 ident: CR85 article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu239 – volume: 106 start-page: 464 year: 2015 end-page: 472 ident: CR42 article-title: The impact of gradient strength on diffusion MRI estimates of axon diameter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.008 – ident: CR62 – volume: 220 start-page: 2551 year: 2015 end-page: 2573 ident: CR84 article-title: A new myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school publication-title: Brain Struct. Funct. doi: 10.1007/s00429-014-0806-9 – volume: 18 start-page: 1565 year: 2015 ident: BFnn4361_CR93 publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 220 start-page: 2551 year: 2015 ident: BFnn4361_CR84 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-014-0806-9 – volume: 9 start-page: 195 year: 1999 ident: BFnn4361_CR26 publication-title: Neuroimage doi: 10.1006/nimg.1998.0396 – ident: BFnn4361_CR11 – volume: 80 start-page: 169 year: 2013 ident: BFnn4361_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 1 start-page: 1 year: 1991 ident: BFnn4361_CR78 publication-title: Cereb. Cortex doi: 10.1093/cercor/1.1.1 – volume: 122 start-page: 318 year: 2015 ident: BFnn4361_CR48 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.08.004 – volume: 72 start-page: 665 year: 2011 ident: BFnn4361_CR86 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 84 start-page: 320 year: 2014 ident: BFnn4361_CR107 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 95 start-page: 232 year: 2014 ident: BFnn4361_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 90 start-page: 449 year: 2014 ident: BFnn4361_CR8 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 5 start-page: 11 year: 2007 ident: BFnn4361_CR92 publication-title: Neuroinformatics doi: 10.1385/NI:5:1:11 – volume: 28 start-page: 7900 year: 2016 ident: BFnn4361_CR13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602413113 – volume: 59 start-page: 2142 year: 2012 ident: BFnn4361_CR64 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – ident: BFnn4361_CR100 – volume: 10 start-page: 764 year: 2006 ident: BFnn4361_CR69 publication-title: Med. Image Anal. doi: 10.1016/j.media.2006.06.004 – volume: 106 start-page: 1125 year: 2011 ident: BFnn4361_CR87 publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 36 start-page: 6758 year: 2016 ident: BFnn4361_CR35 publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.0493-16.2016 – volume: 59 start-page: 1369 year: 2012 ident: BFnn4361_CR75 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.035 – volume: 25 start-page: 3911 year: 2015 ident: BFnn4361_CR17 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu277 – volume: 80 start-page: 190 year: 2013 ident: BFnn4361_CR115 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.056 – volume: 80 start-page: 202 year: 2013 ident: BFnn4361_CR12 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.077 – volume: 23 start-page: 137 year: 2004 ident: BFnn4361_CR66 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.822821 – volume: 22 start-page: 10416 year: 2002 ident: BFnn4361_CR32 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-23-10416.2002 – volume: 80 start-page: 220 year: 2013 ident: BFnn4361_CR45 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.078 – volume: 193 start-page: 259 year: 2011 ident: BFnn4361_CR52 publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-53839-0.00017-X – volume: 104 start-page: 266 year: 2015 ident: BFnn4361_CR113 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.031 – volume: 124 start-page: 1102 issue: Pt B, year: 2016 ident: BFnn4361_CR91 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.04.046 – volume: 9 start-page: 179 year: 1999 ident: BFnn4361_CR21 publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 87 start-page: 657 year: 2015 ident: BFnn4361_CR56 publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 122 start-page: 166 year: 2015 ident: BFnn4361_CR60 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.067 – volume: 41 start-page: 835 year: 2008 ident: BFnn4361_CR73 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.02.052 – volume: 83 start-page: 238 year: 2014 ident: BFnn4361_CR89 publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 3 start-page: 339 year: 2013 ident: BFnn4361_CR108 publication-title: Brain Connect. doi: 10.1089/brain.2013.0156 – volume: 25 start-page: 1325 year: 2005 ident: BFnn4361_CR71 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.034 – volume: 18 start-page: 1832 year: 2015 ident: BFnn4361_CR96 publication-title: Nat. Neurosci. doi: 10.1038/nn.4171 – volume: 28 start-page: 635 year: 2005 ident: BFnn4361_CR72 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.058 – volume: 25 start-page: 4628 year: 2015 ident: BFnn4361_CR34 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhv121 – volume: 8 start-page: 272 year: 1999 ident: BFnn4361_CR27 publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 51 start-page: 718 year: 2011 ident: BFnn4361_CR30 publication-title: Vision Res. doi: 10.1016/j.visres.2010.08.004 – volume: 14 start-page: 11 year: 2004 ident: BFnn4361_CR90 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – volume: 25 start-page: 279 year: 1919 ident: BFnn4361_CR83 publication-title: J. Psychol. Neurol. – volume: 80 start-page: 105 year: 2013 ident: BFnn4361_CR6 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 25 start-page: 2690 year: 2015 ident: BFnn4361_CR103 publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.057 – volume: 44 start-page: 893 year: 2009 ident: BFnn4361_CR106 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 88 start-page: 212 year: 2014 ident: BFnn4361_CR94 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.046 – volume: 2 start-page: 25 year: 2012 ident: BFnn4361_CR110 publication-title: Brain Connect. doi: 10.1089/brain.2012.0080 – volume: 80 start-page: 62 year: 2013 ident: BFnn4361_CR4 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 80 start-page: 80 year: 2013 ident: BFnn4361_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.012 – volume: 55 start-page: 679 year: 1990 ident: BFnn4361_CR33 publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1990.055.01.064 – volume: 72 start-page: 404 year: 2011 ident: BFnn4361_CR79 publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 63 start-page: 1144 year: 2010 ident: BFnn4361_CR54 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22361 – volume: 27 start-page: 685 year: 2008 ident: BFnn4361_CR116 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 108 start-page: 541 year: 2014 ident: BFnn4361_CR40 publication-title: Biol. Cybern. doi: 10.1007/s00422-014-0626-2 – volume: 5 start-page: 695 year: 2014 ident: BFnn4361_CR31 publication-title: Front. Psychol. – volume: 106 start-page: 464 year: 2015 ident: BFnn4361_CR42 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.008 – volume: 68 start-page: 1846 year: 2012 ident: BFnn4361_CR57 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24204 – volume: 105 start-page: 536 year: 2015 ident: BFnn4361_CR63 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.044 – volume: 67 start-page: 1210 year: 2012 ident: BFnn4361_CR44 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 134 start-page: 396 year: 2016 ident: BFnn4361_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.014 – volume: 7 start-page: 356 year: 2013 ident: BFnn4361_CR109 publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00356 – volume: 123 start-page: 253 year: 2015 ident: BFnn4361_CR67 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.092 – volume: 4 start-page: 1386 year: 2013 ident: BFnn4361_CR102 publication-title: Nat. Commun. doi: 10.1038/ncomms2379 – volume: 22 start-page: 2241 year: 2012 ident: BFnn4361_CR39 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr291 – volume: 5 start-page: e15710 year: 2010 ident: BFnn4361_CR50 publication-title: PLoS One doi: 10.1371/journal.pone.0015710 – volume: 93 start-page: 165 year: 2014 ident: BFnn4361_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.060 – volume: 22 start-page: 144 year: 2012 ident: BFnn4361_CR1 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.08.005 – volume: 352 start-page: 216 year: 2016 ident: BFnn4361_CR97 publication-title: Science doi: 10.1126/science.aad8127 – volume: 31 start-page: 11597 year: 2011 ident: BFnn4361_CR20 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2180-11.2011 – volume: 4 start-page: 547 year: 2014 ident: BFnn4361_CR15 publication-title: Brain Connect. doi: 10.1089/brain.2014.0261 – volume: 80 start-page: 234 year: 2013 ident: BFnn4361_CR43 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 112 start-page: E2820 year: 2015 ident: BFnn4361_CR98 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1418198112 – volume: 23 start-page: S69 issue: Suppl. 1 year: 2004 ident: BFnn4361_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 103 start-page: 411 year: 2014 ident: BFnn4361_CR58 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.07.061 – volume: 47 start-page: 1381 year: 2009 ident: BFnn4361_CR112 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.048 – volume: 20 start-page: 70 year: 2001 ident: BFnn4361_CR23 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.906426 – ident: BFnn4361_CR62 doi: 10.1016/j.neuroimage.2016.06.058 – volume: 80 start-page: 1 year: 2013 ident: BFnn4361_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.012 – ident: BFnn4361_CR9 – volume: 61 start-page: 1000 year: 2012 ident: BFnn4361_CR38 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 82 start-page: 616 year: 2013 ident: BFnn4361_CR88 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.108 – volume: 26 start-page: 518 year: 2007 ident: BFnn4361_CR28 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887364 – volume: 83 start-page: 991 year: 2013 ident: BFnn4361_CR55 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.055 – volume: 26 start-page: 1585 year: 2007 ident: BFnn4361_CR68 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906784 – volume: 62 start-page: 864 year: 2012 ident: BFnn4361_CR111 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.016 – volume: 100 start-page: 414 year: 2014 ident: BFnn4361_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.069 – volume: 63 start-page: 1443 year: 2012 ident: BFnn4361_CR77 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.019 – volume: 62 start-page: 1299 year: 2012 ident: BFnn4361_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.032 – volume: 125 start-page: 1063 year: 2016 ident: BFnn4361_CR61 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – volume: 80 start-page: 144 year: 2013 ident: BFnn4361_CR76 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 33 start-page: 341 year: 2002 ident: BFnn4361_CR24 publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 268 start-page: 889 year: 1995 ident: BFnn4361_CR16 publication-title: Science doi: 10.1126/science.7754376 – volume: 97 start-page: 11050 year: 2000 ident: BFnn4361_CR18 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.200033797 – volume: 26 start-page: 288 year: 2016 ident: BFnn4361_CR85 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhu239 – volume: 80 start-page: 125 year: 2013 ident: BFnn4361_CR47 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 11 start-page: 66 year: 2000 ident: BFnn4361_CR70 publication-title: Neuroimage doi: 10.1006/nimg.1999.0516 – volume: 107 start-page: 207 year: 2015 ident: BFnn4361_CR51 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.012 – volume: 69 start-page: 1261 year: 2013 ident: BFnn4361_CR53 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24719 – volume: 18 start-page: 1853 year: 2015 ident: BFnn4361_CR95 publication-title: Nat. Neurosci. doi: 10.1038/nn.4164 – volume: 60 start-page: 623 year: 2012 ident: BFnn4361_CR65 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.063 – ident: BFnn4361_CR14 doi: 10.1007/978-3-662-45766-5_6 – volume: 58 start-page: 177 year: 2011 ident: BFnn4361_CR37 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.006 – volume: 18 start-page: 2471 year: 2008 ident: BFnn4361_CR80 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhn011 – volume: 99 start-page: 509 year: 2014 ident: BFnn4361_CR105 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.042 – volume: 5 start-page: 162 year: 1993 ident: BFnn4361_CR22 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 457 start-page: 41 year: 2009 ident: BFnn4361_CR99 publication-title: Nature doi: 10.1038/nature07621 – volume: 112 start-page: 16036 year: 2015 ident: BFnn4361_CR101 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1507552112 – volume: 66 start-page: 259 year: 1994 ident: BFnn4361_CR36 publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80775-1 – volume: 17 start-page: 562 year: 2007 ident: BFnn4361_CR104 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj181 – volume: 18 start-page: 1546 year: 2015 ident: BFnn4361_CR2 publication-title: Nat. Neurosci. doi: 10.1038/nn.4134 – volume: 18 start-page: 1973 year: 2008 ident: BFnn4361_CR74 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm225 – volume: 37 start-page: 161 year: 2014 ident: BFnn4361_CR49 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-071013-014111 – volume: 218 start-page: 303 year: 2013 ident: BFnn4361_CR82 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-012-0460-z – volume: 48 start-page: 63 year: 2009 ident: BFnn4361_CR59 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.060 – ident: BFnn4361_CR81 – volume: 54 start-page: 875 year: 2011 ident: BFnn4361_CR114 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.063 |
SSID | ssj0007589 |
Score | 2.6678288 |
SecondaryResourceType | review_article |
Snippet | This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human... Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed... Non-invasive human neuroimaging has yielded many exciting discoveries about the brain. Numerous methodological advances have also occurred, though inertia has... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1175 |
SubjectTerms | 59 59/57 631/378/2649/1594 631/378/3917 631/378/3920 Animal Genetics and Genomics Behavioral Sciences Biological Techniques Biomedicine Brain - diagnostic imaging Brain - physiology Care and treatment Connectome - methods Connectome - trends Diagnosis Diagnostic imaging Humans Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - trends Mental disorders Methods Neurobiology Neuroimaging Neuroimaging - methods Neuroimaging - trends Neurosciences Quality management review-article |
Title | The Human Connectome Project's neuroimaging approach |
URI | https://link.springer.com/article/10.1038/nn.4361 https://www.ncbi.nlm.nih.gov/pubmed/27571196 https://www.proquest.com/docview/1815683318 https://www.proquest.com/docview/1827889480 https://pubmed.ncbi.nlm.nih.gov/PMC6172654 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge-EFAeMjMKaA0PYwZeTDiZPHgjrGVAoardQ3y3YdmMRcRNoH-Ou5c5yvMqHBS1TFJ8f1nc_n893vCHmVpFpIQfFqkIUBlUwGQkZZUJaSgblfguK00RbT7GxOzxfpoiv8Z7NL1vJE_bo2r-R_uArvgK-YJfsPnG07hRfwG_gLT-AwPG_M49oLb-NV1Hp1pTH0H30r1hFv0Sovr-pKRA18eN8enVpcz-MeqmXL6HdoV9cMdUXBe1HAjT_GBYl1PtUPsHA2VZe83rlWRzaNxiV4nWtEKD-euHhF53YA7jVxVY2mDAsWwOEpG6jSoicyRU8vIiBob4_FGufX6u8ard2YE5rUGO1DhOzpR346n0z4bLyY3Sa7MRwNULexRXvIBgvIlj1sh1cnSmPHr123Awtkex_uGSLbQbJbN-XWAJndI3fdycEf1WJwn9zS5gHZGxkBXP_pH_o2ltdekuwRCpLhW8nwO8nwnWQcVX5fLvxGLh6S-el49vYscPUxApWF8TrIU5EtQ5Eu40JQkYdCxFKGKg9TRRUTKqcamqRYlgnY0YVmOqKCwkrUZUHLSCSPyI5ZGf2E-FkCtpwIZShlRpUqpIryrCyYkowuQat75LCZM64ceDzWMPnGbRBDknNjOE6uR_yW8HuNl_InyUucdI7oIwbDm76ITVXx958v-IhmIBlYN9YjR46oXMGHlHDZIjBcBCwbUO4PKEE9qkHzi4a3HJswptDo1abiEQIl5Qlsan-jiVmeFzQPPfK4lof2b8UsZRFsYB5hA0lpCRC5fdhiLr9aBHc8NmQphe82MsWdWqm2Z-vpDcb2jNzplug-2Vn_2OjnYCuv5YFdHAdk9814-uniN9aUwu8 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Human+Connectome+Project%27s+neuroimaging+approach&rft.jtitle=Nature+neuroscience&rft.au=Glasser%2C+Matthew+F&rft.au=Smith%2C+Stephen+M&rft.au=Marcus%2C+Daniel+S&rft.au=Andersson%2C+Jesper+L+R&rft.date=2016-09-01&rft.issn=1097-6256&rft.volume=19&rft.issue=9&rft.spage=1175&rft.epage=1187&rft_id=info:doi/10.1038%2Fnn.4361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |