The Human Connectome Project's neuroimaging approach

This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate...

Full description

Saved in:
Bibliographic Details
Published inNature neuroscience Vol. 19; no. 9; pp. 1175 - 1187
Main Authors Glasser, Matthew F, Smith, Stephen M, Marcus, Daniel S, Andersson, Jesper L R, Auerbach, Edward J, Behrens, Timothy E J, Coalson, Timothy S, Harms, Michael P, Jenkinson, Mark, Moeller, Steen, Robinson, Emma C, Sotiropoulos, Stamatios N, Xu, Junqian, Yacoub, Essa, Ugurbil, Kamil, Van Essen, David C
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.09.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate progress in understanding the brain in health and disease. Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
AbstractList Non-invasive human neuroimaging has yielded many exciting discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis, and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The “HCP-style” paradigm has seven core tenets: (1) collect multimodal imaging data from many subjects; (2) acquire data at high spatial and temporal resolution; (3) preprocess data to minimize distortions, blurring, and temporal artifacts; (4) represent data using the natural geometry of cortical and subcortical structures; (5) accurately align corresponding brain areas across subjects and studies; (6) analyze data using neurobiologically accurate brain parcellations; and (7) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP datasets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human Connectome Project (HCP) and elsewhere, the HCP-style paradigm applies to new and existing data sets that meet core requirements and may accelerate progress in understanding the brain in health and disease. Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease.
Audience Academic
Author Andersson, Jesper L R
Moeller, Steen
Robinson, Emma C
Van Essen, David C
Marcus, Daniel S
Smith, Stephen M
Behrens, Timothy E J
Coalson, Timothy S
Sotiropoulos, Stamatios N
Yacoub, Essa
Jenkinson, Mark
Glasser, Matthew F
Xu, Junqian
Harms, Michael P
Ugurbil, Kamil
Auerbach, Edward J
AuthorAffiliation 4 Department of Psychiatry, Washington University Medical School, Saint Louis, MO
5 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
1 Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
2 FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
AuthorAffiliation_xml – name: 3 Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
– name: 1 Department of Neuroscience, Washington University Medical School, Saint Louis, MO, USA
– name: 2 FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
– name: 5 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 4 Department of Psychiatry, Washington University Medical School, Saint Louis, MO
Author_xml – sequence: 1
  givenname: Matthew F
  surname: Glasser
  fullname: Glasser, Matthew F
  email: glasserm@wustl.edu
  organization: Department of Neuroscience, Washington University Medical School
– sequence: 2
  givenname: Stephen M
  orcidid: 0000-0001-8166-069X
  surname: Smith
  fullname: Smith, Stephen M
  organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford
– sequence: 3
  givenname: Daniel S
  surname: Marcus
  fullname: Marcus, Daniel S
  organization: Department of Radiology, Washington University Medical School
– sequence: 4
  givenname: Jesper L R
  surname: Andersson
  fullname: Andersson, Jesper L R
  organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford
– sequence: 5
  givenname: Edward J
  surname: Auerbach
  fullname: Auerbach, Edward J
  organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota
– sequence: 6
  givenname: Timothy E J
  surname: Behrens
  fullname: Behrens, Timothy E J
  organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford
– sequence: 7
  givenname: Timothy S
  surname: Coalson
  fullname: Coalson, Timothy S
  organization: Department of Neuroscience, Washington University Medical School
– sequence: 8
  givenname: Michael P
  surname: Harms
  fullname: Harms, Michael P
  organization: Department of Psychiatry, Washington University Medical School
– sequence: 9
  givenname: Mark
  surname: Jenkinson
  fullname: Jenkinson, Mark
  organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford
– sequence: 10
  givenname: Steen
  surname: Moeller
  fullname: Moeller, Steen
  organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota
– sequence: 11
  givenname: Emma C
  surname: Robinson
  fullname: Robinson, Emma C
  organization: Department of Computing, Imperial College London
– sequence: 12
  givenname: Stamatios N
  surname: Sotiropoulos
  fullname: Sotiropoulos, Stamatios N
  organization: Nuffield Department of Clinical Neurosciences, FMRIB Centre, John Radcliffe Hospital, University of Oxford
– sequence: 13
  givenname: Junqian
  orcidid: 0000-0001-8438-2066
  surname: Xu
  fullname: Xu, Junqian
  organization: 7Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
– sequence: 14
  givenname: Essa
  surname: Yacoub
  fullname: Yacoub, Essa
  organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota
– sequence: 15
  givenname: Kamil
  surname: Ugurbil
  fullname: Ugurbil, Kamil
  organization: Center for Magnetic Resonance Research (CMRR), University of Minnesota
– sequence: 16
  givenname: David C
  surname: Van Essen
  fullname: Van Essen, David C
  email: vanessen@wustl.edu
  organization: Department of Neuroscience, Washington University Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27571196$$D View this record in MEDLINE/PubMed
BookMark eNqNkt-L1DAQx4OceD8U_wMp-HD60DVpkzR9EY5FvYMDRc_nME2n3Sxtsiat6H9vyu6J6_kgeciQ-cx3wnfmnJw475CQ54yuGC3VG-dWvJTsETljgsucVYU8STGtq1wWQp6S8xi3lNJKqPoJOS0qUTFWyzPC7zaYXc8juGztnUMz-RGzT8FvU3gZM4dz8HaE3ro-g90ueDCbp-RxB0PEZ4f7gnx9_-5ufZ3ffvxws766zY2kxZQrAbKlINqiBg6KAhRNQ42iwnBTgVEcU6qBtitrwWqskHHgDZPY1bxjUF6Qt3vd3dyM2Bp0U4BB70L6UPipPVh9nHF2o3v_XcvFAMGTwKuDQPDfZoyTHm00OAzg0M9RM1VUStVc0f9AmZCqLJlK6Ms92sOA2rrOp-ZmwfUVl0xVtKALtfoHlU6LozVpfJ1N70cFr48KEjPhj6mHOUZ98-XzMfviT2d-W3I_2ATke8AEH2PAThs7wWT9YpQdNKN6WRztnF4WJ_GXf_H3kg_Jg1ExEa7HoLd-Di7twQP0F4dOzYY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_03_067
crossref_primary_10_1109_TMI_2022_3161947
crossref_primary_10_1016_j_neuroimage_2022_119087
crossref_primary_10_1016_j_jad_2022_07_049
crossref_primary_10_1002_hbm_25675
crossref_primary_10_1038_s41467_024_49823_8
crossref_primary_10_7554_eLife_62324
crossref_primary_10_3389_fnana_2017_00017
crossref_primary_10_5117_ANTW2019_3_006_UITH
crossref_primary_10_1109_JBHI_2022_3207519
crossref_primary_10_1016_j_neuroimage_2020_117226
crossref_primary_10_1016_j_neuroimage_2021_117868
crossref_primary_10_1016_j_neuroimage_2020_117349
crossref_primary_10_1016_j_neuroimage_2021_118713
crossref_primary_10_1007_s00247_022_05510_8
crossref_primary_10_1016_j_neuroimage_2020_117585
crossref_primary_10_1080_21507740_2020_1740352
crossref_primary_10_1142_S0129065720500616
crossref_primary_10_1016_j_ynirp_2023_100163
crossref_primary_10_1364_BOE_10_004075
crossref_primary_10_1016_j_ynirp_2023_100160
crossref_primary_10_1073_pnas_1801582115
crossref_primary_10_1038_s41467_017_01285_x
crossref_primary_10_1002_hbm_25540
crossref_primary_10_1016_j_neuroimage_2023_120360
crossref_primary_10_1002_hbm_26753
crossref_primary_10_7554_eLife_75897
crossref_primary_10_1016_j_euroneuro_2019_07_238
crossref_primary_10_1002_hbm_26630
crossref_primary_10_1016_j_gpb_2018_11_005
crossref_primary_10_1002_hipo_23501
crossref_primary_10_1007_s00429_022_02536_4
crossref_primary_10_1371_journal_pbio_3000678
crossref_primary_10_1016_j_neuroimage_2020_117329
crossref_primary_10_1002_jnr_24988
crossref_primary_10_1016_j_media_2023_102829
crossref_primary_10_1093_scan_nsac028
crossref_primary_10_1016_j_media_2017_09_006
crossref_primary_10_1109_JBHI_2021_3124733
crossref_primary_10_1002_hbm_25776
crossref_primary_10_1016_j_neuroimage_2020_117693
crossref_primary_10_1016_j_neuroimage_2023_120236
crossref_primary_10_1016_j_media_2018_03_014
crossref_primary_10_1093_schbul_sbz053
crossref_primary_10_3390_app13095284
crossref_primary_10_1007_s00429_022_02549_z
crossref_primary_10_1016_j_neuroimage_2023_120132
crossref_primary_10_1038_s41598_021_89357_3
crossref_primary_10_1186_s40537_023_00751_2
crossref_primary_10_1111_rssa_12613
crossref_primary_10_1016_j_neuroimage_2023_120377
crossref_primary_10_1162_imag_a_00504
crossref_primary_10_1016_j_neuroimage_2017_11_043
crossref_primary_10_1016_j_neuroimage_2019_05_017
crossref_primary_10_1002_hbm_26663
crossref_primary_10_1016_j_pnpbp_2022_110533
crossref_primary_10_3389_fphys_2024_1437973
crossref_primary_10_1016_j_neuron_2018_07_002
crossref_primary_10_1016_j_mex_2019_06_003
crossref_primary_10_1016_j_cpnec_2023_100223
crossref_primary_10_3389_fncom_2019_00005
crossref_primary_10_3389_fnins_2017_00222
crossref_primary_10_1038_s41592_023_02068_7
crossref_primary_10_1002_hbm_25447
crossref_primary_10_3389_fcell_2021_676911
crossref_primary_10_3390_ijms18010070
crossref_primary_10_1016_j_neuroscience_2023_07_032
crossref_primary_10_1016_j_neuroimage_2018_12_008
crossref_primary_10_1016_j_neuroimage_2024_120600
crossref_primary_10_1126_sciadv_abf2513
crossref_primary_10_1002_hbm_26771
crossref_primary_10_1038_s41562_023_01542_8
crossref_primary_10_1016_j_media_2021_102126
crossref_primary_10_1097_WCO_0000000000000834
crossref_primary_10_1002_hbm_25324
crossref_primary_10_4103_1673_5374_217321
crossref_primary_10_7554_eLife_86327
crossref_primary_10_1007_s00429_024_02811_6
crossref_primary_10_1093_cercor_bhz086
crossref_primary_10_1016_j_neuroimage_2021_117726
crossref_primary_10_1227_neu_0000000000002275
crossref_primary_10_1016_j_dcn_2024_101452
crossref_primary_10_1093_gerona_glad079
crossref_primary_10_1038_s41593_024_01624_4
crossref_primary_10_1016_j_nicl_2020_102242
crossref_primary_10_1016_j_wneu_2019_01_196
crossref_primary_10_1007_s00381_020_04880_4
crossref_primary_10_1007_s00429_020_02180_w
crossref_primary_10_1002_hbm_25314
crossref_primary_10_1093_brain_aww277
crossref_primary_10_3390_diagnostics14111109
crossref_primary_10_1097_HRP_0000000000000166
crossref_primary_10_1055_s_0042_1756143
crossref_primary_10_1177_2398212818804030
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_3389_fnins_2024_1492428
crossref_primary_10_1038_s41598_020_79922_7
crossref_primary_10_1016_j_arrct_2024_100339
crossref_primary_10_3390_photonics11080761
crossref_primary_10_1016_j_neuroimage_2021_117823
crossref_primary_10_7759_cureus_55918
crossref_primary_10_1007_s12021_024_09652_y
crossref_primary_10_3389_fneur_2023_1100067
crossref_primary_10_1016_j_cortex_2021_03_022
crossref_primary_10_1038_s41598_022_12142_3
crossref_primary_10_2302_kjm_2018_0011_OA
crossref_primary_10_1002_hbm_25867
crossref_primary_10_1111_jcpp_13250
crossref_primary_10_1587_transfun_2021EAP1169
crossref_primary_10_3389_fpsyg_2024_1441584
crossref_primary_10_1016_j_scib_2022_01_002
crossref_primary_10_1016_j_isci_2024_111411
crossref_primary_10_1016_j_nicl_2019_101890
crossref_primary_10_1248_yakushi_17_00107
crossref_primary_10_2139_ssrn_4801540
crossref_primary_10_1016_j_neuroimage_2021_117946
crossref_primary_10_1080_26941899_2024_2412017
crossref_primary_10_12688_f1000research_24544_1
crossref_primary_10_1249_MSS_0000000000002697
crossref_primary_10_1038_s41597_022_01413_3
crossref_primary_10_1210_endrev_bnaa034
crossref_primary_10_1002_hbm_25734
crossref_primary_10_1016_j_neuroimage_2023_120436
crossref_primary_10_1007_s11682_018_9949_2
crossref_primary_10_1002_hbm_24889
crossref_primary_10_1002_hbm_24769
crossref_primary_10_1016_j_neuroimage_2022_119030
crossref_primary_10_1038_s41537_025_00597_y
crossref_primary_10_1016_j_neuroimage_2023_120213
crossref_primary_10_3389_fneur_2021_713388
crossref_primary_10_1016_j_neuroimage_2018_03_049
crossref_primary_10_1007_s00415_020_10040_0
crossref_primary_10_1016_j_brs_2019_10_023
crossref_primary_10_1111_ner_13392
crossref_primary_10_3389_fninf_2024_1534396
crossref_primary_10_1002_jmri_26929
crossref_primary_10_1093_infdis_jiac418
crossref_primary_10_1016_j_jad_2023_04_099
crossref_primary_10_3233_JAD_221159
crossref_primary_10_1002_anie_202010195
crossref_primary_10_1016_j_neuroimage_2021_117914
crossref_primary_10_3389_fninf_2019_00071
crossref_primary_10_1016_j_media_2024_103085
crossref_primary_10_3389_fneur_2022_855157
crossref_primary_10_1016_j_yebeh_2020_107308
crossref_primary_10_1093_schbul_sbz103
crossref_primary_10_1002_hbm_25767
crossref_primary_10_1002_hbm_24555
crossref_primary_10_1038_s41537_023_00424_2
crossref_primary_10_1016_j_neuroimage_2024_120766
crossref_primary_10_1371_journal_pone_0293886
crossref_primary_10_1016_j_media_2017_11_004
crossref_primary_10_1016_j_neuroimage_2023_120344
crossref_primary_10_1167_18_13_23
crossref_primary_10_1038_s41598_020_79289_9
crossref_primary_10_1002_ange_202010195
crossref_primary_10_1016_j_neuroimage_2021_117926
crossref_primary_10_3389_fnhum_2021_675433
crossref_primary_10_7759_cureus_74691
crossref_primary_10_3389_fnins_2019_00536
crossref_primary_10_1007_s00429_019_01877_x
crossref_primary_10_1016_j_neuroimage_2018_04_076
crossref_primary_10_1038_s41593_022_01215_1
crossref_primary_10_1093_bib_bbab459
crossref_primary_10_1002_hbm_26725
crossref_primary_10_1002_hbm_25756
crossref_primary_10_1038_s41467_022_32595_4
crossref_primary_10_1016_j_dcn_2023_101234
crossref_primary_10_1016_j_neuroimage_2023_120214
crossref_primary_10_1371_journal_pone_0260752
crossref_primary_10_1016_j_neuroimage_2022_119170
crossref_primary_10_1002_ana_25975
crossref_primary_10_1038_s41398_023_02528_w
crossref_primary_10_1093_cercor_bhab362
crossref_primary_10_1002_cne_24674
crossref_primary_10_3389_fninf_2019_00005
crossref_primary_10_1016_j_jmr_2019_07_034
crossref_primary_10_3389_fnsys_2019_00065
crossref_primary_10_1016_j_clineuro_2025_108760
crossref_primary_10_1016_j_neuroimage_2023_120191
crossref_primary_10_1016_j_drugalcdep_2022_109625
crossref_primary_10_1088_1361_6560_ac9d1e
crossref_primary_10_1016_j_neuroimage_2017_07_007
crossref_primary_10_1016_j_neuroimage_2019_04_027
crossref_primary_10_1016_j_neunet_2024_107100
crossref_primary_10_1016_j_nicl_2019_102090
crossref_primary_10_1093_braincomms_fcad258
crossref_primary_10_1371_journal_pone_0266349
crossref_primary_10_1523_ENEURO_0304_24_2025
crossref_primary_10_1038_s41592_024_02346_y
crossref_primary_10_3389_fnins_2022_895637
crossref_primary_10_3390_brainsci13070997
crossref_primary_10_1038_s41467_020_14610_8
crossref_primary_10_1016_j_neuroimage_2017_01_047
crossref_primary_10_1080_17588928_2021_1880383
crossref_primary_10_3389_fnins_2021_642808
crossref_primary_10_1002_hipo_23467
crossref_primary_10_1038_s41598_025_90842_2
crossref_primary_10_1371_journal_pbio_3000042
crossref_primary_10_3390_brainsci12121681
crossref_primary_10_1002_hbm_24722
crossref_primary_10_1016_j_pneurobio_2024_102636
crossref_primary_10_1002_hbm_23874
crossref_primary_10_1038_s41398_021_01646_7
crossref_primary_10_1038_s41537_023_00411_7
crossref_primary_10_1016_j_bpsgos_2024_100386
crossref_primary_10_1016_j_heliyon_2023_e23405
crossref_primary_10_3389_fnagi_2021_803436
crossref_primary_10_1016_j_neuroimage_2017_01_079
crossref_primary_10_3389_fninf_2019_00029
crossref_primary_10_1097_WNR_0000000000001444
crossref_primary_10_7554_eLife_49855
crossref_primary_10_3389_fnana_2022_915877
crossref_primary_10_3389_fpsyt_2021_642847
crossref_primary_10_1016_j_celrep_2018_03_068
crossref_primary_10_1016_j_neuroimage_2019_04_046
crossref_primary_10_1007_s00406_023_01741_4
crossref_primary_10_1016_j_tics_2016_10_005
crossref_primary_10_1016_j_neuroimage_2018_09_038
crossref_primary_10_1186_s12993_022_00196_2
crossref_primary_10_1038_s41598_019_40345_8
crossref_primary_10_1016_j_neuroimage_2019_116091
crossref_primary_10_1016_j_neuroimage_2021_118533
crossref_primary_10_3390_app9081718
crossref_primary_10_1038_s41596_024_01085_w
crossref_primary_10_1002_hbm_25843
crossref_primary_10_1016_j_exger_2018_11_014
crossref_primary_10_1016_j_neuroimage_2017_12_004
crossref_primary_10_1155_2022_1124927
crossref_primary_10_1016_j_cub_2024_06_072
crossref_primary_10_25259_SNI_982_2024
crossref_primary_10_1093_cercor_bhab387
crossref_primary_10_7554_eLife_68240
crossref_primary_10_1016_j_neuroimage_2024_120684
crossref_primary_10_1038_s42003_025_07793_7
crossref_primary_10_3389_fncir_2022_681544
crossref_primary_10_1093_cercor_bhab392
crossref_primary_10_1093_cercor_bhac480
crossref_primary_10_1002_mrm_28231
crossref_primary_10_1007_s00429_023_02644_9
crossref_primary_10_1016_j_neuroimage_2022_118965
crossref_primary_10_1111_adb_13439
crossref_primary_10_1016_j_schres_2018_12_001
crossref_primary_10_1038_s41598_025_91457_3
crossref_primary_10_1063_5_0025543
crossref_primary_10_3389_fninf_2019_00032
crossref_primary_10_1016_j_neuroimage_2021_118788
crossref_primary_10_1016_j_neuroimage_2020_117038
crossref_primary_10_1016_j_neuroimage_2021_118543
crossref_primary_10_1016_j_neuroimage_2021_118541
crossref_primary_10_1021_acsnano_4c10754
crossref_primary_10_1016_j_neuroimage_2020_117152
crossref_primary_10_1038_s44277_024_00011_y
crossref_primary_10_1056_NEJMra1706158
crossref_primary_10_1038_s41380_021_01031_2
crossref_primary_10_1016_j_neuroimage_2023_120395
crossref_primary_10_1016_j_neuroimage_2018_01_018
crossref_primary_10_1007_s00429_024_02860_x
crossref_primary_10_1097_PPO_0000000000000548
crossref_primary_10_1148_ryai_2019190012
crossref_primary_10_1002_brb3_1992
crossref_primary_10_1002_sta4_534
crossref_primary_10_1016_j_biopsych_2023_11_010
crossref_primary_10_1002_mp_15545
crossref_primary_10_1093_cercor_bhz153
crossref_primary_10_1016_j_cortex_2021_11_014
crossref_primary_10_1016_j_pneurobio_2021_102171
crossref_primary_10_1038_s41598_020_71914_x
crossref_primary_10_1016_j_clineuro_2025_108726
crossref_primary_10_1016_j_neuroimage_2020_117145
crossref_primary_10_1016_j_neuropsychologia_2017_01_001
crossref_primary_10_1016_j_nicl_2018_01_032
crossref_primary_10_1038_s41593_022_01224_0
crossref_primary_10_1007_s11055_022_01241_3
crossref_primary_10_1016_j_neuroimage_2021_118750
crossref_primary_10_1016_j_neuron_2020_06_030
crossref_primary_10_1093_cercor_bhab324
crossref_primary_10_3389_fninf_2016_00046
crossref_primary_10_1093_cercor_bhaa237
crossref_primary_10_1016_j_neuroimage_2019_116150
crossref_primary_10_1016_j_dcn_2021_100974
crossref_primary_10_1016_j_compbiomed_2024_109164
crossref_primary_10_1088_1741_2552_ad6184
crossref_primary_10_1016_j_neuroimage_2019_116048
crossref_primary_10_1016_j_neuroimage_2023_120283
crossref_primary_10_1038_s41598_023_32924_7
crossref_primary_10_1007_s11060_022_04018_3
crossref_primary_10_1016_j_ajp_2020_102195
crossref_primary_10_1038_s41597_024_03629_x
crossref_primary_10_1523_JNEUROSCI_1117_23_2023
crossref_primary_10_1016_j_neuroimage_2021_118519
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_1002_hbm_24808
crossref_primary_10_3389_fnins_2022_751595
crossref_primary_10_3390_brainsci12010066
crossref_primary_10_1016_j_neuroimage_2019_04_078
crossref_primary_10_1038_s41467_018_03664_4
crossref_primary_10_3389_fncom_2018_00064
crossref_primary_10_1007_s12021_024_09666_6
crossref_primary_10_1016_j_neuroimage_2020_117493
crossref_primary_10_1002_hbm_23950
crossref_primary_10_1007_s11682_019_00042_6
crossref_primary_10_1007_s12021_021_09519_6
crossref_primary_10_3389_fninf_2017_00041
crossref_primary_10_1016_j_neuron_2024_10_005
crossref_primary_10_1002_hbm_24960
crossref_primary_10_1073_pnas_2318528121
crossref_primary_10_1016_j_neuroimage_2018_01_036
crossref_primary_10_1109_ACCESS_2024_3484928
crossref_primary_10_1016_j_brainres_2024_149265
crossref_primary_10_3389_fneur_2020_595463
crossref_primary_10_1152_physrev_00033_2019
crossref_primary_10_3390_jox15010024
crossref_primary_10_1016_j_pneurobio_2022_102385
crossref_primary_10_1002_alz_12238
crossref_primary_10_1002_hbm_25802
crossref_primary_10_1162_NETN_a_00016
crossref_primary_10_1093_neuros_nyx199
crossref_primary_10_1002_mrm_27189
crossref_primary_10_1038_s41598_020_62832_z
crossref_primary_10_1162_netn_a_00215
crossref_primary_10_3389_fnins_2022_867243
crossref_primary_10_1016_j_neuroimage_2023_120060
crossref_primary_10_1016_j_pacs_2023_100506
crossref_primary_10_1016_j_plrev_2023_12_006
crossref_primary_10_1038_s41598_020_63552_0
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1016_j_neuroimage_2021_118625
crossref_primary_10_1093_gigascience_giaf010
crossref_primary_10_1016_j_media_2025_103535
crossref_primary_10_1038_s41598_022_06180_0
crossref_primary_10_1016_j_neuroimage_2021_118502
crossref_primary_10_3389_fpsyt_2023_1150973
crossref_primary_10_1016_j_yhbeh_2018_03_011
crossref_primary_10_26636_jtit_2021_154521
crossref_primary_10_1093_cercor_bhad416
crossref_primary_10_1093_cercor_bhad537
crossref_primary_10_1098_rstb_2019_0323
crossref_primary_10_1093_cercor_bhaa023
crossref_primary_10_1093_cercor_bhab113
crossref_primary_10_1002_hbm_26089
crossref_primary_10_1002_da_23143
crossref_primary_10_1038_s41467_018_06304_z
crossref_primary_10_1162_NETN_a_00003
crossref_primary_10_1016_j_neuroimage_2022_119765
crossref_primary_10_3389_fpsyt_2024_1240502
crossref_primary_10_1016_j_neuroimage_2018_01_054
crossref_primary_10_1007_s10489_021_02579_w
crossref_primary_10_1001_jamanetworkopen_2019_11426
crossref_primary_10_52294_001c_91292
crossref_primary_10_1016_j_jpsychires_2020_11_023
crossref_primary_10_1073_pnas_1715451115
crossref_primary_10_1016_j_mri_2019_05_016
crossref_primary_10_1016_j_neuroimage_2018_07_004
crossref_primary_10_1093_ons_opaa386
crossref_primary_10_3389_fnins_2021_777377
crossref_primary_10_1162_imag_a_00081
crossref_primary_10_14814_phy2_14819
crossref_primary_10_1093_schizbullopen_sgad019
crossref_primary_10_1523_JNEUROSCI_1580_20_2021
crossref_primary_10_1093_cercor_bhad392
crossref_primary_10_3389_fneur_2021_669076
crossref_primary_10_2463_mrms_rev_2024_0007
crossref_primary_10_1093_psyrad_kkac022
crossref_primary_10_1002_mp_13555
crossref_primary_10_1038_s41598_022_09141_9
crossref_primary_10_1016_j_neuroimage_2020_116800
crossref_primary_10_1016_j_neuron_2022_05_021
crossref_primary_10_1016_j_dcn_2021_101053
crossref_primary_10_1007_s11682_022_00691_0
crossref_primary_10_1254_fpj_153_210
crossref_primary_10_1177_0271678X17708692
crossref_primary_10_1007_s43657_022_00083_w
crossref_primary_10_1016_j_bj_2019_12_001
crossref_primary_10_3389_fpsyt_2021_643193
crossref_primary_10_1093_ons_opab109
crossref_primary_10_1016_j_gpb_2019_09_003
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_3389_fpsyt_2021_680484
crossref_primary_10_1016_j_dcn_2020_100902
crossref_primary_10_1093_scan_nsz021
crossref_primary_10_1016_j_neuroimage_2018_01_078
crossref_primary_10_1093_cercor_bhac070
crossref_primary_10_3389_fneur_2023_1029732
crossref_primary_10_1097_PR9_0000000000001134
crossref_primary_10_1016_j_compbiomed_2023_107747
crossref_primary_10_1162_imag_a_00184
crossref_primary_10_1016_j_pscychresns_2024_111877
crossref_primary_10_1038_s41467_022_28323_7
crossref_primary_10_1073_pnas_2004363117
crossref_primary_10_3389_fnins_2018_00354
crossref_primary_10_1016_j_jalz_2018_03_007
crossref_primary_10_1371_journal_pone_0289406
crossref_primary_10_1162_jocn_a_01945
crossref_primary_10_1016_j_neuroimage_2019_116131
crossref_primary_10_12688_f1000research_25306_2
crossref_primary_10_12688_f1000research_25306_1
crossref_primary_10_1007_s11307_018_1259_y
crossref_primary_10_1016_j_neuroimage_2023_119954
crossref_primary_10_3390_cancers14030464
crossref_primary_10_2174_1574884716666210322143458
crossref_primary_10_3389_fnins_2022_812410
crossref_primary_10_1016_j_ynirp_2021_100053
crossref_primary_10_7554_eLife_83970
crossref_primary_10_1007_s00429_021_02400_x
crossref_primary_10_1162_imag_a_00078
crossref_primary_10_1016_j_ymgme_2017_09_006
crossref_primary_10_2463_mrms_rev_2021_0096
crossref_primary_10_1093_cercor_bhac496
crossref_primary_10_1111_nyas_13318
crossref_primary_10_1016_j_neuroimage_2022_119721
crossref_primary_10_6009_jjrt_2019_JSRT_75_6_555
crossref_primary_10_1002_mrm_27695
crossref_primary_10_1016_j_neuroimage_2022_118877
crossref_primary_10_1186_s13063_024_08121_w
crossref_primary_10_1016_j_ynstr_2022_100448
crossref_primary_10_3233_JAD_190706
crossref_primary_10_1016_j_ynirp_2021_100004
crossref_primary_10_1016_j_bpsc_2020_04_009
crossref_primary_10_1186_s13195_019_0518_8
crossref_primary_10_1016_j_neuron_2021_12_024
crossref_primary_10_2139_ssrn_4058693
crossref_primary_10_3389_fnins_2018_00650
crossref_primary_10_1093_brain_awae334
crossref_primary_10_1093_cercor_bhac014
crossref_primary_10_1093_gigascience_giad029
crossref_primary_10_1007_s10334_020_00870_4
crossref_primary_10_1093_brain_awad123
crossref_primary_10_3389_fnins_2019_01282
crossref_primary_10_1093_cercor_bhab174
crossref_primary_10_3389_fncom_2022_887633
crossref_primary_10_1007_s10334_018_0705_9
crossref_primary_10_1016_j_neuroimage_2018_09_060
crossref_primary_10_1523_JNEUROSCI_1701_23_2024
crossref_primary_10_1007_s00415_017_8603_z
crossref_primary_10_1007_s12311_022_01418_z
crossref_primary_10_1002_hbm_26270
crossref_primary_10_1007_s00429_023_02720_0
crossref_primary_10_1093_cercor_bhx363
crossref_primary_10_1162_imag_a_00295
crossref_primary_10_1038_s41598_019_49286_8
crossref_primary_10_1016_j_neuroimage_2021_118246
crossref_primary_10_1016_j_neuroimage_2021_118488
crossref_primary_10_1038_s41598_023_33198_9
crossref_primary_10_1016_j_jmr_2018_02_018
crossref_primary_10_1002_jmri_27420
crossref_primary_10_1016_j_bpsgos_2023_05_007
crossref_primary_10_1016_j_mri_2021_10_028
crossref_primary_10_3389_fnins_2024_1425032
crossref_primary_10_1073_pnas_1902299116
crossref_primary_10_1080_01621459_2022_2102984
crossref_primary_10_1017_pen_2018_8
crossref_primary_10_1093_cercor_bhac266
crossref_primary_10_1109_TNSRE_2021_3120024
crossref_primary_10_1093_cercor_bhac276
crossref_primary_10_1093_cercor_bhac391
crossref_primary_10_1016_j_neuroimage_2022_118894
crossref_primary_10_1007_s00429_022_02520_y
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_4103_glioma_glioma_14_21
crossref_primary_10_1016_j_neuroimage_2016_11_049
crossref_primary_10_1177_17562864231202064
crossref_primary_10_1002_mrm_29418
crossref_primary_10_1016_j_nbd_2019_04_001
crossref_primary_10_1109_TPAMI_2022_3209686
crossref_primary_10_1111_ejn_15691
crossref_primary_10_1016_j_neuroimage_2021_118215
crossref_primary_10_1016_j_neuroimage_2021_118579
crossref_primary_10_1016_j_neuroimage_2021_118576
crossref_primary_10_1038_s41598_019_48164_7
crossref_primary_10_1093_psyrad_kkac009
crossref_primary_10_1007_s00429_020_02150_2
crossref_primary_10_1038_nmeth_4152
crossref_primary_10_1016_j_neuroimage_2021_118693
crossref_primary_10_1093_cercor_bhae217
crossref_primary_10_1177_0271678X221106277
crossref_primary_10_1016_j_jad_2023_07_068
crossref_primary_10_1007_s00429_025_02894_9
crossref_primary_10_1016_j_neuroimage_2020_117190
crossref_primary_10_3389_fninf_2022_960607
crossref_primary_10_1002_da_23294
crossref_primary_10_3389_fneur_2023_1266167
crossref_primary_10_3389_fninf_2021_802938
crossref_primary_10_1016_j_neuroimage_2018_10_070
crossref_primary_10_1002_hbm_26173
crossref_primary_10_1038_s41598_017_14613_4
crossref_primary_10_1016_j_nicl_2023_103468
crossref_primary_10_1038_nn_4419
crossref_primary_10_1038_s41593_020_00711_6
crossref_primary_10_1080_02656736_2023_2194595
crossref_primary_10_1016_j_neuroimage_2021_118467
crossref_primary_10_3389_fnana_2022_1035420
crossref_primary_10_1038_s41467_022_34371_w
crossref_primary_10_1016_j_neuroimage_2018_08_050
crossref_primary_10_1089_brain_2024_0056
crossref_primary_10_3389_fnana_2023_1214629
crossref_primary_10_1002_hbm_24186
crossref_primary_10_1016_j_neures_2018_10_011
crossref_primary_10_1016_j_pediatrneurol_2019_03_001
crossref_primary_10_1016_j_intell_2022_101654
crossref_primary_10_3389_fnins_2023_1200373
crossref_primary_10_1136_bmjopen_2023_081800
crossref_primary_10_1142_S0129065724500023
crossref_primary_10_17537_2020_15_471
crossref_primary_10_1016_j_media_2021_102093
crossref_primary_10_1016_j_celrep_2022_111617
crossref_primary_10_1016_j_neubiorev_2021_08_010
crossref_primary_10_3389_fnins_2024_1389680
crossref_primary_10_1016_j_neuroimage_2024_120902
crossref_primary_10_7554_eLife_72534
crossref_primary_10_1016_j_psycr_2025_100249
crossref_primary_10_1371_journal_pbio_2007032
crossref_primary_10_1016_j_neuroimage_2022_119360
crossref_primary_10_1016_j_neuroimage_2022_119352
crossref_primary_10_1016_j_wneu_2024_05_152
crossref_primary_10_1002_hbm_25147
crossref_primary_10_1038_s41598_018_35209_6
crossref_primary_10_1002_nbm_3752
crossref_primary_10_1038_s41467_019_10597_z
crossref_primary_10_18632_aging_203815
crossref_primary_10_7554_eLife_53680
crossref_primary_10_1016_j_nicl_2020_102530
crossref_primary_10_1016_j_ibneur_2022_09_001
crossref_primary_10_1109_TMI_2022_3156868
crossref_primary_10_1016_j_tics_2017_01_004
crossref_primary_10_1254_fpj_149_173
crossref_primary_10_1002_nbm_4845
crossref_primary_10_1038_s41598_019_55738_y
crossref_primary_10_1016_j_orgel_2019_105389
crossref_primary_10_1016_j_neuroimage_2018_10_009
crossref_primary_10_1002_hbm_70064
crossref_primary_10_3389_fnbeh_2022_953303
crossref_primary_10_1002_dneu_22879
crossref_primary_10_1097_MD_0000000000029024
crossref_primary_10_1111_gbb_12441
crossref_primary_10_1093_brain_awab096
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_1016_j_neuroimage_2018_06_018
crossref_primary_10_1038_s41598_019_49301_y
crossref_primary_10_1089_brain_2021_0129
crossref_primary_10_1177_10738584241245304
crossref_primary_10_3389_fneur_2022_836716
crossref_primary_10_1002_hbm_70056
crossref_primary_10_1016_j_neuroimage_2023_120401
crossref_primary_10_1162_imag_a_00102
crossref_primary_10_1249_MSS_0000000000002963
crossref_primary_10_1016_j_neuron_2016_10_019
crossref_primary_10_3389_fnins_2019_01260
crossref_primary_10_1002_jmri_27247
crossref_primary_10_1016_j_wneu_2023_05_070
crossref_primary_10_1016_j_neulet_2018_10_012
crossref_primary_10_1038_sdata_2018_105
crossref_primary_10_1093_pnasnexus_pgad276
crossref_primary_10_1007_s00234_022_03048_y
crossref_primary_10_1016_j_neuroimage_2018_07_057
crossref_primary_10_1371_journal_pbio_3000733
crossref_primary_10_1002_jnr_70021
crossref_primary_10_1038_nn_4500
crossref_primary_10_1038_nn_4501
crossref_primary_10_1016_j_neuroimage_2020_116863
crossref_primary_10_1016_j_neuroimage_2020_116861
crossref_primary_10_1162_imag_a_00115
crossref_primary_10_1044_2018_AJSLP_16_0180
crossref_primary_10_1162_imag_a_00355
crossref_primary_10_1038_s41386_024_01894_3
crossref_primary_10_1007_s00429_018_1660_y
crossref_primary_10_1038_s41467_017_01000_w
crossref_primary_10_1016_j_brs_2022_09_011
crossref_primary_10_1016_j_brain_2022_100062
crossref_primary_10_18231_j_ijn_2024_005
crossref_primary_10_3389_fnsys_2021_777706
crossref_primary_10_1016_j_neuroimage_2022_119684
crossref_primary_10_1371_journal_pone_0238485
crossref_primary_10_2147_JPR_S352105
crossref_primary_10_1016_j_neuron_2019_01_045
crossref_primary_10_1038_s41467_024_53148_x
crossref_primary_10_3389_fninf_2023_1104508
crossref_primary_10_3389_fnins_2024_1376570
crossref_primary_10_1016_j_jneumeth_2019_108417
crossref_primary_10_1126_science_abj1881
crossref_primary_10_1360_TB_2023_1284
crossref_primary_10_1162_imag_a_00444
crossref_primary_10_1002_hbm_70032
crossref_primary_10_1016_j_neuroimage_2021_118196
crossref_primary_10_1002_sim_9342
crossref_primary_10_1016_j_biopsych_2020_05_016
crossref_primary_10_1038_s41598_020_62378_0
crossref_primary_10_1016_j_neuroimage_2021_118082
crossref_primary_10_1016_j_bbr_2019_03_004
crossref_primary_10_1038_s41598_017_18931_5
crossref_primary_10_1093_brain_awae173
crossref_primary_10_1038_s41598_022_18024_y
crossref_primary_10_1002_hbm_26795
crossref_primary_10_7554_eLife_62116
crossref_primary_10_1016_j_brs_2021_08_010
crossref_primary_10_1002_ima_22325
crossref_primary_10_1016_j_neuroimage_2025_121094
crossref_primary_10_1111_add_16330
crossref_primary_10_1038_s41398_022_01780_w
crossref_primary_10_3389_fnint_2023_1027382
crossref_primary_10_1142_S0219519421400595
crossref_primary_10_3389_fneur_2017_00489
crossref_primary_10_1002_hbm_70149
crossref_primary_10_1002_nbm_4887
crossref_primary_10_1007_s00429_021_02421_6
crossref_primary_10_1021_acscentsci_0c00027
crossref_primary_10_1016_j_beth_2017_05_003
crossref_primary_10_1007_s11571_017_9431_7
crossref_primary_10_1162_imag_a_00212
crossref_primary_10_1016_j_neubiorev_2023_105245
crossref_primary_10_1038_s41598_020_78394_z
crossref_primary_10_1016_j_neuroimage_2023_119862
crossref_primary_10_1016_j_neuroimage_2022_119588
crossref_primary_10_1038_s41586_023_05964_2
crossref_primary_10_1016_j_bbr_2016_09_057
crossref_primary_10_1038_s41562_024_01908_6
crossref_primary_10_1016_j_nicl_2021_102600
crossref_primary_10_1016_j_seizure_2020_08_024
crossref_primary_10_1017_S096318011700007X
crossref_primary_10_1038_s41593_021_00916_3
crossref_primary_10_1177_23982128221075430
crossref_primary_10_1097_RMR_0000000000000220
crossref_primary_10_1111_ejn_14083
crossref_primary_10_1002_hbm_25009
crossref_primary_10_1162_imag_a_00303
crossref_primary_10_1002_aur_2974
crossref_primary_10_1016_j_neuroimage_2019_06_015
crossref_primary_10_1016_j_psyneuen_2023_106056
crossref_primary_10_1073_pnas_1808121115
crossref_primary_10_1016_j_neuroimage_2024_120925
crossref_primary_10_1016_j_neubiorev_2024_105650
crossref_primary_10_1162_imag_a_00300
crossref_primary_10_1016_j_neuroimage_2017_10_037
crossref_primary_10_3171_2020_5_JNS191281
crossref_primary_10_1016_j_jad_2021_05_013
crossref_primary_10_1016_j_neuron_2017_06_011
crossref_primary_10_3389_fnhum_2017_00405
crossref_primary_10_1002_hbm_26453
crossref_primary_10_3389_fneur_2024_1460453
crossref_primary_10_1016_j_neurobiolaging_2021_06_021
crossref_primary_10_1093_cercor_bhae067
crossref_primary_10_1016_j_neuroimage_2022_119211
crossref_primary_10_1016_j_neuroimage_2022_119575
crossref_primary_10_1016_j_neuroimage_2019_06_007
crossref_primary_10_1162_imag_a_00437
crossref_primary_10_1016_j_neuroimage_2018_05_027
crossref_primary_10_1038_s41562_020_01003_6
crossref_primary_10_1038_sdata_2018_270
crossref_primary_10_1007_s00429_020_02181_9
crossref_primary_10_1038_s41597_019_0073_y
crossref_primary_10_1073_pnas_2016271118
crossref_primary_10_1109_TSIPN_2022_3209097
crossref_primary_10_1002_hbm_25116
crossref_primary_10_3389_fnins_2017_00158
crossref_primary_10_1017_S0952523817000116
crossref_primary_10_1159_000479514
Cites_doi 10.1016/j.neuroimage.2013.05.077
10.1007/s00422-014-0626-2
10.1016/j.neuroimage.2014.06.042
10.1016/j.neuroimage.2009.06.060
10.1016/j.conb.2011.08.005
10.1016/j.neuroimage.2005.06.058
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuroimage.2008.02.052
10.1016/j.neuron.2014.05.014
10.1016/j.neuroimage.2011.12.063
10.1385/NI:5:1:11
10.1016/j.neuroimage.2014.10.031
10.1016/j.neuroimage.2014.05.069
10.1371/journal.pone.0015710
10.1016/j.neuroimage.2013.07.055
10.1016/j.neuroimage.2014.12.012
10.1016/j.neuroimage.2014.07.061
10.1093/cercor/1.1.1
10.1016/j.neuroimage.2014.03.034
10.1016/j.visres.2010.08.004
10.1016/j.neuron.2011.09.006
10.1093/cercor/bhu277
10.1038/nn.4171
10.1016/j.neuroimage.2012.03.072
10.1038/nn.4164
10.1007/s00429-012-0460-z
10.1093/cercor/bhg087
10.1016/j.neuroimage.2013.04.127
10.1073/pnas.1507552112
10.1089/brain.2014.0261
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2013.10.046
10.1016/j.neuroimage.2012.01.032
10.1016/j.neuroimage.2013.08.048
10.1016/j.neuroimage.2012.01.016
10.1093/cercor/bhv121
10.1162/jocn.1993.5.2.162
10.1016/j.neuroimage.2004.12.034
10.1002/mrm.24204
10.1002/jmri.21049
10.1093/cercor/bhr291
10.1126/science.7754376
10.1016/j.neuroimage.2013.07.012
10.3389/fnhum.2013.00356
10.1109/TMI.2007.906784
10.1093/cercor/bhn011
10.1002/mrm.23097
10.1016/j.neuroimage.2012.06.019
10.1016/j.neuroimage.2013.05.033
10.1016/j.neuroimage.2011.10.018
10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
10.1016/S0896-6273(02)00569-X
10.1073/pnas.200033797
10.1016/j.neuroimage.2004.07.016
10.1016/j.neuroimage.2015.07.067
10.1016/j.neuroimage.2011.08.035
10.1016/j.neuroimage.2013.03.060
10.1016/j.neuroimage.2014.10.044
10.1016/j.neuroimage.2008.09.036
10.1016/j.neuroimage.2016.04.014
10.1016/j.neuron.2015.06.037
10.1038/ncomms2379
10.1089/brain.2013.0156
10.1146/annurev-neuro-071013-014111
10.1093/cercor/bhm225
10.1016/j.neuroimage.2010.08.063
10.1016/j.neuroimage.2015.04.046
10.1038/nn.4134
10.1016/j.neuron.2011.08.026
10.1523/JNEUROSCI.22-23-10416.2002
10.1126/science.aad8127
10.1002/mrm.22361
10.1523/JNEUROSCI.2180-11.2011
10.1016/j.neuroimage.2013.05.074
10.1016/j.neuroimage.2013.05.078
10.1016/j.neuroimage.2013.11.046
10.1109/TMI.2006.887364
10.1016/j.neuroimage.2015.10.019
10.1016/S0006-3495(94)80775-1
10.1038/nn.4125
10.1016/j.neuroimage.2015.08.004
10.1109/42.906426
10.1101/SQB.1990.055.01.064
10.1016/j.cub.2015.08.057
10.1016/j.neuroimage.2009.04.048
10.1523/JNEUROSCI.0493-16.2016
10.1152/jn.00338.2011
10.1073/pnas.1602413113
10.1016/j.media.2006.06.004
10.1089/brain.2012.0080
10.1016/j.neuroimage.2013.05.041
10.1038/nature07621
10.1016/j.neuroimage.2013.05.012
10.1073/pnas.1418198112
10.1016/j.neuroimage.2013.05.056
10.1016/j.neuroimage.2013.05.108
10.1006/nimg.1998.0395
10.1016/j.neuroimage.2013.05.057
10.1006/nimg.1998.0396
10.1016/j.neuroimage.2015.05.092
10.1006/nimg.1999.0516
10.1016/j.neuroimage.2011.06.006
10.1016/B978-0-444-53839-0.00017-X
10.1093/cercor/bhj181
10.1002/mrm.24719
10.1093/cercor/bhu239
10.1016/j.neuroimage.2014.12.008
10.1007/s00429-014-0806-9
10.1016/j.neuroimage.2016.06.058
10.1007/978-3-662-45766-5_6
ContentType Journal Article
Copyright Springer Nature America, Inc. 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright_xml – notice: Springer Nature America, Inc. 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
7TK
5PM
DOI 10.1038/nn.4361
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1546-1726
EndPage 1187
ExternalDocumentID PMC6172654
A461870208
27571196
10_1038_nn_4361
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: F30 MH097312
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: Wellcome Trust
– fundername: NIBIB NIH HHS
  grantid: R01 EB009352
– fundername: Wellcome Trust
  grantid: 098369/Z/12/Z
– fundername: NIMH NIH HHS
  grantid: R24 MH108315
– fundername: NIMH NIH HHS
  grantid: R01 MH060974
– fundername: NINDS NIH HHS
  grantid: P30 NS048056
– fundername: NIBIB NIH HHS
  grantid: P41 EB015894
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
85S
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ISR
ITC
M1P
M2M
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
YNT
YQT
ZGI
~8M
AAYXX
ABFSG
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7X8
7TK
5PM
ID FETCH-LOGICAL-c602t-85a6d0a5d29a4a80aa2bb0c805c4c7ac84ed29badf39519e7e14a4b16ef94f1a3
ISSN 1097-6256
1546-1726
IngestDate Thu Aug 21 18:29:58 EDT 2025
Mon Jul 21 10:04:07 EDT 2025
Fri Jul 11 11:37:11 EDT 2025
Tue Jun 17 20:52:02 EDT 2025
Tue Jun 10 20:44:38 EDT 2025
Fri Jun 27 04:00:57 EDT 2025
Mon Jul 21 05:51:55 EDT 2025
Thu Apr 24 22:50:20 EDT 2025
Tue Jul 01 03:21:43 EDT 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c602t-85a6d0a5d29a4a80aa2bb0c805c4c7ac84ed29badf39519e7e14a4b16ef94f1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Author Contributions M.F.G., S.M.S., D.S.M., K.U., and D.C.V.E. framed the issues and generated the initial draft. M.F.G., S.M.S., D.S.M., J.A., E.J.A., T.E.J.B, T.S.C., M.P.H., M.J., S.M., E.C.R., S.N.S., J.X., E.Y., K.U., and D.C.V.E. contributed novel methods or analyses. M.F.G., S.M.S., D.S.M., T.E.J.B, T.S.C., M.P.H., E.C.R., S.N.S., J.X., E.Y., K.U., and D.C.V.E. wrote the manuscript.
ORCID 0000-0001-8438-2066
0000-0001-8166-069X
OpenAccessLink https://nottingham-repository.worktribe.com/file/804345/1/GlasserNN.pdf
PMID 27571196
PQID 1815683318
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6172654
proquest_miscellaneous_1827889480
proquest_miscellaneous_1815683318
gale_infotracmisc_A461870208
gale_infotracacademiconefile_A461870208
gale_incontextgauss_ISR_A461870208
pubmed_primary_27571196
crossref_citationtrail_10_1038_nn_4361
crossref_primary_10_1038_nn_4361
springer_journals_10_1038_nn_4361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature neuroscience
PublicationTitleAbbrev Nat Neurosci
PublicationTitleAlternate Nat Neurosci
PublicationYear 2016
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Greve, Fischl (CR59) 2009; 48
Van Essen, Felleman, DeYoe, Olavarria, Knierim (CR33) 1990; 55
Beckmann, Smith (CR66) 2004; 23
Ugˇurbil (CR5) 2013; 80
Muckli (CR103) 2015; 25
Ségonne, Pacheco, Fischl (CR28) 2007; 26
Fischl, Sereno, Dale (CR26) 1999; 9
Power, Schlaggar, Petersen (CR63) 2015; 105
Winkler, Webster, Vidaurre, Nichols, Smith (CR67) 2015; 123
Saad (CR108) 2013; 3
Zhang (CR68) 2007; 26
Fischl (CR24) 2002; 33
Setsompop (CR45) 2013; 80
Fieremans, Jensen, Helpern (CR37) 2011; 58
Yeo (CR87) 2011; 106
De Martino (CR102) 2013; 4
Liewald, Miller, Logothetis, Wagner, Schüz (CR40) 2014; 108
Andersson, Sotiropoulos (CR61) 2016; 125
Brewer, Press, Logothetis, Wandell (CR32) 2002; 22
Nieuwenhuys (CR82) 2013; 218
Gotts (CR109) 2013; 7
Larson-Prior (CR115) 2013; 80
Frost, Goebel (CR75) 2012; 59
Fischl (CR90) 2004; 14
Glasser, Van Essen (CR20) 2011; 31
Hawrylycz (CR96) 2015; 18
Smith (CR114) 2011; 54
Power, Barnes, Snyder, Schlaggar, Petersen (CR64) 2012; 59
Laumann (CR56) 2015; 87
Sotiropoulos (CR47) 2013; 80
Barch (CR29) 2013; 80
Fischl, Dale (CR18) 2000; 97
Dale, Sereno (CR22) 1993; 5
Gordon (CR85) 2016; 26
Dale, Fischl, Sereno (CR21) 1999; 9
Wandell, Winawer (CR30) 2011; 51
Jack (CR116) 2008; 27
Wang (CR95) 2015; 18
Van Essen, Ugurbil (CR41) 2012; 62
Abdollahi (CR105) 2014; 99
Satterthwaite (CR65) 2012; 60
De Martino (CR101) 2015; 112
Basser, Mattiello, LeBihan (CR36) 1994; 66
Reveley (CR98) 2015; 112
Marcus (CR12) 2013; 80
Chang, Glover (CR112) 2009; 47
Zhang, Yushkevich, Alexander, Gee (CR69) 2006; 10
Hacker (CR88) 2013; 82
Jbabdi, Sotiropoulos, Savio, Graña, Behrens (CR57) 2012; 68
Cole, Bassett, Power, Braver, Petersen (CR89) 2014; 83
Orban, Zhu, Vanduffel (CR31) 2014; 5
Sotiropoulos (CR46) 2016; 134
Wang, Mruczek, Arcaro, Kastner (CR17) 2015; 25
Vogt, Vogt (CR83) 1919; 25
CR62
Malikovic (CR104) 2007; 17
Hillman (CR49) 2014; 37
Anticevic (CR73) 2008; 41
Turner, Geyer (CR15) 2014; 4
Smith (CR76) 2013; 80
Power (CR107) 2014; 84
Nieuwenhuys, Broere, Cerliani (CR84) 2015; 220
Sereno (CR16) 1995; 268
Griffanti (CR7) 2014; 95
Eickhoff (CR71) 2005; 25
Haxby (CR79) 2011; 72
Behrens, Sporns (CR1) 2012; 22
Smith (CR3) 2013; 80
Smith (CR93) 2015; 18
Andersson, Sotiropoulos (CR60) 2015; 122
Dalcanton (CR99) 2009; 457
CR9
Moeller (CR54) 2010; 63
Huang (CR42) 2015; 106
Van Essen (CR72) 2005; 28
CR81
Fischl, Sereno, Tootell, Dale (CR27) 1999; 8
Golestani, Chang, Kwinta, Khatamian, Jean Chen (CR113) 2015; 104
Setsompop (CR44) 2012; 67
Yeo, Krienen, Chee, Buckner (CR94) 2014; 88
Zhang, Schneider, Wheeler-Kingshott, Alexander (CR38) 2012; 61
Van Essen (CR4) 2013; 80
Xu (CR55) 2013; 83
Calabrese, Badea, Cofer, Qi, Johnson (CR34) 2015; 25
Birn (CR111) 2012; 62
Niazy, Xie, Miller, Beckmann, Smith (CR52) 2011; 193
Power (CR86) 2011; 72
CR14
Auerbach, Xu, Yacoub, Moeller, Ugˇurbil (CR53) 2013; 69
Saad (CR110) 2012; 2
Vu (CR48) 2015; 122
Felleman, Van Essen (CR78) 1991; 1
CR11
Feinberg (CR50) 2010; 5
Glasser (CR6) 2013; 80
Tavor (CR97) 2016; 352
Jbabdi, Sotiropoulos, Haber, Van Essen, Behrens (CR2) 2015; 18
Murphy, Birn, Handwerker, Jones, Bandettini (CR106) 2009; 44
McNab (CR43) 2013; 80
Fischl (CR74) 2008; 18
Hodge (CR91) 2016; 124
Glasser, Rilling (CR80) 2008; 18
Donahue (CR35) 2016; 36
Tucholka, Fritsch, Poline, Thirion (CR77) 2012; 63
Chen, Glover (CR51) 2015; 107
Glasser, Goyal, Preuss, Raichle, Van Essen (CR19) 2014; 93
Robinson (CR10) 2014; 100
Fischl (CR25) 2004; 23
Van Essen, Glasser, Dierker, Harwell, Coalson (CR39) 2012; 22
Marcus, Olsen, Ramaratnam, Buckner (CR92) 2007; 5
Jeurissen, Tournier, Dhollander, Connelly, Sijbers (CR58) 2014; 103
Amunts, Malikovic, Mohlberg, Schormann, Zilles (CR70) 2000; 11
Eklund, Nichols, Knutsson (CR13) 2016; 28
CR100
Fischl, Liu, Dale (CR23) 2001; 20
Salimi-Khorshidi (CR8) 2014; 90
A Eklund (BFnn4361_CR13) 2016; 28
TD Satterthwaite (BFnn4361_CR65) 2012; 60
B Fischl (BFnn4361_CR23) 2001; 20
C Vogt (BFnn4361_CR83) 1919; 25
GA Orban (BFnn4361_CR31) 2014; 5
SN Sotiropoulos (BFnn4361_CR46) 2016; 134
JV Haxby (BFnn4361_CR79) 2011; 72
MI Sereno (BFnn4361_CR16) 1995; 268
BT Yeo (BFnn4361_CR94) 2014; 88
DC Van Essen (BFnn4361_CR4) 2013; 80
B Fischl (BFnn4361_CR18) 2000; 97
E Calabrese (BFnn4361_CR34) 2015; 25
B Fischl (BFnn4361_CR26) 1999; 9
DC Van Essen (BFnn4361_CR33) 1990; 55
R Turner (BFnn4361_CR15) 2014; 4
CD Hacker (BFnn4361_CR88) 2013; 82
B Fischl (BFnn4361_CR25) 2004; 23
H Zhang (BFnn4361_CR68) 2007; 26
JJ Dalcanton (BFnn4361_CR99) 2009; 457
E Fieremans (BFnn4361_CR37) 2011; 58
L Griffanti (BFnn4361_CR7) 2014; 95
AM Dale (BFnn4361_CR22) 1993; 5
S Moeller (BFnn4361_CR54) 2010; 63
A Tucholka (BFnn4361_CR77) 2012; 63
ZS Saad (BFnn4361_CR108) 2013; 3
JL Andersson (BFnn4361_CR61) 2016; 125
LJ Larson-Prior (BFnn4361_CR115) 2013; 80
MF Glasser (BFnn4361_CR20) 2011; 31
J Xu (BFnn4361_CR55) 2013; 83
DA Feinberg (BFnn4361_CR50) 2010; 5
L Wang (BFnn4361_CR17) 2015; 25
R Nieuwenhuys (BFnn4361_CR84) 2015; 220
S Jbabdi (BFnn4361_CR57) 2012; 68
AT Vu (BFnn4361_CR48) 2015; 122
K Murphy (BFnn4361_CR106) 2009; 44
AA Brewer (BFnn4361_CR32) 2002; 22
SN Sotiropoulos (BFnn4361_CR47) 2013; 80
BT Yeo (BFnn4361_CR87) 2011; 106
DC Van Essen (BFnn4361_CR72) 2005; 28
AM Dale (BFnn4361_CR21) 1999; 9
EM Hillman (BFnn4361_CR49) 2014; 37
MF Glasser (BFnn4361_CR19) 2014; 93
K Setsompop (BFnn4361_CR45) 2013; 80
RK Niazy (BFnn4361_CR52) 2011; 193
B Fischl (BFnn4361_CR90) 2004; 14
B Fischl (BFnn4361_CR27) 1999; 8
TO Laumann (BFnn4361_CR56) 2015; 87
JD Power (BFnn4361_CR63) 2015; 105
DC Van Essen (BFnn4361_CR39) 2012; 22
DS Marcus (BFnn4361_CR12) 2013; 80
A Malikovic (BFnn4361_CR104) 2007; 17
BA Wandell (BFnn4361_CR30) 2011; 51
SJ Gotts (BFnn4361_CR109) 2013; 7
BFnn4361_CR9
R Nieuwenhuys (BFnn4361_CR82) 2013; 218
C Reveley (BFnn4361_CR98) 2015; 112
M Hawrylycz (BFnn4361_CR96) 2015; 18
JE Chen (BFnn4361_CR51) 2015; 107
BFnn4361_CR11
DS Marcus (BFnn4361_CR92) 2007; 5
BFnn4361_CR14
B Fischl (BFnn4361_CR24) 2002; 33
BFnn4361_CR100
F Ségonne (BFnn4361_CR28) 2007; 26
AM Golestani (BFnn4361_CR113) 2015; 104
JD Power (BFnn4361_CR107) 2014; 84
B Jeurissen (BFnn4361_CR58) 2014; 103
JL Andersson (BFnn4361_CR60) 2015; 122
S Jbabdi (BFnn4361_CR2) 2015; 18
K Setsompop (BFnn4361_CR44) 2012; 67
EJ Auerbach (BFnn4361_CR53) 2013; 69
K Amunts (BFnn4361_CR70) 2000; 11
DC Van Essen (BFnn4361_CR41) 2012; 62
TE Behrens (BFnn4361_CR1) 2012; 22
EM Gordon (BFnn4361_CR85) 2016; 26
I Tavor (BFnn4361_CR97) 2016; 352
RO Abdollahi (BFnn4361_CR105) 2014; 99
JA McNab (BFnn4361_CR43) 2013; 80
G Salimi-Khorshidi (BFnn4361_CR8) 2014; 90
D Wang (BFnn4361_CR95) 2015; 18
SM Smith (BFnn4361_CR76) 2013; 80
A Anticevic (BFnn4361_CR73) 2008; 41
MF Glasser (BFnn4361_CR6) 2013; 80
L Muckli (BFnn4361_CR103) 2015; 25
RM Birn (BFnn4361_CR111) 2012; 62
BFnn4361_CR81
ZS Saad (BFnn4361_CR110) 2012; 2
AM Winkler (BFnn4361_CR67) 2015; 123
CJ Donahue (BFnn4361_CR35) 2016; 36
D Liewald (BFnn4361_CR40) 2014; 108
H Zhang (BFnn4361_CR69) 2006; 10
SM Smith (BFnn4361_CR93) 2015; 18
CR Jack Jr. (BFnn4361_CR116) 2008; 27
H Zhang (BFnn4361_CR38) 2012; 61
F De Martino (BFnn4361_CR102) 2013; 4
SY Huang (BFnn4361_CR42) 2015; 106
CF Beckmann (BFnn4361_CR66) 2004; 23
MR Hodge (BFnn4361_CR91) 2016; 124
B Fischl (BFnn4361_CR74) 2008; 18
K Ugˇurbil (BFnn4361_CR5) 2013; 80
DN Greve (BFnn4361_CR59) 2009; 48
EC Robinson (BFnn4361_CR10) 2014; 100
SM Smith (BFnn4361_CR114) 2011; 54
F De Martino (BFnn4361_CR101) 2015; 112
MW Cole (BFnn4361_CR89) 2014; 83
DJ Felleman (BFnn4361_CR78) 1991; 1
PJ Basser (BFnn4361_CR36) 1994; 66
DM Barch (BFnn4361_CR29) 2013; 80
MA Frost (BFnn4361_CR75) 2012; 59
JD Power (BFnn4361_CR64) 2012; 59
S Smith (BFnn4361_CR3) 2013; 80
SB Eickhoff (BFnn4361_CR71) 2005; 25
BFnn4361_CR62
JD Power (BFnn4361_CR86) 2011; 72
C Chang (BFnn4361_CR112) 2009; 47
MF Glasser (BFnn4361_CR80) 2008; 18
References_xml – volume: 80
  start-page: 202
  year: 2013
  end-page: 219
  ident: CR12
  article-title: Human Connectome Project informatics: quality control, database services, and data visualization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.077
– volume: 108
  start-page: 541
  year: 2014
  end-page: 557
  ident: CR40
  article-title: Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-014-0626-2
– volume: 99
  start-page: 509
  year: 2014
  end-page: 524
  ident: CR105
  article-title: Correspondences between retinotopic areas and myelin maps in human visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.042
– volume: 48
  start-page: 63
  year: 2009
  end-page: 72
  ident: CR59
  article-title: Accurate and robust brain image alignment using boundary-based registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.060
– volume: 22
  start-page: 144
  year: 2012
  end-page: 153
  ident: CR1
  article-title: Human connectomics
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.08.005
– volume: 28
  start-page: 635
  year: 2005
  end-page: 662
  ident: CR72
  article-title: A population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  ident: CR76
  article-title: Resting-state fMRI in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 41
  start-page: 835
  year: 2008
  end-page: 848
  ident: CR73
  article-title: Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.052
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  ident: CR89
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 60
  start-page: 623
  year: 2012
  end-page: 632
  ident: CR65
  article-title: Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– volume: 5
  start-page: 11
  year: 2007
  end-page: 34
  ident: CR92
  article-title: The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data
  publication-title: Neuroinformatics
  doi: 10.1385/NI:5:1:11
– volume: 104
  start-page: 266
  year: 2015
  end-page: 277
  ident: CR113
  article-title: Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.031
– volume: 100
  start-page: 414
  year: 2014
  end-page: 426
  ident: CR10
  article-title: MSM: a new flexible framework for multimodal surface matching
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.069
– volume: 5
  start-page: e15710
  year: 2010
  ident: CR50
  article-title: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015710
– volume: 83
  start-page: 991
  year: 2013
  end-page: 1001
  ident: CR55
  article-title: Evaluation of slice accelerations using multiband echo planar imaging at 3 T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.055
– volume: 25
  start-page: 279
  year: 1919
  end-page: 468
  ident: CR83
  article-title: Allgemeinere Ergebnisse unserer Hirnforschung
  publication-title: J. Psychol. Neurol.
– volume: 107
  start-page: 207
  year: 2015
  end-page: 218
  ident: CR51
  article-title: BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.012
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  ident: CR58
  article-title: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 1
  start-page: 1
  year: 1991
  end-page: 47
  ident: CR78
  article-title: Distributed hierarchical processing in the primate cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: CR7
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 51
  start-page: 718
  year: 2011
  end-page: 737
  ident: CR30
  article-title: Imaging retinotopic maps in the human brain
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2010.08.004
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: CR86
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 25
  start-page: 3911
  year: 2015
  end-page: 3931
  ident: CR17
  article-title: Probabilistic maps of visual topography in human cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu277
– volume: 18
  start-page: 1832
  year: 2015
  end-page: 1844
  ident: CR96
  article-title: Canonical genetic signatures of the adult human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4171
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: CR38
  article-title: NODDI: practical neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 18
  start-page: 1853
  year: 2015
  end-page: 1860
  ident: CR95
  article-title: Parcellating cortical functional networks in individuals
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4164
– ident: CR11
– volume: 218
  start-page: 303
  year: 2013
  end-page: 352
  ident: CR82
  article-title: The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-012-0460-z
– volume: 14
  start-page: 11
  year: 2004
  end-page: 22
  ident: CR90
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: CR6
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 112
  start-page: 16036
  year: 2015
  end-page: 16041
  ident: CR101
  article-title: Frequency preference and attention effects across cortical depths in the human primary auditory cortex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1507552112
– volume: 4
  start-page: 547
  year: 2014
  end-page: 557
  ident: CR15
  article-title: Comparing like with like: the power of knowing where you are
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0261
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: CR66
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– ident: CR100
– volume: 88
  start-page: 212
  year: 2014
  end-page: 227
  ident: CR94
  article-title: Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.046
– volume: 62
  start-page: 1299
  year: 2012
  end-page: 1310
  ident: CR41
  article-title: The future of the human connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.032
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: CR107
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 62
  start-page: 864
  year: 2012
  end-page: 870
  ident: CR111
  article-title: The role of physiological noise in resting-state functional connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.016
– volume: 25
  start-page: 4628
  year: 2015
  end-page: 4637
  ident: CR34
  article-title: A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv121
– volume: 5
  start-page: 162
  year: 1993
  end-page: 176
  ident: CR22
  article-title: Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 25
  start-page: 1325
  year: 2005
  end-page: 1335
  ident: CR71
  article-title: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 68
  start-page: 1846
  year: 2012
  end-page: 1855
  ident: CR57
  article-title: Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: CR116
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 22
  start-page: 2241
  year: 2012
  end-page: 2262
  ident: CR39
  article-title: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr291
– volume: 268
  start-page: 889
  year: 1995
  end-page: 893
  ident: CR16
  article-title: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 80
  start-page: 1
  year: 2013
  ident: CR3
  article-title: Introduction to the special issue “Mapping the Connectome”
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.012
– volume: 7
  start-page: 356
  year: 2013
  ident: CR109
  article-title: The perils of global signal regression for group comparisons: a case study of Autism Spectrum Disorders
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00356
– volume: 26
  start-page: 1585
  year: 2007
  end-page: 1597
  ident: CR68
  article-title: High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906784
– volume: 18
  start-page: 2471
  year: 2008
  end-page: 2482
  ident: CR80
  article-title: DTI tractography of the human brain's language pathways
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn011
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: CR44
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 63
  start-page: 1443
  year: 2012
  end-page: 1453
  ident: CR77
  article-title: An empirical comparison of surface-based and volume-based group studies in neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.019
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  ident: CR29
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: CR64
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 8
  start-page: 272
  year: 1999
  end-page: 284
  ident: CR27
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: CR24
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: CR18
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.200033797
– volume: 23
  start-page: S69
  issue: Suppl. 1
  year: 2004
  end-page: S84
  ident: CR25
  article-title: Sequence-independent segmentation of magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.016
– volume: 122
  start-page: 166
  year: 2015
  end-page: 176
  ident: CR60
  article-title: Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 59
  start-page: 1369
  year: 2012
  end-page: 1381
  ident: CR75
  article-title: Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.035
– volume: 93
  start-page: 165
  year: 2014
  end-page: 175
  ident: CR19
  article-title: Trends and properties of human cerebral cortex: correlations with cortical myelin content
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.060
– volume: 105
  start-page: 536
  year: 2015
  end-page: 551
  ident: CR63
  article-title: Recent progress and outstanding issues in motion correction in resting state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 44
  start-page: 893
  year: 2009
  end-page: 905
  ident: CR106
  article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 134
  start-page: 396
  year: 2016
  end-page: 409
  ident: CR46
  article-title: Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T and 7T data of the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.014
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: CR56
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 4
  start-page: 1386
  year: 2013
  ident: CR102
  article-title: Spatial organization of frequency preference and selectivity in the human inferior colliculus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2379
– volume: 3
  start-page: 339
  year: 2013
  end-page: 352
  ident: CR108
  article-title: Correcting brain-wide correlation differences in resting-state FMRI
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0156
– volume: 37
  start-page: 161
  year: 2014
  end-page: 181
  ident: CR49
  article-title: Coupling mechanism and significance of the BOLD signal: a status report
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-014111
– volume: 18
  start-page: 1973
  year: 2008
  end-page: 1980
  ident: CR74
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm225
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: CR114
  article-title: Network modelling methods for FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 124
  start-page: 1102
  issue: Pt B,
  year: 2016
  end-page: 1107
  ident: CR91
  article-title: ConnectomeDB—sharing human brain connectivity data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.046
– volume: 18
  start-page: 1546
  year: 2015
  end-page: 1555
  ident: CR2
  article-title: Measuring macroscopic brain connections
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4134
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: CR79
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 22
  start-page: 10416
  year: 2002
  end-page: 10426
  ident: CR32
  article-title: Visual areas in macaque cortex measured using functional magnetic resonance imaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-23-10416.2002
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  ident: CR97
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: CR54
  article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 31
  start-page: 11597
  year: 2011
  end-page: 11616
  ident: CR20
  article-title: Mapping human cortical areas based on myelin content as revealed by T1- and T2-weighted MRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 80
  start-page: 234
  year: 2013
  end-page: 245
  ident: CR43
  article-title: The Human Connectome Project and beyond: initial applications of 300 mT/m gradients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.074
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  ident: CR45
  article-title: Pushing the limits of diffusion MRI for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: CR9
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: CR8
  article-title: . Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 26
  start-page: 518
  year: 2007
  end-page: 529
  ident: CR28
  article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887364
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  ident: CR61
  article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  ident: CR36
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: CR93
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– ident: CR81
– volume: 122
  start-page: 318
  year: 2015
  end-page: 331
  ident: CR48
  article-title: High resolution whole brain diffusion imaging at 7T for the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.004
– volume: 20
  start-page: 70
  year: 2001
  end-page: 80
  ident: CR23
  article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906426
– volume: 55
  start-page: 679
  year: 1990
  end-page: 696
  ident: CR33
  article-title: Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/SQB.1990.055.01.064
– volume: 25
  start-page: 2690
  year: 2015
  end-page: 2695
  ident: CR103
  article-title: Contextual feedback to superficial layers of V1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.057
– volume: 47
  start-page: 1381
  year: 2009
  end-page: 1393
  ident: CR112
  article-title: Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.048
– volume: 36
  start-page: 6758
  year: 2016
  end-page: 6770
  ident: CR35
  article-title: Using diffusion tractography to predict cortical connection strength and distance: A quantitative comparison with tracers in the monkey
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: CR87
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 5
  start-page: 695
  year: 2014
  ident: CR31
  article-title: The transition in the ventral stream from feature to real-world entity representations
  publication-title: Front. Psychol.
– volume: 28
  start-page: 7900
  year: 2016
  end-page: 7905
  ident: CR13
  article-title: Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602413113
– ident: CR14
– volume: 10
  start-page: 764
  year: 2006
  end-page: 785
  ident: CR69
  article-title: Deformable registration of diffusion tensor MR images with explicit orientation optimization
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.06.004
– volume: 2
  start-page: 25
  year: 2012
  end-page: 32
  ident: CR110
  article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0080
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: CR4
  article-title: The WU-Minn Human Connectome Project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 457
  start-page: 41
  year: 2009
  end-page: 50
  ident: CR99
  article-title: 18 years of science with the Hubble Space Telescope
  publication-title: Nature
  doi: 10.1038/nature07621
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: CR5
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 112
  start-page: E2820
  year: 2015
  end-page: E2828
  ident: CR98
  article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1418198112
– volume: 80
  start-page: 190
  year: 2013
  end-page: 201
  ident: CR115
  article-title: Adding dynamics to the Human Connectome Project with MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 82
  start-page: 616
  year: 2013
  end-page: 633
  ident: CR88
  article-title: Resting state network estimation in individual subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.108
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  ident: CR21
  article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  ident: CR47
  article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  ident: CR26
  article-title: Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– volume: 123
  start-page: 253
  year: 2015
  end-page: 268
  ident: CR67
  article-title: Multi-level block permutation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.092
– volume: 11
  start-page: 66
  year: 2000
  end-page: 84
  ident: CR70
  article-title: Brodmann's areas 17 and 18 brought into stereotaxic space-where and how variable?
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0516
– volume: 58
  start-page: 177
  year: 2011
  end-page: 188
  ident: CR37
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.006
– volume: 193
  start-page: 259
  year: 2011
  end-page: 276
  ident: CR52
  article-title: Spectral characteristics of resting state networks
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53839-0.00017-X
– volume: 17
  start-page: 562
  year: 2007
  end-page: 574
  ident: CR104
  article-title: Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj181
– volume: 69
  start-page: 1261
  year: 2013
  end-page: 1267
  ident: CR53
  article-title: Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24719
– volume: 26
  start-page: 288
  year: 2016
  end-page: 303
  ident: CR85
  article-title: Generation and evaluation of a cortical area parcellation from resting-state correlations
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu239
– volume: 106
  start-page: 464
  year: 2015
  end-page: 472
  ident: CR42
  article-title: The impact of gradient strength on diffusion MRI estimates of axon diameter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.008
– ident: CR62
– volume: 220
  start-page: 2551
  year: 2015
  end-page: 2573
  ident: CR84
  article-title: A new myeloarchitectonic map of the human neocortex based on data from the Vogt-Vogt school
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-014-0806-9
– volume: 18
  start-page: 1565
  year: 2015
  ident: BFnn4361_CR93
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– volume: 220
  start-page: 2551
  year: 2015
  ident: BFnn4361_CR84
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-014-0806-9
– volume: 9
  start-page: 195
  year: 1999
  ident: BFnn4361_CR26
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0396
– ident: BFnn4361_CR11
– volume: 80
  start-page: 169
  year: 2013
  ident: BFnn4361_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 1
  start-page: 1
  year: 1991
  ident: BFnn4361_CR78
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/1.1.1
– volume: 122
  start-page: 318
  year: 2015
  ident: BFnn4361_CR48
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.08.004
– volume: 72
  start-page: 665
  year: 2011
  ident: BFnn4361_CR86
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 84
  start-page: 320
  year: 2014
  ident: BFnn4361_CR107
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 95
  start-page: 232
  year: 2014
  ident: BFnn4361_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 90
  start-page: 449
  year: 2014
  ident: BFnn4361_CR8
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 5
  start-page: 11
  year: 2007
  ident: BFnn4361_CR92
  publication-title: Neuroinformatics
  doi: 10.1385/NI:5:1:11
– volume: 28
  start-page: 7900
  year: 2016
  ident: BFnn4361_CR13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602413113
– volume: 59
  start-page: 2142
  year: 2012
  ident: BFnn4361_CR64
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: BFnn4361_CR100
– volume: 10
  start-page: 764
  year: 2006
  ident: BFnn4361_CR69
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2006.06.004
– volume: 106
  start-page: 1125
  year: 2011
  ident: BFnn4361_CR87
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 36
  start-page: 6758
  year: 2016
  ident: BFnn4361_CR35
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.0493-16.2016
– volume: 59
  start-page: 1369
  year: 2012
  ident: BFnn4361_CR75
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.035
– volume: 25
  start-page: 3911
  year: 2015
  ident: BFnn4361_CR17
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu277
– volume: 80
  start-page: 190
  year: 2013
  ident: BFnn4361_CR115
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 80
  start-page: 202
  year: 2013
  ident: BFnn4361_CR12
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.077
– volume: 23
  start-page: 137
  year: 2004
  ident: BFnn4361_CR66
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.822821
– volume: 22
  start-page: 10416
  year: 2002
  ident: BFnn4361_CR32
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-23-10416.2002
– volume: 80
  start-page: 220
  year: 2013
  ident: BFnn4361_CR45
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.078
– volume: 193
  start-page: 259
  year: 2011
  ident: BFnn4361_CR52
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53839-0.00017-X
– volume: 104
  start-page: 266
  year: 2015
  ident: BFnn4361_CR113
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.031
– volume: 124
  start-page: 1102
  issue: Pt B,
  year: 2016
  ident: BFnn4361_CR91
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.04.046
– volume: 9
  start-page: 179
  year: 1999
  ident: BFnn4361_CR21
  publication-title: Neuroimage
  doi: 10.1006/nimg.1998.0395
– volume: 87
  start-page: 657
  year: 2015
  ident: BFnn4361_CR56
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 122
  start-page: 166
  year: 2015
  ident: BFnn4361_CR60
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.07.067
– volume: 41
  start-page: 835
  year: 2008
  ident: BFnn4361_CR73
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.02.052
– volume: 83
  start-page: 238
  year: 2014
  ident: BFnn4361_CR89
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 3
  start-page: 339
  year: 2013
  ident: BFnn4361_CR108
  publication-title: Brain Connect.
  doi: 10.1089/brain.2013.0156
– volume: 25
  start-page: 1325
  year: 2005
  ident: BFnn4361_CR71
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.034
– volume: 18
  start-page: 1832
  year: 2015
  ident: BFnn4361_CR96
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4171
– volume: 28
  start-page: 635
  year: 2005
  ident: BFnn4361_CR72
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.058
– volume: 25
  start-page: 4628
  year: 2015
  ident: BFnn4361_CR34
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv121
– volume: 8
  start-page: 272
  year: 1999
  ident: BFnn4361_CR27
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4
– volume: 51
  start-page: 718
  year: 2011
  ident: BFnn4361_CR30
  publication-title: Vision Res.
  doi: 10.1016/j.visres.2010.08.004
– volume: 14
  start-page: 11
  year: 2004
  ident: BFnn4361_CR90
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– volume: 25
  start-page: 279
  year: 1919
  ident: BFnn4361_CR83
  publication-title: J. Psychol. Neurol.
– volume: 80
  start-page: 105
  year: 2013
  ident: BFnn4361_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 25
  start-page: 2690
  year: 2015
  ident: BFnn4361_CR103
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.057
– volume: 44
  start-page: 893
  year: 2009
  ident: BFnn4361_CR106
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.036
– volume: 88
  start-page: 212
  year: 2014
  ident: BFnn4361_CR94
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.046
– volume: 2
  start-page: 25
  year: 2012
  ident: BFnn4361_CR110
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0080
– volume: 80
  start-page: 62
  year: 2013
  ident: BFnn4361_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 80
  start-page: 80
  year: 2013
  ident: BFnn4361_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 55
  start-page: 679
  year: 1990
  ident: BFnn4361_CR33
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/SQB.1990.055.01.064
– volume: 72
  start-page: 404
  year: 2011
  ident: BFnn4361_CR79
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 63
  start-page: 1144
  year: 2010
  ident: BFnn4361_CR54
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 27
  start-page: 685
  year: 2008
  ident: BFnn4361_CR116
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 108
  start-page: 541
  year: 2014
  ident: BFnn4361_CR40
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-014-0626-2
– volume: 5
  start-page: 695
  year: 2014
  ident: BFnn4361_CR31
  publication-title: Front. Psychol.
– volume: 106
  start-page: 464
  year: 2015
  ident: BFnn4361_CR42
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.008
– volume: 68
  start-page: 1846
  year: 2012
  ident: BFnn4361_CR57
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24204
– volume: 105
  start-page: 536
  year: 2015
  ident: BFnn4361_CR63
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.044
– volume: 67
  start-page: 1210
  year: 2012
  ident: BFnn4361_CR44
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 134
  start-page: 396
  year: 2016
  ident: BFnn4361_CR46
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.014
– volume: 7
  start-page: 356
  year: 2013
  ident: BFnn4361_CR109
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00356
– volume: 123
  start-page: 253
  year: 2015
  ident: BFnn4361_CR67
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.092
– volume: 4
  start-page: 1386
  year: 2013
  ident: BFnn4361_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2379
– volume: 22
  start-page: 2241
  year: 2012
  ident: BFnn4361_CR39
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr291
– volume: 5
  start-page: e15710
  year: 2010
  ident: BFnn4361_CR50
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015710
– volume: 93
  start-page: 165
  year: 2014
  ident: BFnn4361_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.060
– volume: 22
  start-page: 144
  year: 2012
  ident: BFnn4361_CR1
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.08.005
– volume: 352
  start-page: 216
  year: 2016
  ident: BFnn4361_CR97
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 31
  start-page: 11597
  year: 2011
  ident: BFnn4361_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2180-11.2011
– volume: 4
  start-page: 547
  year: 2014
  ident: BFnn4361_CR15
  publication-title: Brain Connect.
  doi: 10.1089/brain.2014.0261
– volume: 80
  start-page: 234
  year: 2013
  ident: BFnn4361_CR43
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.074
– volume: 112
  start-page: E2820
  year: 2015
  ident: BFnn4361_CR98
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1418198112
– volume: 23
  start-page: S69
  issue: Suppl. 1
  year: 2004
  ident: BFnn4361_CR25
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.016
– volume: 103
  start-page: 411
  year: 2014
  ident: BFnn4361_CR58
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 47
  start-page: 1381
  year: 2009
  ident: BFnn4361_CR112
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.048
– volume: 20
  start-page: 70
  year: 2001
  ident: BFnn4361_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.906426
– ident: BFnn4361_CR62
  doi: 10.1016/j.neuroimage.2016.06.058
– volume: 80
  start-page: 1
  year: 2013
  ident: BFnn4361_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.012
– ident: BFnn4361_CR9
– volume: 61
  start-page: 1000
  year: 2012
  ident: BFnn4361_CR38
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 82
  start-page: 616
  year: 2013
  ident: BFnn4361_CR88
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.108
– volume: 26
  start-page: 518
  year: 2007
  ident: BFnn4361_CR28
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887364
– volume: 83
  start-page: 991
  year: 2013
  ident: BFnn4361_CR55
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.055
– volume: 26
  start-page: 1585
  year: 2007
  ident: BFnn4361_CR68
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906784
– volume: 62
  start-page: 864
  year: 2012
  ident: BFnn4361_CR111
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.016
– volume: 100
  start-page: 414
  year: 2014
  ident: BFnn4361_CR10
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.069
– volume: 63
  start-page: 1443
  year: 2012
  ident: BFnn4361_CR77
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.019
– volume: 62
  start-page: 1299
  year: 2012
  ident: BFnn4361_CR41
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.032
– volume: 125
  start-page: 1063
  year: 2016
  ident: BFnn4361_CR61
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.019
– volume: 80
  start-page: 144
  year: 2013
  ident: BFnn4361_CR76
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.039
– volume: 33
  start-page: 341
  year: 2002
  ident: BFnn4361_CR24
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 268
  start-page: 889
  year: 1995
  ident: BFnn4361_CR16
  publication-title: Science
  doi: 10.1126/science.7754376
– volume: 97
  start-page: 11050
  year: 2000
  ident: BFnn4361_CR18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.200033797
– volume: 26
  start-page: 288
  year: 2016
  ident: BFnn4361_CR85
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhu239
– volume: 80
  start-page: 125
  year: 2013
  ident: BFnn4361_CR47
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.057
– volume: 11
  start-page: 66
  year: 2000
  ident: BFnn4361_CR70
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0516
– volume: 107
  start-page: 207
  year: 2015
  ident: BFnn4361_CR51
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.12.012
– volume: 69
  start-page: 1261
  year: 2013
  ident: BFnn4361_CR53
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24719
– volume: 18
  start-page: 1853
  year: 2015
  ident: BFnn4361_CR95
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4164
– volume: 60
  start-page: 623
  year: 2012
  ident: BFnn4361_CR65
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.063
– ident: BFnn4361_CR14
  doi: 10.1007/978-3-662-45766-5_6
– volume: 58
  start-page: 177
  year: 2011
  ident: BFnn4361_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.006
– volume: 18
  start-page: 2471
  year: 2008
  ident: BFnn4361_CR80
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn011
– volume: 99
  start-page: 509
  year: 2014
  ident: BFnn4361_CR105
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.042
– volume: 5
  start-page: 162
  year: 1993
  ident: BFnn4361_CR22
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 457
  start-page: 41
  year: 2009
  ident: BFnn4361_CR99
  publication-title: Nature
  doi: 10.1038/nature07621
– volume: 112
  start-page: 16036
  year: 2015
  ident: BFnn4361_CR101
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1507552112
– volume: 66
  start-page: 259
  year: 1994
  ident: BFnn4361_CR36
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80775-1
– volume: 17
  start-page: 562
  year: 2007
  ident: BFnn4361_CR104
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj181
– volume: 18
  start-page: 1546
  year: 2015
  ident: BFnn4361_CR2
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4134
– volume: 18
  start-page: 1973
  year: 2008
  ident: BFnn4361_CR74
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm225
– volume: 37
  start-page: 161
  year: 2014
  ident: BFnn4361_CR49
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-071013-014111
– volume: 218
  start-page: 303
  year: 2013
  ident: BFnn4361_CR82
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-012-0460-z
– volume: 48
  start-page: 63
  year: 2009
  ident: BFnn4361_CR59
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: BFnn4361_CR81
– volume: 54
  start-page: 875
  year: 2011
  ident: BFnn4361_CR114
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.063
SSID ssj0007589
Score 2.6678288
SecondaryResourceType review_article
Snippet This paper describes an integrated approach for neuroimaging data acquisition, analysis and sharing. Building on methodological advances from the Human...
Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed...
Non-invasive human neuroimaging has yielded many exciting discoveries about the brain. Numerous methodological advances have also occurred, though inertia has...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1175
SubjectTerms 59
59/57
631/378/2649/1594
631/378/3917
631/378/3920
Animal Genetics and Genomics
Behavioral Sciences
Biological Techniques
Biomedicine
Brain - diagnostic imaging
Brain - physiology
Care and treatment
Connectome - methods
Connectome - trends
Diagnosis
Diagnostic imaging
Humans
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - trends
Mental disorders
Methods
Neurobiology
Neuroimaging
Neuroimaging - methods
Neuroimaging - trends
Neurosciences
Quality management
review-article
Title The Human Connectome Project's neuroimaging approach
URI https://link.springer.com/article/10.1038/nn.4361
https://www.ncbi.nlm.nih.gov/pubmed/27571196
https://www.proquest.com/docview/1815683318
https://www.proquest.com/docview/1827889480
https://pubmed.ncbi.nlm.nih.gov/PMC6172654
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge-EFAeMjMKaA0PYwZeTDiZPHgjrGVAoardQ3y3YdmMRcRNoH-Ou5c5yvMqHBS1TFJ8f1nc_n893vCHmVpFpIQfFqkIUBlUwGQkZZUJaSgblfguK00RbT7GxOzxfpoiv8Z7NL1vJE_bo2r-R_uArvgK-YJfsPnG07hRfwG_gLT-AwPG_M49oLb-NV1Hp1pTH0H30r1hFv0Sovr-pKRA18eN8enVpcz-MeqmXL6HdoV9cMdUXBe1HAjT_GBYl1PtUPsHA2VZe83rlWRzaNxiV4nWtEKD-euHhF53YA7jVxVY2mDAsWwOEpG6jSoicyRU8vIiBob4_FGufX6u8ard2YE5rUGO1DhOzpR346n0z4bLyY3Sa7MRwNULexRXvIBgvIlj1sh1cnSmPHr123Awtkex_uGSLbQbJbN-XWAJndI3fdycEf1WJwn9zS5gHZGxkBXP_pH_o2ltdekuwRCpLhW8nwO8nwnWQcVX5fLvxGLh6S-el49vYscPUxApWF8TrIU5EtQ5Eu40JQkYdCxFKGKg9TRRUTKqcamqRYlgnY0YVmOqKCwkrUZUHLSCSPyI5ZGf2E-FkCtpwIZShlRpUqpIryrCyYkowuQat75LCZM64ceDzWMPnGbRBDknNjOE6uR_yW8HuNl_InyUucdI7oIwbDm76ITVXx958v-IhmIBlYN9YjR46oXMGHlHDZIjBcBCwbUO4PKEE9qkHzi4a3HJswptDo1abiEQIl5Qlsan-jiVmeFzQPPfK4lof2b8UsZRFsYB5hA0lpCRC5fdhiLr9aBHc8NmQphe82MsWdWqm2Z-vpDcb2jNzplug-2Vn_2OjnYCuv5YFdHAdk9814-uniN9aUwu8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Human+Connectome+Project%27s+neuroimaging+approach&rft.jtitle=Nature+neuroscience&rft.au=Glasser%2C+Matthew+F&rft.au=Smith%2C+Stephen+M&rft.au=Marcus%2C+Daniel+S&rft.au=Andersson%2C+Jesper+L+R&rft.date=2016-09-01&rft.issn=1097-6256&rft.volume=19&rft.issue=9&rft.spage=1175&rft.epage=1187&rft_id=info:doi/10.1038%2Fnn.4361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon