Antioxidative Effects of Black Tea Theaflavins and Thearubigin on Lipid Peroxidation of Rat Liver Homogenates Induced by tert-Butyl Hydroperoxide
The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates.The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by the...
Saved in:
Published in | Biological & pharmaceutical bulletin Vol. 17; no. 1; pp. 146 - 149 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Pharmaceutical Society of Japan
01.01.1994
Maruzen Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0918-6158 1347-5215 |
DOI | 10.1248/bpb.17.146 |
Cover
Abstract | The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates.The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by theaflavin (TF), theaflavin monogallate-A (TFM-A), and TR were 4.88×10-4, 4.09×10-4, and 4.95×10-4% (w/v), respectively. The antioxidative activity of these compounds was higher than that of glutathione, L(+)-ascorbic acid, dl-α-tocopherol, butylated hydroxytoluene, butyl hydroxyanisole, etc., but was lower than the activity of (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate. As to the IC50 in molarity, the antioxidative activity of TFM-A was the second highest among all the samples used in this study.The antioxidative activity of lyophilized tea infusions was compared. The activity of black tea was about as potent as that of green tea.These results suggest that black tea infusion containing TFs and TR could inhibit lipid peroxidation in biological conditions in the same way as green tea infusion containing epicatechins. |
---|---|
AbstractList | The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates.The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by theaflavin (TF), theaflavin monogallate-A (TFM-A), and TR were 4.88×10-4, 4.09×10-4, and 4.95×10-4% (w/v), respectively. The antioxidative activity of these compounds was higher than that of glutathione, L(+)-ascorbic acid, dl-α-tocopherol, butylated hydroxytoluene, butyl hydroxyanisole, etc., but was lower than the activity of (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate. As to the IC50 in molarity, the antioxidative activity of TFM-A was the second highest among all the samples used in this study.The antioxidative activity of lyophilized tea infusions was compared. The activity of black tea was about as potent as that of green tea.These results suggest that black tea infusion containing TFs and TR could inhibit lipid peroxidation in biological conditions in the same way as green tea infusion containing epicatechins. The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates. The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by theaflavin (TF), theaflavin monogallate-A (TFM-A), and TR were 4.88 x 10(-4), 4.09 x 10(-4), and 4.95 x 10(-4%) (w/v), respectively. The anti-oxidative activity of these compounds was higher than that of glutathione, L(+)-ascorbic acid, dl-alpha-tocopherol, butylated hydroxytoluene, butyl hydroxyanisole, etc., but was lower than the activity of (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate. As to the IC50 in molarity, the antioxidative activity of TFM-A was the second highest among all the samples used in this study. The antioxidative activity of lyophilized tea infusions was compared. The activity of black tea was about as potent as that of green tea. These results suggest that black tea infusion containing TFs and TR could inhibit lipid peroxidation in biological conditions in the same way as green tea infusion containing epicatechins. The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates. The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by theaflavin (TF), theaflavin monogallate-A (TFM-A), and TR were 4.88 x 10(-4), 4.09 x 10(-4), and 4.95 x 10(-4%) (w/v), respectively. The anti-oxidative activity of these compounds was higher than that of glutathione, L(+)-ascorbic acid, dl-alpha-tocopherol, butylated hydroxytoluene, butyl hydroxyanisole, etc., but was lower than the activity of (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate. As to the IC50 in molarity, the antioxidative activity of TFM-A was the second highest among all the samples used in this study. The antioxidative activity of lyophilized tea infusions was compared. The activity of black tea was about as potent as that of green tea. These results suggest that black tea infusion containing TFs and TR could inhibit lipid peroxidation in biological conditions in the same way as green tea infusion containing epicatechins.The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl hydroperoxide-induced lipid peroxidation of rat liver homogenates. The concentrations which produced 50% inhibition of lipid peroxidation (IC50) by theaflavin (TF), theaflavin monogallate-A (TFM-A), and TR were 4.88 x 10(-4), 4.09 x 10(-4), and 4.95 x 10(-4%) (w/v), respectively. The anti-oxidative activity of these compounds was higher than that of glutathione, L(+)-ascorbic acid, dl-alpha-tocopherol, butylated hydroxytoluene, butyl hydroxyanisole, etc., but was lower than the activity of (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate. As to the IC50 in molarity, the antioxidative activity of TFM-A was the second highest among all the samples used in this study. The antioxidative activity of lyophilized tea infusions was compared. The activity of black tea was about as potent as that of green tea. These results suggest that black tea infusion containing TFs and TR could inhibit lipid peroxidation in biological conditions in the same way as green tea infusion containing epicatechins. |
Author | HARA, Yukihiko TOMITA, Isao SANO, Mitsuaki YOSHINO, Kyoji |
Author_xml | – sequence: 1 fullname: SANO, Mitsuaki – sequence: 1 fullname: HARA, Yukihiko – sequence: 1 fullname: YOSHINO, Kyoji – sequence: 1 fullname: TOMITA, Isao |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4068836$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/8148805$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcFr2zAYxc3o6NJul90HgpUdBs4kW7bkYxvaphDYGNlZyNKnVJkjZ5Iclj9j__GUxMuh7CIhvd97PL7vKrtwvYMse0_wlBSUf2m37ZSwKaH1q2xCSsryqiDVRTbBDeF5TSr-JrsKYY0xZrgoL7NLTijnuJpkf25dtP1vq2W0O0D3xoCKAfUG3XVS_URLkGj5DNJ0cmddQNLp49sPrV1Zh3qHFnZrNfoGfoxJX8n-Xcak7MCjeb_pV-BkhICenB4UaNTuUQQf87sh7js032vfb08B8DZ7bWQX4N14X2c_Hu6Xs3m--Pr4NLtd5KrGRcxrho02lSFVRWqJi4IT0CUzJSGGYaY5byujTEElVC1pGG5pKwtFC11zyVRVXmefTrlb3_8aIESxsUFB10kH_RAEq2nByrpJ4McX4LofvEvdBKG0IalOxRL1YaSGdgNabL3dSL8X46STfjPqMijZGS-dsuGMUVxzXtYJwydM-T4ED0YoG49DjV7aThAsDisXaeWCsFTgYPn8wvIv9L_w7ASvQ5QrOKPSR6s6OKCkacojPh60PqvqWXoBrvwLxFvFGg |
CitedBy_id | crossref_primary_10_1155_2016_7573131 crossref_primary_10_1016_j_fct_2009_03_005 crossref_primary_10_1002_cbdv_202300561 crossref_primary_10_1016_j_tifs_2023_01_013 crossref_primary_10_1007_BF03183525 crossref_primary_10_1016_j_nbd_2005_12_008 crossref_primary_10_1097_FBP_0000000000000071 crossref_primary_10_1248_bpb_25_1320 crossref_primary_10_3389_fpls_2018_00211 crossref_primary_10_1016_j_molcatb_2008_05_016 crossref_primary_10_1080_15376510701624050 crossref_primary_10_1007_s10534_018_0153_z crossref_primary_10_1016_j_ijbiomac_2011_01_003 crossref_primary_10_1007_BF02435010 crossref_primary_10_1021_ja970120f crossref_primary_10_1016_j_foodchem_2007_05_006 crossref_primary_10_1016_j_fbio_2023_102911 crossref_primary_10_1080_10408398_2011_594184 crossref_primary_10_1080_10408399709527802 crossref_primary_10_1016_j_fct_2006_03_014 crossref_primary_10_1039_C6FO00401F crossref_primary_10_1021_jf0258757 crossref_primary_10_1016_S0891_5849_97_00276_1 crossref_primary_10_1021_jf0507442 crossref_primary_10_1021_jf010875c crossref_primary_10_1515_DMDI_2000_16_2_123 crossref_primary_10_1016_j_proche_2014_12_016 crossref_primary_10_1080_01635589709514595 crossref_primary_10_1016_S0040_4039_03_01382_0 crossref_primary_10_1111_j_1745_4522_2004_tb00263_x crossref_primary_10_1016_S0014_5793_03_01432_7 crossref_primary_10_1155_2018_3549312 crossref_primary_10_1016_j_fct_2007_10_027 crossref_primary_10_1007_BF02931232 crossref_primary_10_1111_1750_3841_14846 crossref_primary_10_11301_jsfe_23646 crossref_primary_10_1016_S0271_5317_98_00089_X crossref_primary_10_3390_molecules22030401 crossref_primary_10_1016_j_febslet_2006_02_052 crossref_primary_10_1111_j_1365_3083_2012_02729_x crossref_primary_10_1111_j_1751_1097_1999_tb08263_x crossref_primary_10_1155_2014_480258 crossref_primary_10_3358_shokueishi_56_144 crossref_primary_10_1007_s00421_005_1402_8 crossref_primary_10_1002_biof_5520130121 crossref_primary_10_1016_j_foodres_2017_09_086 crossref_primary_10_1021_jf025680z crossref_primary_10_1080_16546628_2017_1334484 crossref_primary_10_1021_jf0211276 crossref_primary_10_1271_bbb_69_1288 crossref_primary_10_1002_ejlt_200500330 crossref_primary_10_1046_j_1365_2036_2000_00747_x crossref_primary_10_1111_j_1753_4887_1996_tb03819_x crossref_primary_10_1016_j_procbio_2017_02_002 crossref_primary_10_1248_jhs_51_248 crossref_primary_10_1039_c3fo60392j crossref_primary_10_1038_s41598_018_20174_x crossref_primary_10_1016_j_bmc_2003_10_024 crossref_primary_10_1016_j_tifs_2005_02_004 crossref_primary_10_1080_10408399709527798 crossref_primary_10_5650_jos_50_599 crossref_primary_10_1016_j_foodchem_2017_07_086 crossref_primary_10_3390_beverages5030048 crossref_primary_10_1002_jcb_240630718 crossref_primary_10_1046_j_1440_1746_2002_02718_x crossref_primary_10_1207_S15327914NC381_12 crossref_primary_10_1021_jf072236t crossref_primary_10_1016_j_etp_2011_08_003 crossref_primary_10_1016_S0955_2863_98_00103_X crossref_primary_10_1089_aid_2012_0084 crossref_primary_10_1016_j_watres_2020_116148 crossref_primary_10_1271_bbb_67_396 crossref_primary_10_1021_jf950652k crossref_primary_10_1002_jsfa_4035 crossref_primary_10_1016_j_plantsci_2003_12_010 crossref_primary_10_1080_10408398_2020_1762161 crossref_primary_10_1093_jn_131_9_2248 crossref_primary_10_1089_met_2008_0061 crossref_primary_10_3892_mmr_2019_10755 crossref_primary_10_1186_s12906_015_0957_0 crossref_primary_10_1093_chromsci_bmw078 crossref_primary_10_1016_j_fct_2008_02_016 crossref_primary_10_1016_S1383_5742_99_00057_5 crossref_primary_10_1038_oby_2008_505 crossref_primary_10_3390_antiox10050760 crossref_primary_10_1089_jmf_1999_2_199 crossref_primary_10_1016_j_tiv_2005_10_010 crossref_primary_10_3109_01480545_2015_1070170 crossref_primary_10_1016_j_chroma_2011_08_056 crossref_primary_10_1016_j_fct_2004_08_009 crossref_primary_10_3390_molecules21040474 crossref_primary_10_1016_j_bbagen_2005_02_012 crossref_primary_10_1093_ajcn_81_1_122 crossref_primary_10_1021_jf970470l crossref_primary_10_1016_j_fct_2009_04_033 crossref_primary_10_1017_S0007114507838992 crossref_primary_10_3390_app15010330 crossref_primary_10_1248_jhs_51_161 crossref_primary_10_1079_BJN19980007 crossref_primary_10_1093_bib_bbw055 crossref_primary_10_1155_2022_1977762 crossref_primary_10_1002_jsfa_2077 crossref_primary_10_1016_j_theriogenology_2019_01_010 crossref_primary_10_1016_j_crci_2013_07_015 crossref_primary_10_1021_jf0633342 crossref_primary_10_1016_j_mrfmmm_2005_10_001 crossref_primary_10_5650_jos_50_711 crossref_primary_10_1021_jf021066b crossref_primary_10_3136_nskkk_52_167 crossref_primary_10_3390_molecules15053683 crossref_primary_10_5650_jos_50_717 crossref_primary_10_1002_biof_5520260202 crossref_primary_10_1016_S0300_483X_02_00242_1 crossref_primary_10_1016_S0887_2333_99_00071_5 crossref_primary_10_1021_jf020252e |
ContentType | Journal Article |
Copyright | The Pharmaceutical Society of Japan 1994 INIST-CNRS Copyright Japan Science and Technology Agency 1994 |
Copyright_xml | – notice: The Pharmaceutical Society of Japan – notice: 1994 INIST-CNRS – notice: Copyright Japan Science and Technology Agency 1994 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
DOI | 10.1248/bpb.17.146 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 149 |
ExternalDocumentID | 3120297581 8148805 4068836 10_1248_bpb_17_146 article_bpb1993_17_1_17_1_146_article_char_en |
Genre | Journal Article Comparative Study |
GroupedDBID | --- .55 2WC 53G 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JSF JSH KQ8 OK1 P2P RJT RZJ TKC TR2 VH1 X7M ZXP 1CY 23N AAYXX ABJNI BKOMP CITATION JMI MOJWN XSB ZY4 IQODW ABTAH CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c602t-670fdf5f15516a02281ed37f311f707d88b5fcf24ae5b1970b4ba2c42d68a7c53 |
ISSN | 0918-6158 |
IngestDate | Fri Jul 11 06:41:06 EDT 2025 Mon Jun 30 10:05:31 EDT 2025 Sat Sep 28 08:39:41 EDT 2024 Mon Jul 21 09:13:18 EDT 2025 Tue Jul 01 02:29:03 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Wed Sep 03 06:32:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rat Digestive system Pharmacognosy Liver Rodentia Lipids Antioxidant In vitro Biological activity Vertebrata Mammalia Animal Plant origin Theaflavin Tea extract Peroxidation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c602t-670fdf5f15516a02281ed37f311f707d88b5fcf24ae5b1970b4ba2c42d68a7c53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb1993/17/1/17_1_146/_article/-char/en |
PMID | 8148805 |
PQID | 1449160257 |
PQPubID | 1966364 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_76427369 proquest_journals_1449160257 pubmed_primary_8148805 pascalfrancis_primary_4068836 crossref_citationtrail_10_1248_bpb_17_146 crossref_primary_10_1248_bpb_17_146 jstage_primary_article_bpb1993_17_1_17_1_146_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1994-01-01 |
PublicationDateYYYYMMDD | 1994-01-01 |
PublicationDate_xml | – month: 01 year: 1994 text: 1994-01-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo – name: Japan |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 1994 |
Publisher | The Pharmaceutical Society of Japan Maruzen Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Maruzen – name: Japan Science and Technology Agency |
References | 3) W. Bors, M. Saran, Free Radic. Res. Commun., 2, 289 (1987). 16) F. Masugi, T. Nakamura, Vitamins, 51, 21 (1977). 6) H. Tanizawa, S. Toda, Y. Sazuka, T. Taniyama, T. Hayashi, S. Arichi, Y. Takino, Chem. Pharm. Bull., 32, 2011 (1984). 8) T. Okuda, Y. Kimura, T. Yoshida, T. Hatano, H. Okuda, S. Arichi, Chem. Pharm. Bull., 31, 1625 (1983). 10) M. Sano, Seiyaku Kojo, 7, 780 (1987). 1) S. Terada, Y. Maeda, T. Masui, Y. Suzuki, K. Ina, Nippon Shokuhin Kogyo Gakkaishi, 34, 20 (1987). 7) A. Valenzuela, R. Guerra, L.A. Videla, Planta Med., 48, 438 (1986). 13) E.A.H. Roberts, M. Myers, J. Sci. Food Agric., 10, 176 (1959). 17) M. Sano, M. Abe, K. Yoshino, T. Matsuura, T. Sekino, S. Saito, I. Tomita, Chem. Pharm. Bull., 34, 174 (1986). 18) Y. Fujita, K. Komagoe, Y. Sasaki, I. Uehara, T. Okuda, T. Yoshida, Yakugaku Zasshi, 107, 17 (1987). 2) K. Yoshino, Y. Hara, Numazu College of Technology Research Annual, 27, 87 (1992). 4) I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, J. Cillard, Biochem. Pharmacol., 45, 13 (1993). 11) M. Sano, Y. Takahashi, C. Komatsu, Y. Nakamura, K. Shimoi, I. Tomita, I. Oguni, K. Nasu, K. Obata, H. Konomoto, T. Masuzawa, N. Suzuki, "Proceedings of the International Symposium on Tea Science (ISTS)," ed. by the Organizing Committee of ISTS, Kurofune Printing Co., Ltd., Shizuoka, 1991, pp. 304-308. 19) P.D. Collier, T. Bryce, R. Mallows, P.E. Thomas, Tetrahedron, 29, 125 (1973). 12) E.A.H. Roberts, J. Sci. Food Agric., 8, 72 (1957). 15) D.L. Whitehead, C.M. Temple, J. Sci. Food Agric., 58, 149 (1992). 14) L.A. Videla, M.I. Villena, G. Donoso, C. Giulivi, A. Boveris, Biochem. J., 223, 879 (1984). 5) T. Matsuzaki, Y. Hara, Nippon Nogei Kagaku Kaishi, 59, 129 (1985). 9) M. Namiki, T. Osawa, Basic Life Science, 39, 131 (1986). |
References_xml | – reference: 12) E.A.H. Roberts, J. Sci. Food Agric., 8, 72 (1957). – reference: 13) E.A.H. Roberts, M. Myers, J. Sci. Food Agric., 10, 176 (1959). – reference: 9) M. Namiki, T. Osawa, Basic Life Science, 39, 131 (1986). – reference: 15) D.L. Whitehead, C.M. Temple, J. Sci. Food Agric., 58, 149 (1992). – reference: 6) H. Tanizawa, S. Toda, Y. Sazuka, T. Taniyama, T. Hayashi, S. Arichi, Y. Takino, Chem. Pharm. Bull., 32, 2011 (1984). – reference: 2) K. Yoshino, Y. Hara, Numazu College of Technology Research Annual, 27, 87 (1992). – reference: 16) F. Masugi, T. Nakamura, Vitamins, 51, 21 (1977). – reference: 7) A. Valenzuela, R. Guerra, L.A. Videla, Planta Med., 48, 438 (1986). – reference: 17) M. Sano, M. Abe, K. Yoshino, T. Matsuura, T. Sekino, S. Saito, I. Tomita, Chem. Pharm. Bull., 34, 174 (1986). – reference: 18) Y. Fujita, K. Komagoe, Y. Sasaki, I. Uehara, T. Okuda, T. Yoshida, Yakugaku Zasshi, 107, 17 (1987). – reference: 3) W. Bors, M. Saran, Free Radic. Res. Commun., 2, 289 (1987). – reference: 4) I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, J. Cillard, Biochem. Pharmacol., 45, 13 (1993). – reference: 11) M. Sano, Y. Takahashi, C. Komatsu, Y. Nakamura, K. Shimoi, I. Tomita, I. Oguni, K. Nasu, K. Obata, H. Konomoto, T. Masuzawa, N. Suzuki, "Proceedings of the International Symposium on Tea Science (ISTS)," ed. by the Organizing Committee of ISTS, Kurofune Printing Co., Ltd., Shizuoka, 1991, pp. 304-308. – reference: 10) M. Sano, Seiyaku Kojo, 7, 780 (1987). – reference: 5) T. Matsuzaki, Y. Hara, Nippon Nogei Kagaku Kaishi, 59, 129 (1985). – reference: 8) T. Okuda, Y. Kimura, T. Yoshida, T. Hatano, H. Okuda, S. Arichi, Chem. Pharm. Bull., 31, 1625 (1983). – reference: 14) L.A. Videla, M.I. Villena, G. Donoso, C. Giulivi, A. Boveris, Biochem. J., 223, 879 (1984). – reference: 19) P.D. Collier, T. Bryce, R. Mallows, P.E. Thomas, Tetrahedron, 29, 125 (1973). – reference: 1) S. Terada, Y. Maeda, T. Masui, Y. Suzuki, K. Ina, Nippon Shokuhin Kogyo Gakkaishi, 34, 20 (1987). |
SSID | ssj0007023 |
Score | 1.8005654 |
Snippet | The antioxidative activity of theaflavins (TFs) and thearubigin (TR) purified from the infusion of black tea leaves was examined using the tert-butyl... |
SourceID | proquest pubmed pascalfrancis crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 146 |
SubjectTerms | Animals antioxidant Antioxidants - pharmacology Biflavonoids Biological and medical sciences Catechin - analogs & derivatives Catechin - pharmacology Chromatography, High Pressure Liquid Dose-Response Relationship, Drug General pharmacology In Vitro Techniques lipid peroxidation Lipid Peroxidation - drug effects Liver - drug effects Liver - metabolism Male Medical sciences Peroxides - pharmacology Pharmacognosy. Homeopathy. Health food Pharmacology. Drug treatments Phenols - pharmacology Plant Proteins - pharmacology Polyphenols rat liver Rats Rats, Wistar Reactive Oxygen Species Tea tea polyphenol tert-Butylhydroperoxide theaflavin thearubigin |
Title | Antioxidative Effects of Black Tea Theaflavins and Thearubigin on Lipid Peroxidation of Rat Liver Homogenates Induced by tert-Butyl Hydroperoxide |
URI | https://www.jstage.jst.go.jp/article/bpb1993/17/1/17_1_146/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/8148805 https://www.proquest.com/docview/1449160257 https://www.proquest.com/docview/76427369 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 1994/01/15, Vol.17(1), pp.146-149 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF5qFRREtLV42uqCUpCaMy-bbA78cpbKKWiltNBvx-4modeXy9FLxPgv_Ev-Mmd29zY5W6H6JVySnQm5eTI7Mzs7Q8irQCmfh1HusSgZeEwo5aVxwT2WSRB4kcWJ1NkWX5LREft0HB-vrPzqZC3VleyrH9fuK_kfqcI1kCvukv0HyTqmcAF-g3zhCBKG441kPMRUxe-TzBTv3mtTM3RYDqs1Y0aFKM7FN8yEwRg5nl_WErth4ToBtq7OMA3esjHW44Go4A78HTuj8qKEx6NBuoNdPpQ1WPPLyntfV835zqjJMJ6vGSylFZkulxoDCK_ZyVLwXHbLfqPW2cfA2b7WO015OnFwGx4M9TRRn01OJmeliwgNzeDPk2pegxXsIhD7oIw1xce5KNuYhilO7GIaNjgZpODUmqLu_dyo5ohxcJvN5k-nu_kVjBpFvAhs5vZscO10ETLcAiFnsh_wviPp1uT-Y650GYzoOwH1GGjHAUcH6ha5HXKuUwVGo9YF475uMejeyJbIBdq37XOXjKI7p-AXYMGH-zMxB4kUpsPK310gbQodPiQPrA9DhwaQj8hKPl0j60NASXnR0G2qs4r1cs0aubu76Ci4Rra_Ggw0b-hhu-1v_kaTuArqzTr5uQRsaoFNy4JqYFMANu0AmwKwaQfYtJxSDWzaBTaSA7CpBjbtAJtaYFPZ0BbYdAnYj8nRh73D3ZFne4d4KvHDyku4X2RFXOiFYIFFnoI8i3gRBUHBfZ6lqYwLVYRM5LEMBtyXTIpQsTBLUsFVHG2Q1Wk5zZ8QGoQSpmKViZAHTKYDmTE14MA8F9zP47hHXi-EN1a2sD72dzkfXwVJj7x0Y2emnMy1o94ZDLgxVsXgGMy41ePsAYsK2Lu4URP0Yo9sLSHHcWHYYSoC9psLJI2tNpsDHwaeInhAvEdeuNsAEFxAFNO8rOdjnjDwdpJBj2wY_DnOaYCGQPz0Rq_3jNxrP_pNslpd1vkWmPaVfK6_nd-vXP-t |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidative+Effects+of+Black+Tea+Theaflavins+and+Thearubigin+on+Lipid+Peroxidation+of+Rat+Liver+Homogenates+Induced+by+tert-Butyl+Hydroperoxide&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=YOSHINO%2C+Kyoji&rft.au=HARA%2C+Yukihiko&rft.au=SANO%2C+Mitsuaki&rft.au=TOMITA%2C+Isao&rft.date=1994-01-01&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=17&rft.issue=1&rft.spage=146&rft.epage=149&rft_id=info:doi/10.1248%2Fbpb.17.146&rft.externalDBID=n%2Fa&rft.externalDocID=10_1248_bpb_17_146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |