Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker
Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as Pseudomonas syringae pv. actinidiae (Psa). This bacterium can colonize both male and female Actinidia flowers, causing flower browning and fall, a...
Saved in:
Published in | Horticulture research Vol. 5; no. 1; pp. 56 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2018
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as
Pseudomonas syringae
pv.
actinidiae
(Psa). This bacterium can colonize both male and female
Actinidia
flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation.
The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators (
Apis mellifera
and
Bombus terrestris
) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen’s transmission via pollinators is contrasted by its short survival in the hive.
Kiwi fruit: Insights to combat bacterial canker
Studying the transmission pathways of a bacterium that infects and kills kiwi fruit plants suggests that modified plant protection strategies could minimize the risk of disease. Researchers in Italy and New Zealand, led by Francesco Spinelli at the University of Bologna, investigated
Pseudomonas syringae pv. Actinidiae
(Psa), which causes kiwi fruit bacterial canker. This has been a major problem worldwide since a pandemic outbreak in 2008. The results show that flower tissues, especially the stigmata which receive transmitted pollen, are crucial sites allowing Psa to grow and penetrate into the plants. Evidence is presented of bacterial transmission via the pollen dispersed from plants that do not themselves show signs of infection. Suggested new control strategies include inspecting and treating pollen-donating plants, and using biological agents to compete with Psa growing inside kiwi fruit flowers. |
---|---|
AbstractList | Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as
Pseudomonas syringae
pv.
actinidiae
(Psa). This bacterium can colonize both male and female
Actinidia
flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation.
The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators (
Apis mellifera
and
Bombus terrestris
) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen’s transmission via pollinators is contrasted by its short survival in the hive.
Kiwi fruit: Insights to combat bacterial canker
Studying the transmission pathways of a bacterium that infects and kills kiwi fruit plants suggests that modified plant protection strategies could minimize the risk of disease. Researchers in Italy and New Zealand, led by Francesco Spinelli at the University of Bologna, investigated
Pseudomonas syringae pv. Actinidiae
(Psa), which causes kiwi fruit bacterial canker. This has been a major problem worldwide since a pandemic outbreak in 2008. The results show that flower tissues, especially the stigmata which receive transmitted pollen, are crucial sites allowing Psa to grow and penetrate into the plants. Evidence is presented of bacterial transmission via the pollen dispersed from plants that do not themselves show signs of infection. Suggested new control strategies include inspecting and treating pollen-donating plants, and using biological agents to compete with Psa growing inside kiwi fruit flowers. Kiwi fruit: Insights to combat bacterial canker Studying the transmission pathways of a bacterium that infects and kills kiwi fruit plants suggests that modified plant protection strategies could minimize the risk of disease. Researchers in Italy and New Zealand, led by Francesco Spinelli at the University of Bologna, investigated Pseudomonas syringae pv. Actinidiae (Psa), which causes kiwi fruit bacterial canker. This has been a major problem worldwide since a pandemic outbreak in 2008. The results show that flower tissues, especially the stigmata which receive transmitted pollen, are crucial sites allowing Psa to grow and penetrate into the plants. Evidence is presented of bacterial transmission via the pollen dispersed from plants that do not themselves show signs of infection. Suggested new control strategies include inspecting and treating pollen-donating plants, and using biological agents to compete with Psa growing inside kiwi fruit flowers. Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as pv. (Psa). This bacterium can colonize both male and female flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation. The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators ( and ) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen's transmission via pollinators is contrasted by its short survival in the hive. Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as Pseudomonas syringae pv. actinidiae (Psa). This bacterium can colonize both male and female Actinidia flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation.The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators (Apis mellifera and Bombus terrestris) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen’s transmission via pollinators is contrasted by its short survival in the hive. Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as Pseudomonas syringae pv. actinidiae (Psa). This bacterium can colonize both male and female Actinidia flowers, causing flower browning and fall, and systemic invasion of the host plant, eventually leading to its death. However, the process of flower colonization and penetration into the host tissues has not yet been fully elucidated. In addition, the presence of Psa in the pollen from infected flowers, and the role of pollination in the spread of Psa requires confirmation. The present study employed a Psa strain constitutively expressing the fluorescent GFPuv protein, to visualize in vivo flower colonization. Microscopy observations were performed by means of confocal laser scanning and wide-field fluorescent microscopy, and were coupled with the study of Psa population dynamics by quantitative PCR (q-PCR). The pathogen was shown to colonize stigmata, move along the stylar furrow, and penetrate the receptacles via the style or nectarhodes. Once the receptacle was invaded, the pathogen migrated along the flower pedicel and became systemic. Psa was also able to colonize the anthers epiphytically and endophytically. Infected male flowers produced contaminated pollen, which could transmit Psa to healthy plants. Finally, pollinators ( Apis mellifera and Bombus terrestris ) were studied in natural conditions, showing that, although they can be contaminated with Psa, the pathogen’s transmission via pollinators is contrasted by its short survival in the hive. Studying the transmission pathways of a bacterium that infects and kills kiwi fruit plants suggests that modified plant protection strategies could minimize the risk of disease. Researchers in Italy and New Zealand, led by Francesco Spinelli at the University of Bologna, investigated Pseudomonas syringae pv. Actinidiae (Psa), which causes kiwi fruit bacterial canker. This has been a major problem worldwide since a pandemic outbreak in 2008. The results show that flower tissues, especially the stigmata which receive transmitted pollen, are crucial sites allowing Psa to grow and penetrate into the plants. Evidence is presented of bacterial transmission via the pollen dispersed from plants that do not themselves show signs of infection. Suggested new control strategies include inspecting and treating pollen-donating plants, and using biological agents to compete with Psa growing inside kiwi fruit flowers. |
ArticleNumber | 56 |
Author | Buriani, Giampaolo Tacconi, Gianni Cellini, Antonio Spinelli, Francesco Mauri, Sofia Kay, Callum Donati, Irene |
Author_xml | – sequence: 1 givenname: Irene surname: Donati fullname: Donati, Irene organization: Department of Agricultural and Food Sciences - DISTAL, Alma Mater Studiorum—University of Bologna – sequence: 2 givenname: Antonio surname: Cellini fullname: Cellini, Antonio organization: Department of Agricultural and Food Sciences - DISTAL, Alma Mater Studiorum—University of Bologna – sequence: 3 givenname: Giampaolo orcidid: 0000-0002-1414-1168 surname: Buriani fullname: Buriani, Giampaolo organization: Department of Agricultural and Food Sciences - DISTAL, Alma Mater Studiorum—University of Bologna – sequence: 4 givenname: Sofia surname: Mauri fullname: Mauri, Sofia organization: Department of Agricultural and Food Sciences - DISTAL, Alma Mater Studiorum—University of Bologna – sequence: 5 givenname: Callum surname: Kay fullname: Kay, Callum organization: ZESPRI GLOBAL Supply – sequence: 6 givenname: Gianni surname: Tacconi fullname: Tacconi, Gianni organization: Consiglio per la Ricerca e la Sperimentazione in Agricoltura—Genomics Research Centre – sequence: 7 givenname: Francesco surname: Spinelli fullname: Spinelli, Francesco email: francesco.spinelli3@unibo.it organization: Department of Agricultural and Food Sciences - DISTAL, Alma Mater Studiorum—University of Bologna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30393538$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaUfwAZZYkuKH7GTbJBQxaNSJbqAtXXt3Mx4mrGDnXQ0v8EX4zCltEiwsGz5nnN8r895Xhz54LEoXjJ6zqho3qaKVaIpKcuLyqZUT4oTTiUva16rowfn4-IspQ2llMmKC1k_K44FFa2QojkpflzDtN7BPpHQk34IO4zE-R7t5IIn4DsyhmFAX26xczBhRzqXRoxpKWfKdcK5C9vgIZG0j86vAMl4e04gK3iXOfiGTGskFuYEA4EV-mkh3rid6-PsJmIyFKPLRQv-BuOL4mkPQ8Kzu_20-Pbxw9eLz-XVl0-XF--vSqson0phDPSdASp6VVPLuZQAtcJOqYpDU3cVw1ryCiqUxrS0rWxrsc0QY5RpqDgtLg-6XYCNHqPbQtzrAE7_ughxpSFOzg6oacvAsF72RtSV7FjTiIZaClY1dYU1ZK13B61xNvmnbB4ywvBI9HHFu7VehVutOKOslVng9Z1ADN9nTJPehDn6PL_mLJtYKdayjHr18Jl7_d9-ZgA7AGwMKUXs7yGM6iU2-hAbnWOjl9holTn1XxzrJlj8z5264b9MfmCmcXEe45-m_036CXeU2W0 |
CitedBy_id | crossref_primary_10_1007_s10482_024_02013_4 crossref_primary_10_1007_s11104_022_05699_5 crossref_primary_10_1371_journal_pone_0269343 crossref_primary_10_1111_1462_2920_15296 crossref_primary_10_1007_s00203_021_02230_9 crossref_primary_10_1002_anie_202206961 crossref_primary_10_1007_s00248_019_01459_8 crossref_primary_10_3390_microorganisms8071022 crossref_primary_10_3389_fpls_2023_1286199 crossref_primary_10_1002_1438_390X_12110 crossref_primary_10_1038_s42003_021_02467_6 crossref_primary_10_1080_00380768_2020_1842139 crossref_primary_10_3390_ijms23147643 crossref_primary_10_1111_1758_2229_12760 crossref_primary_10_2903_sp_efsa_2020_EN_1986 crossref_primary_10_3390_plants11162154 crossref_primary_10_3390_v14122704 crossref_primary_10_1016_j_scienta_2021_110533 crossref_primary_10_1007_s13313_021_00783_3 crossref_primary_10_1002_ecy_4306 crossref_primary_10_1186_s40793_024_00656_4 crossref_primary_10_1079_planthealthcases_2024_0022 crossref_primary_10_17660_ActaHortic_2022_1332_13 crossref_primary_10_1016_j_cois_2020_11_002 crossref_primary_10_17660_ActaHortic_2019_1243_19 crossref_primary_10_1007_s00248_022_01965_2 crossref_primary_10_1016_j_hpj_2024_05_007 crossref_primary_10_3390_v13040631 crossref_primary_10_3390_agriculture10040119 crossref_primary_10_1002_ps_7861 crossref_primary_10_1186_s42483_023_00218_5 crossref_primary_10_3389_fmicb_2020_02095 crossref_primary_10_3390_ijms241411541 crossref_primary_10_30843_nzpp_2019_72_252 crossref_primary_10_1111_ppa_13489 crossref_primary_10_3389_fpls_2018_01563 crossref_primary_10_1094_PDIS_01_23_0005_RE crossref_primary_10_1021_acs_jafc_3c02653 crossref_primary_10_3390_microorganisms8060837 crossref_primary_10_1016_j_agwat_2020_106403 crossref_primary_10_1038_s41396_018_0319_2 crossref_primary_10_1099_jmm_0_001115 crossref_primary_10_1111_nph_20369 crossref_primary_10_1002_ange_202206961 crossref_primary_10_3390_plants10071273 crossref_primary_10_1111_tpj_14814 crossref_primary_10_1007_s00425_020_03549_1 crossref_primary_10_1016_j_foodres_2023_113233 crossref_primary_10_1002_jpln_202300081 crossref_primary_10_3390_agronomy12051113 crossref_primary_10_1021_acs_jafc_2c02037 crossref_primary_10_3390_ijms24054597 |
Cites_doi | 10.1007/s10658-005-4511-7 10.1080/01140671.2010.512624 10.3186/jjphytopath.59.460 10.1094/Phyto-83-478 10.1111/j.1439-0434.1989.tb04499.x 10.1111/j.1744-7348.1988.tb02044.x 10.1111/j.1365-3059.1994.tb01627.x 10.1111/aab.12001 10.1146/annurev-phyto-080516-035530 10.1094/PHYTO.2000.90.12.1352 10.1007/s13313-014-0306-7 10.1111/ele.12257 10.17660/ActaHortic.2011.913.61 10.1016/j.micinf.2010.03.002 10.1093/jxb/46.2.263 10.1111/j.1439-0434.1997.tb00417.x 10.1080/01140671.2001.9514160 10.1094/PDIS-03-11-0195 10.1007/s13314-011-0023-9 10.1080/00288233.1980.10417876 10.1080/01140671.1991.10422880 10.1111/ppa.12082 10.3186/jjphytopath.55.427 10.5197/j.2044-0588.2010.022.010 10.1111/j.1439-0434.2009.01550.x 10.1006/anbo.1998.0615 10.3233/JBR-140073 10.1111/j.1365-3059.1994.tb01654.x 10.1017/CBO9780511525476.001 10.1071/DN09014 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.1038/s41438-018-0058-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology |
EISSN | 2052-7276 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_091ab1f5fb3745d188380c0ac6874e7a PMC6210195 30393538 10_1038_s41438_018_0058_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EC | Seventh Framework Programme (European Union Seventh Framework Programme) grantid: 613678; 613678; 613678; 613678 funderid: https://doi.org/10.13039/501100004963 – fundername: ; grantid: 613678; 613678; 613678; 613678 |
GroupedDBID | 0R~ 3V. 5VS 7X2 7X7 8FE 8FH 8FI 8FJ AAHBH AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ACSMW ADBBV ADRAZ AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMNDL AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0K M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT ROX RPM SNYQT TOX UKHRP AAYXX CITATION PHGZM PHGZT IAG IAO IEP ITC NPM TCJ TGD 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 5PM PUEGO |
ID | FETCH-LOGICAL-c602t-3bbafdba03f670c2255aa76ed6642a87d41e7524a4e5bb9094c9ce9a76bb6b803 |
IEDL.DBID | M48 |
ISSN | 2052-7276 |
IngestDate | Wed Aug 27 00:00:27 EDT 2025 Thu Aug 21 18:12:48 EDT 2025 Wed Aug 13 05:06:33 EDT 2025 Wed Feb 19 02:41:13 EST 2025 Tue Jul 01 03:40:26 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-3bbafdba03f670c2255aa76ed6642a87d41e7524a4e5bb9094c9ce9a76bb6b803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1414-1168 |
OpenAccessLink | https://www.proquest.com/docview/2127646191?pq-origsite=%requestingapplication% |
PMID | 30393538 |
PQID | 2127646191 |
PQPubID | 2041956 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_091ab1f5fb3745d188380c0ac6874e7a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6210195 proquest_journals_2127646191 pubmed_primary_30393538 crossref_primary_10_1038_s41438_018_0058_6 crossref_citationtrail_10_1038_s41438_018_0058_6 springer_journals_10_1038_s41438_018_0058_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Horticulture research |
PublicationTitleAbbrev | Hortic Res |
PublicationTitleAlternate | Hortic Res |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Oxford University Press |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press |
References | Koh, Kim, Jung, Lee, Hur (CR5) 2010; 38 Johnson, Stockwell, Burgett, Sugar, Loper (CR25) 1993; 83 Gonzalez, Coque, Herrero (CR30) 1995; 46 Pusey (CR40) 2000; 90 Biondi (CR35) 2013; 162 Scortichini (CR7) 1994; 43 Vanneste (CR32) 2011; 64 Balestra, Renzi, Mazzaglia (CR4) 2010; 22 Vanneste (CR1) 2013; 66 Gimenez-Ibanez, Rathjen (CR41) 2010; 12 Howpage, Vithanage, Spooner-Hart (CR29) 1998; 81 CR18 McArt, Koch, Irwin, Adler (CR26) 2014; 17 Gallelli, Talocci, L’Aurora, Loreti (CR36) 2011; 50 Mansvelt, Hattingh (CR22) 1987; 65 CR38 Young, Cheesmur, Welham, Henshall (CR15) 1988; 112 Vanneste (CR6) 2011; 95 Vanneste (CR12) 2017; 55 Ferrante (CR14) 2012; 94 Stefani, Giovanardi (CR33) 2011; 50 Testolin, Vizzotto, Costa (CR28) 1991; 19 Spinelli, Ciampolini, Cresti, Geider, Costa (CR24) 2005; 113 Wilson, Epton, Sigee (CR23) 1989; 127 Ferrante, Scortichini (CR9) 2009; 157 Spadaro (CR10) 2010; 66 CR3 Pattemore, Goodwin, McBrydie, Hoyte, Vanneste (CR45) 2014; 43 Hopping, Jerram (CR31) 1980; 23 Balestra, Mazzaglia, Quattrucci, Renzi, Rossetti (CR8) 2009; 4 Balestra (CR42) 2004; 66 Everett, Henshall (CR16) 1994; 43 Howpage, Spooner-Hart, Vithanage (CR27) 2001; 29 Gallelli, Talocci, Pilotti, Loreti (CR39) 2014; 63 Spinelli, Donati, Vanneste, Costa, Costa (CR13) 2011; 913 Ark (CR19) 1944; 34 Everett (CR34) 2012; 65 Serizawa, Ichikawa (CR43) 1993; 59 Serizawa, Ichikawa, Takikawa, Tsuyumu, Goto (CR44) 1989; 55 Wilson, Epton, Sigee (CR21) 1989; 127 Everett (CR11) 2011; 6 Ercolani (CR20) 1962; 2 Balestra, Varvaro (CR17) 1997; 145 Donati (CR2) 2014; 4 Tontou, Giovanardi, Stefani (CR37) 2014; 53 JL Vanneste (58_CR6) 2011; 95 LE Mansvelt (58_CR22) 1987; 65 JL Vanneste (58_CR1) 2013; 66 D Spadaro (58_CR10) 2010; 66 A Gallelli (58_CR39) 2014; 63 KR Everett (58_CR11) 2011; 6 GM Balestra (58_CR8) 2009; 4 GB Balestra (58_CR17) 1997; 145 R Tontou (58_CR37) 2014; 53 M Scortichini (58_CR7) 1994; 43 M Wilson (58_CR23) 1989; 127 ME Hopping (58_CR31) 1980; 23 JL Vanneste (58_CR32) 2011; 64 P Ferrante (58_CR14) 2012; 94 E Stefani (58_CR33) 2011; 50 S Serizawa (58_CR44) 1989; 55 DE Pattemore (58_CR45) 2014; 43 F Spinelli (58_CR13) 2011; 913 PL Pusey (58_CR40) 2000; 90 GL Ercolani (58_CR20) 1962; 2 S Serizawa (58_CR43) 1993; 59 GM Balestra (58_CR4) 2010; 22 F Spinelli (58_CR24) 2005; 113 KR Everett (58_CR34) 2012; 65 58_CR38 58_CR18 P Ferrante (58_CR9) 2009; 157 M Wilson (58_CR21) 1989; 127 KR Everett (58_CR16) 1994; 43 S Gimenez-Ibanez (58_CR41) 2010; 12 JM Young (58_CR15) 1988; 112 JL Vanneste (58_CR12) 2017; 55 E Biondi (58_CR35) 2013; 162 GM Balestra (58_CR42) 2004; 66 D Howpage (58_CR29) 1998; 81 MV Gonzalez (58_CR30) 1995; 46 YJ Koh (58_CR5) 2010; 38 KB Johnson (58_CR25) 1993; 83 A Gallelli (58_CR36) 2011; 50 I Donati (58_CR2) 2014; 4 PA Ark (58_CR19) 1944; 34 D Howpage (58_CR27) 2001; 29 R Testolin (58_CR28) 1991; 19 58_CR3 SH McArt (58_CR26) 2014; 17 |
References_xml | – volume: 113 start-page: 395 year: 2005 end-page: 405 ident: CR24 article-title: Influence of stigmatic morphology on flower colonization by and publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-005-4511-7 – volume: 66 start-page: 170 year: 2013 end-page: 177 ident: CR1 article-title: Recent progress on detecting, understanding and controlling pv. a short review publication-title: N. Z. Plant Prot. – ident: CR18 – volume: 38 start-page: 275 year: 2010 end-page: 282 ident: CR5 article-title: Outbreak of bacterial canker on Hort16A ( Planchon) caused by pv. in Korea publication-title: N. Z. J. Crop Hort. Sci. doi: 10.1080/01140671.2010.512624 – volume: 65 start-page: 8 year: 2012 end-page: 18 ident: CR34 article-title: Heat treatments to kill pv. on contaminated pollen publication-title: N.Z. Plant Prot. – volume: 59 start-page: 460 year: 1993 end-page: 468 ident: CR43 article-title: Epidemiology of bacterial canker of kiwifruit. 2. The most suitable times and environments for infection on new canes publication-title: Ann. Phytopathol. Soc. Jpn. doi: 10.3186/jjphytopath.59.460 – volume: 83 start-page: 478 year: 1993 end-page: 484 ident: CR25 article-title: Dispersal of and by honey bees from hives to apple and pear blossoms publication-title: Phytopathology doi: 10.1094/Phyto-83-478 – volume: 127 start-page: 1 year: 1989 end-page: 14 ident: CR21 article-title: infection of hawthorn blossom: I. The anther publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1989.tb04499.x – volume: 112 start-page: 91 year: 1988 end-page: 105 ident: CR15 article-title: Bacterial blight of kiwifruit publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1988.tb02044.x – volume: 43 start-page: 824 year: 1994 end-page: 830 ident: CR16 article-title: Epidemiology and population ecology of kiwifruit blossom blight publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01627.x – volume: 162 start-page: 60 year: 2013 end-page: 70 ident: CR35 article-title: pv. detection in kiwifruit plant tissue and bleeding sap publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12001 – volume: 55 start-page: 377 year: 2017 end-page: 399 ident: CR12 article-title: The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit ( pv. ) publication-title: Ann. Rev. Phytopatology doi: 10.1146/annurev-phyto-080516-035530 – volume: 90 start-page: 1352 year: 2000 end-page: 1357 ident: CR40 article-title: The role of water in epiphytic colonization and infection of pomaceous flowers by publication-title: Phytopathology doi: 10.1094/PHYTO.2000.90.12.1352 – volume: 43 start-page: 571 year: 2014 end-page: 575 ident: CR45 article-title: Evidence of the role of honey bees ( ) as vectors of the bacterial plant pathogen publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-014-0306-7 – volume: 2 start-page: 1 year: 1962 end-page: 10 ident: CR20 article-title: [Individuazione di (Pierce) Dowson in Emilia]. English, Abstract, Conclusion and Figure Captions publication-title: Phytopathol. Mediterr. – volume: 17 start-page: 624 year: 2014 end-page: 636 ident: CR26 article-title: Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens publication-title: Ecol. Lett. doi: 10.1111/ele.12257 – volume: 913 start-page: 461 year: 2011 end-page: 465 ident: CR13 article-title: Real time monitoring of the interactions between pv. and species publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2011.913.61 – volume: 12 start-page: 428 year: 2010 end-page: 437 ident: CR41 article-title: The case for defence: plant versus publication-title: Microbes Infect. doi: 10.1016/j.micinf.2010.03.002 – volume: 46 start-page: 263 year: 1995 end-page: 269 ident: CR30 article-title: Papillar integrity as an indicator of stigmatic receptivity in kiwifruit ( ) publication-title: J. Exp. Bot. doi: 10.1093/jxb/46.2.263 – volume: 66 start-page: 35 year: 2004 end-page: 41 ident: CR42 article-title: [Use of copper formulations to limit bacterial diseases in kiwifruit. (Speciale )] publication-title: Riv. di Fruttic. e di Ortofloric. – volume: 145 start-page: 375 year: 1997 end-page: 378 ident: CR17 article-title: pv. causal agent of disease on floral buds of (A. Chev) Liang et Ferguson in Italy publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1997.tb00417.x – volume: 29 start-page: 51 year: 2001 end-page: 59 ident: CR27 article-title: Influence of honey bee ( ) on kiwifruit pollination and fruit quality under Australian conditions publication-title: N.Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.2001.9514160 – volume: 64 start-page: 246 year: 2011 end-page: 251 ident: CR32 article-title: Detection of pv. in kiwifruit pollen samples publication-title: N.Z. Plant Prot. – volume: 53 start-page: 333 year: 2014 end-page: 339 ident: CR37 article-title: Pollen as a possible pathway for the dissemination of pv. and bacterial canker of kiwifruit publication-title: Phytopathol. Mediterr. – volume: 95 start-page: 1311 year: 2011 ident: CR6 article-title: First report of pv. , the causal agent of bacterial canker of kiwifruit in France publication-title: Plant Dis. doi: 10.1094/PDIS-03-11-0195 – volume: 65 start-page: 25 year: 1987 end-page: 23 ident: CR22 article-title: Scanning electron microscopy of pear blossom invasion by pv. publication-title: Can. J. Bot. – ident: CR3 – ident: CR38 – volume: 50 start-page: 462 year: 2011 end-page: 472 ident: CR36 article-title: Detection of pv. , causal agent of bacterial canker of kiwifruit, from symptomless fruits and twigs, and from pollen publication-title: Phytopathol. Mediterr. – volume: 127 start-page: 15 year: 1989 end-page: 28 ident: CR23 article-title: infection of hawthorn blossom: II. The stigma publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1989.tb04499.x – volume: 6 start-page: 67 year: 2011 end-page: 71 ident: CR11 article-title: First report of pv. causing kiwifruit bacterial canker in New Zealand publication-title: Australas. Plant Dis. Notes doi: 10.1007/s13314-011-0023-9 – volume: 23 start-page: 517 year: 1980 end-page: 521 ident: CR31 article-title: Supplementary pollination of tree fruits. II. Field trials on kiwifruit and Japanese plums publication-title: N.Z. J. Agric. Res. doi: 10.1080/00288233.1980.10417876 – volume: 19 start-page: 381 year: 1991 end-page: 384 ident: CR28 article-title: Kiwifruit pollination by wind and insects in Italy publication-title: N.Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.1991.10422880 – volume: 63 start-page: 264 year: 2014 end-page: 276 ident: CR39 article-title: Real-time and qualitative PCR for detecting pv. isolates causing recent outbreaks of kiwifruit bacterial canker publication-title: Plant Pathol. doi: 10.1111/ppa.12082 – volume: 34 start-page: 329 year: 1944 end-page: 334 ident: CR19 article-title: Further evidence of pollen dissemination of walnut blight publication-title: Phytopathology – volume: 94 start-page: 455 year: 2012 end-page: 461 ident: CR14 article-title: The importance of the main colonization and penetration sites of pv. and prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in central Italy publication-title: J. Plant Pathol. – volume: 55 start-page: 427 year: 1989 end-page: 436 ident: CR44 article-title: Occurrence of bacterial canker of kiwifruit in Japan: description of symptoms, isolation of the pathogen and screening of bactericides publication-title: Ann. Phytopathol. Soc. Jpn. doi: 10.3186/jjphytopath.55.427 – volume: 22 start-page: 10 year: 2010 ident: CR4 article-title: First report of bacterial canker of caused by pv. in Portugal publication-title: New Dis. Rep. doi: 10.5197/j.2044-0588.2010.022.010 – volume: 157 start-page: 768 year: 2009 end-page: 770 ident: CR9 article-title: Identification of pv. as causal agent of bacterial canker of yellow kiwifruit ( Planchon) in Central Italy publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01550.x – volume: 66 start-page: 58 year: 2010 end-page: 59 ident: CR10 article-title: [The arrival of kiwifruit canker in Piedmont] publication-title: Inf. Agrar. – volume: 81 start-page: 697 year: 1998 end-page: 703 ident: CR29 article-title: Pollen tube distribution in the kiwifruit ( A. Chev. C. F. Liang) pistil in relation to its reproductive process publication-title: Ann. Bot. (Lond.) doi: 10.1006/anbo.1998.0615 – volume: 4 start-page: 34 year: 2009 end-page: 36 ident: CR8 article-title: Current status of bacterial canker spread on kiwifruit in Italy publication-title: Aust. Plant Dis. Notes – volume: 4 start-page: 53 year: 2014 end-page: 67 ident: CR2 article-title: New insights on the bacterial canker of kiwifruit ( pv. ) publication-title: J. Berry Res. doi: 10.3233/JBR-140073 – volume: 43 start-page: 1035 year: 1994 end-page: 1038 ident: CR7 article-title: Occurrence of pv. on kiwifruit in Italy publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01654.x – volume: 50 start-page: 489 year: 2011 end-page: 496 ident: CR33 article-title: Dissemination of through pollen and its epiphytic life on leaves and fruits publication-title: Phytopathol. Mediterr. – volume: 4 start-page: 53 year: 2014 ident: 58_CR2 publication-title: J. Berry Res. doi: 10.3233/JBR-140073 – volume: 12 start-page: 428 year: 2010 ident: 58_CR41 publication-title: Microbes Infect. doi: 10.1016/j.micinf.2010.03.002 – volume: 95 start-page: 1311 year: 2011 ident: 58_CR6 publication-title: Plant Dis. doi: 10.1094/PDIS-03-11-0195 – volume: 162 start-page: 60 year: 2013 ident: 58_CR35 publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12001 – ident: 58_CR38 doi: 10.1017/CBO9780511525476.001 – volume: 50 start-page: 489 year: 2011 ident: 58_CR33 publication-title: Phytopathol. Mediterr. – volume: 66 start-page: 170 year: 2013 ident: 58_CR1 publication-title: N. Z. Plant Prot. – volume: 34 start-page: 329 year: 1944 ident: 58_CR19 publication-title: Phytopathology – volume: 53 start-page: 333 year: 2014 ident: 58_CR37 publication-title: Phytopathol. Mediterr. – volume: 6 start-page: 67 year: 2011 ident: 58_CR11 publication-title: Australas. Plant Dis. Notes doi: 10.1007/s13314-011-0023-9 – volume: 29 start-page: 51 year: 2001 ident: 58_CR27 publication-title: N.Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.2001.9514160 – volume: 23 start-page: 517 year: 1980 ident: 58_CR31 publication-title: N.Z. J. Agric. Res. doi: 10.1080/00288233.1980.10417876 – volume: 157 start-page: 768 year: 2009 ident: 58_CR9 publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2009.01550.x – volume: 112 start-page: 91 year: 1988 ident: 58_CR15 publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1988.tb02044.x – volume: 66 start-page: 35 year: 2004 ident: 58_CR42 publication-title: Riv. di Fruttic. e di Ortofloric. – volume: 94 start-page: 455 year: 2012 ident: 58_CR14 publication-title: J. Plant Pathol. – ident: 58_CR18 – ident: 58_CR3 – volume: 66 start-page: 58 year: 2010 ident: 58_CR10 publication-title: Inf. Agrar. – volume: 83 start-page: 478 year: 1993 ident: 58_CR25 publication-title: Phytopathology doi: 10.1094/Phyto-83-478 – volume: 127 start-page: 1 year: 1989 ident: 58_CR21 publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1989.tb04499.x – volume: 63 start-page: 264 year: 2014 ident: 58_CR39 publication-title: Plant Pathol. doi: 10.1111/ppa.12082 – volume: 38 start-page: 275 year: 2010 ident: 58_CR5 publication-title: N. Z. J. Crop Hort. Sci. doi: 10.1080/01140671.2010.512624 – volume: 913 start-page: 461 year: 2011 ident: 58_CR13 publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2011.913.61 – volume: 50 start-page: 462 year: 2011 ident: 58_CR36 publication-title: Phytopathol. Mediterr. – volume: 113 start-page: 395 year: 2005 ident: 58_CR24 publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-005-4511-7 – volume: 90 start-page: 1352 year: 2000 ident: 58_CR40 publication-title: Phytopathology doi: 10.1094/PHYTO.2000.90.12.1352 – volume: 22 start-page: 10 year: 2010 ident: 58_CR4 publication-title: New Dis. Rep. doi: 10.5197/j.2044-0588.2010.022.010 – volume: 64 start-page: 246 year: 2011 ident: 58_CR32 publication-title: N.Z. Plant Prot. – volume: 4 start-page: 34 year: 2009 ident: 58_CR8 publication-title: Aust. Plant Dis. Notes doi: 10.1071/DN09014 – volume: 55 start-page: 427 year: 1989 ident: 58_CR44 publication-title: Ann. Phytopathol. Soc. Jpn. doi: 10.3186/jjphytopath.55.427 – volume: 43 start-page: 1035 year: 1994 ident: 58_CR7 publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01654.x – volume: 43 start-page: 824 year: 1994 ident: 58_CR16 publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01627.x – volume: 43 start-page: 571 year: 2014 ident: 58_CR45 publication-title: Australas. Plant Pathol. doi: 10.1007/s13313-014-0306-7 – volume: 65 start-page: 25 year: 1987 ident: 58_CR22 publication-title: Can. J. Bot. – volume: 145 start-page: 375 year: 1997 ident: 58_CR17 publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1997.tb00417.x – volume: 127 start-page: 15 year: 1989 ident: 58_CR23 publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.1989.tb04499.x – volume: 17 start-page: 624 year: 2014 ident: 58_CR26 publication-title: Ecol. Lett. doi: 10.1111/ele.12257 – volume: 46 start-page: 263 year: 1995 ident: 58_CR30 publication-title: J. Exp. Bot. doi: 10.1093/jxb/46.2.263 – volume: 65 start-page: 8 year: 2012 ident: 58_CR34 publication-title: N.Z. Plant Prot. – volume: 2 start-page: 1 year: 1962 ident: 58_CR20 publication-title: Phytopathol. Mediterr. – volume: 19 start-page: 381 year: 1991 ident: 58_CR28 publication-title: N.Z. J. Crop Hortic. Sci. doi: 10.1080/01140671.1991.10422880 – volume: 81 start-page: 697 year: 1998 ident: 58_CR29 publication-title: Ann. Bot. (Lond.) doi: 10.1006/anbo.1998.0615 – volume: 59 start-page: 460 year: 1993 ident: 58_CR43 publication-title: Ann. Phytopathol. Soc. Jpn. doi: 10.3186/jjphytopath.59.460 – volume: 55 start-page: 377 year: 2017 ident: 58_CR12 publication-title: Ann. Rev. Phytopatology doi: 10.1146/annurev-phyto-080516-035530 |
SSID | ssj0001542357 |
Score | 2.3248696 |
Snippet | Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as... Flowers can provide a protected and nutrient-rich environment to the epiphytic microflora, thus representing a sensible entry point for pathogens such as pv.... Kiwi fruit: Insights to combat bacterial canker Studying the transmission pathways of a bacterium that infects and kills kiwi fruit plants suggests that... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56 |
SubjectTerms | 631/326 631/449/2169 Agriculture Anthers Biomedical and Life Sciences Browning Canker Colonization Ecology Endophytes Flowers Fluorescence Host plants Kiwifruit Life Sciences Microflora Microscopy Pathogens Plant Breeding/Biotechnology Plant Genetics and Genomics Plant reproduction Plant Sciences Plants (botany) Pollen Pollination Pollinators Population dynamics Population studies Proteins Pseudomonas Pseudomonas syringae Receptacles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAoOWR0iIfOAGhTvzMsSCqCgnUA5V6s_yEqFV2tdml6t_gF3fsJEsXKFw45JKMZTsztr-xPd8g9FKEyJpISGlqokpA4DAPykaUopGWW8VMyJs5nz6LkzP28Zyf30r1le6EDfTAw487hPXM2CryaKlk3FdKUUUcMU4oyYLM0AhkbjlTQ3wwSzwu0zEmVYc9S4m-wXOGh3BVio2FKPP1_wlk_n5X8pcD07wOHT9ED0YAiY-Ghj9C90K3g-4ffV2MJBphF_04BVh3Za57PIs4XqY8aHi6dNVh03k8T9sFXZnDRgByYt8mwvC0cZaKnPZh5Wdgn6bH_XVqhgl4_v0tTkEQXQtlwhsMwBE7s-qhLSaFZ6WCF-1VGxerdontQAINH0F1F2HxGJ0df_jy_qQccy-UTpB6WVJrTfTWEBqFJA5GPTdGiuAFOCxGSc-qIHnNDAvc2gacRNe40ICItcIqQp-grW7WhWcIhxrWP-9o4yNgCRsVoDpDYaIQxIvgqgKRSRHajcTkKT_Gpc4H5FTpQXcadKeT7rQo0Kt1kfnAyvE34XdJu2vBRKidX4CZ6dHM9L_MrED7k23ocZT3OrHjCwYuKPTh6WAm61poDnqmqkByw4A2mrH5pWu_ZX5vAW541fACvZ5M7WeVd_Zy73_08jnartMIybGW-2hruViFAwBdS_sij68bPwEpmQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyAdOQKgTO7ZzQgVRVUigHqi0t8jPErXKLptdqv4NfjEzTrKr5dFDLrEt25qx_XnG8w0hr2SIoo6M5aZkOgcEDvugqmUua2Urq4UJyZjz5as8PhWfZ9VsNLj147PKaU9MG7WfO7SRHyATuRQA94v3ix85Zo1C7-qYQuMmuYXUZfikS83U1sZSCWRzmZyZXB_0AtN9w_0ZPlbpXO4cR4m1_19Q8-8Xk3-4TdNpdHSP3B1hJD0c5H6f3AjdA3Ln8Gw5UmmEh-TXCYC7S3PV03mk8QKzodHp6VVHTefpAo0GXZ6CRwB4Ut8ibTiaz7DJSR_Wfg7TNj3tr3AYJtDFz3cUQyG6FtqEtxTgI3Vm3cNYDAZpYcPz9rKNy3W7onaggoZCEOB5WD4ip0efvn08zscMDLmTrFzl3FoTvTWMR6mYg7VfGaNk8BKuLUYrL4qgqlIYESpra7gqutqFGqpYK61m_DHZ6-ZdeEpoKOEU9I7XPgKisFEDtjMctgvJvAyuyAibBNG4kZ4cs2RcNMlNznUzyK4B2TUou0Zm5PWmyWLg5riu8geU7qYi0mqnH_PlWTOu0gbAk7FFrKLlSlS-0Jpr5phxUisRlMnI_qQbzbjW-2armRl5MqjJpheeQp-5zojaUaCdYeyWdO33xPIt4TIOOp2RN5Oqbbv87yyfXT_A5-R2ibqfYin3yd5quQ4vAFSt7Mu0cn4DgMchYA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIcEBQogYJ84AQEnPgR51hWrSokUA9U6s3ys0Stsqtkl2r_Br-YsZNstRSQOOQSz8i2Zmx_Y3s-I_RG-MDqQEiuSyJzQOAwD1a1yEVdGW4k0z5t5nz5Kk7O2Odzfr6DiikXJl3aT5SWaZqebod97Fl8pxsCX_gIl7m4g-5G5vbo1DMxu9lW4SwSuEznl1Te1txagRJR_5_Q5e1Lkr-dlKYF6PgRejgiR3w4tPUx2vHtHnpweNGN7Bl-D907ShzU6yfo5ykgu2u97vE84HAVn0LD072rFuvW4UXcMWjzlDkCqBO7JnKGx72zqHLa-5Wbg4vqHvfr2CDt8eLHBxzzINoGdPx7DNgRW73qoVU6ZmhFxcvmugndqlliM_BAQyFY79J3T9HZ8dG32Uk-Pr-QW0HKZU6N0cEZTWgQFbEw8LnWlfBOQMyiZeVY4SteMs08N6aGONHW1tcgYowwktBnaLedt_45wr6EJdBZWrsAcMIECcBOU5grBHHC2yJDZDKJsiM3eXwi40qlM3Iq1WBFBVZU0YpKZOjtRmUxEHP8S_hTtPNGMHJqpx_z7kKNPqYAOWlTBB4MrRh3hZRUEku0FeBovtIZOpi8RI0DvVeRIF8wiEKhD_uDw2xqoSnvmcoMVVuutNWM7ZK2-Z4ovgVE4kXNM_RucrqbKv_ayxf_Jf0S3S_joEh5lQdod9mt_CsAWEvzOg2pX5wZIbA priority: 102 providerName: Springer Nature |
Title | Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker |
URI | https://link.springer.com/article/10.1038/s41438-018-0058-6 https://www.ncbi.nlm.nih.gov/pubmed/30393538 https://www.proquest.com/docview/2127646191 https://pubmed.ncbi.nlm.nih.gov/PMC6210195 https://doaj.org/article/091ab1f5fb3745d188380c0ac6874e7a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0LjAfFNYVR-4AnIcBPHdh4Q2qpNE9KmClGpb5Gd2Fu0Ki1Jy-jfwT_M2UkKhY6HPCSxYyd3Z__Ozv0O4A03liWW0kCFVAaIwHEcFAkPeCJ0rCVTxi_mXFzy8zH7PIknO9Clt2o_YL3VtXP5pMbV9OjHt9UnNPiPTci4_FAzl8MbnWI8aCwDvgv7ODEJZ6cXLdpvgoaZI3dx6eZojLgyFLzb59z2lAO4F_nIVRe78sek5bn9twHSf_-r_Gtz1c9ZZw_hQQs2yXGjHY9gx5SP4f7xVdUSbpgn8HOEEPBWrWoys8ROXc400v2gVRJV5mTulhbKwIeYIDwleeHIxd0im6syqs0yn6Euq5rUK9cNZcj8-xFxARNlgXUMeU8QZZJMLWvsjHKxXK7mTXFb2GpZLIhuGKPxJsr5xlRPYXx2-nV4HrSJGoKM03ARRForm2tFI8sFzXCIiJUS3OQcvRslRc4GRsQhU8zEWifoUWZJZhIsojXXkkbPYK-cleYFEBPiZJlnUZJbBB7aSoSAKsJRhdOcm2zQA9pJIs1aFnOXTGOa-t30SKaNHFOUY-rkmPIevF1XmTcUHv8rfOLEuy7o2Lf9hVl1lbbGnCLGUnpgY6sjweJ8IGUkaUZVxqVgRqgeHHbKkXYanToqfc7QX8V3eN7oybqVTs96IDY0aKMbm3fK4tqTgXP02QdJ3IN3na79bvLOt3x5Zw9ewUHoTMBHWx7C3qJamtcIuxa6D7tiIvqwf3J6OfqCZ0M-7PsljL43s1_u5CqB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaU9AAcGN4YCugAF8BUtmRZPjBMC-20tM1kmHamN1UvF087TogTMvkb_BB-Iys_kgmP3nrwJZZsObtafbvSfovQK-5yluWEhComIgQEDnYwzXjIs1QnWjDl6mDOUZ_vnbAvp8npGvrV5cL4Y5WdTawNtR0aHyPf9EzknAHcjz6Ovoe-apTfXe1KaDRqceDmM3DZqg_7n0G-r-N4d-f4017YVhUIDSfxJKRaq9xqRWjOU2JAnxOlUu4sByiuRGpZ5NIkZoq5ROsM3B-TGZdBE625FoTCc2-gdUbBlemh9e2d_uDrMqqTMM8f022fUrFZMV9gHDx2uEgiQr6yANZ1Av4Fbv8-o_nHRm29_u3eRXda4Iq3Gk27h9ZceR_d3joft-Qd7gH6OQA4OVPzCg9znF_6-mu4O-xVYlVaPPJhijKs01UA6mJbeKJyH7DzXQaVm9oh_NGqwtXcD0M5PPrxHvvki7KAPu4dBsCKjZpWMBbl08J8x4tiVuTjaTHBuiGfhpugMhdu_BCdXIt0HqFeOSzdE4RdDOuuNTSzOWAYnQtAk4qCgeLEcmeiAJFOENK0hOi-LselrDfmqZCN7CTITnrZSR6gN4suo4YN5KrG2166i4aeyLv-YTg-l61dkADXlI7yJNc0ZYmNhKCCGKIMFylzqQrQRqcbsrUulVzOhQA9btRk8RZaJ1tTEaB0RYFWhrF6pyy-1bziHNz_KEsC9LZTteUr__uVT68e4Et0c-_46FAe7vcPnqFbsZ8HdSbnBupNxlP3HCDdRL9o5xFGZ9c9dX8DX4Jgbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBXyACxDWiRPbOSBUKKuWQrUHKu0ttRO7RK2SZbPLav8GP4dfx0weu1oevfWQy8ZOnJ2HP4893xDyXFgXJY4xX4dM-YDAwQ_KRPgikSY2KtK2CeZ8ORL7x9GncTzeIr_6XBg8Vtn7xMZR51WGMfIBMpGLCOB-MHDdsYjR3vDd5LuPFaRwp7Uvp9GqyKFdLmD5Vr892ANZvwjD4cevH_b9rsKAnwkWznxujHa50Yw7IVkGuh1rLYXNBcByrWQeBVbGYaQjGxuTwFIoSzKbQBNjhFGMw3OvkKuSxwHamBzLdXwnjpBJpt9I5WpQR1hqHNbucLFY-WJjKmwqBvwL5v59WvOPLdtmJhzeIjc7CEt3W527TbZseYfc2D2ddjQe9i75OQJgudDLmlaOunOsxEb7Y18l1WVOJxiwKP0mcQVAL80LpCzH0B12GdV2nlfwN-ua1kschrZ08uMNxTSMsoA-9jUF6EozPa9hLBoTxLDjWbEo3HRezKhpaajhJijPmZ3eI8eXIpv7ZLusSvuQUBvCDJxnPMkdoBnjFOBKzcFVCZYLmwUeYb0g0qyjRscKHedps0XPVdrKLgXZpSi7VHjk5arLpOUFuajxe5TuqiFSejc_VNPTtPMQKQA3bQIXO8NlFOeBUlyxjOlMKBlZqT2y0-tG2vmZOl1bhUcetGqyegtv0q658ojcUKCNYWzeKYtvDcO4CANMJPXIq17V1q_871c-uniAz8g1MNj088HR4WNyPUQzaFI6d8j2bDq3TwDbzczTxogoOblsq_0NuC9jPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathways+of+flower+infection+and+pollen-mediated+dispersion+of+Pseudomonas+syringae+pv.+actinidiae+%2C+the+causal+agent+of+kiwifruit+bacterial+canker&rft.jtitle=Horticulture+research&rft.au=Donati%2C+Irene&rft.au=Cellini%2C+Antonio&rft.au=Buriani%2C+Giampaolo&rft.au=Mauri%2C+Sofia&rft.date=2018-11-01&rft.issn=2052-7276&rft.eissn=2052-7276&rft.volume=5&rft.spage=56&rft_id=info:doi/10.1038%2Fs41438-018-0058-6&rft_id=info%3Apmid%2F30393538&rft.externalDocID=30393538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-7276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-7276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-7276&client=summon |