General Image Fusion for an Arbitrary Number of Inputs Using Convolutional Neural Networks
In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 7; p. 2457 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed number of input sources (normally two inputs), the proposed framework can simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function (e.g., Max-pooling) to extract the most significant features from all the input images, which are then fused with the respective features from each input source. This symmetry function enables permutation-invariance of the network, which means the network can successfully extract and fuse the saliency features of each image without needing to remember the input order of the inputs. The property of permutation-invariance also brings convenience for the network during inference with unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt continual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and objective experiments on several public datasets demonstrate that the proposed method outperforms state-of-the-art methods on multiple image fusion tasks. |
---|---|
AbstractList | In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed number of input sources (normally two inputs), the proposed framework can simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function (e.g., Max-pooling) to extract the most significant features from all the input images, which are then fused with the respective features from each input source. This symmetry function enables permutation-invariance of the network, which means the network can successfully extract and fuse the saliency features of each image without needing to remember the input order of the inputs. The property of permutation-invariance also brings convenience for the network during inference with unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt continual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and objective experiments on several public datasets demonstrate that the proposed method outperforms state-of-the-art methods on multiple image fusion tasks. In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed number of input sources (normally two inputs), the proposed framework can simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function (e.g., Max-pooling) to extract the most significant features from all the input images, which are then fused with the respective features from each input source. This symmetry function enables permutation-invariance of the network, which means the network can successfully extract and fuse the saliency features of each image without needing to remember the input order of the inputs. The property of permutation-invariance also brings convenience for the network during inference with unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt continual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and objective experiments on several public datasets demonstrate that the proposed method outperforms state-of-the-art methods on multiple image fusion tasks.In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed number of input sources (normally two inputs), the proposed framework can simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function (e.g., Max-pooling) to extract the most significant features from all the input images, which are then fused with the respective features from each input source. This symmetry function enables permutation-invariance of the network, which means the network can successfully extract and fuse the saliency features of each image without needing to remember the input order of the inputs. The property of permutation-invariance also brings convenience for the network during inference with unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt continual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and objective experiments on several public datasets demonstrate that the proposed method outperforms state-of-the-art methods on multiple image fusion tasks. |
Audience | Academic |
Author | Xiao, Yifan Guo, Zhixin Veelaert, Peter Philips, Wilfried |
AuthorAffiliation | Department of Telecommunications and Information Processing, IPI-IMEC, Ghent University, 9000 Ghent, Belgium; zhixin.guo@ugent.be (Z.G.); peter.veelaert@ugent.be (P.V.); wilfried.philips@ugent.be (W.P.) |
AuthorAffiliation_xml | – name: Department of Telecommunications and Information Processing, IPI-IMEC, Ghent University, 9000 Ghent, Belgium; zhixin.guo@ugent.be (Z.G.); peter.veelaert@ugent.be (P.V.); wilfried.philips@ugent.be (W.P.) |
Author_xml | – sequence: 1 givenname: Yifan orcidid: 0000-0001-9040-6394 surname: Xiao fullname: Xiao, Yifan – sequence: 2 givenname: Zhixin surname: Guo fullname: Guo, Zhixin – sequence: 3 givenname: Peter orcidid: 0000-0003-4746-9087 surname: Veelaert fullname: Veelaert, Peter – sequence: 4 givenname: Wilfried surname: Philips fullname: Philips, Wilfried |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35408072$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URNuFA38AReJSDtv6I46dC9JqRctKVbmUCxfLcSaLl8Re7KSIf89sty1tQT7YGr_vM57xHJODEAMQ8pbRUyFqepY5p4qXUr0gR6zk5Vxj4ODR-ZAc57yhlAsh9CtyKGRJNVqOyLcLCJBsX6wGu4bifMo-hqKLqbChWKTGj8mm38XVNDSQitgVq7Cdxlx8zT6si2UMN7GfRvQg4gqmdLuNv2L6kV-Tl53tM7y522fk-vzT9fLz_PLLxWq5uJy7ivJxLsqSUUqtAE2FUkpKJaFlroG2ETWTkmqgFRd1RyvtulZAU7dMWMvbilVazMhqj22j3Zht8gM-2ETrzW0gprWxafSuByNsK1gneVUqKHVd27rTVjMtHW8wopD1cc_aTs0ArYOA5fdPoE9vgv9u1vHG1Nhbhd2dkZM7QIo_J8ijGXx20Pc2QJyywdS11KqUDKXvn0k3cUrYx72KVkJS8Ve1tliAD13EvG4HNQulWcUoL3es0_-ocLUweIfD0nmMPzG8e1zoQ4X3g4GCs73ApZhzgs44P9rdRyPZ94ZRsxs98zB66PjwzHEP_Vf7B1Ed1Ms |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_129125 crossref_primary_10_1016_j_engappai_2023_105919 crossref_primary_10_3390_s23062888 crossref_primary_10_3390_s24020633 crossref_primary_10_3390_s24227287 |
Cites_doi | 10.1609/aaai.v34i07.6975 10.1049/iet-ipr.2014.0311 10.1016/j.inffus.2011.01.002 10.1109/ICPR.2018.8546006 10.24963/ijcai.2019/549 10.1016/j.acha.2007.09.003 10.1049/el:20000267 10.1016/j.inffus.2019.07.011 10.1109/TIP.2020.2987133 10.1016/j.ins.2017.12.043 10.1016/j.inffus.2020.06.013 10.1109/TIP.2018.2887342 10.1109/TIP.2013.2244222 10.1109/TIP.2018.2794218 10.1016/j.patcog.2004.03.010 10.1109/JSEN.2019.2928818 10.1016/j.inffus.2011.08.002 10.1109/CVPRW.2017.150 10.1007/s00521-020-05358-9 10.1016/j.inffus.2019.02.003 10.1371/journal.pone.0191085 10.1016/j.inffus.2014.09.004 10.1109/ICCV.2017.505 10.1117/1.OE.52.5.057006 10.1109/TIP.2019.2952716 10.1109/TIP.2003.819861 10.1007/978-3-030-01237-3_45 10.1109/ICAICT.2014.7036000 10.1016/j.aeue.2015.09.004 10.1016/j.inffus.2020.08.022 10.1609/aaai.v34i07.6936 10.1073/pnas.1611835114 10.1016/j.inffus.2016.12.001 10.1109/TPAMI.2020.3012548 10.1109/TIP.2015.2442920 10.1016/j.inffus.2018.09.004 10.1016/j.inffus.2006.09.001 10.1109/TIP.2020.2976190 10.1007/s11760-013-0556-9 10.1016/j.inffus.2014.10.004 10.1016/j.inffus.2017.10.007 10.1109/ICASSP.2016.7471980 10.1016/j.inffus.2016.05.004 10.1016/j.dsp.2016.08.004 10.1016/j.patrec.2006.05.004 10.1016/j.inffus.2019.07.005 10.1109/LSP.2017.2752233 10.1109/JSEN.2019.2921803 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22072457 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3ad31f52647e4899a9f8a8185c2b7e47 PMC9002723 A781610241 35408072 10_3390_s22072457 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201806220060 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c602t-3441000a3e8037775575ed1cbedb3915508e06239f068cfd3eb9d13aa2d61683 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:26 EDT 2025 Thu Aug 21 18:24:19 EDT 2025 Fri Jul 11 06:48:58 EDT 2025 Sat Aug 23 13:02:22 EDT 2025 Tue Jun 17 22:24:34 EDT 2025 Tue Jun 10 21:12:59 EDT 2025 Wed Feb 19 02:25:40 EST 2025 Tue Jul 01 02:41:48 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | permutation-invariant network continual learning multiple inputs image fusion |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-3441000a3e8037775575ed1cbedb3915508e06239f068cfd3eb9d13aa2d61683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9040-6394 0000-0003-4746-9087 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22072457 |
PMID | 35408072 |
PQID | 2649063503 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ad31f52647e4899a9f8a8185c2b7e47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9002723 proquest_miscellaneous_2649587451 proquest_journals_2649063503 gale_infotracmisc_A781610241 gale_infotracacademiconefile_A781610241 pubmed_primary_35408072 crossref_citationtrail_10_3390_s22072457 crossref_primary_10_3390_s22072457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220323 |
PublicationDateYYYYMMDD | 2022-03-23 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220323 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Nejati (ref_55) 2015; 25 Pajares (ref_10) 2004; 37 Siddiqui (ref_17) 2011; 7 Ma (ref_31) 2019; 29 Liu (ref_3) 2020; 64 Zhang (ref_13) 2013; 52 Ma (ref_2) 2020; 54 Li (ref_53) 2020; 29 Li (ref_23) 2019; 21 Ma (ref_30) 2015; 24 Aslantas (ref_47) 2015; 69 Wang (ref_41) 2004; 13 Xydeas (ref_52) 2000; 36 ref_22 Kirkpatrick (ref_40) 2017; 114 Li (ref_45) 2013; 22 Kumar (ref_15) 2015; 9 ref_20 Li (ref_18) 2006; 27 Xu (ref_8) 2020; 44 Liu (ref_4) 2018; 42 Hu (ref_11) 2012; 13 Easley (ref_12) 2008; 25 Ma (ref_21) 2019; 48 Zhang (ref_24) 2021; 66 ref_36 ref_35 Liu (ref_26) 2017; 36 ref_34 ref_33 Herzig (ref_37) 2018; 31 Rahman (ref_16) 2017; 60 Rahman (ref_54) 2017; 24 Cai (ref_43) 2018; 27 ref_39 ref_38 Yang (ref_51) 2008; 9 Liu (ref_14) 2015; 9 Li (ref_1) 2017; 33 Zhang (ref_32) 2020; 54 Tang (ref_25) 2018; 433 Aghagolzadeh (ref_27) 2019; 51 ref_46 Li (ref_6) 2020; 29 Li (ref_29) 2019; 19 ref_44 Liu (ref_19) 2015; 24 ref_42 Li (ref_5) 2018; 28 Ma (ref_28) 2020; 33 ref_49 ref_9 ref_7 Han (ref_48) 2013; 14 |
References_xml | – volume: 7 start-page: 3583 year: 2011 ident: ref_17 article-title: Block-based pixel level multi-focus image fusion using particle swarm optimization publication-title: Int. Innov. Comput. Inf. Control – ident: ref_46 doi: 10.1609/aaai.v34i07.6975 – volume: 9 start-page: 347 year: 2015 ident: ref_14 article-title: Simultaneous image fusion and denoising with adaptive sparse representation publication-title: IET Image Process. doi: 10.1049/iet-ipr.2014.0311 – volume: 13 start-page: 196 year: 2012 ident: ref_11 article-title: The multiscale directional bilateral filter and its application to multisensor image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2011.01.002 – ident: ref_20 doi: 10.1109/ICPR.2018.8546006 – ident: ref_22 doi: 10.24963/ijcai.2019/549 – ident: ref_39 – volume: 25 start-page: 25 year: 2008 ident: ref_12 article-title: Sparse directional image representations using the discrete shearlet transform publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2007.09.003 – volume: 36 start-page: 308 year: 2000 ident: ref_52 article-title: Objective image fusion performance measure publication-title: Electron. Lett. doi: 10.1049/el:20000267 – volume: 54 start-page: 99 year: 2020 ident: ref_32 article-title: IFCNN: A general image fusion framework based on convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.011 – volume: 29 start-page: 5805 year: 2020 ident: ref_53 article-title: Fast multi-scale structural patch decomposition for multi-exposure image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2987133 – volume: 433 start-page: 125 year: 2018 ident: ref_25 article-title: Pixel convolutional neural network for multi-focus image fusion publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.12.043 – volume: 64 start-page: 71 year: 2020 ident: ref_3 article-title: Multi-focus image fusion: A Survey of the state of the art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.06.013 – ident: ref_35 – volume: 28 start-page: 2614 year: 2018 ident: ref_5 article-title: DenseFuse: A fusion approach to infrared and visible images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 22 start-page: 2864 year: 2013 ident: ref_45 article-title: Image fusion with guided filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2244222 – volume: 27 start-page: 2049 year: 2018 ident: ref_43 article-title: Learning a deep single image contrast enhancer from multi-exposure images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2794218 – volume: 37 start-page: 1855 year: 2004 ident: ref_10 article-title: A wavelet-based image fusion tutorial publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.010 – volume: 19 start-page: 9755 year: 2019 ident: ref_29 article-title: Multi-focus image fusion using u-shaped networks with a hybrid objective publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2928818 – volume: 14 start-page: 127 year: 2013 ident: ref_48 article-title: A new image fusion performance metric based on visual information fidelity publication-title: Inf. Fusion doi: 10.1016/j.inffus.2011.08.002 – ident: ref_42 doi: 10.1109/CVPRW.2017.150 – volume: 33 start-page: 5793 year: 2020 ident: ref_28 article-title: Sesf-fuse: An unsupervised deep model for multi-focus image fusion publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05358-9 – volume: 51 start-page: 201 year: 2019 ident: ref_27 article-title: Ensemble of CNN for multi-focus image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.02.003 – ident: ref_9 doi: 10.1371/journal.pone.0191085 – volume: 24 start-page: 147 year: 2015 ident: ref_19 article-title: A general framework for image fusion based on multi-scale transform and sparse representation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.09.004 – ident: ref_7 doi: 10.1109/ICCV.2017.505 – volume: 52 start-page: 057006 year: 2013 ident: ref_13 article-title: Dictionary learning method for joint sparse representation-based image fusion publication-title: Opt. Eng. doi: 10.1117/1.OE.52.5.057006 – volume: 29 start-page: 2808 year: 2019 ident: ref_31 article-title: Deep guided learning for fast multi-exposure image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2952716 – volume: 13 start-page: 600 year: 2004 ident: ref_41 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: ref_34 – ident: ref_38 doi: 10.1007/978-3-030-01237-3_45 – ident: ref_49 doi: 10.1109/ICAICT.2014.7036000 – volume: 69 start-page: 1890 year: 2015 ident: ref_47 article-title: A new image quality metric for image fusion: The sum of the correlations of differences publication-title: Aeu-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2015.09.004 – volume: 66 start-page: 40 year: 2021 ident: ref_24 article-title: MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.08.022 – ident: ref_33 doi: 10.1609/aaai.v34i07.6936 – volume: 114 start-page: 3521 year: 2017 ident: ref_40 article-title: Overcoming catastrophic forgetting in neural networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611835114 – volume: 36 start-page: 191 year: 2017 ident: ref_26 article-title: Multi-focus image fusion with a deep convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.12.001 – volume: 44 start-page: 502 year: 2020 ident: ref_8 article-title: U2Fusion: A unified unsupervised image fusion network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 24 start-page: 3345 year: 2015 ident: ref_30 article-title: Perceptual quality assessment for multi-exposure image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2442920 – volume: 48 start-page: 11 year: 2019 ident: ref_21 article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 9 start-page: 156 year: 2008 ident: ref_51 article-title: A novel similarity based quality metric for image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.09.001 – ident: ref_50 – volume: 29 start-page: 4816 year: 2020 ident: ref_6 article-title: DRPL: Deep Regression Pair Learning for Multi-Focus Image Fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2976190 – volume: 9 start-page: 1193 year: 2015 ident: ref_15 article-title: Image fusion based on pixel significance using cross bilateral filter publication-title: Signal Image Video Process. doi: 10.1007/s11760-013-0556-9 – volume: 25 start-page: 72 year: 2015 ident: ref_55 article-title: Multi-focus image fusion using dictionary-based sparse representation publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.10.004 – volume: 42 start-page: 158 year: 2018 ident: ref_4 article-title: Deep learning for pixel-level image fusion: Recent advances and future prospects publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.007 – volume: 31 start-page: 7211 year: 2018 ident: ref_37 article-title: Mapping images to scene graphs with permutation-invariant structured prediction publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_44 doi: 10.1109/ICASSP.2016.7471980 – volume: 33 start-page: 100 year: 2017 ident: ref_1 article-title: Pixel-level image fusion: A survey of the state of the art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.05.004 – volume: 60 start-page: 1 year: 2017 ident: ref_16 article-title: Multi-focal image fusion using degree of focus and fuzzy logic publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2016.08.004 – volume: 27 start-page: 1948 year: 2006 ident: ref_18 article-title: A region-based multi-sensor image fusion scheme using pulse-coupled neural network publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.05.004 – ident: ref_36 – volume: 54 start-page: 85 year: 2020 ident: ref_2 article-title: Infrared and visible image fusion via detail preserving adversarial learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.005 – volume: 24 start-page: 1671 year: 2017 ident: ref_54 article-title: Evaluating multiexposure fusion using image information publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2752233 – volume: 21 start-page: 7458 year: 2019 ident: ref_23 article-title: Coupled GAN with relativistic discriminators for infrared and visible images fusion publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2921803 |
SSID | ssj0023338 |
Score | 2.3868103 |
Snippet | In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2457 |
SubjectTerms | continual learning Deep learning Design image fusion Image Processing, Computer-Assisted - methods Medical imaging equipment Methods multiple inputs Neural networks Neural Networks, Computer Night vision permutation-invariant network Records Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAKM_QggxCgktUP5LYPrYVq5ZDT0WquFiOH6ISZCt2l9_PjOONEoHEhVOkeJLYk7HnG2v8DSHvjfQQBIhQ940RdeObrjbBtLX3IvGUTDQ-Z1tcd5dfms-37e2s1BfmhI30wKPiTqULkqcW_LaKDQQHziTt0Mt40cOdfI4cfN4-mCqhloTIa-QRkhDUn26EYEo06INm3ieT9P-5FM980TJPcuZ4Vo_Jo4IY6dnY0yPyIA5PyMMZj-BT8rWQR9OrH7A80NUOt8AowFHqBniwv8tn6-l1rv5B14leDfe77YbmfAF6sR5-FQOEVyBbR77k9PDNM3Kz-nRzcVmXogm175jY1hLwDSxzTkbNpFKqBTwWA_d9DH0mg2c6MsA8JrFO-xRk7E3g0jkROt5p-ZwcDOshviSUK91qGWJIiTdOgogB7MGjUsyw2KeKfNzr0vpCKI51Lb5bCCxQ7XZSe0XeTaL3I4vG34TO8YdMAkh8nW-AOdhiDvZf5lCRD_g7LU5P6Ix35ZQBDAmJruyZ0oBxAZjwipwsJGFa-WXz3iBsmdYbC581gOlaJivydmrGJzFVbYjr3SjTYhEBeMWL0X6mIeEmm4bRVkQtLGsx5mXLcPctk34b3EAQ8tX_UNIxORR4ioPJWsgTcrD9uYuvAVtt-zd5Gv0GvbogRQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQUZ4ppTIICS5R_Uhi-4RK1aXl0FORKi5R4getBMnS7PL7mXG8YSMqTivFEyu2573jbwh5Z6SFIEC4vC2MyAtbVLlxpsytFYGHYLyxsdriojr7Wny5Kq9Swm1IZZUbnRgVtest5siPwHAbMKclkx-Xv3LsGoX_rqYWGvfJAw6WBku69OLzFHBJiL9GNCEJof3RIARTokBLtGWDIlT_vwp5yyLNqyW3zM_iMdlNfiM9Hg96j9zz3RPyaAtN8Cn5liCk6flPUBJ0scZEGAWnlDYdvNjexBv29CL2AKF9oOfdcr0aaKwaoCd99zuxIUyBmB3xJxaJD8_I5eL08uQsT60TclsxscoleDmg7BrpNZNKqRK8Mu-4bb1rIyQ8056B52MCq7QNTvrWOC6bRriKV1o-Jztd3_mXhHKlSy2ddyHwopFAYsAD4V4pZphvQ0Y-bPaytglWHLtb_KghvMBtr6dtz8jbiXQ5YmncRfQJD2QiQPjr-KC__V4naapl4yQPJfCE8gVEjI0JukHXw4oWnsAk7_E4axRS-BjbpLsGsCSEu6qPlQZPF9wTnpGDGSUIl50PbxiiTsI91H9ZMSNvpmF8EwvWOt-vR5oSWwnAFC9G_pmWhKk2DavNiJpx1mzN85Hu5jpCfxtMIwi5___PekUeCrylwWQu5AHZWd2u_WvwnVbtYRSQPzHCGDU priority: 102 providerName: ProQuest |
Title | General Image Fusion for an Arbitrary Number of Inputs Using Convolutional Neural Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35408072 https://www.proquest.com/docview/2649063503 https://www.proquest.com/docview/2649587451 https://pubmed.ncbi.nlm.nih.gov/PMC9002723 https://doaj.org/article/3ad31f52647e4899a9f8a8185c2b7e47 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYEDank1fawMQoJLwLGT2D4g1FZdWiRWCLXSikuU-AGVStLuA8G_Z-xko43okUsixRNnPR7b33jH3wC8UlyjE8BMXKWKxalO81gZlcVaM5c4p6zSIdpikp9fpZ-m2XQDVjk2OwXO73XtfD6pq9nN2993fz7ggH_vPU502d_NGaOCpZnYhG1ckIRPZPA57f9MYBzdsJZUaCg-WIoCY_-_8_LawjQMmlxbhcY78KiDj-S47e9d2LD1Y3i4Rir4BL51TNLk4ifOFWS89PthBLEpKWt8sboOB-3JJKQCIY0jF_XtcjEnIXiAnDb1r84asQpP3RFuIVZ8_hQux2eXp-dxl0Eh1jlli5gj2ME5r-RWUi6EyBCcWZPoypoqMMNTaSkCIOVoLrUz3FbKJLwsmcmTXPJnsFU3td0DkgiZSW6scS5JS44iCoFIYoWgitrKRfBmpctCd-ziPsnFTYFehld70as9gpe96G1LqXGf0InvkF7As2CHB83se9ENqoKXhicuQ0wnbIqOY6mcLD0C0azCJ1jJa9-dhbce_DG67I4cYJM861VxLCQCXkQpSQSHA0kcY3pYvDKIYmWiBX5WIcDLKI_gRV_s3_Rxa7Vtlq1M5jMKYBXPW_vpm-R33CS2NgIxsKxBm4cl9fWPwACu_G4C4_v_Q0kH8ID5Ix2Ux4wfwtZitrRHCLQW1Qg2xVTgVY4_jmD75Gzy5esobFqMwgD7C9x7Ksk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiGcJFDAIBJeojp2XDwiVwrJLy54WqeJiJX7QSpAszS6IH8V_ZMZ5sBGIW08rxRMrtscz33jH3xDyVAoNQQA3YRlLHsY6TkNpZBJqzV3knLRS-2yLeTr9GL8_SU62yK_-LgymVfY20RtqU2s8I98Hxy3BnSZMvFp-C7FqFP672pfQaNXiyP78ASFb83L2Btb3GeeTt4vDadhVFQh1yvgqFAAAwA4UwuZMZFmWAGCxJtKlNaVnS2e5ZQAKpGNprp0RtpQmEkXBTRqluYBuL5HLsQBHjhfTJ--G-E5AuNeSF0Ej2284ZxmP0fFtuDxfGeBv-7_hAMfJmRvebnKdXOtgKj1o9eoG2bLVTbKzQV54i3zqGKvp7CvYJDpZ47kbBQxMiwpeLM_8hX469yVHaO3orFquVw31SQr0sK6-d1oPXSBFiP_xOenNbbK4iDm9Q7arurJ3CY2yPMmFsca5KC4EiEgAPJHNMiaZLV1AXvRzqXTHYo7FNL4oiGZw2tUw7QF5MoguW-qOfwm9xgUZBJBt2z-ozz-rbvMqURgRuQRUMLMxBKiFdHmBSEfzEp5AJ89xORXaBPgYXXRXG2BIyK6lDrIcgDWgoSggeyNJ2Mt63NwrhOpsSaP-aH5AHg_N-Cbmx1W2XrcyCVYugC52W_0ZhoQnezmMNiDZSLNGYx63VGennmlc4qkFF_f-_1mPyJXp4sOxOp7Nj-6TqxwviDARcrFHtlfna_sAYNuqfOg3CyXqgjfnb8U9Utk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzLQgGDQHCJ1rGTOD4g1NeqS9GqQkWquFiJH1CpTZbuLoifxr9jxsmGjUDceopkT6zYnqcz_oaQl0oYCAK4jcpE8SgxSRYpq9LIGO5j75VTJmRbTLPDT8n70_R0g_xa3YXBtMqVTgyK2tYGz8hHYLgVmNOUiZFv0yKO98fvZt8irCCFf1pX5TQaFjlyP39A-DZ_O9mHvX7F-fjgZO8waisMRCZjfBEJcAZAJxTC5UxIKVNwXpyNTelsGZDTWe4YOAjKsyw33gpXKhuLouA2i7NcwLDXyKbEoGhANncPpscfu2hPQPDXQBkJodhozjmTPEEzuGYAQ52Av63Bmjnsp2qu2b7xbXKrdVrpTsNld8iGq-6Sm2tQhvfI5xa_mk4uQEPR8RJP4Sh4xLSo4MXyLFzvp9NQgITWnk6q2XIxpyFlge7V1fdWBmAIBAwJj5ChPr9PTq5iVR-QQVVX7iGhsczTXFhnvY-TQgCJAvcndlIyxVzph-TNai21aTHNsbTGuYbYBpddd8s-JC860lkD5PEvol3ckI4AsbdDQ335RbeirEVhRexTYEjpEghXC-XzAv0ew0togUFe43Zq1BDwMaZoLzrAlBBrS-_IHNxs8I3iIdnuUYJkm373iiF0q1nm-o8cDMnzrhvfxGy5ytXLhibFOgYwxFbDP92U8Jwvh9kOiexxVm_O_Z7q7GvAHVd4hsHFo_9_1jNyHQRTf5hMjx6TGxxvizARcbFNBovLpXsCPtyifNpKCyX6iuXzN0vVWGs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+Image+Fusion+for+an+Arbitrary+Number+of+Inputs+Using+Convolutional+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yifan+Xiao&rft.au=Zhixin+Guo&rft.au=Peter+Veelaert&rft.au=Wilfried+Philips&rft.date=2022-03-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=7&rft.spage=2457&rft_id=info:doi/10.3390%2Fs22072457&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3ad31f52647e4899a9f8a8185c2b7e47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |