Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production
Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide...
Saved in:
Published in | Bioprocess and biosystems engineering Vol. 39; no. 2; pp. 323 - 330 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model. |
---|---|
AbstractList | Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model. Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae . The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model. Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 plus or minus 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model. Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model. |
Author | Coban, Hasan Bugra Demirci, Ali |
Author_xml | – sequence: 1 fullname: Coban, Hasan Bugra – sequence: 2 fullname: Demirci, Ali |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26658984$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1TAQhS1URB_wA9iApW66CYxzHcdeoqpQpEpIQNlafkxuUyX2xb5ZtL-eqdIixAKx8ozmO2fkOcfsIOWEjL0W8E4A9O8rgJSmAdE1ohO6gWfsSCjqegXdwVPdGXHIjmu9BQJ1Cy_YYatUp42WR-zHRbpxKeCMac9dinzOEacxbXke-DyGkneu7McwYeNixMi_3oz3ebdUnsvdvUM-uUBj7sIY-a7kuFCb00v2fHBTxVeP7wm7_njx_fyyufry6fP5h6smKGj3TTtEIQ06GJSSXgftB5CIXg8xeuONjka1yoE2HgVsQqQCovcgPcJGuM0JO1t9afXPBevezmMNOE0uYV6qFb3SnTJSdf-DggHZ657Q07_Q27yURB8hqtOE9UoQJVaKjlRrwcHuyji7cmcF2Id87JqPpbPbh3wskObNo_PiZ4y_FU-BENCuQKVR2mL5Y_U_XN-uosFl67ZlrPb6WwtCAaGtkrD5BRIUpgI |
CitedBy_id | crossref_primary_10_1002_elsc_201900013 crossref_primary_10_1007_s12010_017_2554_9 crossref_primary_10_1080_07388551_2018_1531821 crossref_primary_10_1016_j_procbio_2016_09_020 crossref_primary_10_1007_s13399_021_02096_3 crossref_primary_10_1016_j_bcab_2024_103273 crossref_primary_10_1007_s11274_018_2455_2 crossref_primary_10_1007_s13205_017_1004_2 crossref_primary_10_1007_s00253_022_12087_7 crossref_primary_10_1016_j_bej_2020_107696 crossref_primary_10_1007_s11274_016_2148_7 crossref_primary_10_1016_j_jbiosc_2018_01_004 crossref_primary_10_1002_elsc_202100075 crossref_primary_10_1016_j_biortech_2016_06_127 crossref_primary_10_1111_jfpp_14915 crossref_primary_10_1002_bit_27762 crossref_primary_10_1016_j_heliyon_2020_e04974 crossref_primary_10_1016_j_enzmictec_2021_109867 crossref_primary_10_3390_jof9030342 crossref_primary_10_1002_mbo3_603 crossref_primary_10_51477_mejs_1109174 crossref_primary_10_1007_s13205_017_0694_9 crossref_primary_10_1007_s00449_016_1615_8 crossref_primary_10_1016_j_fbp_2020_02_003 crossref_primary_10_3390_pr10122681 crossref_primary_10_1016_j_bcab_2018_03_018 crossref_primary_10_1016_j_bjm_2018_06_007 crossref_primary_10_1007_s00449_020_02444_z crossref_primary_10_1016_j_bcab_2018_11_022 crossref_primary_10_1016_j_matpr_2023_08_211 crossref_primary_10_1007_s00449_019_02256_w crossref_primary_10_3389_fmicb_2018_02352 |
Cites_doi | 10.1007/s10295-010-0804-8 10.1007/s00449-014-1349-4 10.1016/j.bej.2007.01.028 10.1016/j.tifs.2012.11.007 10.1007/s12010-009-8860-0 10.1007/s00253-006-0379-5 10.4161/bbug.2.2.13757 10.1186/1475-2859-12-92 10.1111/j.1365-2621.1954.tb17430.x 10.1263/jbb.106.541 10.1002/bit.23313 10.1007/s00449-010-0457-z 10.1021/bp9800642 10.1128/AEM.56.6.1875-1881.1990 10.1002/bit.21713 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Springer-Verlag Berlin Heidelberg 2016 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7T7 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7N M7P P64 PQEST PQQKQ PQUKI Q9U 7X8 7QO |
DOI | 10.1007/s00449-015-1518-0 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest Central Student Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-7605 |
EndPage | 330 |
ExternalDocumentID | 3925951511 10_1007_s00449_015_1518_0 26658984 US201600042640 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6J9 6NX 78A 7X7 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAGCJ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADPHR ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG ESTFP F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LK8 LLZTM M0L M1P M2P M4Y M7P MA- ML0 N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9N PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 XFK Y6R YLTOR Z45 Z5O Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z87 Z88 Z8O Z8P Z8Q Z8R Z8S Z8T Z8W Z91 ZMTXR ~A9 ~KM AAPBV AACDK AAEOY AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGJZZ AGQEE AGRTI AIGIU ALIPV CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7QL 7T7 7XB 8FD 8FK C1K FR3 K9. M7N P64 PQEST PQUKI Q9U 7X8 7QO |
ID | FETCH-LOGICAL-c602t-2fd149ea0f664b8c8bf04eeb8fddb9b98d9626a089be103cd89b0dbb04be031a3 |
IEDL.DBID | U2A |
ISSN | 1615-7591 |
IngestDate | Fri Oct 25 07:56:44 EDT 2024 Fri Oct 25 07:12:34 EDT 2024 Thu Oct 10 21:12:14 EDT 2024 Thu Sep 12 19:51:07 EDT 2024 Tue Oct 15 23:53:35 EDT 2024 Sat Dec 16 12:21:38 EST 2023 Wed Dec 27 19:20:59 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Lactic acid fermentation Microparticle Modeling Optimization Rhizopus oryzae |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-2fd149ea0f664b8c8bf04eeb8fddb9b98d9626a089be103cd89b0dbb04be031a3 |
Notes | http://dx.doi.org/10.1007/s00449-015-1518-0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26658984 |
PQID | 1758090761 |
PQPubID | 55403 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1768569465 proquest_miscellaneous_1760904787 proquest_journals_1758090761 crossref_primary_10_1007_s00449_015_1518_0 pubmed_primary_26658984 springer_journals_10_1007_s00449_015_1518_0 fao_agris_US201600042640 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Bioprocess and biosystems engineering |
PublicationTitleAbbrev | Bioprocess Biosyst Eng |
PublicationTitleAlternate | Bioprocess Biosyst Eng |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | ZwieteringMHJongenburgerIRomboutsFMRientKVModeling of the bacterial growth curveAppl Environ Microbiol199056187518811:STN:280:DC%2BC3crotFKrsg%3D%3D BranenALDavidsonPMSalminenSThorngateJHFood additives20022NYMarcel Dekker KaupBAEhrichKPescheckMSchraderJMicroparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an exampleBiotechnol Bioeng20089949149810.1002/bit.217131:CAS:528:DC%2BD1cXns1Sqsg%3D%3D DriouchHWittmannCHanschRWucherpfennigTKrullRImproved enzyme production by bio-pellets Aspergillus niger: targeted morphology engineering using titanate microparticlesBiotechnol Bioeng201210946247110.1002/bit.233131:CAS:528:DC%2BC3MXhs1SgurrK ParkEYKosakaiYOkabeMEfficient production of L-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactorBiotechnol Prog19981469970410.1021/bp98006421:CAS:528:DyaK1cXls1Clsrc%3D KitpreechavanichVManeeboonTKayanoYSakaiKComparative characterization of l-lactic acid-producing thermotolerant Rhizopus fungiJ Biosci Bioeng200810654154610.1263/jbb.106.5411:CAS:528:DC%2BD1MXis1ajtLs%3D VodnarDCDulfFVPopOLSocaciuCL(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerolMicrob Cell Fact2013129210.1186/1475-2859-12-921:CAS:528:DC%2BC2MXjt1Wju7Y%3D DriouchHRothADerschPWittmannCFilamentous fungi in good shape microparticles for tailor-made fungal morphology and enhanced enzyme productionBioeng Bugs2011210010410.4161/bbug.2.2.13757 RiceACPiersonCSFactors influencing growth of Bacillus coagulans in canned tomato juice. II. Acidic constituents of tomato juice and specific organic acidsFood Res19541912410.1111/j.1365-2621.1954.tb17430.x1:CAS:528:DyaG2cXmsFKrsQ%3D%3D ManeeboonTVanichsriratanaWPomchaitawardCKitpreechavanichVOptimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodologyAppl Biochem Biotechnol201016113714610.1007/s12010-009-8860-01:CAS:528:DC%2BC3cXkt12nuro%3D MartinezFACBalciunasEMSalgadoJMGonzalezJMDConvertiAOliveiraRPSLactic acid properties, applications and production: a reviewTrends Food Sci Tech201330708310.1016/j.tifs.2012.11.0071:CAS:528:DC%2BC3sXhvVWqsQ%3D%3D MaasRHWEgginkGBakkerRRWeusthuisRALactic acid production from xylose by the fungus Rhizopus oryzaeAppl Microbiol Biotechnol20067286186810.1007/s00253-006-0379-51:CAS:528:DC%2BD28XhtVWhsr3E WeeYJKimJNRyuHWBiotechnological production of lactic acid and its recent applicationsFood Technol Biotechnol2006441631721:CAS:528:DC%2BD28XnsFSqtLk%3D ZhangZYJinBKellyJMProduction of lactic acid from renewable materials by Rhizopus fungiBiochem Eng J20073525126310.1016/j.bej.2007.01.0281:CAS:528:DC%2BD2sXmtVeju78%3D WuXJiangSLiuMPanLZhengZLuoSProduction of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactorJ Ind Microbiol Biotechnol20113856557110.1007/s10295-010-0804-81:CAS:528:DC%2BC3MXjsFCmsb4%3D Chotisubha-anandhaNThitiprasertSThongchulNToliengVImproved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactorBioprocess Biosyst Eng20113416317210.1007/s00449-010-0457-z1:CAS:528:DC%2BC3MXlt12ntA%3D%3D CobanHBDemirciATurhanIMicroparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentationBioprocess Biosyst Eng2015381075108010.1007/s00449-014-1349-41:CAS:528:DC%2BC2MXmtFGntg%3D%3D EY Park (1518_CR16) 1998; 14 ZY Zhang (1518_CR17) 2007; 35 H Driouch (1518_CR12) 2012; 109 V Kitpreechavanich (1518_CR8) 2008; 106 HB Coban (1518_CR14) 2015; 38 MH Zwietering (1518_CR15) 1990; 56 X Wu (1518_CR10) 2011; 38 AL Branen (1518_CR1) 2002 DC Vodnar (1518_CR9) 2013; 12 AC Rice (1518_CR5) 1954; 19 RHW Maas (1518_CR3) 2006; 72 BA Kaup (1518_CR11) 2008; 99 N Chotisubha-anandha (1518_CR7) 2011; 34 T Maneeboon (1518_CR6) 2010; 161 YJ Wee (1518_CR2) 2006; 44 FAC Martinez (1518_CR4) 2013; 30 H Driouch (1518_CR13) 2011; 2 |
References_xml | – volume: 38 start-page: 565 year: 2011 ident: 1518_CR10 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-010-0804-8 contributor: fullname: X Wu – volume: 38 start-page: 1075 year: 2015 ident: 1518_CR14 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-014-1349-4 contributor: fullname: HB Coban – volume: 35 start-page: 251 year: 2007 ident: 1518_CR17 publication-title: Biochem Eng J doi: 10.1016/j.bej.2007.01.028 contributor: fullname: ZY Zhang – volume: 30 start-page: 70 year: 2013 ident: 1518_CR4 publication-title: Trends Food Sci Tech doi: 10.1016/j.tifs.2012.11.007 contributor: fullname: FAC Martinez – volume: 161 start-page: 137 year: 2010 ident: 1518_CR6 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-009-8860-0 contributor: fullname: T Maneeboon – volume: 72 start-page: 861 year: 2006 ident: 1518_CR3 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0379-5 contributor: fullname: RHW Maas – volume: 2 start-page: 100 year: 2011 ident: 1518_CR13 publication-title: Bioeng Bugs doi: 10.4161/bbug.2.2.13757 contributor: fullname: H Driouch – volume: 12 start-page: 92 year: 2013 ident: 1518_CR9 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-12-92 contributor: fullname: DC Vodnar – volume: 19 start-page: 124 year: 1954 ident: 1518_CR5 publication-title: Food Res doi: 10.1111/j.1365-2621.1954.tb17430.x contributor: fullname: AC Rice – volume: 106 start-page: 541 year: 2008 ident: 1518_CR8 publication-title: J Biosci Bioeng doi: 10.1263/jbb.106.541 contributor: fullname: V Kitpreechavanich – volume: 109 start-page: 462 year: 2012 ident: 1518_CR12 publication-title: Biotechnol Bioeng doi: 10.1002/bit.23313 contributor: fullname: H Driouch – volume: 34 start-page: 163 year: 2011 ident: 1518_CR7 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-010-0457-z contributor: fullname: N Chotisubha-anandha – volume: 14 start-page: 699 year: 1998 ident: 1518_CR16 publication-title: Biotechnol Prog doi: 10.1021/bp9800642 contributor: fullname: EY Park – volume: 44 start-page: 163 year: 2006 ident: 1518_CR2 publication-title: Food Technol Biotechnol contributor: fullname: YJ Wee – volume: 56 start-page: 1875 year: 1990 ident: 1518_CR15 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.56.6.1875-1881.1990 contributor: fullname: MH Zwietering – volume: 99 start-page: 491 year: 2008 ident: 1518_CR11 publication-title: Biotechnol Bioeng doi: 10.1002/bit.21713 contributor: fullname: BA Kaup – volume-title: Food additives year: 2002 ident: 1518_CR1 contributor: fullname: AL Branen |
SSID | ssj0015820 |
Score | 2.3175662 |
Snippet | Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations... |
SourceID | proquest crossref pubmed springer fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 323 |
SubjectTerms | Acid production Acids agitation Aluminum aluminum oxide Aluminum Oxide - pharmacology batch fermentation Bioengineering Bioreactors Biotechnology Chemistry Chemistry and Materials Science culture media Environmental Engineering/Biotechnology Fermentation Food Science Fungi glucose Hydrogen-Ion Concentration Industrial and Production Engineering industrial applications Industrial Chemistry/Chemical Engineering lactic acid Lactic Acid - biosynthesis logit analysis microbial growth Models, Biological Original Paper prediction response surface methodology Rhizopus - growth & development Rhizopus oryzae Talc - pharmacology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxQxDLbo9gKHquXVKQUFiRMoIp1HNjlVgLaqOFSosKi3KE-KBDNLd_cAvx47M7MUFXobKTl47PgVO58BXiTUImlT4kIkAtWuEtehklyXU09Pi5tpzA2yZ_J0Xr-_aC6GC7fl0FY52sRsqEPn6Y78Nbo5JTRl3ceLH5ymRlF1dRihsQXbJWYK5QS2387OPpxv6giNysCMFNbwaaOPxrqm6GFEa-oVajh6PcXFX55pK9nuX0HnjYJp9kMnu7AzBJDsTS_xPbgT2_tw7xqs4AP4PGsvSZh08cdsG1ged4NLrEvsO3XgLYYDw8nuBHaeG-_WS9Zd_fxlI_uWX04x678GtughYVF8D2F-Mvv07pQP8xO4l6Jc8TIFzH-iFUnK2imvXBJ1jE6lEJx2WgWN6YwVSrt4JCof8EME50TtIuq6rR7BpO3auA_MqzpIjASVRj5XSTk59dqjBwye0H1SAS9H3plFD5NhNoDImdEGGW2I0UYUsI_cNfYLmjEz_1gSyF3O5WpcOhxZbgZlWpo_oi_g-WYZ1YBqG7aN3Zr2SNxCtNy6RzVS17Ip4HEvzg2xGKc0Squ6gFejfK8R8L8_Obid3Cdwl36ub_I-hMnqah2fYgyzcs-Gg_obCgHq1w priority: 102 providerName: ProQuest |
Title | Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production |
URI | https://link.springer.com/article/10.1007/s00449-015-1518-0 https://www.ncbi.nlm.nih.gov/pubmed/26658984 https://www.proquest.com/docview/1758090761 https://search.proquest.com/docview/1760904787 https://search.proquest.com/docview/1768569465 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7txwPwgGDAFtgqI_EEMvLSxLEf26llAqlCg6LyFNmxDdNGUm3tA_z13DlNNMSGxJMj-RTZd7bvs-_8GeBVwFkkTQhciECk2sPAtRtKrtOioqvFeeFjguxMns6z94t8sQVpf3RRX7ztIpJxoe7vulHokVJ7co5OSnHcpu8idsgojWuejvrIQa4iFSMBGV7k-riLZN72iz980XYwzW0w868QafQ800fwcAMZ2ai18WPY8vUe3DvpXmrbgwc3SAWfwJdJ_Z1MScd-zNSOxcdusIo1gf2g_LvlZrhwWnUcO4tpd-tr1lz9_GU8u4z3ppipzh1btoSwaLynMJ9OPp-c8s3rCbySIl3xNDjc_XgjgpSZVZWyQWTeWxWcs9pq5TRuZoxQ2vpjMawcfghnrcisx5luhs9gp25qfwCsUpmTiAOVThFeBWVlUekK_Z-riNsnJPC602O5bEkyyp4OOSq9RKWXpPRSJHCAmi7NN1zEyvmnlCju4k4uw6rDTv3lZipdl4hvlNB03JLAy74aNUyRDVP7Zk0yEkWoLf-UUbnUmcwT2G9N2zcWUUqutMoSeNPZ-kYD7urJ8_-SfgH3qa9txvch7Kyu1v4IAc3KDmC7WBQD2B1Nx-MZle--fphgOZ7MPp4N4vj-DV9e7uk |
link.rule.ids | 315,783,787,12070,21402,27938,27939,31733,31734,33758,33759,41095,41537,42164,42606,43324,43819,52125,52248,74081,74638 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcgAOiHcDBYzECWThzSaOfUIItVqg9ABdtDfLz4IEydLdPcCvZ8ZJliKgt0j2YTLjeXnG3wA8TahF0qbEhUgEqj1NXIep5LpsPD0trpuYG2SP5WxevV3Ui-HCbTW0VY42MRvq0Hm6I3-Bbk4JTVn3y-V3TlOjqLo6jNDYgcuEw0XY-c1im3BNapVhGSmo4U2tJ2NVU_QgohV1CtUcfZ7i4g-_tJNs96-Q869yafZChzfg-hA-sle9vG_CpdjegmvnQAVvw6eD9jOJkq79mG0Dy8NucIl1iX2j_rvlcFw4WZ3APuS2u82KdWc_ftrIvuZ3U8z6L4Ete0BYFN4dmB8enLye8WF6AvdSlGtepoDZT7QiSVk55ZVLoorRqRSC006roDGZsUJpFydi6gN-iOCcqFxETbfTu7Dbdm3cA-ZVFSTGgUqXGF4l5WTjtUf_Fzxh-6QCno28M8seJMNs4ZAzow0y2hCjjShgD7lr7CkaMTP_WBLEXc7kKlzaH1luBlVamd-CL-DJdhmVgCobto3dhvZI3EK0XLhH1VJXsi7gXi_OLbEYpdRKq6qA56N8zxHwvz-5fzG5j-HK7OT9kTl6c_zuAVylH-3bvfdhd322iQ8xmlm7R_nI_gI29-xi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoKyE4IAqlDZRiJE5UVr1Zx7FPCEFX5aEKFRbtzfITkCBZursH-PXMOMm2iNJbJPswnvdkxp8JeZbAiqRNiXGeEFR7nJgOY8l0WXu8WlzVMQ_InsqTqXg7q2b9_NOiH6scfGJ21KH1-I_8CMKc4hqr7qPUj0V8eD15Mf_J8AUp7LT2z2lskK1aQKAD3a5n6-JrVKkM0YgJDqsrPRo6nLwDFBU4NVQxiH-K8b9i1Eay7VXp5z-t0xyRJnfJnT6VpC872W-TG7G5R25fAhi8Tz4fN19RrPgLkNom0PzwDSzRNtEfOIs371WHoQcK9CyP4K0WtD3_9dtG-j3foaLWfwt03oHDgiB3yHRy_OnVCetfUmBe8nLJyhSgEoqWJymFU165xEWMTqUQnHZaBQ2FjeVKuzjiYx_ggwfnuHARrN6OH5DNpm3iHqFeiSAhJ1S6hFQrKSdrrz3EwuAR5ycV5PnAOzPvADPMGho5M9oAow0y2vCC7AF3jf0CDs1MP5YId5erOgFL-wPLTW9WC3OhBAV5ul4Gg8Auh21iu8I9ErYgLdfuUZXUQlYF2e3EuSYWMpZKaSUKcjjI9xIB_zvJw-vJfUJugraa929O3z0it_Cc3eT3Ptlcnq_iY0hslu4ga-wfjg3wlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+and+modeling+of+microparticle-added+Rhizopus+oryzae+lactic+acid+production&rft.jtitle=Bioprocess+and+biosystems+engineering&rft.au=Coban%2C+Hasan+Bugra&rft.au=Demirci%2C+Ali&rft.date=2016-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-7591&rft.eissn=1615-7605&rft.volume=39&rft.issue=2&rft.spage=323&rft.epage=330&rft_id=info:doi/10.1007%2Fs00449-015-1518-0&rft.externalDocID=US201600042640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-7591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-7591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-7591&client=summon |