Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production

Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide...

Full description

Saved in:
Bibliographic Details
Published inBioprocess and biosystems engineering Vol. 39; no. 2; pp. 323 - 330
Main Authors Coban, Hasan Bugra, Demirci, Ali
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
AbstractList Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae . The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 plus or minus 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with -2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations is a major problem, which limits the fermentation performance. Microparticles are excellent tools to prevent bulk fungal growth and provide homogenized fermentation broth to increase uniformity and the prediction performance of the models. Therefore, in this study, addition of aluminum oxide and talcum microparticles into fermentations was evaluated to enhance the production of lactic acid by Rhizopus oryzae. The results showed that the bulk fungal growth was prevented and the lactic acid concentration increased from 6.02 to 13.88 and 24.01 g/L, when 15 g/L of aluminum oxide or 10 g/L of talcum was used, respectively, in the shake-flask fermentations. Additionally, substrate concentration, pH, and agitation were optimized in the bioreactors using response surface methodology, and optimum values were determined as 126 g/L of glucose, 6.22 pH, and 387 rpm, respectively. Under these conditions, lactic acid production further increased to 75.1 ± 1.5 g/L with 10 g/L of talcum addition. Also, lactic acid production and glucose consumption in the batch fermentation were successfully modeled with modified Gompertz model and modified logistic model. RMSE and MAE values for lactic acid production were calculated as 2.279 and 1.498 for the modified Gompertz model; 3.6 and 4.056 for the modified logistic model. Additionally, modified logistic model predicted glucose consumption with −2.088 MAE and 2.868 RMSE, whereas these values were calculated as 2.035 and 3.946 for the modified Gompertz model.
Author Coban, Hasan Bugra
Demirci, Ali
Author_xml – sequence: 1
  fullname: Coban, Hasan Bugra
– sequence: 2
  fullname: Demirci, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26658984$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQhS1URB_wA9iApW66CYxzHcdeoqpQpEpIQNlafkxuUyX2xb5ZtL-eqdIixAKx8ozmO2fkOcfsIOWEjL0W8E4A9O8rgJSmAdE1ohO6gWfsSCjqegXdwVPdGXHIjmu9BQJ1Cy_YYatUp42WR-zHRbpxKeCMac9dinzOEacxbXke-DyGkneu7McwYeNixMi_3oz3ebdUnsvdvUM-uUBj7sIY-a7kuFCb00v2fHBTxVeP7wm7_njx_fyyufry6fP5h6smKGj3TTtEIQ06GJSSXgftB5CIXg8xeuONjka1yoE2HgVsQqQCovcgPcJGuM0JO1t9afXPBevezmMNOE0uYV6qFb3SnTJSdf-DggHZ657Q07_Q27yURB8hqtOE9UoQJVaKjlRrwcHuyji7cmcF2Id87JqPpbPbh3wskObNo_PiZ4y_FU-BENCuQKVR2mL5Y_U_XN-uosFl67ZlrPb6WwtCAaGtkrD5BRIUpgI
CitedBy_id crossref_primary_10_1002_elsc_201900013
crossref_primary_10_1007_s12010_017_2554_9
crossref_primary_10_1080_07388551_2018_1531821
crossref_primary_10_1016_j_procbio_2016_09_020
crossref_primary_10_1007_s13399_021_02096_3
crossref_primary_10_1016_j_bcab_2024_103273
crossref_primary_10_1007_s11274_018_2455_2
crossref_primary_10_1007_s13205_017_1004_2
crossref_primary_10_1007_s00253_022_12087_7
crossref_primary_10_1016_j_bej_2020_107696
crossref_primary_10_1007_s11274_016_2148_7
crossref_primary_10_1016_j_jbiosc_2018_01_004
crossref_primary_10_1002_elsc_202100075
crossref_primary_10_1016_j_biortech_2016_06_127
crossref_primary_10_1111_jfpp_14915
crossref_primary_10_1002_bit_27762
crossref_primary_10_1016_j_heliyon_2020_e04974
crossref_primary_10_1016_j_enzmictec_2021_109867
crossref_primary_10_3390_jof9030342
crossref_primary_10_1002_mbo3_603
crossref_primary_10_51477_mejs_1109174
crossref_primary_10_1007_s13205_017_0694_9
crossref_primary_10_1007_s00449_016_1615_8
crossref_primary_10_1016_j_fbp_2020_02_003
crossref_primary_10_3390_pr10122681
crossref_primary_10_1016_j_bcab_2018_03_018
crossref_primary_10_1016_j_bjm_2018_06_007
crossref_primary_10_1007_s00449_020_02444_z
crossref_primary_10_1016_j_bcab_2018_11_022
crossref_primary_10_1016_j_matpr_2023_08_211
crossref_primary_10_1007_s00449_019_02256_w
crossref_primary_10_3389_fmicb_2018_02352
Cites_doi 10.1007/s10295-010-0804-8
10.1007/s00449-014-1349-4
10.1016/j.bej.2007.01.028
10.1016/j.tifs.2012.11.007
10.1007/s12010-009-8860-0
10.1007/s00253-006-0379-5
10.4161/bbug.2.2.13757
10.1186/1475-2859-12-92
10.1111/j.1365-2621.1954.tb17430.x
10.1263/jbb.106.541
10.1002/bit.23313
10.1007/s00449-010-0457-z
10.1021/bp9800642
10.1128/AEM.56.6.1875-1881.1990
10.1002/bit.21713
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2016
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2016
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7T7
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7N
M7P
P64
PQEST
PQQKQ
PQUKI
Q9U
7X8
7QO
DOI 10.1007/s00449-015-1518-0
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest Central Student

Engineering Research Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1615-7605
EndPage 330
ExternalDocumentID 3925951511
10_1007_s00449_015_1518_0
26658984
US201600042640
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6J9
6NX
78A
7X7
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAGCJ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EPAXT
ESBYG
ESTFP
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LK8
LLZTM
M0L
M1P
M2P
M4Y
M7P
MA-
ML0
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
XFK
Y6R
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z87
Z88
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z91
ZMTXR
~A9
~KM
AAPBV
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGJZZ
AGQEE
AGRTI
AIGIU
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QL
7T7
7XB
8FD
8FK
C1K
FR3
K9.
M7N
P64
PQEST
PQUKI
Q9U
7X8
7QO
ID FETCH-LOGICAL-c602t-2fd149ea0f664b8c8bf04eeb8fddb9b98d9626a089be103cd89b0dbb04be031a3
IEDL.DBID U2A
ISSN 1615-7591
IngestDate Fri Oct 25 07:56:44 EDT 2024
Fri Oct 25 07:12:34 EDT 2024
Thu Oct 10 21:12:14 EDT 2024
Thu Sep 12 19:51:07 EDT 2024
Tue Oct 15 23:53:35 EDT 2024
Sat Dec 16 12:21:38 EST 2023
Wed Dec 27 19:20:59 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lactic acid fermentation
Microparticle
Modeling
Optimization
Rhizopus oryzae
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-2fd149ea0f664b8c8bf04eeb8fddb9b98d9626a089be103cd89b0dbb04be031a3
Notes http://dx.doi.org/10.1007/s00449-015-1518-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26658984
PQID 1758090761
PQPubID 55403
PageCount 8
ParticipantIDs proquest_miscellaneous_1768569465
proquest_miscellaneous_1760904787
proquest_journals_1758090761
crossref_primary_10_1007_s00449_015_1518_0
pubmed_primary_26658984
springer_journals_10_1007_s00449_015_1518_0
fao_agris_US201600042640
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Bioprocess and biosystems engineering
PublicationTitleAbbrev Bioprocess Biosyst Eng
PublicationTitleAlternate Bioprocess Biosyst Eng
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ZwieteringMHJongenburgerIRomboutsFMRientKVModeling of the bacterial growth curveAppl Environ Microbiol199056187518811:STN:280:DC%2BC3crotFKrsg%3D%3D
BranenALDavidsonPMSalminenSThorngateJHFood additives20022NYMarcel Dekker
KaupBAEhrichKPescheckMSchraderJMicroparticle-enhanced cultivation of filamentous microorganisms: increased chloroperoxidase formation by Caldariomyces fumago as an exampleBiotechnol Bioeng20089949149810.1002/bit.217131:CAS:528:DC%2BD1cXns1Sqsg%3D%3D
DriouchHWittmannCHanschRWucherpfennigTKrullRImproved enzyme production by bio-pellets Aspergillus niger: targeted morphology engineering using titanate microparticlesBiotechnol Bioeng201210946247110.1002/bit.233131:CAS:528:DC%2BC3MXhs1SgurrK
ParkEYKosakaiYOkabeMEfficient production of L-(+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air-lift bioreactorBiotechnol Prog19981469970410.1021/bp98006421:CAS:528:DyaK1cXls1Clsrc%3D
KitpreechavanichVManeeboonTKayanoYSakaiKComparative characterization of l-lactic acid-producing thermotolerant Rhizopus fungiJ Biosci Bioeng200810654154610.1263/jbb.106.5411:CAS:528:DC%2BD1MXis1ajtLs%3D
VodnarDCDulfFVPopOLSocaciuCL(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerolMicrob Cell Fact2013129210.1186/1475-2859-12-921:CAS:528:DC%2BC2MXjt1Wju7Y%3D
DriouchHRothADerschPWittmannCFilamentous fungi in good shape microparticles for tailor-made fungal morphology and enhanced enzyme productionBioeng Bugs2011210010410.4161/bbug.2.2.13757
RiceACPiersonCSFactors influencing growth of Bacillus coagulans in canned tomato juice. II. Acidic constituents of tomato juice and specific organic acidsFood Res19541912410.1111/j.1365-2621.1954.tb17430.x1:CAS:528:DyaG2cXmsFKrsQ%3D%3D
ManeeboonTVanichsriratanaWPomchaitawardCKitpreechavanichVOptimization of lactic acid production by pellet-form Rhizopus oryzae in 3-L airlift bioreactor using response surface methodologyAppl Biochem Biotechnol201016113714610.1007/s12010-009-8860-01:CAS:528:DC%2BC3cXkt12nuro%3D
MartinezFACBalciunasEMSalgadoJMGonzalezJMDConvertiAOliveiraRPSLactic acid properties, applications and production: a reviewTrends Food Sci Tech201330708310.1016/j.tifs.2012.11.0071:CAS:528:DC%2BC3sXhvVWqsQ%3D%3D
MaasRHWEgginkGBakkerRRWeusthuisRALactic acid production from xylose by the fungus Rhizopus oryzaeAppl Microbiol Biotechnol20067286186810.1007/s00253-006-0379-51:CAS:528:DC%2BD28XhtVWhsr3E
WeeYJKimJNRyuHWBiotechnological production of lactic acid and its recent applicationsFood Technol Biotechnol2006441631721:CAS:528:DC%2BD28XnsFSqtLk%3D
ZhangZYJinBKellyJMProduction of lactic acid from renewable materials by Rhizopus fungiBiochem Eng J20073525126310.1016/j.bej.2007.01.0281:CAS:528:DC%2BD2sXmtVeju78%3D
WuXJiangSLiuMPanLZhengZLuoSProduction of L-lactic acid by Rhizopus oryzae using semicontinuous fermentation in bioreactorJ Ind Microbiol Biotechnol20113856557110.1007/s10295-010-0804-81:CAS:528:DC%2BC3MXjsFCmsb4%3D
Chotisubha-anandhaNThitiprasertSThongchulNToliengVImproved oxygen transfer and increased L-lactic acid production by morphology control of Rhizopus oryzae in a static bed bioreactorBioprocess Biosyst Eng20113416317210.1007/s00449-010-0457-z1:CAS:528:DC%2BC3MXlt12ntA%3D%3D
CobanHBDemirciATurhanIMicroparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentationBioprocess Biosyst Eng2015381075108010.1007/s00449-014-1349-41:CAS:528:DC%2BC2MXmtFGntg%3D%3D
EY Park (1518_CR16) 1998; 14
ZY Zhang (1518_CR17) 2007; 35
H Driouch (1518_CR12) 2012; 109
V Kitpreechavanich (1518_CR8) 2008; 106
HB Coban (1518_CR14) 2015; 38
MH Zwietering (1518_CR15) 1990; 56
X Wu (1518_CR10) 2011; 38
AL Branen (1518_CR1) 2002
DC Vodnar (1518_CR9) 2013; 12
AC Rice (1518_CR5) 1954; 19
RHW Maas (1518_CR3) 2006; 72
BA Kaup (1518_CR11) 2008; 99
N Chotisubha-anandha (1518_CR7) 2011; 34
T Maneeboon (1518_CR6) 2010; 161
YJ Wee (1518_CR2) 2006; 44
FAC Martinez (1518_CR4) 2013; 30
H Driouch (1518_CR13) 2011; 2
References_xml – volume: 38
  start-page: 565
  year: 2011
  ident: 1518_CR10
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-010-0804-8
  contributor:
    fullname: X Wu
– volume: 38
  start-page: 1075
  year: 2015
  ident: 1518_CR14
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-014-1349-4
  contributor:
    fullname: HB Coban
– volume: 35
  start-page: 251
  year: 2007
  ident: 1518_CR17
  publication-title: Biochem Eng J
  doi: 10.1016/j.bej.2007.01.028
  contributor:
    fullname: ZY Zhang
– volume: 30
  start-page: 70
  year: 2013
  ident: 1518_CR4
  publication-title: Trends Food Sci Tech
  doi: 10.1016/j.tifs.2012.11.007
  contributor:
    fullname: FAC Martinez
– volume: 161
  start-page: 137
  year: 2010
  ident: 1518_CR6
  publication-title: Appl Biochem Biotechnol
  doi: 10.1007/s12010-009-8860-0
  contributor:
    fullname: T Maneeboon
– volume: 72
  start-page: 861
  year: 2006
  ident: 1518_CR3
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-006-0379-5
  contributor:
    fullname: RHW Maas
– volume: 2
  start-page: 100
  year: 2011
  ident: 1518_CR13
  publication-title: Bioeng Bugs
  doi: 10.4161/bbug.2.2.13757
  contributor:
    fullname: H Driouch
– volume: 12
  start-page: 92
  year: 2013
  ident: 1518_CR9
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-12-92
  contributor:
    fullname: DC Vodnar
– volume: 19
  start-page: 124
  year: 1954
  ident: 1518_CR5
  publication-title: Food Res
  doi: 10.1111/j.1365-2621.1954.tb17430.x
  contributor:
    fullname: AC Rice
– volume: 106
  start-page: 541
  year: 2008
  ident: 1518_CR8
  publication-title: J Biosci Bioeng
  doi: 10.1263/jbb.106.541
  contributor:
    fullname: V Kitpreechavanich
– volume: 109
  start-page: 462
  year: 2012
  ident: 1518_CR12
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.23313
  contributor:
    fullname: H Driouch
– volume: 34
  start-page: 163
  year: 2011
  ident: 1518_CR7
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-010-0457-z
  contributor:
    fullname: N Chotisubha-anandha
– volume: 14
  start-page: 699
  year: 1998
  ident: 1518_CR16
  publication-title: Biotechnol Prog
  doi: 10.1021/bp9800642
  contributor:
    fullname: EY Park
– volume: 44
  start-page: 163
  year: 2006
  ident: 1518_CR2
  publication-title: Food Technol Biotechnol
  contributor:
    fullname: YJ Wee
– volume: 56
  start-page: 1875
  year: 1990
  ident: 1518_CR15
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.56.6.1875-1881.1990
  contributor:
    fullname: MH Zwietering
– volume: 99
  start-page: 491
  year: 2008
  ident: 1518_CR11
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21713
  contributor:
    fullname: BA Kaup
– volume-title: Food additives
  year: 2002
  ident: 1518_CR1
  contributor:
    fullname: AL Branen
SSID ssj0015820
Score 2.3175662
Snippet Lactic acid has a wide industrial application area and can be produced by fungal strains. However, excessive bulk growth form of fungi during the fermentations...
SourceID proquest
crossref
pubmed
springer
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 323
SubjectTerms Acid production
Acids
agitation
Aluminum
aluminum oxide
Aluminum Oxide - pharmacology
batch fermentation
Bioengineering
Bioreactors
Biotechnology
Chemistry
Chemistry and Materials Science
culture media
Environmental Engineering/Biotechnology
Fermentation
Food Science
Fungi
glucose
Hydrogen-Ion Concentration
Industrial and Production Engineering
industrial applications
Industrial Chemistry/Chemical Engineering
lactic acid
Lactic Acid - biosynthesis
logit analysis
microbial growth
Models, Biological
Original Paper
prediction
response surface methodology
Rhizopus - growth & development
Rhizopus oryzae
Talc - pharmacology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxQxDLbo9gKHquXVKQUFiRMoIp1HNjlVgLaqOFSosKi3KE-KBDNLd_cAvx47M7MUFXobKTl47PgVO58BXiTUImlT4kIkAtWuEtehklyXU09Pi5tpzA2yZ_J0Xr-_aC6GC7fl0FY52sRsqEPn6Y78Nbo5JTRl3ceLH5ymRlF1dRihsQXbJWYK5QS2387OPpxv6giNysCMFNbwaaOPxrqm6GFEa-oVajh6PcXFX55pK9nuX0HnjYJp9kMnu7AzBJDsTS_xPbgT2_tw7xqs4AP4PGsvSZh08cdsG1ged4NLrEvsO3XgLYYDw8nuBHaeG-_WS9Zd_fxlI_uWX04x678GtughYVF8D2F-Mvv07pQP8xO4l6Jc8TIFzH-iFUnK2imvXBJ1jE6lEJx2WgWN6YwVSrt4JCof8EME50TtIuq6rR7BpO3auA_MqzpIjASVRj5XSTk59dqjBwye0H1SAS9H3plFD5NhNoDImdEGGW2I0UYUsI_cNfYLmjEz_1gSyF3O5WpcOhxZbgZlWpo_oi_g-WYZ1YBqG7aN3Zr2SNxCtNy6RzVS17Ip4HEvzg2xGKc0Squ6gFejfK8R8L8_Obid3Cdwl36ub_I-hMnqah2fYgyzcs-Gg_obCgHq1w
  priority: 102
  providerName: ProQuest
Title Enhancement and modeling of microparticle-added Rhizopus oryzae lactic acid production
URI https://link.springer.com/article/10.1007/s00449-015-1518-0
https://www.ncbi.nlm.nih.gov/pubmed/26658984
https://www.proquest.com/docview/1758090761
https://search.proquest.com/docview/1760904787
https://search.proquest.com/docview/1768569465
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7txwPwgGDAFtgqI_EEMvLSxLEf26llAqlCg6LyFNmxDdNGUm3tA_z13DlNNMSGxJMj-RTZd7bvs-_8GeBVwFkkTQhciECk2sPAtRtKrtOioqvFeeFjguxMns6z94t8sQVpf3RRX7ztIpJxoe7vulHokVJ7co5OSnHcpu8idsgojWuejvrIQa4iFSMBGV7k-riLZN72iz980XYwzW0w868QafQ800fwcAMZ2ai18WPY8vUe3DvpXmrbgwc3SAWfwJdJ_Z1MScd-zNSOxcdusIo1gf2g_LvlZrhwWnUcO4tpd-tr1lz9_GU8u4z3ppipzh1btoSwaLynMJ9OPp-c8s3rCbySIl3xNDjc_XgjgpSZVZWyQWTeWxWcs9pq5TRuZoxQ2vpjMawcfghnrcisx5luhs9gp25qfwCsUpmTiAOVThFeBWVlUekK_Z-riNsnJPC602O5bEkyyp4OOSq9RKWXpPRSJHCAmi7NN1zEyvmnlCju4k4uw6rDTv3lZipdl4hvlNB03JLAy74aNUyRDVP7Zk0yEkWoLf-UUbnUmcwT2G9N2zcWUUqutMoSeNPZ-kYD7urJ8_-SfgH3qa9txvch7Kyu1v4IAc3KDmC7WBQD2B1Nx-MZle--fphgOZ7MPp4N4vj-DV9e7uk
link.rule.ids 315,783,787,12070,21402,27938,27939,31733,31734,33758,33759,41095,41537,42164,42606,43324,43819,52125,52248,74081,74638
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RcgAOiHcDBYzECWThzSaOfUIItVqg9ABdtDfLz4IEydLdPcCvZ8ZJliKgt0j2YTLjeXnG3wA8TahF0qbEhUgEqj1NXIep5LpsPD0trpuYG2SP5WxevV3Ui-HCbTW0VY42MRvq0Hm6I3-Bbk4JTVn3y-V3TlOjqLo6jNDYgcuEw0XY-c1im3BNapVhGSmo4U2tJ2NVU_QgohV1CtUcfZ7i4g-_tJNs96-Q869yafZChzfg-hA-sle9vG_CpdjegmvnQAVvw6eD9jOJkq79mG0Dy8NucIl1iX2j_rvlcFw4WZ3APuS2u82KdWc_ftrIvuZ3U8z6L4Ete0BYFN4dmB8enLye8WF6AvdSlGtepoDZT7QiSVk55ZVLoorRqRSC006roDGZsUJpFydi6gN-iOCcqFxETbfTu7Dbdm3cA-ZVFSTGgUqXGF4l5WTjtUf_Fzxh-6QCno28M8seJMNs4ZAzow0y2hCjjShgD7lr7CkaMTP_WBLEXc7kKlzaH1luBlVamd-CL-DJdhmVgCobto3dhvZI3EK0XLhH1VJXsi7gXi_OLbEYpdRKq6qA56N8zxHwvz-5fzG5j-HK7OT9kTl6c_zuAVylH-3bvfdhd322iQ8xmlm7R_nI_gI29-xi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoKyE4IAqlDZRiJE5UVr1Zx7FPCEFX5aEKFRbtzfITkCBZursH-PXMOMm2iNJbJPswnvdkxp8JeZbAiqRNiXGeEFR7nJgOY8l0WXu8WlzVMQ_InsqTqXg7q2b9_NOiH6scfGJ21KH1-I_8CMKc4hqr7qPUj0V8eD15Mf_J8AUp7LT2z2lskK1aQKAD3a5n6-JrVKkM0YgJDqsrPRo6nLwDFBU4NVQxiH-K8b9i1Eay7VXp5z-t0xyRJnfJnT6VpC872W-TG7G5R25fAhi8Tz4fN19RrPgLkNom0PzwDSzRNtEfOIs371WHoQcK9CyP4K0WtD3_9dtG-j3foaLWfwt03oHDgiB3yHRy_OnVCetfUmBe8nLJyhSgEoqWJymFU165xEWMTqUQnHZaBQ2FjeVKuzjiYx_ggwfnuHARrN6OH5DNpm3iHqFeiSAhJ1S6hFQrKSdrrz3EwuAR5ycV5PnAOzPvADPMGho5M9oAow0y2vCC7AF3jf0CDs1MP5YId5erOgFL-wPLTW9WC3OhBAV5ul4Gg8Auh21iu8I9ErYgLdfuUZXUQlYF2e3EuSYWMpZKaSUKcjjI9xIB_zvJw-vJfUJugraa929O3z0it_Cc3eT3Ptlcnq_iY0hslu4ga-wfjg3wlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+and+modeling+of+microparticle-added+Rhizopus+oryzae+lactic+acid+production&rft.jtitle=Bioprocess+and+biosystems+engineering&rft.au=Coban%2C+Hasan+Bugra&rft.au=Demirci%2C+Ali&rft.date=2016-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1615-7591&rft.eissn=1615-7605&rft.volume=39&rft.issue=2&rft.spage=323&rft.epage=330&rft_id=info:doi/10.1007%2Fs00449-015-1518-0&rft.externalDocID=US201600042640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-7591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-7591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-7591&client=summon