Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil
Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11...
Saved in:
Published in | Environmental science and pollution research international Vol. 22; no. 6; pp. 4173 - 4182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2015
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil. |
---|---|
AbstractList | Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil. Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil. Aerobic denitrification is the main process for high N 2 O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N 2 O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg −1 of NO 3 − -N) addition. Results showed the highest N 2 O emission (10.1 mg kg −1 over 21 days) from the soil at pH 3.71 with 1000 mg kg −1 NO 3 − addition. The N 2 O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N 2 O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes ( nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N 2 O emission in this highly acidic tea soil. Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. Issue Title: Potential toxicity of pesticides in freshwater environments: passive sampling, exposure and impacts on biofilms Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg-1 of NO3 --N) addition. Results showed the highest N2O emission (10.1 mg kg-1 over 21 days) from the soil at pH 3.71 with 1000 mg kg-1 NO3 - addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. |
Author | Chapman, Stephen J Huang, Ying Long, Xi-En Yao, Huaiying |
Author_xml | – sequence: 1 fullname: Huang, Ying – sequence: 2 fullname: Long, Xi-En – sequence: 3 fullname: Chapman, Stephen J – sequence: 4 fullname: Yao, Huaiying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25273518$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1LHTEYhUOx1Kv1B3TTBrrpZmw-Jl9LEVsLootWugyZ5B1vZO7kNplZ-O_NMAriQroKgeccTs7JEToY0wgIfaLklBKivhdKuZANoW3DpeCNfIc2VNabao05QBti2rahvG0P0VEp94QwYpj6gA6ZYIoLqjfo75mPIe23cYgeBxjjlGMfIRcc0i6ObgI8bQFfsxu8zynMfoppxHHEDtcIzQO43KQh4AkcTtlvXQ64pDh8RO97NxQ4eTqP0e2Piz_nl83Vzc9f52dXjZeETQ1lxkvDpGlBq9BL771yDIwRfdDOdJ70mjtFeSel6L0BEJ3pHQvKCCCm48fo2-pb0_2boUx2F4uHYXAjpLlYWq1brQ3V_4HK2pA2ilf06yv0Ps15rA-xVGktCTd8oT4_UXO3g2D3Oe5cfrDP7VZArYDPqZQMvfVxckuDU3ZxsJTYZUe77mjrjnbZ0cqqpK-Uz-ZvadiqKZUd7yC_CP2G6Msq6l2y7i7HYm9_M0LF8llaJQh_BGY9tf0 |
CitedBy_id | crossref_primary_10_1080_03650340_2022_2104452 crossref_primary_10_1007_s00374_019_01385_4 crossref_primary_10_1080_00380768_2017_1381572 crossref_primary_10_3389_fpls_2024_1411073 crossref_primary_10_1007_s00253_021_11163_8 crossref_primary_10_1080_03650340_2019_1661382 crossref_primary_10_1007_s00253_018_9013_6 crossref_primary_10_1088_1748_9326_aba5b2 crossref_primary_10_1007_s11368_017_1655_y crossref_primary_10_3389_fsoil_2023_1194825 crossref_primary_10_1016_j_envres_2022_114679 crossref_primary_10_1007_s11368_020_02779_w crossref_primary_10_1016_j_soilbio_2016_09_013 crossref_primary_10_3389_fpls_2022_998178 |
Cites_doi | 10.1111/j.1747-0765.2006.00097.x 10.1128/AEM.66.5.2096-2104.2000 10.1111/j.1365-2389.2010.01279.x 10.1007/s11368-013-0785-0 10.1007/s00374-010-0484-6 10.1016/j.femsec.2004.02.002 10.1016/j.resmic.2010.03.010 10.1128/AEM.68.12.6121-6128.2002 10.1128/AEM.02993-09 10.1093/bib/bbn017 10.1111/j.1574-6941.2010.00856.x 10.1080/00380768.1993.10417009 10.1128/AEM.02197-09 10.1016/j.syapm.2006.05.002 10.2134/jeq2003.1194 10.1016/j.agee.2013.01.003 10.1007/s002480000009 10.1016/0038-0717(78)90095-0 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 10.1071/SR07218 10.1016/j.femsec.2004.04.011 10.1080/00380768.2000.10409149 10.1016/S1001-0742(09)60246-1 10.1111/j.1574-6941.2001.tb00823.x 10.1007/s003740050585 10.1007/s003740050233 10.1093/molbev/mst197 10.1128/AEM.02256-09 10.1046/j.1365-2389.2002.00461.x 10.1016/j.tibtech.2009.03.009 10.1016/j.femsec.2004.04.017 10.1128/AEM.71.12.8335-8343.2005 10.1111/j.1472-4669.2011.00276.x 10.1023/A:1009798022569 10.1007/s00374-012-0762-6 10.1046/j.1365-2389.2001.t01-1-00360.x 10.1016/j.soilbio.2005.08.006 10.1007/s002030000231 10.1080/00380768.2004.10408490 10.1073/pnas.0507535103 10.1128/AEM.00441-08 10.1016/j.soilbio.2006.12.029 10.1128/MMBR.46.1.43-70.1982 10.1128/.61.4.533-616.1997 10.1128/AEM.61.8.2852-2858.1995 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6 |
DOI | 10.1007/s11356-014-3653-6 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global Health & Medical Collection (Alumni) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1614-7499 |
EndPage | 4182 |
ExternalDocumentID | 4055000011 25273518 10_1007_s11356_014_3653_6 US201500204750 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -Y2 .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 ZMTXR ~02 ~KM -5A -5G -5~ -BR -EM -~C 3V. AAAVM ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S AAYXX ABBRH ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c602t-129c692694e87df6ccc7a2e995fd8a9bc0f83a713b665fc9ee5b9fa2d795e09b3 |
IEDL.DBID | U2A |
ISSN | 0944-1344 1614-7499 |
IngestDate | Fri Jul 11 07:41:53 EDT 2025 Tue Aug 05 10:24:30 EDT 2025 Fri Jul 25 23:25:19 EDT 2025 Mon Jul 21 06:01:19 EDT 2025 Tue Jul 01 03:05:25 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri Feb 21 02:36:22 EST 2025 Thu Apr 03 09:45:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Soil pH Nitrate concentrations O emission T-RFLP qPCR Tea orchard soil N |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c602t-129c692694e87df6ccc7a2e995fd8a9bc0f83a713b665fc9ee5b9fa2d795e09b3 |
Notes | http://dx.doi.org/10.1007/s11356-014-3653-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25273518 |
PQID | 1788603933 |
PQPubID | 54208 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1694488918 proquest_miscellaneous_1660028973 proquest_journals_1788603933 pubmed_primary_25273518 crossref_citationtrail_10_1007_s11356_014_3653_6 crossref_primary_10_1007_s11356_014_3653_6 springer_journals_10_1007_s11356_014_3653_6 fao_agris_US201500204750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Environmental science and pollution research international |
PublicationTitleAbbrev | Environ Sci Pollut Res |
PublicationTitleAlternate | Environ Sci Pollut Res Int |
PublicationYear | 2015 |
Publisher | Springer-Verlag Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Blackmer, Bremner (CR5) 1978; 10 Kumar, Nei, Dudley, Tamura (CR28) 2008; 9 Bremner (CR7) 1997; 49 Tyler, Olsson (CR44) 2001; 52 Seitzinger, Kroeze, Styles (CR37) 2000; 2 Tamura, Stecher, Peterson, Filipski, Kumar (CR40) 2013; 30 Van Den Heuvel, Bakker, Jetten, Hefting (CR45) 2011; 9 Yu, He, Chen, Huang (CR49) 2003; 40 Philippot, Piutti, Martin-Laurent, Hallet, Germon (CR34) 2002; 68 Fierer, Jackson (CR16) 2006; 103 Throbäck, Enwall, Jarvis, Hallin (CR41) 2004; 49 Tokuda, Hayatsu (CR43) 2004; 50 Palmer, Drake, Horn (CR32) 2010; 76 Xue, Huang, Yao, Huang (CR48) 2010; 22 Henderson, Dandie, Patten, Zebarth, Burton, Trevors, Goyer (CR21) 2010; 76 CR3 Baggs, Smales, Bateman (CR2) 2010; 46 Dandie, Burton, Zebarth, Henderson, Trevors, Goyer (CR11) 2008; 74 Rütting, Huygens, Boeckx, Staelens, Klemedtsson (CR36) 2013; 49 Hayatsu, Kosuge (CR19) 1993; 39 Richardson, Felgate, Watmough, Thomson, Baggs (CR35) 2009; 27 Wolsing, Prieme (CR47) 2004; 48 Kemmitt, Wright, Goulding, Jones (CR24) 2006; 38 Cavigelli, Robertson (CR9) 2000; 81 Keeney, Nelson, Page, Miller, Keeney (CR23) 1982 Zumft (CR52) 1997; 61 Tokuda, Hayatsu (CR42) 2000; 46 Dell, Bowman, Rufty, Shi (CR13) 2010; 161 Braker, Zhou, Wu, Devol, Tiedje (CR6) 2000; 66 Carter, Hsiao, Spiro, Richardson (CR8) 1995; 61 Dandie, Burton, Zebarth, Trevors, Goyer (CR10) 2007; 30 Barton, Murphy, Butterbach-Bahl (CR4) 2013; 167 Klemedtsson, Enfors, Björk, Weslien, Rütting, Crill, Sikström (CR25) 2010; 61 Knowles (CR26) 1982; 46 Han, Kemmitt, Brookes (CR18) 2007; 39 Zhou, Takaya, Sakairi, Shoun (CR51) 2001; 175 Konishi (CR27) 1991 Enwall, Philippot, Hallin (CR14) 2005; 71 Mulvaney, Khan, Mulvaney (CR31) 1997; 24 Hefting, Bobbink, De (CR20) 2003; 32 Zaman, Nguyen, Saggar (CR50) 2008; 46 Patureau, Zumstein, Delgenes, Moletta (CR33) 2000; 39 Šimek, Cooper (CR38) 2002; 53 Šimek, Hopkins (CR39) 1999; 30 Liu, Mørkved, Frostegård, Bakken (CR29) 2010; 72 Akiyama, Yan, Yagi (CR1) 2006; 52 Enwall, Throbäck, Stenberg, Söderström, Hallin (CR15) 2010; 76 Mergel, Schmitz, Mallmann, Bothe (CR30) 2001; 36 Hall (CR17) 1999; 41 Huang, Li, Yao (CR22) 2013; 14 Deiglmayr, Philippot, Hartwig, Kandeler (CR12) 2004; 49 Wallenstein, Myrold, Firestone, Voytek (CR46) 2006; 16 AM Blackmer (3653_CR5) 1978; 10 K Tamura (3653_CR40) 2013; 30 M Wolsing (3653_CR47) 2004; 48 K Enwall (3653_CR15) 2010; 76 S Kumar (3653_CR28) 2008; 9 S Tokuda (3653_CR42) 2000; 46 S Konishi (3653_CR27) 1991 G Braker (3653_CR6) 2000; 66 CE Dandie (3653_CR10) 2007; 30 L Philippot (3653_CR34) 2002; 68 MA Cavigelli (3653_CR9) 2000; 81 M Šimek (3653_CR39) 1999; 30 D Patureau (3653_CR33) 2000; 39 B Liu (3653_CR29) 2010; 72 EA Dell (3653_CR13) 2010; 161 SL Henderson (3653_CR21) 2010; 76 L Barton (3653_CR4) 2013; 167 D Xue (3653_CR48) 2010; 22 R Knowles (3653_CR26) 1982; 46 K Palmer (3653_CR32) 2010; 76 L Klemedtsson (3653_CR25) 2010; 61 A Mergel (3653_CR30) 2001; 36 DJ Richardson (3653_CR35) 2009; 27 SJ Kemmitt (3653_CR24) 2006; 38 RN Heuvel Van Den (3653_CR45) 2011; 9 MM Hefting (3653_CR20) 2003; 32 T Rütting (3653_CR36) 2013; 49 MD Wallenstein (3653_CR46) 2006; 16 G Zumft (3653_CR52) 1997; 61 JM Bremner (3653_CR7) 1997; 49 K Deiglmayr (3653_CR12) 2004; 49 M Šimek (3653_CR38) 2002; 53 IN Throbäck (3653_CR41) 2004; 49 G Tyler (3653_CR44) 2001; 52 EM Baggs (3653_CR2) 2010; 46 WY Han (3653_CR18) 2007; 39 S Tokuda (3653_CR43) 2004; 50 CE Dandie (3653_CR11) 2008; 74 Y Huang (3653_CR22) 2013; 14 DR Keeney (3653_CR23) 1982 M Zaman (3653_CR50) 2008; 46 Z Zhou (3653_CR51) 2001; 175 SP Seitzinger (3653_CR37) 2000; 2 N Fierer (3653_CR16) 2006; 103 H Akiyama (3653_CR1) 2006; 52 M Hayatsu (3653_CR19) 1993; 39 RL Mulvaney (3653_CR31) 1997; 24 K Enwall (3653_CR14) 2005; 71 S Yu (3653_CR49) 2003; 40 TA Hall (3653_CR17) 1999; 41 JP Carter (3653_CR8) 1995; 61 3653_CR3 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 16793234 - Syst Appl Microbiol. 2007 Mar;30(2):128-38 18689522 - Appl Environ Microbiol. 2008 Oct;74(19):5997-6005 12450836 - Appl Environ Microbiol. 2002 Dec;68(12):6121-8 11377771 - FEMS Microbiol Ecol. 2001 Jun;36(1):33-42 20023077 - Appl Environ Microbiol. 2010 Feb;76(4):1125-34 22847270 - Int Microbiol. 2012 Jun;15(2):89-99 20370831 - FEMS Microbiol Ecol. 2010 Jun;72(3):407-17 20399264 - Res Microbiol. 2010 Jun;161(5):315-25 19712293 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):445-54 10833227 - Microb Ecol. 2000 Feb;39(2):145-152 7487017 - Appl Environ Microbiol. 1995 Aug;61(8):2852-8 12931872 - J Environ Qual. 2003 Jul-Aug;32(4):1194-203 16332820 - Appl Environ Microbiol. 2005 Dec;71(12):8335-43 17205893 - Ecol Appl. 2006 Dec;16(6):2143-52 21504539 - Geobiology. 2011 May;9(3):294-300 20154105 - Appl Environ Microbiol. 2010 Apr;76(7):2155-64 20118364 - Appl Environ Microbiol. 2010 Apr;76(7):2243-50 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9 7045624 - Microbiol Rev. 1982 Mar;46(1):43-70 11271416 - Arch Microbiol. 2001 Jan;175(1):19-25 18417537 - Brief Bioinform. 2008 Jul;9(4):299-306 19712409 - FEMS Microbiol Ecol. 2004 May 1;48(2):261-71 10788387 - Appl Environ Microbiol. 2000 May;66(5):2096-104 21179966 - J Environ Sci (China). 2010;22(8):1253-60 19497629 - Trends Biotechnol. 2009 Jul;27(7):388-97 |
References_xml | – volume: 52 start-page: 774 year: 2006 end-page: 787 ident: CR1 article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2006.00097.x – volume: 66 start-page: 2096 year: 2000 end-page: 2104 ident: CR6 article-title: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.5.2096-2104.2000 – volume: 61 start-page: 734 year: 2010 end-page: 744 ident: CR25 article-title: Reduction in greenhouse gas emissions by wood ash application to a Picea abies (L.) Karst forest on a drained organic soil publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01279.x – volume: 14 start-page: 146 year: 2013 end-page: 154 ident: CR22 article-title: Nitrate enhances N O emission more than ammonium in a highly acidic soil publication-title: J Soil Sediment doi: 10.1007/s11368-013-0785-0 – volume: 46 start-page: 793 year: 2010 end-page: 805 ident: CR2 article-title: Changing pH shifts the microbial source as well as the magnitude of N O emission from soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-010-0484-6 – volume: 48 start-page: 261 year: 2004 end-page: 271 ident: CR47 article-title: Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of gene fragments publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.02.002 – volume: 161 start-page: 315 year: 2010 end-page: 325 ident: CR13 article-title: The community composition of soil-denitrifying bacteria from a turfgrass environment publication-title: Res Microbiol doi: 10.1016/j.resmic.2010.03.010 – volume: 68 start-page: 6121 year: 2002 end-page: 6128 ident: CR34 article-title: Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.12.6121-6128.2002 – volume: 76 start-page: 2155 year: 2010 end-page: 2164 ident: CR21 article-title: Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02993-09 – volume: 9 start-page: 299 year: 2008 end-page: 306 ident: CR28 article-title: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences publication-title: Brief Bioinform doi: 10.1093/bib/bbn017 – volume: 46 start-page: 43 year: 1982 end-page: 70 ident: CR26 article-title: Denitrification publication-title: Microbiol Rev – volume: 72 start-page: 407 year: 2010 end-page: 417 ident: CR29 article-title: Denitrification gene pools, transcription and kinetics of NO, N O and N production as affected by soil pH publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00856.x – volume: 39 start-page: 367 year: 1993 end-page: 371 ident: CR19 article-title: Effects of urea fertilization and liming on nitrification in cerrados soils (Brazil) publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1993.10417009 – volume: 76 start-page: 2243 year: 2010 end-page: 2250 ident: CR15 article-title: Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02197-09 – volume: 30 start-page: 128 year: 2007 end-page: 138 ident: CR10 article-title: Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2006.05.002 – volume: 32 start-page: 1194 year: 2003 end-page: 1203 ident: CR20 article-title: Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones publication-title: J Environ Qual doi: 10.2134/jeq2003.1194 – volume: 167 start-page: 23 year: 2013 end-page: 32 ident: CR4 article-title: Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.01.003 – volume: 39 start-page: 145 year: 2000 end-page: 152 ident: CR33 article-title: Aerobic denitrifiers isolated from diverse natural and managed ecosystems publication-title: Microb Ecol doi: 10.1007/s002480000009 – volume: 10 start-page: 187 year: 1978 end-page: 191 ident: CR5 article-title: Inhibitory effect of nitrate on reduction of N O to N by soil microorganisms publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(78)90095-0 – volume: 81 start-page: 1402 year: 2000 end-page: 1414 ident: CR9 article-title: The functional significance of denitrifier community composition in a terrestrial ecosystem publication-title: Ecology doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2 – volume: 16 start-page: 2143 year: 2006 end-page: 2152 ident: CR46 article-title: Environmental controls on denitrification communities and denitrification rates: insights from molecular methods publication-title: Ecol Appl doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 – volume: 46 start-page: 526 year: 2008 end-page: 534 ident: CR50 article-title: N O and N emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition publication-title: Soil Res doi: 10.1071/SR07218 – volume: 49 start-page: 401 year: 2004 end-page: 417 ident: CR41 article-title: Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.04.011 – volume: 46 start-page: 835 year: 2000 end-page: 844 ident: CR42 article-title: Nitrous oxide production from strongly acid tea field soil publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2000.10409149 – volume: 61 start-page: 2852 year: 1995 end-page: 2858 ident: CR8 article-title: Soil and sediment bacteria capable of aerobic nitrate respiration publication-title: Appl Environ Microbiol – volume: 22 start-page: 1253 year: 2010 end-page: 1260 ident: CR48 article-title: Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils publication-title: J Environ Sci doi: 10.1016/S1001-0742(09)60246-1 – start-page: 643 year: 1982 end-page: 698 ident: CR23 publication-title: Nitrogen-inorganic forms. Methods of soil analysis – volume: 36 start-page: 33 year: 2001 end-page: 42 ident: CR30 article-title: Relative abundance of denitrifying and dinitrogen-fixing bacteria in layers of a forest soil publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2001.tb00823.x – volume: 30 start-page: 41 year: 1999 end-page: 47 ident: CR39 article-title: Regulation of potential denitrification by soil pH in long-term fertilized arable soil publication-title: Biol Fertil Soils doi: 10.1007/s003740050585 – volume: 24 start-page: 211 year: 1997 end-page: 220 ident: CR31 article-title: Nitrogen fertilizers promote denitrification publication-title: Biol Fertil Soils doi: 10.1007/s003740050233 – volume: 30 start-page: 2725 year: 2013 end-page: 2729 ident: CR40 article-title: MEGA6: molecular evolutionary genetics analysis version 6.0 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 76 start-page: 1125 year: 2010 end-page: 1134 ident: CR32 article-title: Association of novel and highly diverse acid-tolerant denitrifiers with N O fluxes of an acidic fen publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02256-09 – volume: 53 start-page: 345 year: 2002 end-page: 354 ident: CR38 article-title: The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.2002.00461.x – volume: 27 start-page: 388 year: 2009 end-page: 397 ident: CR35 article-title: Mitigating release of the potent greenhouse gas N O from the nitrogen cycle-could enzymic regulation hold the key? publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2009.03.009 – volume: 2 start-page: 267 year: 2000 end-page: 279 ident: CR37 article-title: Global distribution of N O emissions from aquatic systems: natural emissions and anthropogenic effects publication-title: Chemosphere – volume: 49 start-page: 445 year: 2004 end-page: 454 ident: CR12 article-title: Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.04.017 – volume: 71 start-page: 8335 year: 2005 end-page: 8343 ident: CR14 article-title: Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8335-8343.2005 – volume: 40 start-page: 433 year: 2003 end-page: 439 ident: CR49 article-title: Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages publication-title: Acta Pedol Sin – volume: 9 start-page: 294 year: 2011 end-page: 300 ident: CR45 article-title: Decreased N O reduction by low soil pH causes high N O emissions in a riparian ecosystem publication-title: Geobiology doi: 10.1111/j.1472-4669.2011.00276.x – volume: 49 start-page: 7 year: 1997 end-page: 16 ident: CR7 article-title: Sources of nitrous oxide in soils publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1009798022569 – volume: 41 start-page: 95 year: 1999 end-page: 98 ident: CR17 article-title: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT publication-title: Nucleic Acids Symp Ser – volume: 49 start-page: 715 year: 2013 end-page: 721 ident: CR36 article-title: Increased fungal dominance in N O emission hotspots along a natural pH gradient in organic forest soil publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0762-6 – ident: CR3 – volume: 52 start-page: 151 year: 2001 end-page: 165 ident: CR44 article-title: Concentrations of 60 elements in the soil solution as related to the soil acidity publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.2001.t01-1-00360.x – volume: 38 start-page: 898 year: 2006 end-page: 911 ident: CR24 article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.08.006 – volume: 175 start-page: 19 year: 2001 end-page: 25 ident: CR51 article-title: Oxygen requirement for denitrification by the fungus Fusarium oxysporum publication-title: Arch Microbiol doi: 10.1007/s002030000231 – volume: 50 start-page: 365 year: 2004 end-page: 374 ident: CR43 article-title: Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2004.10408490 – volume: 103 start-page: 626 year: 2006 end-page: 631 ident: CR16 article-title: The diversity and biogeography of soil bacterial communities publication-title: PNAS doi: 10.1073/pnas.0507535103 – start-page: 21 year: 1991 end-page: 32 ident: CR27 publication-title: Chemistry of tea. Tea science – volume: 61 start-page: 533 year: 1997 end-page: 536 ident: CR52 article-title: Cell biology and molecular basis of denitrification publication-title: Microbiol Mol Biol Rev – volume: 74 start-page: 5997 year: 2008 end-page: 6005 ident: CR11 article-title: Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00441-08 – volume: 39 start-page: 1468 year: 2007 end-page: 1478 ident: CR18 article-title: Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.12.029 – volume: 46 start-page: 526 year: 2008 ident: 3653_CR50 publication-title: Soil Res doi: 10.1071/SR07218 – volume: 103 start-page: 626 year: 2006 ident: 3653_CR16 publication-title: PNAS doi: 10.1073/pnas.0507535103 – volume: 46 start-page: 793 year: 2010 ident: 3653_CR2 publication-title: Biol Fertil Soils doi: 10.1007/s00374-010-0484-6 – volume: 39 start-page: 1468 year: 2007 ident: 3653_CR18 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2006.12.029 – volume: 53 start-page: 345 year: 2002 ident: 3653_CR38 publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.2002.00461.x – volume: 49 start-page: 715 year: 2013 ident: 3653_CR36 publication-title: Biol Fertil Soils doi: 10.1007/s00374-012-0762-6 – volume: 48 start-page: 261 year: 2004 ident: 3653_CR47 publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.02.002 – volume: 49 start-page: 445 year: 2004 ident: 3653_CR12 publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.04.017 – volume: 2 start-page: 267 year: 2000 ident: 3653_CR37 publication-title: Chemosphere – volume: 30 start-page: 2725 year: 2013 ident: 3653_CR40 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 52 start-page: 774 year: 2006 ident: 3653_CR1 publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2006.00097.x – volume: 27 start-page: 388 year: 2009 ident: 3653_CR35 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2009.03.009 – volume: 41 start-page: 95 year: 1999 ident: 3653_CR17 publication-title: Nucleic Acids Symp Ser – volume: 38 start-page: 898 year: 2006 ident: 3653_CR24 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.08.006 – volume: 9 start-page: 294 year: 2011 ident: 3653_CR45 publication-title: Geobiology doi: 10.1111/j.1472-4669.2011.00276.x – volume: 32 start-page: 1194 year: 2003 ident: 3653_CR20 publication-title: J Environ Qual doi: 10.2134/jeq2003.1194 – volume: 30 start-page: 128 year: 2007 ident: 3653_CR10 publication-title: Syst Appl Microbiol doi: 10.1016/j.syapm.2006.05.002 – volume: 24 start-page: 211 year: 1997 ident: 3653_CR31 publication-title: Biol Fertil Soils doi: 10.1007/s003740050233 – volume: 14 start-page: 146 year: 2013 ident: 3653_CR22 publication-title: J Soil Sediment doi: 10.1007/s11368-013-0785-0 – start-page: 21 volume-title: Chemistry of tea. Tea science year: 1991 ident: 3653_CR27 – volume: 50 start-page: 365 year: 2004 ident: 3653_CR43 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2004.10408490 – start-page: 643 volume-title: Nitrogen-inorganic forms. Methods of soil analysis year: 1982 ident: 3653_CR23 – volume: 9 start-page: 299 year: 2008 ident: 3653_CR28 publication-title: Brief Bioinform doi: 10.1093/bib/bbn017 – volume: 49 start-page: 7 year: 1997 ident: 3653_CR7 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1009798022569 – volume: 72 start-page: 407 year: 2010 ident: 3653_CR29 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00856.x – volume: 16 start-page: 2143 year: 2006 ident: 3653_CR46 publication-title: Ecol Appl doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2 – volume: 46 start-page: 43 year: 1982 ident: 3653_CR26 publication-title: Microbiol Rev doi: 10.1128/MMBR.46.1.43-70.1982 – volume: 81 start-page: 1402 year: 2000 ident: 3653_CR9 publication-title: Ecology doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2 – volume: 39 start-page: 367 year: 1993 ident: 3653_CR19 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1993.10417009 – volume: 167 start-page: 23 year: 2013 ident: 3653_CR4 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.01.003 – volume: 52 start-page: 151 year: 2001 ident: 3653_CR44 publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.2001.t01-1-00360.x – volume: 76 start-page: 1125 year: 2010 ident: 3653_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02256-09 – volume: 61 start-page: 533 year: 1997 ident: 3653_CR52 publication-title: Microbiol Mol Biol Rev doi: 10.1128/.61.4.533-616.1997 – volume: 22 start-page: 1253 year: 2010 ident: 3653_CR48 publication-title: J Environ Sci doi: 10.1016/S1001-0742(09)60246-1 – volume: 66 start-page: 2096 year: 2000 ident: 3653_CR6 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.5.2096-2104.2000 – volume: 40 start-page: 433 year: 2003 ident: 3653_CR49 publication-title: Acta Pedol Sin – volume: 76 start-page: 2243 year: 2010 ident: 3653_CR15 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02197-09 – volume: 74 start-page: 5997 year: 2008 ident: 3653_CR11 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00441-08 – volume: 161 start-page: 315 year: 2010 ident: 3653_CR13 publication-title: Res Microbiol doi: 10.1016/j.resmic.2010.03.010 – volume: 30 start-page: 41 year: 1999 ident: 3653_CR39 publication-title: Biol Fertil Soils doi: 10.1007/s003740050585 – volume: 61 start-page: 2852 year: 1995 ident: 3653_CR8 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.61.8.2852-2858.1995 – volume: 36 start-page: 33 year: 2001 ident: 3653_CR30 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2001.tb00823.x – volume: 175 start-page: 19 year: 2001 ident: 3653_CR51 publication-title: Arch Microbiol doi: 10.1007/s002030000231 – volume: 49 start-page: 401 year: 2004 ident: 3653_CR41 publication-title: FEMS Microbiol Ecol doi: 10.1016/j.femsec.2004.04.011 – volume: 61 start-page: 734 year: 2010 ident: 3653_CR25 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2010.01279.x – volume: 68 start-page: 6121 year: 2002 ident: 3653_CR34 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.12.6121-6128.2002 – volume: 71 start-page: 8335 year: 2005 ident: 3653_CR14 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8335-8343.2005 – volume: 39 start-page: 145 year: 2000 ident: 3653_CR33 publication-title: Microb Ecol doi: 10.1007/s002480000009 – volume: 46 start-page: 835 year: 2000 ident: 3653_CR42 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.2000.10409149 – ident: 3653_CR3 – volume: 76 start-page: 2155 year: 2010 ident: 3653_CR21 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02993-09 – volume: 10 start-page: 187 year: 1978 ident: 3653_CR5 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(78)90095-0 – reference: 10788387 - Appl Environ Microbiol. 2000 May;66(5):2096-104 – reference: 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616 – reference: 19712293 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):445-54 – reference: 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17 – reference: 19497629 - Trends Biotechnol. 2009 Jul;27(7):388-97 – reference: 12931872 - J Environ Qual. 2003 Jul-Aug;32(4):1194-203 – reference: 18417537 - Brief Bioinform. 2008 Jul;9(4):299-306 – reference: 11271416 - Arch Microbiol. 2001 Jan;175(1):19-25 – reference: 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31 – reference: 20118364 - Appl Environ Microbiol. 2010 Apr;76(7):2243-50 – reference: 12450836 - Appl Environ Microbiol. 2002 Dec;68(12):6121-8 – reference: 20399264 - Res Microbiol. 2010 Jun;161(5):315-25 – reference: 16793234 - Syst Appl Microbiol. 2007 Mar;30(2):128-38 – reference: 20023077 - Appl Environ Microbiol. 2010 Feb;76(4):1125-34 – reference: 21504539 - Geobiology. 2011 May;9(3):294-300 – reference: 19712409 - FEMS Microbiol Ecol. 2004 May 1;48(2):261-71 – reference: 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9 – reference: 16332820 - Appl Environ Microbiol. 2005 Dec;71(12):8335-43 – reference: 7045624 - Microbiol Rev. 1982 Mar;46(1):43-70 – reference: 21179966 - J Environ Sci (China). 2010;22(8):1253-60 – reference: 20370831 - FEMS Microbiol Ecol. 2010 Jun;72(3):407-17 – reference: 18689522 - Appl Environ Microbiol. 2008 Oct;74(19):5997-6005 – reference: 11377771 - FEMS Microbiol Ecol. 2001 Jun;36(1):33-42 – reference: 7487017 - Appl Environ Microbiol. 1995 Aug;61(8):2852-8 – reference: 10833227 - Microb Ecol. 2000 Feb;39(2):145-152 – reference: 22847270 - Int Microbiol. 2012 Jun;15(2):89-99 – reference: 20154105 - Appl Environ Microbiol. 2010 Apr;76(7):2155-64 – reference: 17205893 - Ecol Appl. 2006 Dec;16(6):2143-52 |
SSID | ssj0020927 |
Score | 2.217057 |
Snippet | Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not... Aerobic denitrification is the main process for high N 2 O production in acid tea field soil. However, the biological mechanisms for the high emission are not... Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not... Issue Title: Potential toxicity of pesticides in freshwater environments: passive sampling, exposure and impacts on biofilms Aerobic denitrification is the... |
SourceID | proquest pubmed crossref springer fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4173 |
SubjectTerms | acid soils Acidic soils Acidification Acids Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bacteria - classification Bacteria - genetics Bacteria - metabolism Base Sequence Biofilms Camellia sinensis - physiology Climate change Denitrification denitrifying microorganisms Earth and Environmental Science Ecotoxicology Ecotypes Emissions Environment Environmental Chemistry Environmental Health Enzymatic activity enzyme activity Enzymes Experiments Freshwater environments Hydrogen-Ion Concentration Moisture content nitrate nitrogen Nitrates Nitrogen Nitrous oxide Nitrous Oxide - chemistry Nitrous Oxide - metabolism orchard soils Pesticide toxicity Pesticides Phylogeny Polyethylene Research Article Soil - chemistry Soil Microbiology Soil pH Soils Tea Toxicity Waste Water Technology Water Management Water Pollution Control |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZouXBBLVAaKMhInEAWedhOfKoq1KpCohxgxd4sP1GkVbx000P_PTN57IKAPduRJvOwv5nxzBDytuSAiQus2zKWM7ihPWuUsGyoRgBA62LEAufPN_J6wT8txXIKuG2mZ5XzmTgc1D45jJF_KMBXk1hIWp2vfzKcGoXZ1WmExgF5iK3LUKvr5c7hytU4slVxzoqK8zmrOZTOFZVAX5qzSoqKyT_upYNo0r8g51_p0uEWujoijyf4SC9GeR-TB6F7Qk4ud9VqsDiZ6-Yp-X7hWp_WGDNxFA6Ytr9tI86-pj7hE5g-UMB_9Kb8Qtdj51eQEm07aiiQz-7BClhaeQqKQNPQVMnTTWpXz8ji6vLbx2s2TVJgTuZlz-BSd1Jh0Wpoah-lc642ZVBKRN8YZV0em8qAv2qlFNGpEIRV0ZS-ViLkylYn5LBLXTgltBKAAIJQIZee501EgOF8KK21IRoZMpLPfNRuajOO0y5WetcgGVmvgfUaWa9lRt5tP1mPPTb2bT4F4WjzA85AvfhaYsQGC3wB-WTkbJaYnixxo3d6k5E322WwIUyMmC6kO9gj5ZBxrffuAS1qGlU0GXk-asOW2BK72AlceT-rx28E_O9PXuwn9yV5hD83vnc7I4f97V14BQCot68HLf8Fthv8rQ priority: 102 providerName: ProQuest |
Title | Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil |
URI | https://link.springer.com/article/10.1007/s11356-014-3653-6 https://www.ncbi.nlm.nih.gov/pubmed/25273518 https://www.proquest.com/docview/1788603933 https://www.proquest.com/docview/1660028973 https://www.proquest.com/docview/1694488918 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7R3QsXxGvZwFIZiRPIUl524mNZdVmBKAioKKfITxSpSqpt98C_ZyaPFsSyEpfk4Elke2Y8Mx5_Y4CXaY4-cUK4LW1yjhba8VIJwzs0Ajq0NgQCOH9YyMtl_m4lVgOOezuedh9Tkt1KfQC7JZmg6DfnmRQZlxM4Fhi60zmuZTrbR1mx6u9pVXnOkyzPx1TmTb_4wxhNgm5v8jP_ypF2pufiPtwbfEY265n8AO745iGczA8QNWwcdHT7CL7NbO3aDW2UWIarSr27qgNdeM1cS-dedp6h08cW6Ue26cu9ImtY3TDNsPv8J4o-b9eOIfdZ21VScmzb1uvHsLyYfz2_5MP1CdzKON1xtORWKkKq-rJwQVprC516pURwpVbGxqHMNAapRkoRrPJeGBV06golfKxMdgJHTdv4U2CZQLPvhfKxdHlcBvIqrPOpMcYHLX0E8TiPlR1qi9MVF-vqUBWZpr7Cqa9o6isZwav9J5u-sMZtxKfInEr_wIWvWn5JaZuGUL3o7kRwNnKsGtRvWyUY2EtCHWcRvNg3o-JQNkQ3vr1GGim7NGtxKw1KUVmqpIzgSS8N-86mVLpOUMvrUTx-68C_RvL0v6ifwV0aa3_m7QyOdlfX_jk6QTszhUmxKvBZnidTOJ69_f5-ju8388Wnz9NOIX4BGir-Bg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoAL4lUaKGAkuIAsEsf2xgeEqtJqS9vlQFf0Fhw_qkirZOmmQv1T_EZm8tgFAXvr2d6VM_48_uzxN0PIKy6AEyeo2zKFYLBDO5ZpWbBWjQCE1oaAAufTiRpPxadzeb5Bfg5aGHxWOfjE1lG72uId-bsEzmoKhaTph_l3hlWjMLo6lNDoYHHsr3_AkW3x_ugjzO9rzg8PzvbHrK8qwKyKecNgg7NKo4DTZyMXlLV2ZLjXWgaXGV3YOGSpgbNboZQMVnsvCx0MdyMtfayLFP53k9wSKSxNVKbvL5-U8Fh3JWK1ECxJhRiiqK1UL0klnt0FS5VMmfpjH9wMpv4Xxf0rPNvueof3yN2ertK9Dl_3yYavHpDtg5U6Dhp797B4SL7u2dLVc7yjsRQcWtlclgFrbVNX45ObxlPgm3TCP9N5l2kWUEHLihoKw2fXYF5WzxwF4NG6TeLk6KIuZ4_I9EZsvE22qrryO4SmEhiHl9rHyok4C0horPO8KAofjPIRiQc75rZPa47VNWb5KiEzmj4H0-do-lxF5M3yJ_Mup8e6zjswObm5AJ-bT79wvCFCQTEwrYjsDjOW9yt_ka9wGpGXy2ZYsxiIMZWvr6CPUm2Ed7S2D6Aoy3SSReRxh4blYDlmzZPY8naAx28D-N-XPFk_3Bfk9vjs9CQ_OZocPyV38EO7t3a7ZKu5vPLPgHw1xfMW8ZR8u-kl9gt1Vjqn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIiEuiFdpoICR4AKymjixYx8QqtquWgoLEqzoLXX8QJFWydLdCvWv8euYyWMXBOytZzuRPf48HnvmmyHkBc_AJk6Qt2XKjMEJ7ZjSomQtGwEMWhsCEpw_jOXxJHt3Js42yM-BC4NhlYNObBW1ayy-ke8lcFeTSCRN90IfFvHpcPR29p1hBSn0tA7lNDqInPqrH3B9m785OYS1fsn56OjLwTHrKwwwK2O-YHDYWamRzOlV7oK01uaGe61FcMro0sZBpQbucaWUIljtvSh1MNzlWvhYlyn8d5PcyNNc4R5TB8vwEh7rrlyszjKWpFk2eFRb2l6SCrzHZyyVImXyjzNxM5jmX-buX67a9gQc3SG3e9OV7ndYu0s2fH2PbB-tmHLQ2KuK-X3ydd9Wrpnhe42loNyqxUUVsO42dQ2G3yw8BduTjvlHOuuyzgJCaFVTQ2H47ArEy5qpowBC2rQJnRydN9X0AZlci4y3yVbd1H6H0FSA9eGF9rF0WawCGjfWeV6WpQ9G-ojEgxwL26c4x0ob02KVnBlFX4DoCxR9ISPyavnJrMvvsa7zDixOYb6B_i0mnzm-FiG5GKyuiOwOK1b0WmBerDAbkefLZti_6JQxtW8uoY-Urbc3X9sHUKSUTlREHnZoWA6WYwY9gS2vB3j8NoD_zeTR-uE-IzdhcxXvT8anj8ktnGcXdrdLthYXl_4J2GGL8mkLeErOr3uH_QJclT7d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acidophilic+denitrifiers+dominate+the+N2O+production+in+a+100-year-old+tea+orchard+soil&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Huang%2C+Ying&rft.au=Long%2C+Xi-En&rft.au=Chapman%2C+Stephen+J&rft.au=Yao%2C+Huaiying&rft.date=2015-03-01&rft.eissn=1614-7499&rft.volume=22&rft.issue=6&rft.spage=4173&rft_id=info:doi/10.1007%2Fs11356-014-3653-6&rft_id=info%3Apmid%2F25273518&rft.externalDocID=25273518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |