Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil

Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 22; no. 6; pp. 4173 - 4182
Main Authors Huang, Ying, Long, Xi-En, Chapman, Stephen J, Yao, Huaiying
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2015
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil.
AbstractList Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil.
Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.
Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N₂O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg⁻¹of NO₃⁻-N) addition. Results showed the highest N₂O emission (10.1 mg kg⁻¹over 21 days) from the soil at pH 3.71 with 1000 mg kg⁻¹NO₃⁻addition. The N₂O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N₂O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N₂O emission in this highly acidic tea soil.
Aerobic denitrification is the main process for high N 2 O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N 2 O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg −1 of NO 3 − -N) addition. Results showed the highest N 2 O emission (10.1 mg kg −1 over 21 days) from the soil at pH 3.71 with 1000 mg kg −1 NO 3 − addition. The N 2 O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N 2 O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes ( nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N 2 O emission in this highly acidic tea soil.
Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.
Issue Title: Potential toxicity of pesticides in freshwater environments: passive sampling, exposure and impacts on biofilms Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg-1 of NO3 --N) addition. Results showed the highest N2O emission (10.1 mg kg-1 over 21 days) from the soil at pH 3.71 with 1000 mg kg-1 NO3 - addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH <7.0) were significantly higher than that of soils at pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil.
Author Chapman, Stephen J
Huang, Ying
Long, Xi-En
Yao, Huaiying
Author_xml – sequence: 1
  fullname: Huang, Ying
– sequence: 2
  fullname: Long, Xi-En
– sequence: 3
  fullname: Chapman, Stephen J
– sequence: 4
  fullname: Yao, Huaiying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25273518$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1LHTEYhUOx1Kv1B3TTBrrpZmw-Jl9LEVsLootWugyZ5B1vZO7kNplZ-O_NMAriQroKgeccTs7JEToY0wgIfaLklBKivhdKuZANoW3DpeCNfIc2VNabao05QBti2rahvG0P0VEp94QwYpj6gA6ZYIoLqjfo75mPIe23cYgeBxjjlGMfIRcc0i6ObgI8bQFfsxu8zynMfoppxHHEDtcIzQO43KQh4AkcTtlvXQ64pDh8RO97NxQ4eTqP0e2Piz_nl83Vzc9f52dXjZeETQ1lxkvDpGlBq9BL771yDIwRfdDOdJ70mjtFeSel6L0BEJ3pHQvKCCCm48fo2-pb0_2boUx2F4uHYXAjpLlYWq1brQ3V_4HK2pA2ilf06yv0Ps15rA-xVGktCTd8oT4_UXO3g2D3Oe5cfrDP7VZArYDPqZQMvfVxckuDU3ZxsJTYZUe77mjrjnbZ0cqqpK-Uz-ZvadiqKZUd7yC_CP2G6Msq6l2y7i7HYm9_M0LF8llaJQh_BGY9tf0
CitedBy_id crossref_primary_10_1080_03650340_2022_2104452
crossref_primary_10_1007_s00374_019_01385_4
crossref_primary_10_1080_00380768_2017_1381572
crossref_primary_10_3389_fpls_2024_1411073
crossref_primary_10_1007_s00253_021_11163_8
crossref_primary_10_1080_03650340_2019_1661382
crossref_primary_10_1007_s00253_018_9013_6
crossref_primary_10_1088_1748_9326_aba5b2
crossref_primary_10_1007_s11368_017_1655_y
crossref_primary_10_3389_fsoil_2023_1194825
crossref_primary_10_1016_j_envres_2022_114679
crossref_primary_10_1007_s11368_020_02779_w
crossref_primary_10_1016_j_soilbio_2016_09_013
crossref_primary_10_3389_fpls_2022_998178
Cites_doi 10.1111/j.1747-0765.2006.00097.x
10.1128/AEM.66.5.2096-2104.2000
10.1111/j.1365-2389.2010.01279.x
10.1007/s11368-013-0785-0
10.1007/s00374-010-0484-6
10.1016/j.femsec.2004.02.002
10.1016/j.resmic.2010.03.010
10.1128/AEM.68.12.6121-6128.2002
10.1128/AEM.02993-09
10.1093/bib/bbn017
10.1111/j.1574-6941.2010.00856.x
10.1080/00380768.1993.10417009
10.1128/AEM.02197-09
10.1016/j.syapm.2006.05.002
10.2134/jeq2003.1194
10.1016/j.agee.2013.01.003
10.1007/s002480000009
10.1016/0038-0717(78)90095-0
10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
10.1071/SR07218
10.1016/j.femsec.2004.04.011
10.1080/00380768.2000.10409149
10.1016/S1001-0742(09)60246-1
10.1111/j.1574-6941.2001.tb00823.x
10.1007/s003740050585
10.1007/s003740050233
10.1093/molbev/mst197
10.1128/AEM.02256-09
10.1046/j.1365-2389.2002.00461.x
10.1016/j.tibtech.2009.03.009
10.1016/j.femsec.2004.04.017
10.1128/AEM.71.12.8335-8343.2005
10.1111/j.1472-4669.2011.00276.x
10.1023/A:1009798022569
10.1007/s00374-012-0762-6
10.1046/j.1365-2389.2001.t01-1-00360.x
10.1016/j.soilbio.2005.08.006
10.1007/s002030000231
10.1080/00380768.2004.10408490
10.1073/pnas.0507535103
10.1128/AEM.00441-08
10.1016/j.soilbio.2006.12.029
10.1128/MMBR.46.1.43-70.1982
10.1128/.61.4.533-616.1997
10.1128/AEM.61.8.2852-2858.1995
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2015
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-014-3653-6
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
Health & Medical Collection (Alumni)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA

MEDLINE
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 4182
ExternalDocumentID 4055000011
25273518
10_1007_s11356_014_3653_6
US201500204750
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
-Y2
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
ZMTXR
~02
~KM
-5A
-5G
-5~
-BR
-EM
-~C
3V.
AAAVM
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
AAYXX
ABBRH
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c602t-129c692694e87df6ccc7a2e995fd8a9bc0f83a713b665fc9ee5b9fa2d795e09b3
IEDL.DBID U2A
ISSN 0944-1344
1614-7499
IngestDate Fri Jul 11 07:41:53 EDT 2025
Tue Aug 05 10:24:30 EDT 2025
Fri Jul 25 23:25:19 EDT 2025
Mon Jul 21 06:01:19 EDT 2025
Tue Jul 01 03:05:25 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Fri Feb 21 02:36:22 EST 2025
Thu Apr 03 09:45:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Soil pH
Nitrate concentrations
O emission
T-RFLP
qPCR
Tea orchard soil
N
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c602t-129c692694e87df6ccc7a2e995fd8a9bc0f83a713b665fc9ee5b9fa2d795e09b3
Notes http://dx.doi.org/10.1007/s11356-014-3653-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25273518
PQID 1788603933
PQPubID 54208
PageCount 10
ParticipantIDs proquest_miscellaneous_1694488918
proquest_miscellaneous_1660028973
proquest_journals_1788603933
pubmed_primary_25273518
crossref_citationtrail_10_1007_s11356_014_3653_6
crossref_primary_10_1007_s11356_014_3653_6
springer_journals_10_1007_s11356_014_3653_6
fao_agris_US201500204750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2015
Publisher Springer-Verlag
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Blackmer, Bremner (CR5) 1978; 10
Kumar, Nei, Dudley, Tamura (CR28) 2008; 9
Bremner (CR7) 1997; 49
Tyler, Olsson (CR44) 2001; 52
Seitzinger, Kroeze, Styles (CR37) 2000; 2
Tamura, Stecher, Peterson, Filipski, Kumar (CR40) 2013; 30
Van Den Heuvel, Bakker, Jetten, Hefting (CR45) 2011; 9
Yu, He, Chen, Huang (CR49) 2003; 40
Philippot, Piutti, Martin-Laurent, Hallet, Germon (CR34) 2002; 68
Fierer, Jackson (CR16) 2006; 103
Throbäck, Enwall, Jarvis, Hallin (CR41) 2004; 49
Tokuda, Hayatsu (CR43) 2004; 50
Palmer, Drake, Horn (CR32) 2010; 76
Xue, Huang, Yao, Huang (CR48) 2010; 22
Henderson, Dandie, Patten, Zebarth, Burton, Trevors, Goyer (CR21) 2010; 76
CR3
Baggs, Smales, Bateman (CR2) 2010; 46
Dandie, Burton, Zebarth, Henderson, Trevors, Goyer (CR11) 2008; 74
Rütting, Huygens, Boeckx, Staelens, Klemedtsson (CR36) 2013; 49
Hayatsu, Kosuge (CR19) 1993; 39
Richardson, Felgate, Watmough, Thomson, Baggs (CR35) 2009; 27
Wolsing, Prieme (CR47) 2004; 48
Kemmitt, Wright, Goulding, Jones (CR24) 2006; 38
Cavigelli, Robertson (CR9) 2000; 81
Keeney, Nelson, Page, Miller, Keeney (CR23) 1982
Zumft (CR52) 1997; 61
Tokuda, Hayatsu (CR42) 2000; 46
Dell, Bowman, Rufty, Shi (CR13) 2010; 161
Braker, Zhou, Wu, Devol, Tiedje (CR6) 2000; 66
Carter, Hsiao, Spiro, Richardson (CR8) 1995; 61
Dandie, Burton, Zebarth, Trevors, Goyer (CR10) 2007; 30
Barton, Murphy, Butterbach-Bahl (CR4) 2013; 167
Klemedtsson, Enfors, Björk, Weslien, Rütting, Crill, Sikström (CR25) 2010; 61
Knowles (CR26) 1982; 46
Han, Kemmitt, Brookes (CR18) 2007; 39
Zhou, Takaya, Sakairi, Shoun (CR51) 2001; 175
Konishi (CR27) 1991
Enwall, Philippot, Hallin (CR14) 2005; 71
Mulvaney, Khan, Mulvaney (CR31) 1997; 24
Hefting, Bobbink, De (CR20) 2003; 32
Zaman, Nguyen, Saggar (CR50) 2008; 46
Patureau, Zumstein, Delgenes, Moletta (CR33) 2000; 39
Šimek, Cooper (CR38) 2002; 53
Šimek, Hopkins (CR39) 1999; 30
Liu, Mørkved, Frostegård, Bakken (CR29) 2010; 72
Akiyama, Yan, Yagi (CR1) 2006; 52
Enwall, Throbäck, Stenberg, Söderström, Hallin (CR15) 2010; 76
Mergel, Schmitz, Mallmann, Bothe (CR30) 2001; 36
Hall (CR17) 1999; 41
Huang, Li, Yao (CR22) 2013; 14
Deiglmayr, Philippot, Hartwig, Kandeler (CR12) 2004; 49
Wallenstein, Myrold, Firestone, Voytek (CR46) 2006; 16
AM Blackmer (3653_CR5) 1978; 10
K Tamura (3653_CR40) 2013; 30
M Wolsing (3653_CR47) 2004; 48
K Enwall (3653_CR15) 2010; 76
S Kumar (3653_CR28) 2008; 9
S Tokuda (3653_CR42) 2000; 46
S Konishi (3653_CR27) 1991
G Braker (3653_CR6) 2000; 66
CE Dandie (3653_CR10) 2007; 30
L Philippot (3653_CR34) 2002; 68
MA Cavigelli (3653_CR9) 2000; 81
M Šimek (3653_CR39) 1999; 30
D Patureau (3653_CR33) 2000; 39
B Liu (3653_CR29) 2010; 72
EA Dell (3653_CR13) 2010; 161
SL Henderson (3653_CR21) 2010; 76
L Barton (3653_CR4) 2013; 167
D Xue (3653_CR48) 2010; 22
R Knowles (3653_CR26) 1982; 46
K Palmer (3653_CR32) 2010; 76
L Klemedtsson (3653_CR25) 2010; 61
A Mergel (3653_CR30) 2001; 36
DJ Richardson (3653_CR35) 2009; 27
SJ Kemmitt (3653_CR24) 2006; 38
RN Heuvel Van Den (3653_CR45) 2011; 9
MM Hefting (3653_CR20) 2003; 32
T Rütting (3653_CR36) 2013; 49
MD Wallenstein (3653_CR46) 2006; 16
G Zumft (3653_CR52) 1997; 61
JM Bremner (3653_CR7) 1997; 49
K Deiglmayr (3653_CR12) 2004; 49
M Šimek (3653_CR38) 2002; 53
IN Throbäck (3653_CR41) 2004; 49
G Tyler (3653_CR44) 2001; 52
EM Baggs (3653_CR2) 2010; 46
WY Han (3653_CR18) 2007; 39
S Tokuda (3653_CR43) 2004; 50
CE Dandie (3653_CR11) 2008; 74
Y Huang (3653_CR22) 2013; 14
DR Keeney (3653_CR23) 1982
M Zaman (3653_CR50) 2008; 46
Z Zhou (3653_CR51) 2001; 175
SP Seitzinger (3653_CR37) 2000; 2
N Fierer (3653_CR16) 2006; 103
H Akiyama (3653_CR1) 2006; 52
M Hayatsu (3653_CR19) 1993; 39
RL Mulvaney (3653_CR31) 1997; 24
K Enwall (3653_CR14) 2005; 71
S Yu (3653_CR49) 2003; 40
TA Hall (3653_CR17) 1999; 41
JP Carter (3653_CR8) 1995; 61
3653_CR3
9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616
16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31
16793234 - Syst Appl Microbiol. 2007 Mar;30(2):128-38
18689522 - Appl Environ Microbiol. 2008 Oct;74(19):5997-6005
12450836 - Appl Environ Microbiol. 2002 Dec;68(12):6121-8
11377771 - FEMS Microbiol Ecol. 2001 Jun;36(1):33-42
20023077 - Appl Environ Microbiol. 2010 Feb;76(4):1125-34
22847270 - Int Microbiol. 2012 Jun;15(2):89-99
20370831 - FEMS Microbiol Ecol. 2010 Jun;72(3):407-17
20399264 - Res Microbiol. 2010 Jun;161(5):315-25
19712293 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):445-54
10833227 - Microb Ecol. 2000 Feb;39(2):145-152
7487017 - Appl Environ Microbiol. 1995 Aug;61(8):2852-8
12931872 - J Environ Qual. 2003 Jul-Aug;32(4):1194-203
16332820 - Appl Environ Microbiol. 2005 Dec;71(12):8335-43
17205893 - Ecol Appl. 2006 Dec;16(6):2143-52
21504539 - Geobiology. 2011 May;9(3):294-300
20154105 - Appl Environ Microbiol. 2010 Apr;76(7):2155-64
20118364 - Appl Environ Microbiol. 2010 Apr;76(7):2243-50
19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17
24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
7045624 - Microbiol Rev. 1982 Mar;46(1):43-70
11271416 - Arch Microbiol. 2001 Jan;175(1):19-25
18417537 - Brief Bioinform. 2008 Jul;9(4):299-306
19712409 - FEMS Microbiol Ecol. 2004 May 1;48(2):261-71
10788387 - Appl Environ Microbiol. 2000 May;66(5):2096-104
21179966 - J Environ Sci (China). 2010;22(8):1253-60
19497629 - Trends Biotechnol. 2009 Jul;27(7):388-97
References_xml – volume: 52
  start-page: 774
  year: 2006
  end-page: 787
  ident: CR1
  article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data
  publication-title: Soil Sci Plant Nutr
  doi: 10.1111/j.1747-0765.2006.00097.x
– volume: 66
  start-page: 2096
  year: 2000
  end-page: 2104
  ident: CR6
  article-title: Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.5.2096-2104.2000
– volume: 61
  start-page: 734
  year: 2010
  end-page: 744
  ident: CR25
  article-title: Reduction in greenhouse gas emissions by wood ash application to a Picea abies (L.) Karst forest on a drained organic soil
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2010.01279.x
– volume: 14
  start-page: 146
  year: 2013
  end-page: 154
  ident: CR22
  article-title: Nitrate enhances N O emission more than ammonium in a highly acidic soil
  publication-title: J Soil Sediment
  doi: 10.1007/s11368-013-0785-0
– volume: 46
  start-page: 793
  year: 2010
  end-page: 805
  ident: CR2
  article-title: Changing pH shifts the microbial source as well as the magnitude of N O emission from soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-010-0484-6
– volume: 48
  start-page: 261
  year: 2004
  end-page: 271
  ident: CR47
  article-title: Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of gene fragments
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.02.002
– volume: 161
  start-page: 315
  year: 2010
  end-page: 325
  ident: CR13
  article-title: The community composition of soil-denitrifying bacteria from a turfgrass environment
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2010.03.010
– volume: 68
  start-page: 6121
  year: 2002
  end-page: 6128
  ident: CR34
  article-title: Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.12.6121-6128.2002
– volume: 76
  start-page: 2155
  year: 2010
  end-page: 2164
  ident: CR21
  article-title: Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02993-09
– volume: 9
  start-page: 299
  year: 2008
  end-page: 306
  ident: CR28
  article-title: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbn017
– volume: 46
  start-page: 43
  year: 1982
  end-page: 70
  ident: CR26
  article-title: Denitrification
  publication-title: Microbiol Rev
– volume: 72
  start-page: 407
  year: 2010
  end-page: 417
  ident: CR29
  article-title: Denitrification gene pools, transcription and kinetics of NO, N O and N production as affected by soil pH
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00856.x
– volume: 39
  start-page: 367
  year: 1993
  end-page: 371
  ident: CR19
  article-title: Effects of urea fertilization and liming on nitrification in cerrados soils (Brazil)
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.1993.10417009
– volume: 76
  start-page: 2243
  year: 2010
  end-page: 2250
  ident: CR15
  article-title: Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02197-09
– volume: 30
  start-page: 128
  year: 2007
  end-page: 138
  ident: CR10
  article-title: Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2006.05.002
– volume: 32
  start-page: 1194
  year: 2003
  end-page: 1203
  ident: CR20
  article-title: Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones
  publication-title: J Environ Qual
  doi: 10.2134/jeq2003.1194
– volume: 167
  start-page: 23
  year: 2013
  end-page: 32
  ident: CR4
  article-title: Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.01.003
– volume: 39
  start-page: 145
  year: 2000
  end-page: 152
  ident: CR33
  article-title: Aerobic denitrifiers isolated from diverse natural and managed ecosystems
  publication-title: Microb Ecol
  doi: 10.1007/s002480000009
– volume: 10
  start-page: 187
  year: 1978
  end-page: 191
  ident: CR5
  article-title: Inhibitory effect of nitrate on reduction of N O to N by soil microorganisms
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(78)90095-0
– volume: 81
  start-page: 1402
  year: 2000
  end-page: 1414
  ident: CR9
  article-title: The functional significance of denitrifier community composition in a terrestrial ecosystem
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
– volume: 16
  start-page: 2143
  year: 2006
  end-page: 2152
  ident: CR46
  article-title: Environmental controls on denitrification communities and denitrification rates: insights from molecular methods
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
– volume: 46
  start-page: 526
  year: 2008
  end-page: 534
  ident: CR50
  article-title: N O and N emissions from pasture and wetland soils with and without amendments of nitrate, lime and zeolite under laboratory condition
  publication-title: Soil Res
  doi: 10.1071/SR07218
– volume: 49
  start-page: 401
  year: 2004
  end-page: 417
  ident: CR41
  article-title: Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.04.011
– volume: 46
  start-page: 835
  year: 2000
  end-page: 844
  ident: CR42
  article-title: Nitrous oxide production from strongly acid tea field soil
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2000.10409149
– volume: 61
  start-page: 2852
  year: 1995
  end-page: 2858
  ident: CR8
  article-title: Soil and sediment bacteria capable of aerobic nitrate respiration
  publication-title: Appl Environ Microbiol
– volume: 22
  start-page: 1253
  year: 2010
  end-page: 1260
  ident: CR48
  article-title: Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60246-1
– start-page: 643
  year: 1982
  end-page: 698
  ident: CR23
  publication-title: Nitrogen-inorganic forms. Methods of soil analysis
– volume: 36
  start-page: 33
  year: 2001
  end-page: 42
  ident: CR30
  article-title: Relative abundance of denitrifying and dinitrogen-fixing bacteria in layers of a forest soil
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2001.tb00823.x
– volume: 30
  start-page: 41
  year: 1999
  end-page: 47
  ident: CR39
  article-title: Regulation of potential denitrification by soil pH in long-term fertilized arable soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050585
– volume: 24
  start-page: 211
  year: 1997
  end-page: 220
  ident: CR31
  article-title: Nitrogen fertilizers promote denitrification
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050233
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  ident: CR40
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 76
  start-page: 1125
  year: 2010
  end-page: 1134
  ident: CR32
  article-title: Association of novel and highly diverse acid-tolerant denitrifiers with N O fluxes of an acidic fen
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02256-09
– volume: 53
  start-page: 345
  year: 2002
  end-page: 354
  ident: CR38
  article-title: The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.2002.00461.x
– volume: 27
  start-page: 388
  year: 2009
  end-page: 397
  ident: CR35
  article-title: Mitigating release of the potent greenhouse gas N O from the nitrogen cycle-could enzymic regulation hold the key?
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2009.03.009
– volume: 2
  start-page: 267
  year: 2000
  end-page: 279
  ident: CR37
  article-title: Global distribution of N O emissions from aquatic systems: natural emissions and anthropogenic effects
  publication-title: Chemosphere
– volume: 49
  start-page: 445
  year: 2004
  end-page: 454
  ident: CR12
  article-title: Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.04.017
– volume: 71
  start-page: 8335
  year: 2005
  end-page: 8343
  ident: CR14
  article-title: Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8335-8343.2005
– volume: 40
  start-page: 433
  year: 2003
  end-page: 439
  ident: CR49
  article-title: Soil chemical characteristics and their impacts on soil microflora in the root layer of tea plants with different cultivating ages
  publication-title: Acta Pedol Sin
– volume: 9
  start-page: 294
  year: 2011
  end-page: 300
  ident: CR45
  article-title: Decreased N O reduction by low soil pH causes high N O emissions in a riparian ecosystem
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2011.00276.x
– volume: 49
  start-page: 7
  year: 1997
  end-page: 16
  ident: CR7
  article-title: Sources of nitrous oxide in soils
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1009798022569
– volume: 41
  start-page: 95
  year: 1999
  end-page: 98
  ident: CR17
  article-title: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
  publication-title: Nucleic Acids Symp Ser
– volume: 49
  start-page: 715
  year: 2013
  end-page: 721
  ident: CR36
  article-title: Increased fungal dominance in N O emission hotspots along a natural pH gradient in organic forest soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0762-6
– ident: CR3
– volume: 52
  start-page: 151
  year: 2001
  end-page: 165
  ident: CR44
  article-title: Concentrations of 60 elements in the soil solution as related to the soil acidity
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.2001.t01-1-00360.x
– volume: 38
  start-page: 898
  year: 2006
  end-page: 911
  ident: CR24
  article-title: pH regulation of carbon and nitrogen dynamics in two agricultural soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.08.006
– volume: 175
  start-page: 19
  year: 2001
  end-page: 25
  ident: CR51
  article-title: Oxygen requirement for denitrification by the fungus Fusarium oxysporum
  publication-title: Arch Microbiol
  doi: 10.1007/s002030000231
– volume: 50
  start-page: 365
  year: 2004
  end-page: 374
  ident: CR43
  article-title: Nitrous oxide flux from a tea field amended with a large amount of nitrogen fertilizer and soil environmental factors controlling the flux
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2004.10408490
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  ident: CR16
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: PNAS
  doi: 10.1073/pnas.0507535103
– start-page: 21
  year: 1991
  end-page: 32
  ident: CR27
  publication-title: Chemistry of tea. Tea science
– volume: 61
  start-page: 533
  year: 1997
  end-page: 536
  ident: CR52
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol Mol Biol Rev
– volume: 74
  start-page: 5997
  year: 2008
  end-page: 6005
  ident: CR11
  article-title: Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00441-08
– volume: 39
  start-page: 1468
  year: 2007
  end-page: 1478
  ident: CR18
  article-title: Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.12.029
– volume: 46
  start-page: 526
  year: 2008
  ident: 3653_CR50
  publication-title: Soil Res
  doi: 10.1071/SR07218
– volume: 103
  start-page: 626
  year: 2006
  ident: 3653_CR16
  publication-title: PNAS
  doi: 10.1073/pnas.0507535103
– volume: 46
  start-page: 793
  year: 2010
  ident: 3653_CR2
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-010-0484-6
– volume: 39
  start-page: 1468
  year: 2007
  ident: 3653_CR18
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.12.029
– volume: 53
  start-page: 345
  year: 2002
  ident: 3653_CR38
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.2002.00461.x
– volume: 49
  start-page: 715
  year: 2013
  ident: 3653_CR36
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-012-0762-6
– volume: 48
  start-page: 261
  year: 2004
  ident: 3653_CR47
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.02.002
– volume: 49
  start-page: 445
  year: 2004
  ident: 3653_CR12
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.04.017
– volume: 2
  start-page: 267
  year: 2000
  ident: 3653_CR37
  publication-title: Chemosphere
– volume: 30
  start-page: 2725
  year: 2013
  ident: 3653_CR40
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 52
  start-page: 774
  year: 2006
  ident: 3653_CR1
  publication-title: Soil Sci Plant Nutr
  doi: 10.1111/j.1747-0765.2006.00097.x
– volume: 27
  start-page: 388
  year: 2009
  ident: 3653_CR35
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2009.03.009
– volume: 41
  start-page: 95
  year: 1999
  ident: 3653_CR17
  publication-title: Nucleic Acids Symp Ser
– volume: 38
  start-page: 898
  year: 2006
  ident: 3653_CR24
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.08.006
– volume: 9
  start-page: 294
  year: 2011
  ident: 3653_CR45
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2011.00276.x
– volume: 32
  start-page: 1194
  year: 2003
  ident: 3653_CR20
  publication-title: J Environ Qual
  doi: 10.2134/jeq2003.1194
– volume: 30
  start-page: 128
  year: 2007
  ident: 3653_CR10
  publication-title: Syst Appl Microbiol
  doi: 10.1016/j.syapm.2006.05.002
– volume: 24
  start-page: 211
  year: 1997
  ident: 3653_CR31
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050233
– volume: 14
  start-page: 146
  year: 2013
  ident: 3653_CR22
  publication-title: J Soil Sediment
  doi: 10.1007/s11368-013-0785-0
– start-page: 21
  volume-title: Chemistry of tea. Tea science
  year: 1991
  ident: 3653_CR27
– volume: 50
  start-page: 365
  year: 2004
  ident: 3653_CR43
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2004.10408490
– start-page: 643
  volume-title: Nitrogen-inorganic forms. Methods of soil analysis
  year: 1982
  ident: 3653_CR23
– volume: 9
  start-page: 299
  year: 2008
  ident: 3653_CR28
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbn017
– volume: 49
  start-page: 7
  year: 1997
  ident: 3653_CR7
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1009798022569
– volume: 72
  start-page: 407
  year: 2010
  ident: 3653_CR29
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00856.x
– volume: 16
  start-page: 2143
  year: 2006
  ident: 3653_CR46
  publication-title: Ecol Appl
  doi: 10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2
– volume: 46
  start-page: 43
  year: 1982
  ident: 3653_CR26
  publication-title: Microbiol Rev
  doi: 10.1128/MMBR.46.1.43-70.1982
– volume: 81
  start-page: 1402
  year: 2000
  ident: 3653_CR9
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2
– volume: 39
  start-page: 367
  year: 1993
  ident: 3653_CR19
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.1993.10417009
– volume: 167
  start-page: 23
  year: 2013
  ident: 3653_CR4
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.01.003
– volume: 52
  start-page: 151
  year: 2001
  ident: 3653_CR44
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.2001.t01-1-00360.x
– volume: 76
  start-page: 1125
  year: 2010
  ident: 3653_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02256-09
– volume: 61
  start-page: 533
  year: 1997
  ident: 3653_CR52
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/.61.4.533-616.1997
– volume: 22
  start-page: 1253
  year: 2010
  ident: 3653_CR48
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(09)60246-1
– volume: 66
  start-page: 2096
  year: 2000
  ident: 3653_CR6
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.5.2096-2104.2000
– volume: 40
  start-page: 433
  year: 2003
  ident: 3653_CR49
  publication-title: Acta Pedol Sin
– volume: 76
  start-page: 2243
  year: 2010
  ident: 3653_CR15
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02197-09
– volume: 74
  start-page: 5997
  year: 2008
  ident: 3653_CR11
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00441-08
– volume: 161
  start-page: 315
  year: 2010
  ident: 3653_CR13
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2010.03.010
– volume: 30
  start-page: 41
  year: 1999
  ident: 3653_CR39
  publication-title: Biol Fertil Soils
  doi: 10.1007/s003740050585
– volume: 61
  start-page: 2852
  year: 1995
  ident: 3653_CR8
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.61.8.2852-2858.1995
– volume: 36
  start-page: 33
  year: 2001
  ident: 3653_CR30
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2001.tb00823.x
– volume: 175
  start-page: 19
  year: 2001
  ident: 3653_CR51
  publication-title: Arch Microbiol
  doi: 10.1007/s002030000231
– volume: 49
  start-page: 401
  year: 2004
  ident: 3653_CR41
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.04.011
– volume: 61
  start-page: 734
  year: 2010
  ident: 3653_CR25
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2010.01279.x
– volume: 68
  start-page: 6121
  year: 2002
  ident: 3653_CR34
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.12.6121-6128.2002
– volume: 71
  start-page: 8335
  year: 2005
  ident: 3653_CR14
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8335-8343.2005
– volume: 39
  start-page: 145
  year: 2000
  ident: 3653_CR33
  publication-title: Microb Ecol
  doi: 10.1007/s002480000009
– volume: 46
  start-page: 835
  year: 2000
  ident: 3653_CR42
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.2000.10409149
– ident: 3653_CR3
– volume: 76
  start-page: 2155
  year: 2010
  ident: 3653_CR21
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02993-09
– volume: 10
  start-page: 187
  year: 1978
  ident: 3653_CR5
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(78)90095-0
– reference: 10788387 - Appl Environ Microbiol. 2000 May;66(5):2096-104
– reference: 9409151 - Microbiol Mol Biol Rev. 1997 Dec;61(4):533-616
– reference: 19712293 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):445-54
– reference: 19712290 - FEMS Microbiol Ecol. 2004 Sep 1;49(3):401-17
– reference: 19497629 - Trends Biotechnol. 2009 Jul;27(7):388-97
– reference: 12931872 - J Environ Qual. 2003 Jul-Aug;32(4):1194-203
– reference: 18417537 - Brief Bioinform. 2008 Jul;9(4):299-306
– reference: 11271416 - Arch Microbiol. 2001 Jan;175(1):19-25
– reference: 16407148 - Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):626-31
– reference: 20118364 - Appl Environ Microbiol. 2010 Apr;76(7):2243-50
– reference: 12450836 - Appl Environ Microbiol. 2002 Dec;68(12):6121-8
– reference: 20399264 - Res Microbiol. 2010 Jun;161(5):315-25
– reference: 16793234 - Syst Appl Microbiol. 2007 Mar;30(2):128-38
– reference: 20023077 - Appl Environ Microbiol. 2010 Feb;76(4):1125-34
– reference: 21504539 - Geobiology. 2011 May;9(3):294-300
– reference: 19712409 - FEMS Microbiol Ecol. 2004 May 1;48(2):261-71
– reference: 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
– reference: 16332820 - Appl Environ Microbiol. 2005 Dec;71(12):8335-43
– reference: 7045624 - Microbiol Rev. 1982 Mar;46(1):43-70
– reference: 21179966 - J Environ Sci (China). 2010;22(8):1253-60
– reference: 20370831 - FEMS Microbiol Ecol. 2010 Jun;72(3):407-17
– reference: 18689522 - Appl Environ Microbiol. 2008 Oct;74(19):5997-6005
– reference: 11377771 - FEMS Microbiol Ecol. 2001 Jun;36(1):33-42
– reference: 7487017 - Appl Environ Microbiol. 1995 Aug;61(8):2852-8
– reference: 10833227 - Microb Ecol. 2000 Feb;39(2):145-152
– reference: 22847270 - Int Microbiol. 2012 Jun;15(2):89-99
– reference: 20154105 - Appl Environ Microbiol. 2010 Apr;76(7):2155-64
– reference: 17205893 - Ecol Appl. 2006 Dec;16(6):2143-52
SSID ssj0020927
Score 2.217057
Snippet Aerobic denitrification is the main process for high N₂O production in acid tea field soil. However, the biological mechanisms for the high emission are not...
Aerobic denitrification is the main process for high N 2 O production in acid tea field soil. However, the biological mechanisms for the high emission are not...
Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not...
Issue Title: Potential toxicity of pesticides in freshwater environments: passive sampling, exposure and impacts on biofilms Aerobic denitrification is the...
SourceID proquest
pubmed
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4173
SubjectTerms acid soils
Acidic soils
Acidification
Acids
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Base Sequence
Biofilms
Camellia sinensis - physiology
Climate change
Denitrification
denitrifying microorganisms
Earth and Environmental Science
Ecotoxicology
Ecotypes
Emissions
Environment
Environmental Chemistry
Environmental Health
Enzymatic activity
enzyme activity
Enzymes
Experiments
Freshwater environments
Hydrogen-Ion Concentration
Moisture content
nitrate nitrogen
Nitrates
Nitrogen
Nitrous oxide
Nitrous Oxide - chemistry
Nitrous Oxide - metabolism
orchard soils
Pesticide toxicity
Pesticides
Phylogeny
Polyethylene
Research Article
Soil - chemistry
Soil Microbiology
Soil pH
Soils
Tea
Toxicity
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZouXBBLVAaKMhInEAWedhOfKoq1KpCohxgxd4sP1GkVbx000P_PTN57IKAPduRJvOwv5nxzBDytuSAiQus2zKWM7ihPWuUsGyoRgBA62LEAufPN_J6wT8txXIKuG2mZ5XzmTgc1D45jJF_KMBXk1hIWp2vfzKcGoXZ1WmExgF5iK3LUKvr5c7hytU4slVxzoqK8zmrOZTOFZVAX5qzSoqKyT_upYNo0r8g51_p0uEWujoijyf4SC9GeR-TB6F7Qk4ud9VqsDiZ6-Yp-X7hWp_WGDNxFA6Ytr9tI86-pj7hE5g-UMB_9Kb8Qtdj51eQEm07aiiQz-7BClhaeQqKQNPQVMnTTWpXz8ji6vLbx2s2TVJgTuZlz-BSd1Jh0Wpoah-lc642ZVBKRN8YZV0em8qAv2qlFNGpEIRV0ZS-ViLkylYn5LBLXTgltBKAAIJQIZee501EgOF8KK21IRoZMpLPfNRuajOO0y5WetcgGVmvgfUaWa9lRt5tP1mPPTb2bT4F4WjzA85AvfhaYsQGC3wB-WTkbJaYnixxo3d6k5E322WwIUyMmC6kO9gj5ZBxrffuAS1qGlU0GXk-asOW2BK72AlceT-rx28E_O9PXuwn9yV5hD83vnc7I4f97V14BQCot68HLf8Fthv8rQ
  priority: 102
  providerName: ProQuest
Title Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil
URI https://link.springer.com/article/10.1007/s11356-014-3653-6
https://www.ncbi.nlm.nih.gov/pubmed/25273518
https://www.proquest.com/docview/1788603933
https://www.proquest.com/docview/1660028973
https://www.proquest.com/docview/1694488918
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7R3QsXxGvZwFIZiRPIUl524mNZdVmBKAioKKfITxSpSqpt98C_ZyaPFsSyEpfk4Elke2Y8Mx5_Y4CXaY4-cUK4LW1yjhba8VIJwzs0Ajq0NgQCOH9YyMtl_m4lVgOOezuedh9Tkt1KfQC7JZmg6DfnmRQZlxM4Fhi60zmuZTrbR1mx6u9pVXnOkyzPx1TmTb_4wxhNgm5v8jP_ypF2pufiPtwbfEY265n8AO745iGczA8QNWwcdHT7CL7NbO3aDW2UWIarSr27qgNdeM1cS-dedp6h08cW6Ue26cu9ImtY3TDNsPv8J4o-b9eOIfdZ21VScmzb1uvHsLyYfz2_5MP1CdzKON1xtORWKkKq-rJwQVprC516pURwpVbGxqHMNAapRkoRrPJeGBV06golfKxMdgJHTdv4U2CZQLPvhfKxdHlcBvIqrPOpMcYHLX0E8TiPlR1qi9MVF-vqUBWZpr7Cqa9o6isZwav9J5u-sMZtxKfInEr_wIWvWn5JaZuGUL3o7kRwNnKsGtRvWyUY2EtCHWcRvNg3o-JQNkQ3vr1GGim7NGtxKw1KUVmqpIzgSS8N-86mVLpOUMvrUTx-68C_RvL0v6ifwV0aa3_m7QyOdlfX_jk6QTszhUmxKvBZnidTOJ69_f5-ju8388Wnz9NOIX4BGir-Bg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoAL4lUaKGAkuIAsEsf2xgeEqtJqS9vlQFf0Fhw_qkirZOmmQv1T_EZm8tgFAXvr2d6VM_48_uzxN0PIKy6AEyeo2zKFYLBDO5ZpWbBWjQCE1oaAAufTiRpPxadzeb5Bfg5aGHxWOfjE1lG72uId-bsEzmoKhaTph_l3hlWjMLo6lNDoYHHsr3_AkW3x_ugjzO9rzg8PzvbHrK8qwKyKecNgg7NKo4DTZyMXlLV2ZLjXWgaXGV3YOGSpgbNboZQMVnsvCx0MdyMtfayLFP53k9wSKSxNVKbvL5-U8Fh3JWK1ECxJhRiiqK1UL0klnt0FS5VMmfpjH9wMpv4Xxf0rPNvueof3yN2ertK9Dl_3yYavHpDtg5U6Dhp797B4SL7u2dLVc7yjsRQcWtlclgFrbVNX45ObxlPgm3TCP9N5l2kWUEHLihoKw2fXYF5WzxwF4NG6TeLk6KIuZ4_I9EZsvE22qrryO4SmEhiHl9rHyok4C0horPO8KAofjPIRiQc75rZPa47VNWb5KiEzmj4H0-do-lxF5M3yJ_Mup8e6zjswObm5AJ-bT79wvCFCQTEwrYjsDjOW9yt_ka9wGpGXy2ZYsxiIMZWvr6CPUm2Ed7S2D6Aoy3SSReRxh4blYDlmzZPY8naAx28D-N-XPFk_3Bfk9vjs9CQ_OZocPyV38EO7t3a7ZKu5vPLPgHw1xfMW8ZR8u-kl9gt1Vjqn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaIiEuiFdpoICR4AKymjixYx8QqtquWgoLEqzoLXX8QJFWydLdCvWv8euYyWMXBOytZzuRPf48HnvmmyHkBc_AJk6Qt2XKjMEJ7ZjSomQtGwEMWhsCEpw_jOXxJHt3Js42yM-BC4NhlYNObBW1ayy-ke8lcFeTSCRN90IfFvHpcPR29p1hBSn0tA7lNDqInPqrH3B9m785OYS1fsn56OjLwTHrKwwwK2O-YHDYWamRzOlV7oK01uaGe61FcMro0sZBpQbucaWUIljtvSh1MNzlWvhYlyn8d5PcyNNc4R5TB8vwEh7rrlyszjKWpFk2eFRb2l6SCrzHZyyVImXyjzNxM5jmX-buX67a9gQc3SG3e9OV7ndYu0s2fH2PbB-tmHLQ2KuK-X3ydd9Wrpnhe42loNyqxUUVsO42dQ2G3yw8BduTjvlHOuuyzgJCaFVTQ2H47ArEy5qpowBC2rQJnRydN9X0AZlci4y3yVbd1H6H0FSA9eGF9rF0WawCGjfWeV6WpQ9G-ojEgxwL26c4x0ob02KVnBlFX4DoCxR9ISPyavnJrMvvsa7zDixOYb6B_i0mnzm-FiG5GKyuiOwOK1b0WmBerDAbkefLZti_6JQxtW8uoY-Urbc3X9sHUKSUTlREHnZoWA6WYwY9gS2vB3j8NoD_zeTR-uE-IzdhcxXvT8anj8ktnGcXdrdLthYXl_4J2GGL8mkLeErOr3uH_QJclT7d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acidophilic+denitrifiers+dominate+the+N2O+production+in+a+100-year-old+tea+orchard+soil&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Huang%2C+Ying&rft.au=Long%2C+Xi-En&rft.au=Chapman%2C+Stephen+J&rft.au=Yao%2C+Huaiying&rft.date=2015-03-01&rft.eissn=1614-7499&rft.volume=22&rft.issue=6&rft.spage=4173&rft_id=info:doi/10.1007%2Fs11356-014-3653-6&rft_id=info%3Apmid%2F25273518&rft.externalDocID=25273518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon